
The VLDB Journal
https://doi.org/10.1007/s00778-023-00820-1

SPEC IAL ISSUE PAPER

AutoML in heavily constrained applications

Felix Neutatz1 ·Marius Lindauer2 · Ziawasch Abedjan2

Received: 30 January 2023 / Revised: 16 August 2023 / Accepted: 10 October 2023
© The Author(s) 2023

Abstract
Optimizing a machine learning pipeline for a task at hand requires careful configuration of various hyperparameters, typically
supported by an AutoML system that optimizes the hyperparameters for the given training dataset. Yet, depending on the
AutoML system’s own second-order meta-configuration, the performance of the AutoML process can vary significantly.
Current AutoML systems cannot automatically adapt their own configuration to a specific use case. Further, they cannot
compile user-defined application constraints on the effectiveness and efficiency of the pipeline and its generation. In this
paper, we propose Caml, which uses meta-learning to automatically adapt its own AutoML parameters, such as the search
strategy, the validation strategy, and the search space, for a task at hand. The dynamic AutoML strategy of Caml takes
user-defined constraints into account and obtains constraint-satisfying pipelines with high predictive performance.

Keywords AutoML · Constraints · Meta-Learning

1 Introduction

Recently, there has been intensive research on automated
machine learning (AutoML) to facilitate the design of
machine learning (ML) pipelines [4, 5, 18, 24, 26, 29, 47,
53–55, 59, 61]. Existing work entails hyperparameter opti-
mization, neural architecture search, and the generation of
end-to-end ML pipelines, consisting of data preprocessing,
feature engineering, model selection, and postprocessing.

1.1 AutoMLwith constraints

In practice, AutoML can be subject to two kinds of con-
straints: ML application and Search constraints. ML appli-
cation constraints impose restrictions, such as limits on
training/inference time and ML pipeline size, or additional
quality criteria, such as adversarial robustness or differen-
tial privacy, on the final ML pipeline. The ML application

B Felix Neutatz
f.neutatz@tu-berlin.de

Marius Lindauer
m.lindauer@ai.uni-hannover.de

Ziawasch Abedjan
abedjan@dbs.uni-hannover.de

1 TU Berlin, Berlin, Germany

2 Leibniz Universität Hannover, Hanover, Germany

constraints on resource consumption are particularly rele-
vant in systems that work with dynamic data and rely on fast
response time [36, 52]. Search constraints impose restric-
tions on the AutoML search process itself, such as limiting
the search time, main memory usage, or parallelism.

Depending on the real-world setting and its commanding
constraints, users have to configure the AutoML system dif-
ferently to achieve the optimal result within a limited search
time budget. With emerging applications in the realm of
edge computing and real-time analysis, further constraints
need to be considered. Autonomous driving relies on real-
time video analysis [13] and to keep up with a sufficiently
high frame rate, the model has to follow tight inference time
constraints. As ML models have become successful, they
have also gained traction on smaller devices, such as smart-
phones, requiring them to reduce their memory footprints
and to predict fast. For streaming use cases, it might be
important to continuously retrain to adapt to concept drift
over time [11]. For fast-changing environments, such as
fraud detection for high-frequency transactions, the models
are subject to demanding training time constraints. Further,
streaming ML requires constraints on millisecond latency
and high throughput [21, 42]. There are also concerns regard-
ing population-based quality criteria. For example, Schelter
et al. [49] showed thatmean-value imputation introduces bias
and should be omitted from the ML hyperparameter search
space if the application is subject to fairness constraints.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00820-1&domain=pdf
http://orcid.org/0000-0001-8698-8010

Felix Neutatz et al.

AutoML systems have several AutoML parameters, such
as those defining the search space, the search strategy, e.g.,
different variants of Bayesian optimization and evolution-
ary algorithms, the validation strategy, e.g., hold-out and
cross-validation, and the sampling strategy, which strongly
influence the search process. We call an arbitrary initial-
ization of these parameters an AutoML configuration. The
default AutoML configuration is the initialization of each
AutoML parameter with its default value and typically
enables the entire search space for ML hyperparameters.

Generally, there is no single AutoML configuration that
always yields a model with high predictive performance on
all kinds of datasets and in particular subject to any of the
aforementioned constraints. Typically, expert knowledge is
required to configure and adapt an AutoML system to such
settings.

1.2 Adapting AutoML configurations

We envision an AutoML system that automatically adapts to
a user-specifiedML task, i.e., not only to the dataset but also
taking into account user-definedML application constraints
and search constraints, to achieve the best overall anytime
performance. We call this new paradigm constraint-driven
AutoML, where the data scientists and domain experts who
know the constraints of the ML applications upfront, e.g.,
resource restrictions for IoT devices or legal restrictions, only
need to specify the constraints but do not need to manually
adjust the space of pipeline designs. We note that AutoML
addresses two groups of users: non-domain experts seeking
low- or no-code solutions, and ML experts seeking support
in their day-to-day business. We rather address the latter user
group with knowledge of the task-specific constraints.

State-of-the-art AutoML systems [14, 17, 43] do not sup-
port ML application constraints out of the box, and they
do not adapt the search process to user-specified search
constraints. Both adaptations are in fact non-trivial because
AutoML systems havemany of their own parameters, such as
those defining the search space, the search strategy, and the
validation strategy. For instance, if the user specifies a search
time of five minutes, the well-known AutoML system Auto-
Sklearn [17, 18] will consider the same ML hyperparameter
search space as if it had a whole week, although only a very
small fraction of the ML hyperparameter space can be cov-
ered. Theoretically, users could modify the AutoML system
parameters to reduce the search space. Still, even for experts,
it is difficult to estimate which part of the ML hyperparame-
ter space to consider or which sample size suffices for a given
task. Similar to ML hyperparameter sensitivity to the dataset
at hand,AutoML’s anytime performance strongly depends on
its own parameters and their optimal setting depends on the
ML task. An intuitive approach would be to frame the prob-
lem as a multi-objective optimization task to explore ML

pipelines across all constraint dimensions. However, even if
we consider it a multi-objective optimization problem, it is
still unclear how to select the AutoML parameters to search
efficiently.

We propose an efficient solution for constraint-driven
AutoML by leveraging meta-learning, which so far has
only been applied to a few subproblems in our setting. For
instance, Auto-Sklearn2 [17, 18] leverages meta-learning
to warm-start Bayesian optimization (BO). Specifically, it
searches for the best set of ML hyperparameters on all
datasets in a repository. For a new dataset, it compares the
dataset with all datasets in the repository and applies BOwith
an initial portfolio of ML hyperparameter configurations of
the most similar dataset to accelerate the search. Addition-
ally, it learns which validation strategy and initial portfolio
are beneficial for which dataset. However, Auto-Sklearn2’s
meta-learning approach cannot support constraints because
one would need to independently train the meta-learning
for each possible set of constraint settings, which is infeasi-
ble. Further, their approach only supports predicting discrete
strategy decisions using pairwise meta-modeling, i.e., a
meta-model predicts the better out of two possible AutoML
strategies. This approach cannot handle continuous AutoML
parameters, and even covering all possible combinations of
sampling strategy, validation, and search space strategy is
typically infeasible.

Another meta-learning approach is to learn a surrogate
model that learns offline whether a given ML pipeline can
satisfy specified constraints. However, this approach does
not adapt the AutoML parameters [37]. For instance, it is
not possible to adapt the validation strategy based on the
specified constraints.

To remedy the aforementioned limitations and to enable
all degrees of freedom in constraint-driven AutoML, we
addressed three major challenges:

1. Huge meta-learning space. The combined space of
AutoML parameters, constraints, and datasets is huge.
We need to draw meta-training instances from this huge
space to enable the meta-training.
To prune the ML hyperparameter space, we have to con-
sider the trade-off between search runtime and predictive
performance. If we prune too much of the ML hyper-
parameter space, the optimization might not find ML
pipelines with high predictive performance. If we prune
too little, the search might be inefficient. To estimate
whichAutoMLconfigurationswill be successful, it is crit-
ical to consider the dataset and user-specified constraints.

2. Meta-training labels. To predict an AutoML configura-
tion for a given task, a meta-model has to be trained on
similar tasks. Choosing the right meta-training examples
and an appropriate prediction target is a problemwe intend
to solve.

123

AutoML in heavily constrained applications

3. Nondeterministic AutoML. AutoML is a nondetermin-
istic and stochastic process. Across multiple runs, the
same AutoML configuration might lead to significantly
different outcomes because both the AutoML optimizer
(e.g., Bayesian optimization) and ML model training are
stochastic. So, if we naively train a meta-model on such
a noisy signal, the meta-model might be inaccurate.

1.3 Contributions

To address these challenges, we propose a new constraint-
driven AutoML system, Caml, which dynamically con-
figures its AutoML parameters by taking into account the
user-specified ML task (i.e., dataset and constraints). Learn-
ing from previous AutoML runs (i.e., dataset, constraints,
AutoML configuration), Caml generates AutoML configu-
rations and estimates which of them are promising for a new
ML task. To this end, we make the following contributions:

1. Wepropose alternating sampling as a training data genera-
tion strategy—a combination of active learning, Bayesian
optimization, and meta-learning. It is parallelized and
efficiently explores the huge search space of datasets,
AutoML configurations, and constraints to learn a meta-
model that estimates the success of AutoML configura-
tions and accelerates the search process.

2. To instantaneously extract the most promising AutoML
configurations from the meta-model at runtime, we pro-
pose offline AutoML configuration mining that provides
Caml with a large pool of promising AutoML configu-
rations. As the meta-model can rank 100k configurations
in less than a second, this pool allows for fast AutoML
configuration retrieval.

3. To ensure high adaptability for awide set of constraint set-
tings, we implemented Caml in a way to allow the user
to configure whether or not it optimizes any ML hyperpa-
rameter. It also supportsML application constraints based
on metrics, such as training/inference time, ML pipeline
size, and equal opportunity [22]—a fairness metric.

4. We report extensive experiments withCaml and compare
it to state-of-the-art AutoML systems. We provide our
implementation, datasets, and evaluation framework in
our repository [39].

Main Findings. Our study lets us draw the following con-
clusions:

1. Caml does not only outperform the default AutoML con-
figuration but also state-of-the-art systems, such as TPOT
[43], AutoGluon [14], and Auto-Sklearn2 [17], in con-
strained settings.

2. Caml outperforms hand-tailored constraint-specific
AutoML solutions, such as Auto-Sklearn 2 [17]. Man-

ually adapting AutoML system configurations to diverse
constraints or even combinations of multiple constraints
is nearly impossible due to unforeseeable side effects.
Therefore, solutions, such as Caml, are required.

3. Caml is the first step toward our vision of constraint-
driven AutoML. This way, we can cover multiple diverse
constraints and add/remove additional oneswithoutAutoML
systems expertise.

2 Three-step problem

The three-step problem represents the search for the optimal
setting of three parameters as described in Fig. 1: theAutoML
parameters, ML hyperparameters, and model parameters.

Before we formalize the problem of constraint-driven
AutoML, we formally define the problem of finding optimal
model parameters for a given supervised machine learn-
ing model and the AutoML problem of finding the optimal
algorithm and ML hyperparameters, e.g., selecting a data
encoding, feature preprocessor, and classificationmodel, and
all their corresponding hyperparameters.

2.1 SupervisedML problem

The supervised ML problem is to find the parameters θ for
a predictive model f by minimizing the loss L of map-
ping f : xi �→ ŷi for a given training dataset Dtrain =
{(x0, y0), ..., (xn, yn)}.

θ∗ ∈ argmin
θ∈Θ

∑

(xi ,yi)∈Dtrain

Ltrain (yi , f (xi ; θ)) . (1)

In practice, the problem is often more complex since the
lossmight be regularized to achieve better generalization per-
formance, and stochastic optimizers might lead to different
model parameters returned by the learning process.

2.2 The AutoML problem

The combined algorithm selection problem and hyperparam-
eter optimization problem of AutoML [56] is to determine
the predictive pipeline a ∈ A and its corresponding hyperpa-
rametersλ ∈ Λ, inducing amodel f (aλ;Dtrain)(·; θ̂)with some
approximated model parameters θ̂ , that achieve the lowest
loss on the validation set Dvalid. Formally:

argmin
a∈A,λ∈Λ

∑

(xi ,yi)∈Dval

Lval(yi , f (aλ;Dtrain)(xi ; θ̂)). (2)

We note that the training loss Ltrain (e.g., cross-entropy)
does not have to be the same as the validation loss Lval (e.g.,
balanced accuracy). Since theMLmodel training can already

123

Felix Neutatz et al.

