
The VLDB Journal (2024) 33:481–505
https://doi.org/10.1007/s00778-023-00815-y

REGULAR PAPER

Efficient detection of multivariate correlations with different
correlation measures

Jens E. d’Hondt1 · Koen Minartz1 ·Odysseas Papapetrou1

Received: 20 March 2023 / Revised: 22 August 2023 / Accepted: 14 September 2023 / Published online: 11 October 2023
© The Author(s) 2023

Abstract
Correlation analysis is an invaluable tool in many domains, for better understanding the data and extracting salient insights.
Most works to date focus on detecting high pairwise correlations. A generalization of this problem with known applications
but no known efficient solutions involves the discovery of strong multivariate correlations, i.e., finding vectors (typically in
the order of 3–5 vectors) that exhibit a strong dependence when considered altogether. In this work, we propose algorithms for
detectingmultivariate correlations in static and streaming data. Our algorithms, which rely on novel theoretical results, support
four different correlation measures, and allow for additional constraints. Our extensive experimental evaluation examines the
properties of our solution and demonstrates that our algorithms outperform the state-of-the-art, typically by an order of
magnitude.

Keywords Similarity search · Multivariate correlations · Time series · Streaming data

1 Introduction

Correlation analysis is one of the key tools in the arsenal
of data analysts for understanding the data and extracting
insights. For example, in neuroscience, a strong correlation
between activity levels in two regions of the brain indi-
cates that these regions are strongly interconnected [20]. In
finance, correlation plays a crucial role in finding portfo-
lios of assets that are on the Pareto-optimal frontier of risk
and expected returns [30], and in genetics, correlations help
scientists detect cause factors for potentially hereditary syn-
dromes.1 In databases, similarity measure like correlations
are occasionally used in theta joins to allow for softer joining
conditions than pure object equality [21]. Furthermore, when

1 A prime example is the Spark project for discovering gene properties
related to the manifestation of the autism spectrum disorder, which led
to a list of genes and their correlated symptoms [17].

B Jens E. d’Hondt
j.e.d.hondt@tue.nl

Koen Minartz
k.minartz@tue.nl

Odysseas Papapetrou
o.papapetrou@tue.nl

1 Eindhoven University of Technology, De Zaale 1, 5600 MB
Eindhoven, The Netherlands

treated as a generalization of functional dependencies, corre-
lations are also used for optimizing access paths in databases
[47].

Multivariate correlations, also known as high-order cor-
relations, extend the concept of pairwise correlations to rela-
tionships among three ormore variables. These variablesmay
represent various forms of data, such as time series or other
high-dimensional data stored as vectors.2 Multivariate cor-
relations should not be confused with pairwise correlations
of multivariate time series. The former refers to correlations
involving three or more distinct variables/vectors, whereas
the latter deals with correlations of only two multivariate
time series. In the last few years, multivariate correlations
found extensive use in diverse domains. Detection of ternary
correlations in fMRI time series improved the understanding
of how different brain regions work in cohort for execut-
ing different tasks [2, 3]. For instance, the activity of the
left middle frontal region was found to have a high cor-
relation with the total activity of the right superior frontal
and left inferior frontal regions while the brain was process-
ing audiovisual stimulus. This insight suggests that the left
middle frontal has an integrative role of assimilating infor-
mation from the other two regions, which was not possible

2 Although we will mostly refer to the more general case of vectors
in this paper, the data often consists of time series—possibly with live
updates.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00815-y&domain=pdf
http://orcid.org/0000-0001-9069-0591

482 J. E. d’Hondt et al.

to find by looking only at pairwise correlations. In climate
science, a ternary correlation led to the characterization of a
new weather phenomenon and to improved climate models
[29]. In machine learning, multivariate information-theoretic
measures have increasingly served as learning objectives or
regularizers for training of neural networks aimed at optimiz-
ing the correlation among multiple variables. Usage of such
regularizers lead to improved robustness, generalizability,
and interpretability of the models [4, 7, 8]. It is also stip-
ulated that a more thorough look at multivariate correlations
will open doors in the fields of genomics [6, 52] andmedicine
[28, 32].