Fig. 1 Example: Adapting the AutoML Parameters for constraint-driven AutoML

take some time (e.g., training aDNN),AutoMLhas to be very
efficient in evaluating different configurations from A × Λ.

2.3 Constrained-driven AutoML problem

The problem that we address in this paper is to find the
parametersω of a given AutoML system to efficiently find an
ML pipeline that adheres to all user-specified constraints and
achieves the highest predictive performance for a specified
ML task. Formally,

max
ω∈Ω

m(ω) s.t. ∀ci ≤ ti , i ∈ [0, n] (3)

where ω is a vector representing an AutoML system’s own
configuration;m(ω) is the average validation loss of the final
ML model f̂ returned by the AutoML system; ci are the
constraints, and ti are the user-specified constraint thresh-
olds, i.e., search time ≤ 5 min or ML pipeline size ≤ 1 MB.
For constraints, we distinguish between search constraints
and ML application constraints. Search constraints concern
the AutoML search process, such as search time, searchmain
memory, and evaluation time, andMLapplication constraints
concern the final ML pipeline, such as training/inference
time, and fairness.

Although optimizers with implicit learning of these
unknown constraints can be used, we hypothesize that zero-
shot adjusting of the AutoML system’s own parameters
(including the configuration space A × Λ) will address this
problem efficiently.

Choosing the AutoML configuration based on a speci-
fied dataset and constraints is challenging because both the
solution space (possible AutoML configurations) as well as
the task space (possible datasets and constraint thresholds)

are huge. Any change in any of these components might
affect the final predictive performance. The non-determinism
of both ML and AutoML further aggravates these chal-
lenges.

Figure 1 illustrates howconstraint-drivenAutoML impacts
the configurations. Instead of using the default AutoML
configuration, our system automatically adapts its AutoML
parameters to the user-specifiedML task, which is defined by
the dataset and constraints at hand. In this example, several
classification methods are excluded as they are expected not
to meet the specific constraint (marked red in the Dynamic
AutoML Configuration). Then, the dynamically configured
AutoML system searches for ML pipelines based on the
remaining ML hyperparameter search space. Finally, the
model parameters are fit to the dataset, e.g., SVM tunes
the weights w. Previously disabled hyperparameters either
remain disabled if irrelevant or are set to default if required.
For example, the dynamic AutoML configuration excluded
the regularization parameter of the SVM model. However,
as the final pipeline uses SVM, it will simply use the default
parameter here.

3 Constraint-driven AutoML

To meta-learn AutoML’s own parameters ω, we propose
Caml, as illustrated in Fig. 2. Given a user-specified dataset,
search constraints, and ML application constraints, Caml
decides which AutoML configuration—namely, which ML
hyperparameter space, search strategy, andvalidation strategy—
a given AutoML system should search to yield an ML
pipeline with high predictive performance. The workflow
consists of an offline and an online phase.

123

AutoML in heavily constrained applications

Fig. 2 System architecture of Caml

The offline phase consists of three main steps: training
data generation, meta-model training, and AutoML config-
uration mining. As input, the AutoML system engineer has
to provide the AutoML space and the constraint space via
generators. In this paper, we benchmark training/inference
time, pipeline size, and equal opportunity constraints. The
engineer can extend this constraint set depending on the ML
application’s needs. Further, Caml requires a repository of
datasets. Meta-learning performs better if the user-provided
datasets are similar to the datasets that are present in the
repository. So there are two possible approaches to create
the repository. Inside organizations, one could resort to the
own history of datasets that were used in prior data science
pipelines. Other than that one should create the repository
with datasets that differ in dimensions, such as the number
of instances, features, classes, missing values, and feature
types. There are already public repositories that to some
degree fulfill this diverse requirements. Following prior stud-
ies, we collected the datasets for our benchmark repository
from platforms, such as OpenML [58], UCI ML Repository
[27], Kaggle [50], and HuggingFace [10]. Caml leverages

an alternating strategy❶ of randomand uncertainty sampling
to both explore and exploit the huge space of AutoML con-
figurations, datasets, and constraints. Based on the resulting
training data ❷, Caml learns and optimizes the meta-model
using cross-validation while ensuring cross-dataset general-
ization ❸.

Ideally, themeta-trainingwould consider the bestAutoML
configuration for eachML task.However, identifying the best
configuration for anML task is nearly impossible as it would
require testing the huge space of configurations per ML task.
As this goal is computationally infeasible, we relax our orig-
inal problem formulation from Sect. 2 as follows:

max
ω∈Ω

P(m(ω) > m(ωdefault)) s.t. ∀ci ≤ ti , i ∈ [0, n] (4)

To ensure a robustmeta-learning approach, our intuition is
to identify theAutoML configuration that ismost likelymore
effective than the default AutoML configuration. Thus, we
train a meta-learning model that predicts whether a configu-
ration that is different from the defaultAutoMLconfiguration
will result in better performance for a given task.

123

Felix Neutatz et al.

In the final step of the offline phase, Caml leverages the
meta-model ❹ to search for the estimated optimal AutoML
configuration for a randomdataset and randomconstraints❺.
Caml leverages BO to address this search problem. The
result of this step is a large pool of promising AutoML con-
figurations ❻ for a diverse set of use cases.

In the online phase, the user specifies the dataset and the
constraints ❶. To prepare them for the meta-model train-
ing, we encode both the dataset and the constraints in the
meta-feature representation (see Sect. 3.1.4) and combine
themwith theminedAutoML configurations❷. Then,Caml
leverages the meta-model to predict which of the mined
AutoML configurations fits the user-specified dataset and
constraints best ❸. Then, Caml equips the AutoML system
with the resultingAutoML configuration❹ and executes it❺
with the specified search constraints. Finally, the AutoML
system returns an ML pipeline that satisfies all ML applica-
tion constraints ❻.

3.1 Training data for meta-learning

We propose active meta-learning—an approach to efficiently
apply meta-learning in a scenario where the corresponding
training data, both instances and labels, do not exist and
need to be generated; A meta-training instance comprises
a combination of a dataset, an AutoML configuration, and
constraints. The label of such a training instance should spec-
ify how fitting or successful generated AutoML parameters
are. The meta-model should learn from a set of such training
instances whether a generated configuration leads to better
performance than the default AutoML configuration.

To train such a meta-model, we have to answer the fol-
lowing questions: How do we generate the labels? How can
we effectively gather training data? How do we encode an
AutoML run as meta-features?

3.1.1 Meta-target label

To learn which AutoML configurations are promising, we
need a meta-training dataset with prediction labels for pre-
vious AutoML runs. We need to define what success means
for a given AutoML run. We cannot simply choose the pre-
dictive performance as a label for an AutoML run, because
the performance lives on different scales depending on the
ML task at hand. SomeML tasks are harder to solve because
some constraints are very restrictive. For instance, the con-
straint “ML pipeline size ≤ 5KB” is more restrictive than
“ML pipeline size ≤ 500MB”, leading to different opti-
mally achievable prediction performance values. Therefore,
we have to find a metric that considers the entire context of
an ML task as an anchor point. To provide such an anchor

point, we run the AutoML system with default configuration
as a baseline duringmeta-learning. The default AutoML con-
figuration uses the full ML hyperparameter search space and
the default AutoML parameters, such as hold-out validation
with 33% validation data. Now, our learning task is to pre-
dictwhether a generatedAutoMLconfiguration yields higher
predictive performance than the default AutoML configura-
tion for the same task. This proxymetric is independent of the
performance scales and the constraint hardness. To account
for the nondeterministic behavior of AutoML, we run the
AutoML system several times (ten times in our experiments)
for both the generated configuration and the default con-
figuration. Then, we obtain the fraction of cases where the
default AutoML configuration was outperformed. We note
that thismight not lead to the optimumas defined in Eq. 3, but
ensures a robust choice of an AutoML configuration, avoid-
ing performance degradation caused by non-determinism. To
avoid unnecessary computation for unsatisfiable settings in
themeta-training, we first evaluate the givenAutoMLconfig-
uration. If all ten runs yield no ML pipeline that satisfies the
specified constraints, we do not need to evaluate the default
AutoML configuration anymore.

The meta-model for active learning is a random for-
est regression model that predicts the fraction of runs that
the given AutoML configuration outperformed the default
configuration. As shown before [56], random forest is a
well-suited model for handling large complex and structured
hyperparameter spaces, see Sect. 3.1.4.

Algorithm 1 Training data generation
Input: AutoML system A,Datasets D,Constraint Space C,

AutoML parameter space Ω,Random iterations K ,

Sampling time t .
Output: X , Y , groups.
1: X ← ∅
2: Y ← ∅
3: groups ← ∅
4: for i = 0 to K do
 cold start
5: d, c, ω ← random_sample(D,C,Ω)

6: X ← X ∪ {encode(d, c, ω)}
7: Y ← Y ∪ {A(d, c, ω)}
 Running Caml
8: while t not elapsed do
 alternating sampling
9: if rand() ≥ 0.5 then
10: meta_model.fit(X , Y)

11: d, c, ω ← argmax
d∈D,c∈C,ω∈Ω

σ(meta_model.predict(

encode(d, c, ω)))

12: else
13: d, c, ω ← random_sample(D,C,Ω)

14: X ← X ∪ {encode(d, c, ω)}
15: Y ← Y ∪ {A(d, c, ω)}
 Running Caml
16: groups ← groups ∪ d

17: return X , Y , groups.

123

AutoML in heavily constrained applications

3.1.2 Alternating sampling

To efficiently explore the space of AutoML configurations,
datasets, and constraints, we leverage active learning, specif-
ically uncertainty sampling [51]. Similar to the approach
presented by Yu et al. [62] that reduces labeling effort for
standard ML classification tasks, our system chooses and
generates those meta-training instances that the meta-model
is most uncertain about. However, if we only sample ML
tasks around the decision boundary of whether a given
AutoML configuration outperforms the default configura-
tion, we might miss configurations that outperform the
default configuration by large margins. While we exploit the
space with uncertainty sampling, we additionally explore it
with random sampling in an alternating fashion.

Algorithm 1 describes the training data generation pro-
cess. Sampling requires a repository of datasets, an AutoML
system, a constraint space, and a space of AutoML parame-
ters. To start active learning,we need initial training instances
that yield the first meta-model. Caml chooses these first
instances randomly (Lines 4-7). In particular, Caml ran-
domly chooses the dataset d, the constraints c, and the
AutoML configuration ω (Line 5). Then, those components
are encoded as meta-features and added to the meta-training
set (Line 6). The corresponding AutoML run is executed and
compared with the default configuration to obtain the cor-
responding label (Line 7). Then, the alternating sampling
process starts (Line 8). The system chooses uniformly at
random whether to apply random or uncertainty sampling.
Uncertainty sampling picks the most uncertain instance
among all given instances. To find uncertain instances in this
huge search space (combinations of datasets, AutoML con-
figurations, and constraints), we leverage BO, which learns
a surrogate model to predict which AutoML parameters
yield high predictive performance and samples only promis-
ing instances by trading off exploration and exploitation. In
Line 11, BO identifies the combination of (d,c,ω) that leads
to the highest standard deviation across all trees of the ran-
dom forest meta-model. We repeat this two-step loop until
the time limit has been reached.

3.1.3 Parallelization and optmizations

To speed up the presented sequential algorithm, we paral-
lelize it asynchronously. Each worker always accesses the
latest training instances. Once a new meta-training instance
and a corresponding label are available, the meta-training
data is locked briefly to add the new instance. We found
that the more common approach [64] to predict the label for
a newly sampled instance with the current meta-model and
adding both to the meta-training data does not work well for
our scenario. Our label is only predicted and is thus only an
approximation of the ground truth. If the label is not correct,

the search could fall into the wrong direction. Therefore,
our approach only adds a new instance once the label is
confirmed. To avoid the same instances being evaluated in
parallel, we start each nondeterministic BO run with differ-
ent seeds. As the search space is huge, it is highly unlikely
that similar instanceswill be sampled during the same period.