Accordingly, several measures and algorithms for discov-
ering strong multivariate correlations have been proposed,
such as Tripoles [2], Multipoles [3], Canonical Correlation
Analysis (CCA) [23], and Total Correlation (TC) [35, 36, 46,
52]. However, the proposed algorithms do not sufficiently
address the fundamental impediment on the discovery of
strong multivariate correlations, which is the vast search
space—all combinations of vectors that need to be exam-
ined. Unfortunately, apriori-like pruning techniques do not
apply for the general case of multivariate correlations. For
example, consider the three time series from finance, pre-
sented in Fig. 1. In this example, the pairwise correlation
between all pairs of the three time series is comparatively
low, whereas the time series created by averaging QAN and
RDF is strongly correlated to MCP.3 Therefore, a correlation
value of any pair of vectors does not provide sufficient infor-
mation as of whether these vectors may participate together
in a ternary (or higher-order) correlation. Simultaneously, an
exhaustive algorithm that iterates over all possible combina-
tions implies combinatorial complexity, and cannot scale to
reasonably large datasets. Indicatively, in a small data set of
100 vectors, detection of all ternary high correlations requires
iterating over 1 million candidates, whereas finding quater-
nary high correlations on 1000 vectors involves 1 trillion
combinations. Themere generation and enumeration of these
combinations already becomes challenging. Therefore, smart
algorithms are needed to drastically reduce the search space
and computational complexity.

Existing algorithms follow at least one of the following
approaches: (a) they consider constraining definitions ofmul-
tivariate correlations that enable apriori-like filtering [3, 35,
52], (b) they rely on hand-crafted assumptions of the user
query, which may be too constraining for other application
scenarios [2, 3, 52], or, (c) they offer approximate results,
with no guarantees [2, 3]. Even though these algorithms are
very useful for their particular use cases, they are not gener-
ally applicable.

3 Weighted averages of stock prices are commonly considered in risk
management to evaluate portfolio performance, diversity, and volatility
[38].

Fig. 1 Normalized daily closing prices for stocks traded at the Aus-
tralian Securities Exchange

In this work, we follow a more general direction. First, we
also consider correlation measures that are not suitable for
apriori-like pruning. Second, in contrast to some of the earlier
work, we abide by Ockham’s razor: we prioritise discov-
ery of the less complex multivariate correlations—the ones
that contain the smallest number of vectors. We opt for this
approach since correlations between a few variables aremore
intuitive and interpretable than their counterparts with many
variables. Third, we consider different algorithmic variants:
an exact threshold variant that returns all correlations higher
than a threshold τ , and an exact top-κ variant that returns
the top-κ highest correlations. We also discuss the case of
progressively finding results, and extend the proposed algo-
rithms to a dynamic context, for handling streaming updates.

We evaluate our algorithms on 7 datasets and compare
them to the state-of-the-art. Our evaluation demonstrates that
we outperform the existing methods, frequently by several
orders of magnitude. Finally, we show that the progressive
version of the algorithm produces around 90%of the answers
in 10% of the time.

The remainder of the paper is structured as follows. In the
next section, we formalize the problem and discuss the pre-
liminaries and related work.We then propose the algorithmic
variants for the case of static data (Sect. 3), and the streaming
extensionof the algorithm (Sect. 4). Section5 summarizes the
experimental results. We conclude in Sect. 6.

2 Preliminaries

We start with a discussion of the multivariate correlation
measures that we will be considering in this work. We then
formalize the problem and discuss prior work on similarmul-
tivariate correlation measures.

2.1 Correlationmeasures

Our work focuses on both types of multivariate correlation
measures: a bivariate correlations over aggregated vectors

123

Efficient detection of multivariate correlations with different correlation measures 483

(two-sided), and b specialized multivariate measures (one-
sided).
Bivariate correlations over aggregates. Given two sets of
vectors X and Y , a bivariate correlation over aggregated vec-
tors is defined as

Corr(X ,Y) = Corr(Agg(X),Agg(Y)) (1)

withCorr being a bivariate correlation function such as Pear-
son Correlation, and Agg(X) being a linear combination of
the vectors in X . In this work, we consider element-wise
averaging combined with Pearson Correlation and Euclidean
Similarity [42], referred to as PC and ES, respectively. Pear-
son Correlation is defined as ρ(x, y) = cov(x,y)

σxσy
with σx

denoting the standard deviation of some vector x , and is a
widely used measure for measuring the linear dependence
between two variables. Euclidean Similarity is defined as
ES(x, y) = 1