3.1.4 Meta-feature representation

To estimate whether an AutoML configuration yields higher
predictive performance than the default AutoML configura-
tion, the meta-model has to know the dataset, the AutoML
parameters, and the constraints. We encode each of these
components in a meta-feature vector.

Dataset Features For encoding datasets into meta-feature
vectors, multiple approaches have been proposed [7, 18,
57]. We leverage the 32 meta-features proposed by Feurer
et al. [18], such as the class entropy, the number of features,
classes, and instances.

Constraint Features All constraints, such as inference
time ≤ 0.001s, can be represented by the corresponding
threshold. If the user does not specify the constraint, we set
the maximum possible default value. Extending the set of
constraints is always possible. The safest strategy is to train
the meta-model from scratch. However, one can also lever-
age the assumption that the missing constraint was simply
set to default. Thus, all previous training instances can be
appended with the default value for the new constraint and
new instances with novel thresholds for the constraint can be
generated for new instances. Thisway,we can continuemeta-
training asynchronously without the need of starting from
scratch. The same reasoning applies to extending the search
space of the AutoML parameters. However, this only works,
if one does not change the underlying AutoML system that
we compare to, e.g., if one uses the state-of-the-art AutoML
system as a comparison, one can leverage the assumption that
the missing component was simply not chosen. This way, we
can continue meta-training without the need of starting from
scratch.

AutoML Configuration Features To encode an AutoML
configuration, we distinguish numeric parameters and cat-
egorical ones. Numeric AutoML parameters, such as the
choice of the validation fraction, are simply added to the
meta-feature vector. We encode the ML hyperparameters as
binary values. The AutoML system either optimizes each
ML hyperparameter (True) or uses its corresponding default
value (False). For instance, the AutoML system can optimize
the number of neighbors for K nearest neighbors or use its
default K = 5.

We follow the well-known assumption that theML hyper-
parameter space has a tree structure where each node
represents an ML hyperparameter [3, 56] and each edge rep-
resents the dependency on its parent ML hyperparameter.

123

Felix Neutatz et al.

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

1
2

3

Search Time (s)

V
al
id
at
io
n
B
al
an

ce
d
A
cc
ur

ac
y

New Machine
Meta-Training Machine

Fig. 3 Mapping search time from one environment to another environ-
ment

Figure5 shows a branch of this tree. We describe the details
of how we structure this tree in Sect. 3.4. If we do not opti-
mize anML hyperparameter higher up in the tree, wewill not
optimize any of its descendant ML hyperparameters either.
For instance, if we remove the K -nearest-neighbor classifier
from the choice of possible classifiers, we also do not need
to optimize the number of neighbors k. We refer the reader
to our repository [40] for the complete tree space that we
leverage.

The aforementioned set of meta-features assumes uni-
form hardware specifications at training and deployment
time which cannot always be guaranteed. If the hardware of
meta-learning training is different from the hardware where
Caml is deployed, one can apply calibration strategies that
were proposed for database query optimization cost models
[20]. For instance, one could run a lightweight benchmark to
understand the hardware performance difference and obtain
corresponding scaling functions.

We propose a simple calibrationmethod to implement this
idea. In particular, one can execute an AutoML system and
keep track of the highest predictive performance on the val-
idation set for one or multiple datasets that generally benefit
from longer search times and use a performance mapping to
calibrate the search time. One could implement the same idea
using the test set but this would require additional computa-
tion and usually the test data is not accessible to the AutoML
system during runtime.

During an offline step, the static Caml is applied on
the selected datasets on both machines, the source and the
target environment, and records the improvement of vali-
dation accuracy over time. These benchmarks lead to two
graphs, as shown in Fig. 3. During the online process for
a new dataset, one can now specify a desired search time

on the target machine, which will be internally mapped to
a search time that achieves the same validation accuracy
on the source machine. In Fig. 3, we marked 30s on the
target machine and the graph visualizes how it maps to a
different search time based on the equality of the validation
accuracy.Caml searches for the search time where the meta-
training machine reached this validation accuracy and uses
the adjusted search time to configure the AutoML param-
eters for the new machine. Note that it still runs only 30s
on the target machine but sets the configuration space based
on the adjusted search time. The advantage of this calibra-
tion method is that it works for any hardware setup without
the requirement of obtaining hardware meta-information. To
improve the reliability of the calibration, one should conduct
multiple runs and average the results. The approach will be
costly if the targeted search times are rather high. However,
we argue that in these cases calibration is not necessary as
the search time is long enough. This is also validated by our
experiments discussed in Sect. 4.7.

3.2 Meta-model training

Once the meta-data sampling is finished, Caml trains the
final meta-model. The straightforward approach would be
to use the same model that was trained for uncertainty sam-
pling. However, this model is suboptimal because it might be
overfitted to certain datasets that aremore frequently sampled
than others due to their uncertainty estimation. Further, we do
not optimize the model hyperparameters during uncertainty
sampling as it would significantly slow down the training
data generation. For these reasons, we apply hyperparameter
optimization on the meta-model after sampling has finished
with 10-fold grouped cross-validation avoiding that training
instances with the same dataset do not appear in both training
and test folds.

To achieve optimal performance, we train two meta-
models, one for AutoML configuration mining and one to
rank the large pool of mined AutoML configurations.

ForAutoMLconfigurationmining,we use the sameobjec-
tive as for the surrogate model for uncertainty sampling (see
Sect. 3.1.1): we predict the fraction of runs that the given
AutoML configuration outperformed the default one (regres-
sion). For ranking the mined AutoML configurations, we
predict whether the given AutoML configuration outper-
forms the default one at least once (classification). The
regression meta-model contains more information than the
classification meta-model because it estimates how much
better the given AutoML configuration is compared to the
default one whereas the classification model estimates only
whether the AutoML configuration is better than the default
one. However, as the regression task is much harder than the
classification task, the regression meta-model is more likely
to make mistakes and therefore more unstable. Yet, as we

123

AutoML in heavily constrained applications

describe in Sect. 3.3, we query the regression meta-model
many times, avoid local optima/mistakes, and converge over
time to a well-performingAutoML configuration. In turn, we
only query the rankingmeta-model once. Therefore, we need
to make sure that it makes no mistakes and is as conserva-
tive as possible. This way, we ensure that the highest ranked
AutoML configuration is robust—meaning it outperforms at
least the default configuration.

3.3 AutoML configurationmining

Given an ML task and a generated configuration, the trained
regression meta-model can predict whether the generated
configuration will be more effective than the default con-
figuration or not. The question is how we can leverage this
regression meta-model to find the best AutoML configura-
tion for a new dataset and user-specified constraints. To use
the trained regression meta-model, we need a set of gener-
ated candidate configurations for each of which we can carry
out the inference. Here, we are looking for the AutoML con-
figuration that yields the best predictive performance for a
given dataset and given constraints.

The simplest approach would be to generate a large num-
ber of random configuration candidates and let the regression
meta-model predict which of these configurations has the
highest likelihood of success. The disadvantage of this
approach is that many of the randomly generated configura-
tions will perform poorly and we cannot generate all possible
configurations. The advantage of this approach is that the
generation of these random configurations can be performed
in the offline phase. During the online phase, we would only
apply inference. The cost of inference is minimal, e.g., pre-
dicting one million configurations takes around 1s.

Instead of random sampling, we could also apply BO.
We could maximize the estimated likelihood that a gener-
ated configuration outperforms the default configuration, and
freeze all meta-features for the user-specified dataset and
constraints:

ω̂ ← argmax
ω∈Ω

meta_model.predict(encode(d, c, ω)) (5)

The advantage of BO is that it would adjust the configura-
tion to the specified dataset and constraints. The disadvantage
of BO is that it is slow. For instance, performing 1000
iterations would take more than 700s. Waiting for more
than 10min before we even start the AutoML system is not
viable—especially if the user is interested in fast develop-
ment cycles.

We propose a hybrid approach that combines the strengths
of both probing strategies. In the offline phase, we randomly
sample a dataset and constraints—similar to Line 5. But
instead of randomly sampling a configuration ω, we lever-

age BO to find the most promising configuration for this
randomly generated ML task with the help of the regres-
sion meta-model. This way, we generate a large number of
promising random configurations offline. In the online phase,
we let the classification meta-model choose which of these
promising random configurations fits the specified dataset
and constraints best. Then, Caml sets up the actual AutoML
system with this configuration and executes it.

3.4 AutoML parameters

AdaptingAutoML parameters is onlymeaningful if there is a
wide rangeof parameters that are in fact adaptable. In contrast
to Auto-Sklearn and AutoGluon, we implemented Caml
to not only provide access to the common user-adjustable
AutoML parameters, such as whether to use ensembling,
incremental training, or which validation strategy, but also
to allow external adjustment of every single ML hyperpa-
rameter in the search space. This way, it can be dynamically
decided whether those parameters should be optimized or
not, as shown in Fig. 1.

We extend theML hyperparameter space of Auto-Sklearn
[18] additionally supporting oversampling strategies random
oversampling, SMOTE [9], and ADASYN [23] to address
class imbalance. Further, we added support for one-vs-rest
classification to improve multi-class classification. We refer
the reader to our repository [40] for the complete tree space
that we leverage. We structure the ML hyperparameter space
in a tree [40], as proposed in Auto-Weka [56]. Figure5 rep-
resents a slice of the leveraged tree space. The first level of
the tree contains all main components of the ML pipeline:
categorical encoding, imputation, scaling, classifier, feature
preprocessor, augmentation, sampling, and class weighting.
Below this level, each component can be implemented by
various strategies and each strategy has its own hyperparame-
ters. This way, theML hyperparameter space naturally builds
up a tree. The hierarchical organization of the ML hyperpa-
rameter space is essential to allow the meta-model to prune
a large part of the ML hyperparameter space as early as pos-
sible. This way, the AutoML system will not optimize the
child ML hyperparameters if their parent ML hyperparame-
ter is not optimized. Instead, the system will use their default
value. For instance, by providing a hierarchical structure, we
allow the meta-model to realize that no preprocessing trans-
formation will be beneficial for a specific setting, instead of
deciding for every single preprocessor and all its correspond-
ing hyperparameters whether to optimize it or not.

3.5 Constraints

In constraint-drivenAutoML, the user can define constraints,
which might concern the AutoML process or the ML appli-
cation, as shown in Fig. 4.

123

Felix Neutatz et al.

search

time-related
Search Time

Evaluation Time

hardware-related
Memory

Parallelism

AutoML system-specific
Ensemble Size

Search Space

ML application

known
Privacy

Interpretability
|Features|

ML Pipeline

unknown

Efficiency

Training Time

Inference Time

ML Pipeline SizeFairness

Robustness

Correctness

Security

Fig. 4 AutoML constraints

Search constraints limit time-related, hardware-related, or
system-specific aspects of theAutoMLprocess. Time-related
search constraints limit the search time or the evaluation
time. Hardware-related search constraints are limits on the
memory or parallelism. System-specific search constraints
are limits on the size of ensembles or the search space.

The most important search constraint limits the search
time. This search constraint is mandatory for each AutoML
run and therefore it represents the class of search constraints
well. For fast development cycles, data scientists will limit
the search time to less than an hour to quickly experiment
with the pipeline.
ML application constraints restrict the ML pipelines with
regard to different quality dimensions. Zhang et al. [63]
described 7 quality dimensions that can serve as constraints:
correctness, robustness, security, privacy, efficiency, fairness,
and interpretability. These constraints can be categorized
along two dimensions.

Gelbart et al. [19] differentiate between unknown and
known constraints as also illustrated in our constraint tax-
onomy. Known constraints are those constraints that can be
checked before training and evaluating amodel. For instance,
knowing that an ε-differentially private implementation of
classifiers [8] is used apriori ensures that privacy constraints
are satisfied. Another example of known constraints is a
restriction with respect to the ML pipeline components or
the number of features to improve the interpretability of the
resultingML pipeline. In contrast, unknown constraints refer
to those that can only be checked once the model is trained

and evaluated. For instance, most efficiency constraints have
this property.

Generally, our approach can integrate any known con-
straint easily by adding an if statement at the beginning of
the objective function. For our experiments, we focus on
unknown constraints.

The second dimension along which one can differentiate
constraints refers to their dependence on the ML pipeline
and/or the data. For our experiments, we focus on con-
straints that significantly depend on the pipeline and not so
much on the dataset. To incorporate more dataset-dependent
constraints, such as fairness one would need to use more
dataset-specific meta-features in the meta-model.

All in all, among the seven quality dimensions proposed
by Zhang et al. [63], we focus on correctness, efficiency,
and fairness. In particular, we always maximize correctness,
i.e., the predictive performance. Further, we choose three
well-established efficiency constraints training time, infer-
ence time, andML pipeline size1, and equal opportunity [22]
which is a fairnessmeasure. All four are unknown constraints
and depend on the ML pipeline.

The relevance of the three efficiency constraints is par-
ticularly high in edge computing and streaming scenarios. In
streaming scenarios, reducing inference time is vital to ensure
continuous real-time predictions. As the data is evolving, the
model requires constant retraining. In continuous training
scenarios, enforcing training time limits plays a significant
role. The same constraint type is relevant for federated learn-
ing [32], where users continue training on their own devices.
Finally, to apply ML on IoT devices or smartphones, it is
important to limit memory consumption.

3.6 Extending the list of constraints

First, one has to define the user-defined function that
describes the constraint. The process depends on whether
we want to create an ML application or search constraint.

For ML application constraints, one has to implement the
following template:

def constraint (pipeline , training_time , X_train ,
y_train , X_val, y_val , threshold , constraint_
specific) : True/False

This function takes the trained pipeline and its training
time, the split data, the constraint threshold, and constraint-
specific parameters, such as the sensitive attribute for fair-
ness. The output of this function is whether the given ML
pipeline passes the constraint or not.

After implementing the user-defined function, one has to
add a new feature to the meta-data representation and con-

1 For some ML models, such as random forest and KNN, the model
size is data dependent.

123

AutoML in heavily constrained applications

tinuemeta-training.Toaccount for the newmeta-data feature,
first one has to retrain the meta-model. With the retrained
meta-model, one can continue alternating sampling includ-
ing the new constraint. Finally, one has to generate additional
configurations that also cover the new constraint as described
in Sect. 3.3.

For search constraints, one has to additionally implement
an initialize function that starts the measuring at the begin-
ning of search and another function that checks whether the
search constraint is still satisfied.

3.7 Constrained optimization

So far we know how to train the meta-learning approach
and how to retrieve an adapted AutoML configuration
dynamically. Now, we explain how Caml optimizes the
ML hyperparameters under constraints. Previous systems by
default consider the predictive performance as the objective
function,which is not sufficient and requires adjustment. Fur-
thermore, aspects such as ensembling have to be adjusted as
we need to make sure that only constraint-satisfying models
are ensembled and that the final ensemble also satisfies the
constraints.

To support ML application constraints we formulate the
objective function as follows for Caml:

max

(
−1 ·

(
n∑

i=1

Δci

)
+

([
n∑

i=1

Δci == 0

]
· BA

))
,

where Δci is the distance to satisfying the i th constraint
and BA is balanced accuracy. This objective ensures to sat-
isfy the constraints first and then optimizes the balanced
accuracy. This way, the user can set thresholds for any of the
supported constraints through an API. As the BO framework
to maximize this objective, we choose Optuna [1], which
leverages the tree-structured Parzen estimator (TPE) as the
surrogate model. TPE is well-suited for our tree-structured
ML search space.

To enable model ensembling in Caml, we integrate the
greedy ensembling strategy proposed by Caruana et al.
[6]. The strategy iteratively adds the model that maximizes
ensemble validation predictive performance as long as all
constraints are satisfied.

To enable hyperparameter optimization on large data, we
implement incremental training similar to successive halving
[31]. First, we train a model on a small sample containing 10
instances per class. Then, we double the training set size and
train the model again. We continue this approach until either
the evaluation time is over or theML hyperparameter config-
uration is pruned because it performedworse than themedian
configuration of the history. Further, for constraint metrics
that monotonically increase with the training set size, such

as the training time or ML pipeline size, we stop the config-
uration evaluation as early as possible to avoid unnecessary
computation. As incremental training might result in a large
number of ML hyperparameter evaluations, the danger of
overfitting increases. Lévesque proposes to reshuffle the val-
idation split after each evaluation to avoid overfitting [30].
Therefore, we implemented this option in Caml as well and
expose it as an AutoML parameter.

4 Experiments

Our experiments aim to answer the following questions:

1. How does our dynamically configured AutoML system
compare to state-of-the-art AutoML systems?

2. How does dynamic AutoML system configuration per-
form when one or multiple ML application constraints
have been defined?

3. Is alternating sampling more efficient than random sam-
pling for generating the meta-learning training data?

4. How does the number of mined AutoML configurations
affect the predictive performance of Caml?

5. How does a changing the hardware environment affect the
predictive performance of Caml?

6. How does the number of constraints affect meta-training?

4.1 Setup

We evaluate our approach on the same dataset split as used
by Feurer et al. [17]: 39meta-test datasets and 207meta-train
datasets. To extend our framework for fairness constraints,
we add 17 fairness-related datasets provided byNeutatz et al.
[41] to the meta-train datasets because common datasets do
not annotate sensitive attributes that are required to measure
fairness. As test datasets for fairness, we use the five fair-
ness datasets that Ding et al. proposed to benchmark fair ML
systems [12]. As a prediction accuracy metric, we leverage
balanced accuracy that can handle binary, multi-class, and
unbalanced classification problems. To compare the perfor-
mance across datasets, we report the average and the standard
deviation across datasets by repeatedly random sampling one
result out of ten runs with different seeds with replacement.
This approach ensures that we report the uncertainty induced
by our system and not the different hardness scales of the
datasets. Similarly, we test significance using the Mann–
Whitney U rank test with α = 0.05 between repeatedly
random sampled averages. We mark a number with a star (*)
if it passes this test. Note that in some cases the rounded aver-
age is very similar or the same, but one approach still passes
the significance test to be better than the other approach. In
these cases, we bold the results of the approach that passes
the significance test.

123

Felix Neutatz et al.

p
re

p
ro

c
e
ss

o
r

P
C
A

N
y
st

ro
e
m

R
B
F
S
a
m

p
le

r

T
ru

n
c
a
te

d
S
V
D

F
e
a
tu

re
A
g
g
lo

m
e
ra

ti
o
n

S
p
a
rs

e
R
a
n
d
o
m

P
ro

je
c
ti
o
n

G
a
u
ss

ia
n
R
a
n
d
o
m

P
ro

je
c
ti
o
n

R
a
n
d
o
m

T
re

e
sE

m
b
e
d
d
in

g

P
o
ly

n
o
m

ia
lF

e
a
tu

re
s

S
e
le

c
tK

B
e
st

K
e
rn

e
lP

C
A

F
a
st

IC
A

c
la

ss
if
ie

r

K
N
N

S
V
C

L
in

e
a
rS

V
C

E
x
tr

a
T
re

e
s

B
e
rn

o
u
ll
iN

B

D
e
c
is
io

n
T
re

e

P
a
ss

iv
e
A
g
g
re

ss
iv

e

L
in

e
a
rD

is
c
ri
m

in
a
n
tA

n
a
ly

si
s

Q
u
a
d
ra

ti
c
D

is
c
ri
m

in
a
n
tA

n
a
ly

si
s

H
is
tG

ra
d
ie

n
tB

o
o
st

in
g

M
u
lt
in

o
m

ia
lN

B

R
a
n
d
o
m

F
o
re

st

G
a
u
ss

ia
n
N
B

A
d
a
B
o
o
st

S
G

D

M
L
P

Fig. 5 Slice of the tree space that we use in our implementation

Due to our limited resources, we sample the meta-training
dataset for twoweeks,which amounts to 6, 915meta-training
instances in total. Further, we mine AutoML configurations
for two weeks using BO for 2, 000 iterations, which amounts
to 11, 911 AutoML configurations. As AutoML parameter
space, Caml chooses (i) the hold-out fraction, which affects
both the size of training and the validation set, (ii) whether
to use model ensembling, (iii) whether to use incremental
training, (iv) whether to reshuffle the validation split, and (v)
the whole adjustableML hyperparameter space with 302ML
hyperparameters. Note that we do consider the time required
for ensembling for the search time as it can be run in parallel
to the model search as performed for Auto-Sklearn2 [17].
We ran the experiments on Ubuntu 16.04 machines with 28
× Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz cores and
264 GB memory.
Baselines. We compare our system with the state-of-the-art
AutoML systems:

1. TPOT (0.11.5) is a genetic programming-based AutoML
system that optimizes feature preprocessors andMLmod-
els [43].

2. AutoGluon (0.3.2) is an AutoML system that focuses on
model ensembling and stacking [14].

3. Auto-Sklearn2 (0.14.0) [17] is the latest version of the
well-known AutoML system Auto-Sklearn1 [18] that
leverages BO, meta-learning, and model ensembling to
find the Sklearn [45] ML pipelines that achieve high pre-
dictive performance. Further, we extended the system to
support the constraints for pipeline size, inference/train-
ing time, and fairness. We follow the same approach
as described in Sect. 3.7 and only add a model to the
ensemble if all constraints are satisfied. This allows a fair
comparison of Caml and Auto-Sklearn2.

4. Spearmint [19] leverages BO for constrained optimiza-
tion with Gaussian processes. We use the implementation

by Paleyes et al. [44] and search the same ML hyperpa-
rameter space as in our static system.

Furthermore, we evaluate our system with and without
dynamic AutoML configuration: Caml Dynamic and Caml
Static:

1. Caml Static. The static version covers the full ML hyper-
parameter space that is inspired by Auto-Sklearn1 [18].
It does not leverage meta-learning to optimize the search
space. The details of the ML hyperparameter space are
described in Sect. 3.4. We use the same ML hyperparam-
eter ranges as Auto-Sklearn1. Further, the static version
always leverages hold-out validation with 33% valida-
tion data, which is again the default validation strategy by
Auto-Sklearn1.Additionally, it always usesmodel ensem-
bling and incremental training.

2. Caml Dynamic implements our proposed approach. It
automatically selects a subset of the full ML hyperparam-
eter space and identifies the hold-out validation fraction,
whether to use ensembling, incremental training, and val-
idation split reshuffling.

In the following, we focus on a comparison and insights
compared to Auto-Sklearn2 since it is the most similar sys-
tem compared to ours and considered as one of the strongest
systems to date.

4.2 Effectiveness on search time constraints

The most important constraint for AutoML limits the search
time, which is a mandatory constraint that AutoML sys-
tems require because it is not obvious when to terminate
an AutoML system. Therefore, it is crucial that our approach
works well for this constraint as it also has to be fulfilled in
combination with other constraints. We compare our dynam-

123

AutoML in heavily constrained applications

ically configured AutoML system Caml Dynamic with the
same AutoML system with the default AutoML configura-
tion Caml Static. Additionally, we compare our approach
to state-of-the-art AutoML systems to show the potential of
our idea of constraint-drivenAutoML.We note that this is the
only type of constraint easily applicable to all other AutoML
systems considered in this study.

4.2.1 Performance comparison

Table 1 reports the average balanced accuracy for the meta-
test datasets over time and across systems.We focus on search
times of up to 60min as most state-of-the-art AutoML sys-
tems converge in this time period.

First, it is noticeable that Caml with the default AutoML
configuration outperforms TPOT [43]. The reason is that
Caml leverages incremental training, which is a multi-
fidelity strategy. Therefore, it can yield ML pipelines in a
short time, even for large datasets. However, Caml with the
default AutoML configuration does not outperform Auto-
Sklearn2 [17] and AutoGluon [14] for larger search times.
It is noteworthy that Auto-Sklearn2 is a carefully optimized
version of the Auto-Sklearn system [18] with a smaller hand-
designed configuration space with six model classes. We
also report the performance of Auto-Sklearn2 using the full
ML hyperparameter space like Auto-Sklearn1. This version
achieves significantly worse predictive performance, which
shows that the right choice of the ML hyperparameter space
is crucial.