1+d(x,y) with d(·, ·) denoting the Euclidean dis-
tance, and is extensively used for k-nearest neighbors queries
and range queries [13, 15].
Multipole. The multipole correlation MP(X) measures the
linear dependence of an input set of vectors X [3]. Specif-
ically, let x̂1, . . . , x̂n denote n z-normalized input (column)
vectors, andX = [x̂1, . . . , x̂n] the matrix formed by concate-
nating the vectors. Then:

MP(X) = 1 − min
v∈Rn ,‖v‖2=1

var(X · vT) (2)

The value ofMP(X) lies between 0 and 1. Themeasure takes
its maximum value when there exists perfect linear depen-
dence, meaning that there exists a vector vwith norm 1, such
that var(X · vT) = 0. Notice that multipoles is not equiva-
lent to, nor a generalization of PC or ES. By definition, MP
assumes optimal weights (vector v is such that the variance is
minimized), whereas forPC andES, the aggregation function
for the vectors (e.g., averaging) is determined at the definition
of the measure. Furthermore, MP(·) expresses the degree of
linear dependence within a single set of vectors, whereas for
bivariate measures, two distinct, non-overlapping vector sets
are considered.
Total correlation. Total correlation TC(X) (also known as
multi-information [43] or multivariate constraint [18]) is a
generalization of the (pairwise) mutual informationmeasure.
It measures the redundancy or dependence among a set of n
random variables X = {X1, . . . , Xn} as the KL-divergence
from the joint distribution p(X1, . . . , Xn) to the product of
the marginal distributions p(X1) . . . p(Xn) [46]. This can
be reduced to the difference of entropies:

TC(X) =
n∑

i=1

H(Xi) − H(X1, . . . , Xn) (3)

with H(Xi) denoting Shannon’s entropy of Xi ∈ X .

2.2 Problem definition

Consider a setV = {v1, v2, . . . vn} of d-dimensional vectors,
and a multivariate correlation measure Corr, both provided
by the data analyst. Function Corr accepts either one or two
vector sets (subsets of V) as input parameters, and returns a
scalar. Hereafter, wewill be denoting the correlation function
with Corr(X ,Y), with the understanding that for the defini-
tions of Corr that expect one input (i.e.,MP and TC), Y will
be empty. We consider two query types:
Query 1: Threshold query: For a user-chosen correla-
tion function Corr, correlation threshold τ , and parameters
pl , pr ∈ N, find all pairs of sets (X ⊂ V,Y ⊂ V), for which
Corr(X ,Y) ≥ τ , X ∩ Y = ∅, |X | ≤ pl and |Y | ≤ pr .
Query 2: Top-κ query: For a user-chosen correlation function
Corr, and parameters κ, pl , pr ∈ N, find the κ pairs of sets
(X ⊂ V,Y ⊂ V) that have the highest values Corr(X , Y),
such that X ∩ Y = ∅, |X | ≤ pl , and |Y | ≤ pr .
The combination of pl and pr controls the desired complexity
of the answers. Smaller pl + pr values yield results that
are easier to interpret, and arguably more useful to the data
analyst.

Complementary to the two query types, users may also
want to specify additional constraints, relating to the targeted
diversity and significance of the answers. We consider two
different constraints, but other constraints (e.g., the weak-
correlated feature subset constraint of [52]) can also be
integrated in the algorithm into a similar manner:
Irreducibility constraint: For each (X ,Y) in the result
set, there exists no (X ′,Y ′) in the result set such that
X ′ ⊆ X , Y ′ ⊆ Y , and

(
X ′,Y ′) �= (X ,Y). Intuitively, if

Corr(X ′,Y ′) ≥ τ , then no supersets of X ′ and Y ′ should
be considered together. This constraint prioritizes simpler
answers.
Minimum jump constraint: For each (X ,Y) in the result
set, there exists no (X ′,Y ′) such that X ′ ⊆ X , Y ′ ⊆ Y ,(
X ′,Y ′) �= (X ,Y), and Corr(X ,Y)− Corr(X ′,Y ′) < δ.
This constraint, which was first proposed in [2], discards
solutions where a vector in X ∪ Y contributes less than δ to
the increase of the correlation.

For top-κ queries, these constraints are ill-defined. For
example, consider the irreducibility constraint, and assume
Corr(X ,Y) = 0.9, and Corr(X ′,Y ′) = 0.8, where X ′ ⊂ X
and Y ′ ⊂ Y . In this case, the definition of top-κ does not
dictate which of (X ,Y) or (X ′,Y ′) should be in the answer
set.

For conciseness, we will use Corr(pl) and Corr(pl , pr)
to denote the combination of the correlation measure, and
the user-chosen values of pl and pr . For example, PC(2, 1)
will identify the combinations of sets of vectors of size 2 and
1 with high Pearson correlation, whereas patternMP(4) will

123

484 J. E. d’Hondt et al.

identify the combinations of 4 vectors with high multipole
correlation.

2.3 Related work

Several algorithms exist for efficiently finding highly corre-
lated pairs in large data sets of high-dimensional vectors, e.g.,
time series. For example, StatStream [53] and Mueen et al.
[34] both map pairwise correlations to Euclidean distances.
They then exploit Discrete Fourier Transforms, grid-based
indexing and dynamic programming to reduce the search
space. Other works also enable indexing of high-dimensional
vectors in theEuclidean space [11, 40].However, theseworks
are not applicable formultivariate correlations, since twovec-
tors may have a low pairwise correlation with a third vector,
whereas their aggregate may have a high correlation (see,
e.g., the example of Fig. 1). Prior work addressing multivari-
ate correlations propose algorithms that rely on additional
constraints for their pruning power. Agrawal et al. investi-
gate the problem of finding highly-correlated tripoles [2].
Tripoles is a special case of the PC measure, where |X | = 2
and |Y | = 1 (i.e.,PC(2, 1)). Their algorithm, named CoMEt,
relies on the minimum jump constraint for effective pruning.
Compared to tripoles, our work handles the more general
definition of Pearson correlation over aggregated vectors,
allowingmore vectors on the left- and right-hand side.More-
over, our work relies on novel theoretical results to prune the
search space and can scale to larger datasets regardless of
the introduction of any additional constraints (e.g., minimum
jump or irreducibility).

Algorithms for discovering high correlations according
to the Multipole measure (Eq. 2) were first proposed in [3],
with the introduction of theCoMEtExtended algorithm. Both
CoMEt and CoMEtExtended are approximate and rely on
clique enumeration to efficiently explore the search space.
Their efficiency depends on a parameter ρ that trades off
result completeness for performance. The minimum jump
constraint also becomes relevant to reduce computational
effort. For settings of ρ that result in reasonable computation
times, the two algorithms yield a substantiallymore complete
result set compared to methods like l1—regularization and
structure learning-based techniques. Still, the two algorithms
do not come with completeness or accuracy guarantees. In
contrast, our work is exact—it always retrieves all answers—
and outperforms both algorithms.

With respect to Total Correlation, Nguyen et al. [35]
propose an algorithm for groups of columns in a database
with high Total Correlation. The method analyzes patterns
in pairwise correlations (i.e., mutual-information) to iden-
tify quasi-cliques of highly correlated column groups, and
compute lower bounds on their total correlation. However,
it misses strongly correlated groups with low pairwise cor-

relations, which are arguably the most interesting cases. As
such, the method is effectively an approximation algorithm.

In another work, Zhang et al. developed an algorithm that
discovers sets of binary vectors with a high total correla-
tion value [52]. However, the method is again approximate,
limited to data with binary features only, and relies on a lim-
iting weak-correlated subset constraint. In contrast, our work
returns a guaranteed complete set of results and works on all
major data types.

In the supervised learning context, subset regression
appears to be closely related to multivariate correlation min-
ing. The goal of this feature selection problem is to select the
best p predictors out of n candidate features [10]. Our prob-
lem differs from the above in that we aim to find interesting
patterns in the data, rather than finding the best predictors for
a given dependent variable. Furthermore, instead of finding
only the highest correlated vector set, our goal is to find a
diverse set of results as we argue that that will help domain
expert assess the results more on qualitative aspects, gaining
more insights.

Another similar problem is that of similarity search on
multivariate time series [49, 50]. Here, the goal is to find
all pairs of multivariate time series (e.g., weather sensors
measuring both temperature and wind speed) with a high
similarity value, based on some specialized measure such
as the PCA similarity factor [45], or the extended Frobe-
nius norm [48]. Effectively, this extends classic similarity
search by adding a degree of freedom (DoF) in the number
of variables per time series, increasing the search space car-
dinality from O(n2) to O((pn)2) for p-variate time series.
In contrast, our problem extends classic similarity search by
adding a DoF in the number of time series per combination,
growing the search space to O(n p). Although this problem
seems similar, its challenges differ significantly from similar-
ity search onmultivariate time series and can lead to different
results and insights.