Our approachCaml (Dynamic)withmeta-learnedAutoML
configuration outperforms all other systems significantly
according to theMann–Whitney U rank test (α = 0.05) until
5min of search time.Note that both the pool of configurations
that we choose the configurations from and the meta-model
that chooses the configuration were generated with scenar-
ios until 5min of search time. This finding shows that our
objective of dynamically choosing good AutoML configura-

tions was achieved if the scenarios were in the domain of the
meta-training.

In fact, Caml Dynamic selects on average only 55 out of
302 MLhyperparameters for the search space and a 5-minute
time frame and still achieves a higher average balanced accu-
racy across all experiments. Interestingly the search space
only reduces slightly fromhere on.Having the 10s constraint,
51 ML hyperparameters are considered on average, which is
only four less than 55 for 5min.

Yet, the space can also differ significantly between 5 and
1 minutes. Figure6 shows AutoML configurations that were
selected for the dataset “Christine” and “Robert” from the
OpenML repository. The visualization follows the hierar-
chical view that we presented in Sect. 3.4 and displays the
obtained configuration space for 1min and 5min search time,
respectively. Comparing the ML hyperparameter spaces, we
see that in this case the ML hyperparameter space for 1min
search time is smaller than for 5min search time. This is
because a higher time period allows for the optimization of
more ML pipeline parameters.

Additionally, for the dataset “Christine”, our system
chooses the validation fraction 0.13, ensembling, and incre-
mental training. The small validation fraction reduces the
time for evaluation. Ensembling makes the predictions more
robust against noise. Incremental training ensures that the
systemfinds a suitableMLpipeline early. In addition to incre-
mental training, our system also chose to optimize the size
of training set to further reduce the iteration overhead.

For the dataset “Robert”, our system chooses the val-
idation fraction 0.54, incremental training, and validation
split reshuffling. Validation split reshuffling avoids overfit-
ting. Additionally, our system chose to optimize each class
weight individually because the dataset has 10 classes.

Table 2 presents an example that shows the AutoML
parameters chosen for the dataset “numerai28.6” under dif-
ferent search time constraints: 10 s, 1min, and≥ 5min. Since
our Caml Dynamic was trained on the data until 5min, it
will pick the same search space for search times greater than

Table 1 Search time constraint: Balanced accuracy averaged across 10 repetitions and 39 datasets comparing Caml to state-of-the-art AutoML
systems

Strategy 10s 30s 1 min 5 min 30min 1h

Caml

Static 0.43 ± 0.02 0.53 ± 0.02 0.58 ± 0.01 0.67 ± 0.01 0.70 ± 0.01 0.72 ± 0.01

Dynamic 0.57 ± 0.01∗ 0.67 ± 0.01∗ 0.70 ± 0.01∗ 0.74 ± 0.00∗ 0.77 ± 0.00 0.77 ± 0.00

Auto-Sklearn2 opt 0.00 ± 0.00 0.11 ± 0.02 0.48 ± 0.02 0.74 ± 0.02 0.80 ± 0.00 0.81 ± 0.00

Auto-Sklearn2 full space 0.00 ± 0.00 0.06 ± 0.02 0.14 ± 0.02 0.70 ± 0.03 0.80 ± 0.00∗ 0.81 ± 0.00∗

TPOT 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.03 0.47 ± 0.04 0.67 ± 0.02 0.68 ± 0.01

AutoGluon 0.33 ± 0.02 0.41 ± 0.01 0.49 ± 0.01 0.62 ± 0.01 0.77 ± 0.01 0.79 ± 0.00

Spearmint 0.24 ± 0.03 0.36 ± 0.03 0.43 ± 0.01 0.60 ± 0.02 0.69 ± 0.01 0.72 ± 0.01

123

Felix Neutatz et al.

training sampling training sampling factor

categorical encoding
FrequencyEncoding

OneHotEncoding

classifier

ExtraTrees
max features

min samples split

SVC

C

kernel: poly

coef0

tol

(a) Christine (1min search time)

class weighting custom weighting

classifier

BernoulliNB alpha

ExtraTrees

max features

min samples leaf

bootstrap: False

KNN
n neighbors

p: 2

PassiveAggressive loss

SGD

loss
squared hinge

perceptron

penalty
l1

elasticnet
alpha

l1 ratio

epsilon

learning rate: invscaling

scaler StandardScaler

(b) Robert (5min search time)

Fig. 6 Examples of ML hyperparameter spaces chosen by Caml Dynamic

5min, which is why we did not consider higher search time
constraints here.

Even for the very short search time of 10s and the rather
large dataset with 96,320 instances, the search space still
incorporates 9 out of 16 classifiers because of the incremental
training, which enables fast skipping of poorly performing
MLpipelines. For 1min, our system increases both the search
space and the hold-out fraction. With this change, the hold-
out validation score evaluation will take more time but will
be more accurate. For ≥ 5min, our system chooses to avoid
incremental training. Thisway,model trainingwill takemore
time but the models will be trained onmore instances and are
more likely to achieve a better generalization.

4.2.2 Analyzing the meta-models

To analyze the meta-models, we computed the meta-feature
importance based on impurity scores for the trained ran-
dom forest meta-model. We list the top-15 meta-features in
Table 3 for the classificationmeta-model. Themost important
meta-features are the constraint thresholds, in particular, for
the pipeline size, and inference/training time. These meta-

features are important because different constraints also
require different AutoML configurations. This finding sup-
ports the aim of this work to consider dynamic AutoML
configuration, especially for constrained settings. Another
important feature is the hold-out fraction. Especially for large
datasets, it is crucial to identify the right sample size to allow
the AutoML system to yield any ML pipeline. For instance,
for the dataset “KDDCup09 appetency” (50k instances), our
method chooses a validation fraction of 7% of the data.

The remaining 8th-15th meta-features all cover dataset-
specific meta-features, e.g., about the class distributions and
the shape of the data. The meta-features representing the
ML hyperparameter search space are less important, e.g., the
meta-feature ofwhether to use a specific categorical encoding
is the 37th most important feature.

For the regression meta-model, we list the top-15 meta-
features in Table 4. The most important meta-features are
similar to the ones for the classification meta-model. How-
ever, for the regression meta-model, the meta-feature that
describes whether to use a feature preprocessor and whether
to incremental training. Both decisions have a significant

123

AutoML in heavily constrained applications

Table 2 AutoML parameters chosen by Caml Dynamic for different search times on the dataset “numerai28.6”

10s 1min ≥ 5min

augmentation
Random

ADASYN

clf

RF
min samples split

bootstrap

AdaB. algorithm: SAMME

B.NB alpha

DT
criterion: entropy

max depth factor

E.Trees

criterion

min samples leaf

bootstrap: FalseG.NB

LSVC loss: hinge

M.NB fit prior: False

SVC

kernel
poly

sigmoid
gamma

coef0

shrinking
True

False
tol

cat. enc.
One-Hot

Frequency

augmentation Random

clf

AdaB.
n estimators

algorithm
SAMME.R

SAMME

DT

criterion

min samples split

min samples leaf

E.Trees

max features

min samples split

min samples leaf

bootstrap: False
G.NB

M.NB

QDA reg param

SGD

alpha

l1 ratio

tol

learning rate

SVC
kernel

rbf

sigmoid
tol

LDA shrinkage factor

scaler

Normalizer

QuantileTransformer

RobustScaler q max
cat. enc.: Label

clf

AdaB.

n estimators

learning rate

algorithm: SAMME

max depth
B.NB

DT

criterion

max depth factor

min samples split

E.Trees

criterion

min samples split

min samples leaf

bootstrap: True
G.NB

KNN p

M.NB fit prior
True

False
PA C

SGD

l1 ratio

epsilon

eta0

average: False

SVC
coef0

tol
cat. enc.: One-Hot

Holdout: 0.45 Holdout: 0.61 Holdout: 0.46

Ensemble: No Ensemble: Yes Ensemble: No

Random shuffle: Yes Random shuffle: No Random shuffle: Yes

Incremental: Yes Incremental: Yes Incremental: No

Table 3 Meta-feature importances of the classification meta-model

Rank Meta-feature Importance

1 Pipeline size constraint 0.072

2 Inference time constraint 0.053

3 Training time constraint 0.044

4 Hold-out fraction 0.036

5 Search time constraint 0.023

6 Number of evaluations 0.022

7 Fairness constraint 0.020

8 Hold-out test instances 0.017

9 Evaluation time 0.017

10 |instances| 0.016

11 ClassProbabilitySTD 0.016

12 DatasetRatio 0.015

13 ClassProbabilityMax 0.015

14 ClassProbabilityMin 0.015

15 ClassEntropy 0.015

impact on how much the given AutoML configuration out-
performs the default one.

Table 4 Meta-feature importances of the regression meta-model

Rank Meta-feature Importance

1 Pipeline size constraint 0.072

2 Inference time constraint 0.056

3 Training time constraint 0.052

4 Hold-out fraction 0.043

5 Search time constraint 0.024

6 Preprocessor 0.023

7 Fairness constraint 0.022

8 Number of evaluations 0.022

9 Incremental training 0.021

10 ClassProbabilitySTD 0.020

11 ClassProbabilityMin 0.016

12 ClassEntropy 0.016

13 ClassProbabilityMax 0.015

14 Evaluation time 0.015

15 RatioNominalToNumerical 0.015

Table 5 contains statistics about how often our system
chooses a specific classifier across the 39 datasets and how

123

Felix Neutatz et al.

Table 5 Choice of the classifiers: AdaBoost (AdaB.), Bernoulli
Naive Bayes (B.NB), Decision Tree (DT), Extra Trees (E.Trees),
Gaussian Naive Bayes (G.NB), Histogram-based Gradient Boost-
ing (HGB.), K-Nearest Neighbors (KNN), Linear Discriminant Anal-
ysis (LDA), Linear Support Vector Classification (LSVC), Multi-

layer Perceptron (MLP), Multinomial Naive Bayes (M.NB), Passive
Aggressive (PA), Quadratic Discriminant Analysis (QDA), Random
Forest (RF), Stochastic Gradient Descent (SGD), Support Vector Clas-
sification (SVC)

Time AdaB B.NB DT E.Trees G.NB HGB KNN LDA LSVC MLP M.NB PA QDA RF SGD SVC |clf.|
10s 0.69 0.79 0.54 0.90 0.51 0.31 0.62 0.59 0.54 0.49 0.44 0.51 0.67 0.31 0.69 0.74 9.33

30s 0.82 0.77 0.51 0.95 0.67 0.28 0.62 0.69 0.49 0.46 0.54 0.56 0.69 0.28 0.67 0.90 9.90

1 min 0.85 0.74 0.51 0.97 0.62 0.28 0.69 0.72 0.41 0.44 0.56 0.41 0.72 0.28 0.72 0.87 9.79

5 min 0.79 0.82 0.72 0.95 0.59 0.38 0.72 0.54 0.54 0.49 0.54 0.64 0.72 0.36 0.82 0.85 10.46

30 min 0.79 0.82 0.72 0.95 0.59 0.38 0.72 0.54 0.54 0.49 0.54 0.64 0.72 0.36 0.82 0.85 10.46

1h 0.79 0.82 0.72 0.95 0.59 0.38 0.72 0.54 0.54 0.49 0.54 0.64 0.72 0.36 0.82 0.85 10.46

many classifiers it chooses on average. The first observation
is that the meta-model learned that it is beneficial to choose
around ten classifiers to achieve high balanced accuracy
fast. The Auto-Sklearn2 developers choose only 5 classi-
fiers. However, since our system can decide for every single
ML hyperparameter whether to optimize it, the search space
stays small in comparison but adjusts itself to the specified
dataset. In contrast to buildingAuto-Sklearn2, this approach
is fully automatic and does not require any AutoML systems
expertise. Auto-Sklearn2 uses a dynamic chooses the vali-
dation strategy. Additionally, its ML hyperparameter space
has been manually tuned for accuracy and search time. Thus,
userswhowant to applyAuto-Sklearn2 for a new constrained
setting, would need to adjust the ML hyperparameter search
space manually again. Further, we see that ExtraTrees are
chosen frequently. The reason is that the computation cost is
low and the prediction is robust due to ensembling.