Table 1 summarizes the properties of the most closely
related work out of the discussed ones.

3 Detection of multivariate correlations in
static data

The main challenge in detecting strongly correlated vector
sets stems from the combinatorial explosion of the num-
ber of candidates that need to be examined. In a dataset
of n vectors, there exist at least O

(∑pl+pr
p=2

(n
p

))
possible

combinations for a correlation pattern Corr (pl ,pr). Even if
each possible combination can be checked in constant time,
the enumeration of all combinations still requires significant
computational effort.

123

Efficient detection of multivariate correlations with different correlation measures 485

Table 1 Comparison to the most relevant related work for multivariate correlations

Completeness Require constraints Correlation measures Query types Data formats

[2] No Yes PC(1, 2) Threshold Static

[3] No Yes MP(·) Threshold Static

[35] No No TC(·) Threshold Static

[52] Yes Yes TC(·) (binary data) Threshold Static

Ours Yes No PC(·, ·),ES(·, ·),MP(·),TC(·) Threshold, Top-κ , progressive Static, streaming

Table 2 Properties of the supported multivariate correlation metrics

Measure/abbrev Normalization Clustering distance

Pearson (PC) Z-norm Angular

Euclidean (ES) None Euclidean

Multipoles (MP) Z-norm Angular

Total (TC) None Normalized inform. [27]

Our algorithm—Correlation Detective, abbreviated as
CD—exploits the insight that vectors often exhibit (weak)
correlations between each other. For example, securities of
companies that participate in the same conglomeration (e.g.,
Fig. 2a, GOOGL and GOOG) or are exposed to similar risks
and opportunities (e.g., STMicroelectronics andASML) typ-
ically exhibit a high correlation between their stock prices.
CD exploits such correlations, even if they are weak, to dras-
tically reduce the search space.

CD works as follows: rather than iterating over all pos-
sible vector combinations that correspond to the correlation
pattern, CD clusters the vectors based on their similarity,
and enumerates the combinations of only the cluster cen-
troids. For each of these combinations, CD computes upper
and lower bounds on the correlations of all vector combi-
nations in the Cartesian product of the clusters. Based on
these bounds, CD decides whether or not the combination of
clusters (i.e., all combinations of vectors derived from these
clusters) should be added to the result set, can safely be dis-
carded, or, finally, if the clusters should be split into smaller
subclusters for deriving tighter bounds. This approach effec-
tively reduces the number of combinations that need to be
considered, making CD at least an order of magnitude faster
than existing methods.

In the remainder of this section, we will present the key
elements of CD, explaining how the two types of queries
presented in Sect. 2 are handled. We will start with a brief
description of the initialization phase, which includes data
pre-processing and clustering. In Sects. 3.2 and 3.3, we
will describe how CD answers threshold and top-κ queries,
respectively.

3.1 Initialization and clustering

First, all vectors are normalized using a measure-specific
(e.g., PC,ES,MP,TC) normalization technique (discussed
in Sect. 3.2).

The second part of the initialization phase considers con-
structing a hierarchical clustering of all vectors, again using
a measure-specific distance measure (shown in Table 2). We
will discuss the selection of distance measures in Sect. 3.2.2.

The clustering algorithm operates in top-down fashion. A
root cluster containing all vectors is first created to initial-
ize the hierarchy. The algorithm then consists of three steps.
First, K vectors are picked from the root cluster and used as
the initial top-level centroids in the hierarchy. These vectors
are picked using the seeding strategy of K -means++ [5]. The
use of K -means++ (as opposed to sampling K random vec-
tors) ensures that these initial centroids are well-distributed
over the metric space, and not very close to each other. In
the second step, we run the standard K -means algorithm for
at most r1 iterations, or until convergence using the average
function to recompute the cluster centroids after each iter-
ation. The clustering is evaluated using the Within-Cluster
Sum of Squares (WCSS) (the sum of the variances within all
clusters). In the third step, steps one and two are repeated r2
times (i.e., with different centroids), and the clustering with
the lowestWCSS is kept as the final clustering assignment for
the first level of the hierarchy. These three steps are executed
recursively on each individual cluster with non-zero radius,
to construct the second, third, etc. levels of the hierarchy,
until all leaf nodes contain only one vector.

There is a clear tradeoff between the cost of the clustering
algorithm and the clustering quality. Increasing the values
of r1 and r2 will generally result in a higher clustering qual-
ity (lowerWCSS), but will take longer to compute. However,
the quality of the clustering does not affect the correctness of
CD—in fact, regardless of the employed hierarchical cluster-
ing algorithm, CD always returns the same correct result set.
A poor clustering only affects the computational efficiency
of CD. Still, our experiments show that as long as the cluster-
ing is reasonable, a suboptimal clustering is not detrimental
to CD’s efficiency. More precisely, we found that the value
of r1 (max. iterations of K -means, after the initial centroids

123

486 J. E. d’Hondt et al.

Fig. 2 a Two groups of closely related stocks: ASML and STMicro-
electronics are exposed to similar risks, while GOOG and GOOGL
participate in the same conglomeration; bRunning example in 2 dimen-

sions: the centroids of each cluster are depictedwith darker background.
All clusters are labeled for easy reference; c Illustration of pessimistic
pairwise bounds of Lemma 1

were decided) had no observable effect on CD’s efficiency.
Therefore, we simply set r1 = 1. The same generally holds
for r2, although to prevent ruinous effects due to coinciden-
tally very poorly chosen initial centroids, we set r2 = 50.
Still, the clustering takes at most a few seconds in our exper-
iments, which is negligible compared to the total execution
time of the algorithm.

3.2 Threshold queries

CD receives as input the cluster tree produced by the hier-
archical clustering algorithm, a correlation pattern, and a
correlation threshold τ . It then forms all possible combi-
nations of the correlation pattern with the child clusters of
the root. In the example of Fig. 2b, for a desired correlation
pattern of PC(2, 1), the following combinations of clusters
are examined:

∀Cx ,Cy ,Cz∈{C1,C2,C3}((Cx ,Cy),Cz)

Note that we now present the algorithm for finding all
interesting triplets following correlation pattern PC(2, 1).
In reality, CD also considers all sub-patterns of the queried
correlation pattern (e.g., PC(1, 1)) by re-running the same
algorithm on those sub-patterns.

A combination of clusters compactly represents the com-
binations created by the Cartesian product of the vectors
inside the clusters. For example, assuming that |Cx | = 4
and |Cy | = 3, the cluster combination (Cx ,Cy) represents
a set of 12 vector combinations, which we will refer to as
its materializations. For each cluster combination, the algo-
rithm computes lower and upper bounds on the correlation of
its materializations, denoted with LB and UB, respectively
(Algorithm 1, line 1). These bounds guarantee that any possi-
ble materialization of the cluster combination, i.e., replacing
each cluster with any one of the vectors in that cluster, will
always have a correlation between LB and UB.

The next step is to compare the bounds with the user-
chosen threshold τ (lines 2, 4, 6). IfUB < τ , the combination

Algorithm 1: ThresholdQuery(Sl , Sr , Corr, τ)
Input: Sets of clusters Sl and Sr that adhere to the user-defined

correlation pattern including a correlation measure Corr,
correlation threshold τ .

1 (LB,UB) ← CalcBounds(Sl ,Sr ,Corr)
2 if LB ≥ τ then
3 Add (Sl ,Sr) to the result set
4 else if UB < τ then
5 Discard (Sl ,Sr)
6 else

// Replace largest cluster with subclusters and recurse
7 Cmax ← argmax

C∈Sl∪Sr

{C .radius}
8 Set SC ← Cmax .subclusters
9 for S ∈ SC do

10
(S ′

l ,S ′
r

) ← (Sl ,Sr) with Cmax replaced by S
11 ThresholdQuery

((S ′
l ,S ′

r

)
,Corr, τ

)

is decisive negative—no materialization yields a correlation
higher than the threshold τ . Therefore, this cluster combina-
tion does not need to be examined further. If LB ≥ τ , the
combination is decisive positive, guaranteeing that all possi-
ble materializations of this cluster combination will have a
correlation of at least τ . Therefore, all materializations are
inserted in the result. Finally,when LB < τ andUB ≥ τ , the
combination is indecisive. In this case, the algorithm (lines
7–11) chooses the cluster Cmax with the largest radius,4 and
recursively checks all combinations where Cmax is replaced
by one of its sub-clusters. In the example of Fig. 2b, assume
that the algorithm examined an indecisive combination of
clusters C1,C2, C3, and C2 is the cluster with the largest
radius. The algorithm will drill down to consider the three
children of C2, and examine their combinations with C1 and
C3. The recursion continues until each combination is deci-
sive.