For some classifiers, such asMLPandHGB, the frequency
stays similar across search time constraints. The reason is
twofold: First, using incremental training, we can quickly
yield working models for both classifier types that are com-
petitive across search times. Second, Caml identified that
these classifier types work well for specific datasets which
do not change across constraints. For instance, HGB was
chosen for balanced datasets with less than 8 classes and
more than 57 numeric features. MLP was chosen for skewed
datasets with many categorical features.

Further, for some classifiers, such as LDA and SVC, the
frequency increases with increasing search time and then
decreases again. For instance, LDA benefits from an increas-
ing number of training instances but is prone to overfitting
for unbalanced data if one optimizes it for long enough. The
training of SVC is very efficient and therefore, one can train
an SVC with many instances in very little time. Therefore,
we see a high frequency of 90% for 30s. With increasing
search time, other more complex models, such as RF, replace
it incrementally.

Table 6 Choice of AutoML parameters

Search time 10s 30s 1 min 5 min

Incremental training 0.97 0.97 0.90 0.82

Ensemble 0.57 0.55 0.56 0.62

Class augmentation 0.37 0.24 0.21 0.10

Validation split reshuffling 0.17 0.29 0.26 0.26

Finally, the frequency across models stays the same
because both the pool of configurations that we sample from
was generated with a maximum search time of 5mins and
training data of the model that chooses the configuration has
the same limit.

To understand the interaction among the other AutoML
parameters, we report in Table 6 the fraction of datasets that a
certain AutoML parameter was applied. First, we see that the
choice for incremental training in most cases only decreases
slightly with increasing search time. Incremental training
ensures that we findML pipelines independent of the dataset
size. Model ensembling is also used frequently because it
ensures robustness. Class augmentation is not applied often
because most datasets are already balanced. Additionally,
its use decreases with increasing search time. The reason
might be that with a long enough search time, we can find a
suitable model that internally addresses the class imbalance.
Finally, validation split reshuffling is increasingly used with
increasing search time. Greater search times lead to a higher
number of iterations that in turn raise the risk of overfitting
and reshuffling can help to reduce this risk. To the best of our
knowledge, none of the state-of-the-art systems leverage this
reshuffling strategy. Our results show that it is promising and
justifies further research.

The choice of feature preprocessors is on par with the
Auto-Sklearn2 implementation. Auto-Sklearn2 does not per-
form any feature preprocessing, and our dynamic approach
follows the same strategy. The reason is that feature pre-
processing might add more overhead than benefit for the
predictive performance.

123

AutoML in heavily constrained applications

Table 7 We report the balanced
accuracy for 5min search time
averaged across 10 repetitions
and test datasets for four
constraints

Percentile 2% 4% 8% 16% 32%

Pipeline size 4026B 6651B 8359B 16797B 32266B

Auto-Sklearn2 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Spearmint 0.04 ± 0.02 0.08 ± 0.02 0.09 ± 0.03 0.19 ± 0.03 0.22 ± 0.03

Caml

Dynamic 0.25 ± 0.01 0.39 ± 0.01∗ 0.43 ± 0.00∗ 0.54 ± 0.01∗ 0.63 ± 0.01∗

Static 0.25 ± 0.01∗ 0.39 ± 0.01 0.42 ± 0.01 0.49 ± 0.01 0.59 ± 0.01

Training time 0.009s 0.010s 0.012s 0.019s 0.078s

Auto-Sklearn2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01

Spearmint 0.00 ± 0.01 0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01 0.05 ± 0.02

Caml

Dynamic 0.61 ± 0.01∗ 0.62 ± 0.01∗ 0.63 ± 0.01∗ 0.68 ± 0.01∗ 0.71 ± 0.00∗

Static 0.46 ± 0.02 0.46 ± 0.02 0.50 ± 0.02 0.57 ± 0.02 0.65 ± 0.01

Inference time 0.00079s 0.00082s 0.00102s 0.00146s 0.00302s

Auto-Sklearn2 0.29 ± 0.02 0.27 ± 0.02 0.27 ± 0.03 0.40 ± 0.02 0.42 ± 0.02

Spearmint 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.06 ± 0.01

Caml

Dynamic 0.42 ± 0.02∗ 0.45 ± 0.02∗ 0.57 ± 0.02∗ 0.66 ± 0.01∗ 0.74 ± 0.00∗

Static 0.25 ± 0.03 0.26 ± 0.03 0.38 ± 0.03 0.52 ± 0.02 0.64 ± 0.02

Equal Opportunity 1.000 0.999 0.994 0.981 0.949

Auto-Sklearn2 0.50 ± 0.00∗ 0.56 ± 0.00 0.59 ± 0.01 0.63 ± 0.00 0.67 ± 0.02

Spearmint 0.17 ± 0.10 0.19 ± 0.12 0.35 ± 0.11 0.57 ± 0.07 0.58 ± 0.07

Caml

Dynamic 0.10 ± 0.00 0.61 ± 0.05∗ 0.64 ± 0.01∗ 0.67 ± 0.01∗ 0.70 ± 0.00∗

Static 0.10 ± 0.00 0.46 ± 0.09 0.62 ± 0.05 0.66 ± 0.01 0.68 ± 0.01

4.2.3 Conclusion

Our simple AutoML system with the default configuration
is already competitive to state-of-the-art systems, such as
AutoGluon and TPOT. This might be due to the fact that
our approach leverages incremental training, therefore, can
handle large datasets. Second, our dynamic AutoML con-
figuration approach outperforms the same system with the
default configuration for all search time constraints. Third,
our dynamic approach is head-to-head with the hand-tuned
Auto-Sklearn2 system, which was tuned by (Auto)ML sys-
tem experts.

4.3 Effectiveness on diverse constraint types

To evaluate that our approach also achieves high balanced
accuracy for constraint types other than search time, we
provide experiments with constraints on ML pipeline size,
the training time, the inference time, and equal opportu-
nity (fairnessmetric). For the experimental setting, we obtain

constraint thresholds for the different constraint types in the
following way. We ran random ML tasks for one day and
obtained the distributions across all evaluated ML pipelines
for all constraint types. On these, we can compute different
percentiles to simulate different tight constraints. For train-
ing the meta-model,CamlDynamic could freely choose any
of the percentiles (with a maximum search time of 5min).
To compare Caml to the baselines, we used fairly tight con-
straints, i.e., the 2nd, 4th, 8th, 16th, and 32nd percentile of
each distribution. We also evaluated the 1st percentile but
the results are similar to the 2nd percentile and due to space
limitations, we omit the corresponding results.

Other state-of-the-art systems, such as AutoGluon, TPOT,
and Auto-Sklearn2, do not natively support these ML appli-
cation constraints and are not easily extensible because their
API only provides access to the ML pipeline predictions.
However, we extended the best-performing AutoML system
Auto-Sklearn2 to support constraints to allow a comparison
to our system. Furthermore, constrained BO systems, such
as Spearmint [19], GPflowOpt [28], ADMMBO [2], and Ax
[15], support arbitrary constraints for BO. As a representa-

123

Felix Neutatz et al.

tive of this class of systems, we benchmark Spearmint with
the ML hyperparameter space of our static system.

4.3.1 Performance comparison

Table 7 provides the results of these constraint thresholds.
Across constraint types, Caml outperforms both baselines
significantly. Only for equal opportunity, Auto-Sklearn2
achieves the best accuracy for very restrictive fairness con-
straints. The reason is that Auto-Sklearn2 uses Dummy
classifiers if it does not find any other model. Dummy clas-
sifiers predict only one class. This way it is likely that both
the majority and the minority group have very similar true
positive rates and therefore very high equal opportunity.
However, we decided against including dummy classifiers
because users expect an AutoML system to fit actual ML
models.

For the constraints inference and training time, our
dynamic approach always outperforms our static approach.
For pipeline size constraints, the static approach is better
for restrictive thresholds. The reason is that pipeline size is
more bound to the size of training set size and our default
approach always uses incremental training. That means that
it starts with a very small training dataset. So, if the pipeline
size is not satisfied for such a small set, it will go to the next
ML hyperparameter configuration immediately. Our meta-
model might be too optimistic and try to avoid incremental
training if possible because it has a higher chance of higher
accuracies but might miss satisfying the constraints.

For fairness constraints, the dynamic and static approach
perform similarly. The reason is that fairness is highly data
dependent. Without explicit information about the sensi-
tive attributes, it is harder for the meta-model to decide on
the AutoML system configuration. Furthermore, the meta-
training for fairness had access to much fewer datasets
compared to the other constraints. Additional datasets might
help the meta-model to generalize better. However, in case of
missing values and fairness constraints,Caml independently
learned to choose only median value imputation, which sup-
ports the finding by Schelter et al. [49] that mean-value
imputation negatively affects fairness.

4.3.2 Analysis

To better understand how our system adapts the ML hyper-
parameter search space depending on the ML application
constraints, we average the chosen classifiers for each ML
application constraint and compare it to case using with no
ML application constraint in Table 8.

For the pipeline size constraint, Caml avoids models that
require more memory, such as extra trees (E.Trees), multi-
layer perception (MLP), or the KNN classifier, which needs
to store all training instances for inference. For the training
time constraint, Caml shifts more to linear models, such as
Linear Discriminant Analysis (LDA), Linear Support Vector
Classification (LSVC), or Passive Aggressive (PA), because
they can be trained faster. For the inference time constraint,
Caml chooses significantly more often random forest to be
part of the search space because its inference complexity is
only O(t log n) where t is the number of trees and n is the
number of instances. For equal opportunity, Caml avoids
models that amplify the bias in the data. For instance, KNN
might amplify bias because it always decides based on the
majority of the nearest neighbors. These insights confirm that
we cannot optimize an AutoML system for one constraint
and expect that the same optimization will also benefit other
constraints.

4.4 Effectiveness onmultiple constraint types

In practice, ML applications can be constrained in multiple
dimensions simultaneously. To evaluate our system for mul-
tiple constraints simultaneously, we choose two constraint
combinations training time/equal opportunity and inference
time/pipeline size. For both constraint combinations, we
apply all combinations of thresholds that were evaluated in
Sect. 4.3. We report the difference in the average balanced
accuracy that Caml Dynamic outperforms the static variant
in Figs. 7 and 8.

In nearly all experiments, Caml Dynamic outperforms
the static variant or achieves similar predictive performance.
Only for very restrictive constraints, such as 100% equal
opportunity or 4026B pipeline size, its performance was

Table 8 We report the average percentage difference in choice of ML classifiers depending on the ML application constraint

ML Application AdaB. B.NB DT E.Trees G.NB HGB. KNN LDA LSVC MLP M.NB PA QDA RF SGD SVCConstraint

None 0.79 0.82 0.72 0.95 0.59 0.38 0.72 0.54 0.54 0.49 0.54 0.64 0.72 0.36 0.82 0.85

Pipeline Size -0.19 -0.43 -0.15 -0.38 -0.07 +0.06 -0.19 +0.03 -0.01 -0.20 -0.25 -0.25 -0.14 -0.03 -0.24 -0.30
Training Time +0.07 -0.04 +0.03 +0.00 -0.17 +0.00 +0.03 +0.26 +0.21 -0.09 +0.05 +0.12 +0.03 +0.02 +0.08 +0.09
Inference Time -0.12 +0.03 -0.01 -0.09 +0.14 +0.12 -0.13 +0.16 +0.14 +0.20 +0.16 +0.06 +0.00 +0.40 -0.19 -0.01
Equal Opp. -0.23 -0.02 +0.12 -0.11 -0.23 -0.22 -0.52 +0.06 +0.14 +0.19 -0.26 -0.24 -0.12 -0.16 -0.10 -0.01

123

AutoML in heavily constrained applications

Fig. 7 We apply teh constraints training time and fairness simulta-
neously and report the absolute distance to the average performance
between the static and dynamic Caml. Higher numbers are better

Fig. 8 We apply the constraints inference time and pipeline size simul-
taneously and report the absolute distance to the average performance
between the static and dynamic Caml. Higher numbers are better

slightly lower because these constraints were for some of the
test datasets not satisfiable. Overall, the experiments show
that Caml Dynamic even works for multiple constraints.
This finding shows that our meta-learning approach learns
how these different constraints interact with each other. In
65% of the cases, Caml chooses AutoML configurations
that consider two constraints simultaneously and were never
chosen for the cases where we enforced only one of the con-
straints.