We will refer to this process as traversing the comparison
tree. Decisive combinations are typically found at high levels
of the cluster tree, thereby saving many comparisons. In the

4 Radii are computed using the distance metrics in Table 2.

123

Efficient detection of multivariate correlations with different correlation measures 487

following,wewill discuss two different approaches for deriv-
ing LB and UB for arbitrary correlation patterns. The first
approach (theoretical bounds) has constant complexity in the
number ofmaterializations a cluster combination covers. The
second approach (empirical bounds) extends the theoretical
bounds with additional information. It has a slightly higher
cost, but typically leads to much tighter bounds.

3.2.1 Theoretical bounds

We first present a lemma for bounding the cosine similarity
between only two clusters, which serves as a stepping stone
for bounding multivariate correlations.

Lemma 1 Let cos(θx,y) denote the cosine similarity between
two vectors x and y, with θx,y being the angle formed by
these vectors. Consider four vectors u1, u2, v1, and v2, such
that θv1,u1 ≤ θ1 and θv2,u2 ≤ θ2. Then, cosine similarity
cos(θu1,u2) can be bounded as follows:

cos(θmaxu1,u2) ≤ cos(θu1,u2) ≤ cos(θminu1,u2)

where

θminu1,u2 max
(
0, θv1,v2 − θ1 − θ2

)

θmaxu1,u2 min
(
π, θv1,v2 + θ1 + θ2

)

Proof All proofs are included inAppendixAof theTechnical
Report [12] ��

Lemma 1 bounds the cosine similarity between two vec-
tors u1 and u2 that belong to two clusters with centroids v1
and v2, respectively, by using: (a) the angle between the two
centroids, and, (b) upper bounds on the angles between u1
and v1, and between u2 and v2. For instance, in the running
example (Fig. 2b), we can bound the cosine between a and
b if we have the cosine of the two cluster centroids d and e,
the cosines of a with d, and of h with e (as h is the furthest
point in C2 from the centroid e). The bounds are tightened
if the maximum angle formed by each centroid with its cor-
responding cluster vectors is reduced. We now extend our
discussion to cover multivariate correlations, which involve
three or more clusters.

Theorem 1 (Bounds for PC) For any pair of clusters Ci ,C j ,
let l(Ci ,C j) and u(Ci ,C j) denote lower/upper bounds
on the pairwise correlations ρ between the cluster pair’s
materializations, i.e., l(Ci ,C j) ≤ minx∈Ci ,y∈C j ρ(x, y) and
u(Ci ,C j) ≥ maxx∈Ci ,y∈C j ρ(x, y). Consider sets of clus-

ters Sl = {Cl
i }pli=1 and Sr = {Cr

j }prj=1. Let L(S1,S2)

= ∑
Ci∈S1,C j∈S2

l(Ci ,C j), andU (S1,S2) = ∑
Ci∈S1,C j∈S2

u(Ci ,C j).

Then, for any two sets of z-normalized vectors5 X =
{x̂1, . . . , x̂pl }, Y = {ŷ1, . . . , ŷpr } such that x̂i ∈ Cl

i , ŷi ∈ Cr
i ,

multivariate correlation PC(X ,Y), can be bounded as fol-
lows:

1. if L(Sl ,Sr) ≥ 0 : PC(X ,Y) ∈
[

L(Sl ,Sr)√
U (Sl ,Sl)

√
U (Sr ,Sr)

,
U (Sl ,Sr)√

L(Sl ,Sl)
√
L(Sr ,Sr)

]

2. if U (Sl ,Sr) ≤ 0 : PC(X ,Y) ∈
[

L(Sl ,Sr)√
L(Sl ,Sl)

√
L(Sr ,Sr)

,
U (Sl ,Sr)√

U (Sl ,Sl)
√
U (Sr ,Sr)

]