4.5 Alternating vs random sampling

One major design decision of our system is to leverage
active learning in addition to random sampling to explore
the huge space of AutoML parameters and constraints more
efficiently. Table 9 provides the balanced accuracy for meta-
models for both sampling approaches across two weeks of
training data generation.

The alternating sampling approach outperforms the ran-
dom sampling significantly. The reason is that active learning
ensures that we sample along the decision boundary while
random sampling ensures the diversity in the training data.
Following a purely random sampling strategy results in lower
final prediction performance and less consistent gains. For

Table 9 Predictive performance over meta-training time. We report
the average balanced accuracy over training time averaged across 10
repetitions and 39 datasets comparing our system with random and
alternating sampling

Days Alternating Random

2 0.70 ± 0.01∗ 0.67 ± 0.01

4 0.72 ± 0.01∗ 0.65 ± 0.02

6 0.70 ± 0.01 0.71 ± 0.01∗

8 0.72 ± 0.01∗ 0.71 ± 0.02

10 0.73 ± 0.01∗ 0.72 ± 0.01

12 0.73 ± 0.01∗ 0.69 ± 0.01

14 0.74 ± 0.00∗ 0.72 ± 0.01

instance, after 12 days of random sampling, we achieve a
worse predictive performance than for six days of sampling.

We can leverage Table 9 also to understand the impact of
the training time. The numbers show that more training time
benefits the meta-model, and even on the 14th day, we gain
1% more in average balanced accuracy. To conclude, alter-
nating sampling outperforms random sampling significantly,
and the longer we train, the better the dynamic AutoML con-
figuration works.

4.6 AutoML configurationmining

Another important question for our approach is how many
promising AutoML configurations we need to mine to
achieve high predictive performance. Therefore, we exper-
iment, for the search time constraint of 5min, with various
fractions of the AutoML configurations that weminedwithin
twoweeks.We report the results in Table 10.With an increas-
ing number of mined AutoML configurations, the predictive
performance increases as well. The accuracy gain in percent
might seem small but it is significant according to theMann–
Whitney U rank test. Further, the more constraints we add,
the more diverse the pool of mined AutoML configurations
needs to be to achieve high predictive performance across all
constraints.

4.7 Adjusting to different hardware

To evaluate the described calibration approach in Sect. 3.1.4
that allows us to apply Caml on any machine, we conduct
additional experiments on a powerful computer with Intel(R)
Core(TM) i7-8565U CPU @ 1.80 GHz and 38 GB RAM.
To benchmark both machines, we run Caml Static for the
dataset “riccardo” for 10min for 10 times and measure the
average validation balanced accuracy across the search time
as reported in Fig. 3. We choose this dataset because it has
20k instances and 4k features, and it takes more time to con-

123

Felix Neutatz et al.

Table 10 Predictive performance over different numbers of mined
AutoML configurations for search time of 5min. We report the average
balanced accuracy over training time averaged across 10 repetitions and
39 datasets

Fraction # Configurations Accuracy

0.0002 3 0.729 ± 0.00

0.0005 6 0.734 ± 0.00

0.0010 12 0.736 ± 0.00

0.0020 23 0.732 ± 0.00

0.0039 47 0.736 ± 0.00

0.0078 93 0.734 ± 0.01

0.0156 186 0.739 ± 0.01

0.0313 372 0.739 ± 0.01

0.0625 744 0.739 ± 0.01

0.1250 1489 0.735 ± 0.01

0.2500 2978 0.744 ± 0.00

0.5000 5956 0.743 ± 0.00

1.0000 11911 0.747 ± 0.00

Table 11 Search time constraint: Balanced accuracy averaged over 10
repetitions and39datasets comparingCaml to hardware adjustedCaml

Caml Strategy 10s 30s 1 min 5 min

Static 0.59 ± 0.01 0.66 ± 0.01 0.68 ± 0.01 0.71 ± 0.01

Dynamic 0.63 ± 0.01 0.70 ± 0.01 0.72 ± 0.01 0.76 ± 0.00

Dynamic (adjusted) 0.67 ± 0.01 0.71 ± 0.01 0.72 ± 0.01 0.76 ± 0.00

verge to find a well-performing model. If the data is too
simple, we could not compare the convergence across time
well. Then,we conduct the experiments for search times from
10s to 5min on the new machine with and without hardware
adjustment as reported in Table 11. First, we see that even
without hardware adjustment the Caml Dynamic still out-
performs the static one. With hardware adjustment, for 10 s
and 30s, the average balanced accuracy improves by 4% and
1% accordingly. So, we conclude for small search budgets,
hardware adjustment does improve our system. This find-
ing also reduces the cost of the offline benchmark because
Caml can run the benchmark for at most 10min and turn off
mapping for larger search times.

4.8 Impact of the number of constraints on
meta-training

To analyze the impact of the number of constraints on the
meta-learning performance, we run meta-training with up to
5 constraints, 4ML application constraints and the manda-
tory search time constraint.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Meta-Training Time (d)

M
et
a-
M
od

el
F
1
sc
or
e

2 constraints
3 constraints
4 constraints
5 constraints

Fig. 9 Meta-Training Model F1 score under a varying number of con-
straints and different durations of meta-training

To compare the performance across constraint combi-
nations, for each combination, we randomly pick random
configurations, constraint thresholds, and datasets and evalu-
ate whether the corresponding configuration performs better
than the default configuration. We gather this test set for 1
week for each constraint combination. Then, for each num-
ber of constraints, we apply our alternating meta-training for
1 week. Finally, we report the F1 score of the meta-model on
each test set reporting whether the corresponding configura-
tion outperformed the default configuration at least once. We
report the corresponding averaged F1 scores across 5 repeti-
tions for each day of the week of meta-training in Fig. 9.

With increasing meta-training duration, the F1 score of
the meta-model increases for all considered numbers of con-
straints. After one week, all constraint combinations reach
an F1 score higher than 79%. As expected, by adding addi-
tional constraints, the F1 score slightly decreases by up to
3%,which is rathermarginal considering themultiplied com-
plexity of the resulting search space. This analysis can help
to estimate how much time it may take to generate sufficient
training data for larger search spaces.

5 Related work

Our work on constraint-driven AutoML combines research
from various areas of optimization, AutoML, and meta-
learning.
ConstrainedOptimization.Onedirectionofwork addresses
constrained optimization by learning a surrogate model that
estimates whether sampled configurations violate the cor-
responding constraints [2, 19, 28, 35, 46]. However, this

123

AutoML in heavily constrained applications

approach has two downsides. First, it requires the surrogate
models to learn the constraints each time from scratch. Sec-
ond, it cannot adjust the parameters of the AutoML systems,
such as the validation approach or the search strategy, to the
corresponding ML task.
Meta-Learning. A more effective approach is to learn
upfront whether a given ML pipeline satisfies a well-known
constraint, such as training time [37]. This approach does not
require learning the constraint each time from scratch. Still,
it does not adjust the AutoML parameters. Another direction
is to meta-optimize the AutoML parameters. For instance,
Lindauer et al. [34] optimize the parameters of hyperparam-
eter optimization. However, they do not consider constraints.
Further, Auto-Sklearn 2 [17] only supports predicting dis-
crete strategy decisions using pairwise modeling. Therefore,
their approach does not support continuous AutoML hyper-
parameters and does not scale to hundreds of settings. This
scalability issue also hinders joint strategy prediction as the
combinatorial space is too huge. Van Rijn et al. leverage
meta-learning to identify the most important hyperparame-
ter for various ML models individually [48]. However, they
do not consider constraints. Alpine Meadow [54] uses the
history of the quality and cost of all so far run pipelines to
warm-start search, but can also not handle constraints.
Accelerating AutoML. Further, there is a large effort in
the data management community to speed up AutoML sys-
tems. For instance, Li et al. propose to leverage search
space decomposition [33]. Yakovlev et al. propose to lever-
age proxy models, iteration-free optimization, and adaptive
data reduction to accelerate hyperparameter optimization
[60]. Another well-known approach to speed up hyperpa-
rameter optimization is to leverage successive halving [16,
31]. It starts by evaluating many configurations on a small
budget and incrementally chooses the best half of the con-
figurations to evaluate them on a bigger budget. Xin et al.
leverage caching to accelerate hyperparameter optimization
[59]. However, their strategies cannot be applied in case of
validation split reshuffling. Nakandala et al. propose a new
parallel SGD execution strategy to speed up hyperparameter
optimization forSGD-basedmodels [38].Hilprecht et al. [25]
propose to make ML pipelines end-to-end differentiable to
avoid costly Bayesian optimization. SystemDS [4, 5] allows
users to specify ML programs in a declarative R-like lan-
guage and compiles it to highly efficient hardware-specific
code that can be distributed. Shah et al. [53] extensively
benchmark feature-type detection that is important because
the downstream AutoML system is dependent on the right
feature-type classification. The aforementioned systems and
algorithms are orthogonal to our contribution as they do not
consider the search space of AutoML but optimize the com-
putation for training and parameter tuning.

6 Conclusion

We proposed integrating constraints as a first-class citizen
into AutoML—a paradigm that we call constraint-driven
AutoML. As the constraints set limitations on the hyper-
parameter search, we proposed an approach to dynamically
change the AutoML search space for the constraints at
hand. To achieve this goal, we leverage active meta-learning.
To explore the huge space of datasets, AutoML configura-
tions, and constraints, we sample those combinations that
benefit the meta-model. To show the full benefit of this
approach, we develop a simple adjustable AutoML system,
Caml, that exposes its whole ML hyperparameter space as
binary AutoML parameters to have a task-specific search
space. This way, Caml Dynamic can decide for every single
ML hyperparameter whether it should be optimized or not.
It automatically chooses an ML hyperparameter space for
search time constraints that is similar to the space covered
by the hand-tuned Auto-Sklearn2 [17] system. Overall, our
new approach allows for configurable generic AutoML sys-
tems that dynamically adjust to the task and constraints at
hand, and thus further increase the applicability of AutoML
systems in practical application.

Acknowledgements This work was funded by the German Ministry
for Education and Research as BIFOLD - Berlin Institute for the Foun-
dations of Learning and Data (ref. 01IS18025A and ref. 01IS18037A),
by the Federal Ministry of Education and Research (BMBF), Germany
under the project AI service center KISSKI (grant no. 01IS22093C)
and by the Federal Ministry of the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection, Germany under the project
GreenAutoML4FAS (grant no. 67KI32007A).

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna:
a next-generation hyperparameter optimization framework. In:
SIGKDD (2019)

2. Ariafar, S., Coll-Font, J., Brooks, D.H., Dy, J.G.: ADMMBO:
bayesian optimization with unknown constraints using ADMM.
J. Mach. Learn. Res. 20, 123:1-123:26 (2019)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Felix Neutatz et al.

3. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for
hyper-parameter optimization. In: NeurIPS, pp. 2546–2554 (2011)

4. Boehm, M., Antonov, I., Baunsgaard, S., Dokter, M., Ginthör, R.,
Innerebner, K., Klezin, F., Lindstaedt, S.N., Phani, A., Rath, B.,
Reinwald, B., Siddiqui, S., Wrede, S.B.: SystemDS: a declarative
machine learning system for the end-to-end data science lifecycle.
In: CIDR (2020)

5. Boehm,M.,Dusenberry,M., Eriksson,D., Evfimievski, A.V.,Man-
shadi, F.M., Pansare, N., Reinwald, B., Reiss, F., Sen, P., Surve, A.,
Tatikonda, S.: Systemml: declarative machine learning on spark.
Proc. VLDB Endow. 9(13), 1425–1436 (2016)

6. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble
selection from libraries of models. In: ICML, vol. 69 (2004)

7. Castiello, C., Castellano, G., Fanelli, A.M.: Meta-data: Character-
ization of input features for meta-learning. In: MDAI, vol. 3558,
pp. 457–468 (2005)

8. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially pri-
vate empirical risk minimization. JMLR 12, 1069–1109 (2011)

9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:
SMOTE: synthetic minority over-sampling technique. J. Artif.
Intell. Res. 16, 321–357 (2002)

10. Delangue, C., et al.: Hugging face (2023). https://huggingface.co
11. Derakhshan, B., Mahdiraji, A.R., Rabl, T., Markl, V.: Continu-

ous deployment of machine learning pipelines. In: Advances in
Database Technology - 22nd International Conference on Extend-
ing Database Technology, EDBT 2019, Lisbon, Portugal, March
26–29, 2019, pp. 397–408 (2019)

12. Ding, F., Hardt, M., Miller, J., Schmidt, L.: Retiring adult: new
datasets for fair machine learning. Adv. Neural Inf. Process. Syst.
34, 6478–90 (2021)

13. Elluswamy, A.: Occupancy networks. https://www.youtube.com/
watch?v=jPCV4GKX9Dw (2022)

14. Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li,
M., Smola, A.J.: Autogluon-tabular: robust and accurate automl
for structured data. CoRR abs/2003.06505 (2020)

15. Facebook: Adaptive experimentation platform (2021). https://ax.
dev/

16. Falkner, S., Klein, A., Hutter, F.: BOHB: robust and efficient hyper-
parameter optimization at scale. In: ICML, vol. 80, pp. 1436–1445
(2018)

17. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter,
F.: Auto-sklearn 2.0: Hands-free automl via meta-learning. JMLR
23(261), 1–61 (2022)

18. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum,
M., Hutter, F.: Efficient and robust automated machine learning.
In: NeurIPS, pp. 2962–2970 (2015)

19. Gelbart, M.A., Snoek, J., Adams, R.P.: Bayesian optimization with
unknown constraints. In: UAI, pp. 250–259 (2014)

20. Ghodsnia, P., Bowman, I.T., Nica, A.: Parallel I/O aware query
optimization. In: SIGMOD, pp. 349–360 (2014)

21. Ghosh, D., Gupta, P.,Mehrotra, S., Yus, R., Altowim, Y.: JENNER:
just-in-time enrichment in query processing. Proc. VLDB Endow.
15(11), 2666–2678 (2022)

22. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in super-
vised learning. In: NeurIPS, pp. 3315–3323 (2016)

23. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic
sampling approach for imbalanced learning. In: IJCNN, pp. 1322–
1328 (2008)

24. Hilprecht, B., Hammacher, C., Reis, E., Abdelaal, M., Bin-
nig, C.: Diffml: End-to-end differentiable ML pipelines. CoRR
abs/2207.01269 (2022)

25. Hilprecht, B., Hammacher, C., Reis, E., Abdelaal, M., Binnig, C.:
Diffml: End-to-end differentiable ML pipelines. In: DEEM/SIG-
MOD, pp. 7:1–7:7 (2023)

26. Kaoudi, Z., Quiané-Ruiz, J.A., Thirumuruganathan, S., Chawla,
S., Agrawal, D.: A cost-based optimizer for gradient descent opti-
mization. In: SIGMOD, pp. 977–992 (2017)

27. Kelly, M., Longjohn, R., Nottingham, K.: UCI ml repository
(2023). https://archive.ics.uci.edu

28. Knudde, N., van der Herten, J., Dhaene, T., Couckuyt, I.:
Gpflowopt:Abayesian optimization library using tensorflow. arXiv
preprint arXiv:1711.03845 (2017)

29. Kumar, A., Boehm, M., Yang, J.: Data management in machine
learning: Challenges, techniques, and systems. In: SIGMOD, pp.
1717–1722 (2017). https://doi.org/10.1145/3035918.3054775

30. Lévesque, J.C.: Bayesian hyperparameter optimization: overfitting,
ensembles and conditional spaces (2018)

31. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar,
A.: Hyperband: a novel bandit-based approach to hyperparameter
optimization. J. Mach. Learn. Res. 18, 185:1-185:52 (2017)

32. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning:
challenges, methods, and future directions. IEEE Signal Process.
Mag. 37(3), 50–60 (2020)

33. Li, Y., Shen, Y., Zhang, W., Jiang, J., Li, Y., Ding, B., Zhou, J.,
Yang, Z., Wu, W., Zhang, C., Cui, B.: Volcanoml: speeding up
end-to-end automl via scalable search space decomposition. Proc.
VLDB Endow. 14(11), 2167–2176 (2021)

34. Lindauer, M., Feurer, M., Eggensperger, K., Biedenkapp, A., Hut-
ter, F.: Towards assessing the impact of bayesian optimization’s
own hyperparameters. In: IJCAI 2019 DSO Workshop (2019).
arXiv:1908.06674

35. Liu, S., Ram, P., Vijaykeerthy, D., Bouneffouf, D., Bramble, G.,
Samulowitz,H.,Wang,D., Conn,A.,Gray,A.G.:AnADMMbased
framework for automl pipeline configuration. In: AAAI, pp. 4892–
4899 (2020)

36. Mehra, A., Mandal, M., Narang, P., Chamola, V.: Reviewnet: a
fast and resource optimized network for enabling safe autonomous
driving in hazy weather conditions. IEEE Trans. Intell. Transp.
Syst. 22(7), 4256–4266 (2021)

37. Mohr, F., Wever, M., Tornede, A., Hullermeier, E.: Predicting
machine learning pipeline runtimes in the context of automated
machine learning. PAMI (2021)

38. Nakandala, S., Zhang, Y., Kumar, A.: Cerebro: a data system for
optimized deep learning model selection. Proc. VLDB Endow.
13(11), 2159–2173 (2020)

39. Neutatz, F.: Constraint-Driven AutoML. https://github.com/
BigDaMa/DeclarativeAutoML (2022)

40. Neutatz, F.: Search space (2023). https://github.com/BigDaMa/
DeclarativeAutoML/blob/main/images/treespace.pdf

41. Neutatz, F., Biessmann, F., Abedjan, Z.: Enforcing constraints
for machine learning systems via declarative feature selection: an
experimental study. In: SIGMOD, pp. 1345–1358 (2021)

42. Nishihara, R., Moritz, P., Wang, S., Tumanov, A., Paul, W.,
Schleier-Smith, J., Liaw, R., Niknami, M., Jordan, M.I., Stoica,
I.: Real-time machine learning: the missing pieces. In: HotOS, pp.
106–110 (2017)

43. Olson, R.S., Moore, J.H.: TPOT: A tree-based pipeline optimiza-
tion tool for automating machine learning. In: AutomatedMachine
Learning-Methods, Systems, Challenges, The Springer Series on
Challenges in Machine Learning, pp. 151–160 (2019)

44. Paleyes, A., Pullin, M., Mahsereci, M., McCollum, C., Lawrence,
N., González, J.: Emulation of physical processes with emukit. In:
NeurIPS (2019)

45. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel,M., Prettenhofer, P.,Weiss, R., Dubourg, V.,
Vanderplas, J., Passos,A., Cournapeau,D., Brucher,M., Perrot,M.,
Duchesnay, E.: Scikit-learn:machine learning in Python. JMLR 12,
2825–2830 (2011)

46. Perrone, V., Donini, M., Kenthapadi, K., Archambeau, C.: Fair
bayesian optimization. arXiv preprint arXiv:2006.05109 (2020)

123

https://huggingface.co
https://www.youtube.com/watch?v=jPCV4GKX9Dw
https://www.youtube.com/watch?v=jPCV4GKX9Dw
https://ax.dev/
https://ax.dev/
https://archive.ics.uci.edu
http://arxiv.org/abs/1711.03845
https://doi.org/10.1145/3035918.3054775
http://arxiv.org/abs/1908.06674
https://github.com/BigDaMa/DeclarativeAutoML
https://github.com/BigDaMa/DeclarativeAutoML
https://github.com/BigDaMa/DeclarativeAutoML/blob/main/images/treespace.pdf
https://github.com/BigDaMa/DeclarativeAutoML/blob/main/images/treespace.pdf
http://arxiv.org/abs/2006.05109

AutoML in heavily constrained applications

47. Ré, C.: Overton: a data system for monitoring and improving
machine-learned products. In: CIDR (2020)

48. van Rijn, J.N., Hutter, F.: Hyperparameter importance across
datasets. In: KDD, pp. 2367–2376 (2018)

49. Schelter, S., He, Y., Khilnani, J., Stoyanovich, J.: FairPrep: pro-
moting data to a first-class citizen in studies on fairness-enhancing
interventions. In: EDBT, pp. 395–398 (2020)

50. Sculley, D., al.: Kaggle (2023). https://www.kaggle.com
51. Settles, B.: Active learning literature survey (2009)
52. Shafique,M., Theocharides, T., Reddy, V.J.,Murmann, B.: Tinyml:

current progress, research challenges, and future roadmap. In:
DAC, pp. 1303–1306 (2021)

53. Shah, V., Lacanlale, J., Kumar, P., Yang, K., Kumar, A.: Towards
benchmarking feature type inference for automl platforms. In: SIG-
MOD, pp. 1584–1596 (2021)

54. Shang, Z., Zgraggen, E., Buratti, B., Kossmann, F., Eichmann, P.,
Chung, Y., Binnig, C., Upfal, E., Kraska, T.: Democratizing data
science through interactive curation of ml pipelines. In: SIGMOD,
pp. 1171–1188 (2019)

55. Sparks, E.R., Venkataraman, S., Kaftan, T., Franklin, M.J., Recht,
B.: Keystoneml: optimizing pipelines for large-scale advanced ana-
lytics. In: ICDE, pp. 535–546 (2017)

56. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-
weka: combined selection and hyperparameter optimization of
classification algorithms. In: KDD, pp. 847–855 (2013)

57. Vanschoren, J.: Meta-learning. In: Automated Machine Learning-
Methods, Systems, Challenges, The Springer Series on Challenges
in Machine Learning, pp. 35–61 (2019)

58. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML:
networked science in machine learning. SIGKDD Explor. 15(2),
49–60 (2013)

59. Xin, D., Macke, S., Ma, L., Liu, J., Song, S., Parameswaran,
A.: Helix: holistic optimization for accelerating iterative machine
learning. PVLDB 12(4), 446–460 (2018)

60. Yakovlev,A.,Moghadam,H.F.,Moharrer, A., Cai, J., Chavoshi, N.,
Varadarajan, V., Agrawal, S.R., Idicula, S., Karnagel, T., Jinturkar,
S., et al.: Oracle automl: a fast and predictive automl pipeline.
PVLDB 13(12), 3166–3180 (2020)

61. Yang, J., He, Y., Chaudhuri, S.: Auto-pipeline: synthesize data
pipelines by-target using reinforcement learning and search. Proc.
VLDB Endow. 14(11), 2563–2575 (2021)

62. Yu, Y., Qian, H., Hu, Y.: Derivative-free optimization via classifi-
cation. In: AAAI, pp. 2286–2292 (2016)

63. Zhang, J.M.,Harman,M.,Ma,L., Liu,Y.:Machine learning testing:
survey, landscapes and horizons. IEEE Trans. Softw. Eng. (2020)

64. Zhang, S., Yang, F., Zhou, D., Zeng, X.: An efficient asynchronous
batch bayesian optimization approach for analog circuit synthesis.
In: DAC, pp. 1–6 (2020)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.kaggle.com

	AutoML in heavily constrained applications
	Abstract
	1 Introduction
	1.1 AutoML with constraints
	1.2 Adapting AutoML configurations
	1.3 Contributions

	2 Three-step problem
	2.1 Supervised ML problem
	2.2 The AutoML problem
	2.3 Constrained-driven AutoML problem

	3 Constraint-driven AutoML
	3.1 Training data for meta-learning
	3.1.1 Meta-target label
	3.1.2 Alternating sampling
	3.1.3 Parallelization and optmizations
	3.1.4 Meta-feature representation

	3.2 Meta-model training
	3.3 AutoML configuration mining
	3.4 AutoML parameters
	3.5 Constraints
	3.6 Extending the list of constraints
	3.7 Constrained optimization

	4 Experiments
	4.1 Setup
	4.2 Effectiveness on search time constraints
	4.2.1 Performance comparison
	4.2.2 Analyzing the meta-models
	4.2.3 Conclusion

	4.3 Effectiveness on diverse constraint types
	4.3.1 Performance comparison
	4.3.2 Analysis

	4.4 Effectiveness on multiple constraint types
	4.5 Alternating vs random sampling
	4.6 AutoML configuration mining
	4.7 Adjusting to different hardware
	4.8 Impact of the number of constraints on meta-training

	5 Related work
	6 Conclusion
	Acknowledgements
	References