3. else: PC(X ,Y) ∈
[

L(Sl ,Sr)√
L(Sl ,Sl)

√
L(Sr ,Sr)

,
U (Sl ,Sr)√

L(Sl ,Sl)
√
L(Sr ,Sr)

]

As Pearson correlation is equivalent to cosine simi-
larity when computed over z-normalized vectors, we can
use Lemma 1 to compute bounds on the pairwise corre-
lations between any pair of clusters, which allows us to
compute the bounds in Theorem 1. Consequently, we can
bound the multivariate correlation of any cluster combina-
tion that satisfies the PC correlation pattern, without testing
all its possible materializations. For example, for combina-
tion ((C1,C2),C3) from our running example, we first use
Lemma 1 to calculate bounds for all cluster pairs in O(1) per
pair, which leads to values for L(·, ·) andU (·, ·). The bounds
on PC((C1,C2),C3) then follow directly from Theorem 1.

Theorem 2 (Bounds forMP)For any pair of clusters Ci ,C j ,
let l(Ci ,C j) and u(Ci ,C j) denote lower / upper bounds
on the pairwise correlations between the cluster’s mate-
rializations, i.e., l(Ci ,C j) ≤ minx∈Ci ,y∈C j ρ(x, y) and
u(Ci ,C j) ≥ maxx∈Ci ,y∈C j ρ(x, y). Consider the set of clus-
ters S = {Ci }pi=1. Furthermore, let L and U be symmetric
matrices such that Li j = l(Ci ,C j) and Ui j = u(Ci ,C j)

∀1 ≤ i, j ≤ p. For any set of z-normalized vectors
X = {x̂1, x̂2, . . . , x̂p} such that x̂i ∈ Ci , multipole corre-
lationMP(X) can be bounded as follows:

MP(X) ∈ 1 − λmin

(
L + U

2

)
± 1

2
||U − L||2

where λmin

(
L+U
2

)
is the smallest eigenvalue of matrix

(
L+U
2

)
.

5 Z-normalization involves shifting and scaling a vector such that they
have zero mean and unit standard deviation.

123

488 J. E. d’Hondt et al.

Similar to Theorem 1 for PC, we can use Lemma 1 to com-
pute the bounds on the pairwise correlations between any pair
of clusters, which allows us to compute the bounds of The-
orem 2, and to analyze theMP values of all materializations
of the cluster combination in one go.

Theorem 3 (Bounds for ES) For any pair of clusters Ci ,C j ,
let l(Ci ,C j) and u(Ci ,C j) denote lower / upper bounds
on the dot products 〈·, ·〉 between the clusters’ materializa-
tions, i.e., l(Ci ,C j) ≤ minx∈Ci ,y∈C j 〈x, y〉 and u(Ci ,C j) ≥
maxx∈Ci ,y∈C j 〈x, y〉. Consider the sets of clusters Sl =
{Cl

i }pli=1 andSr = {Cr
j }prj=1. Let L(S1,S2)= ∑

Ci∈S1,C j∈S2
l(Ci ,C j),

and U (S1,S2) = ∑
Ci∈S1,C j∈S2

u(Ci ,C j). Then, for any
two sets of vectors X = {x1, . . . , xpl }, Y = {y1, . . . , ypr }
such that xi ∈ Cl

i , yi ∈ Cr
i , multivariate correlation

ES(X ,Y), can be bounded as follows: ES(X ,Y) ∈
⎡

⎣
(
1 +

√
U (Sl ,Sl)

p2l
+ U (Sr ,Sr)

p2r
− 2

L(Sl ,Sr)
pl pr

)−1

,

(
1 +

√
L(Sl ,Sl)

p2l
+ L(Sr ,Sr)

p2r
− 2

U (Sl ,Sr)
pl pr

)−1
⎤

⎦

Since 〈x, y〉 = cos(θx,y)‖x‖2‖y‖2, we can again use
Lemma 1 to compute bounds on L(·, ·) and U (·, ·), which
allowus to compute the bounds of Theorem3. This is done by
first computing bounds on cosines with Lemma 1 for all clus-
ter pairs in O(1) per pair, and combining those with bounds
on the l2-norms of each cluster. 6

Theorem 4 (Bounds for TC) For any pair of clusters Ci ,C j ,
let l(Ci ,C j) and u(Ci ,C j) denote lower / upper bounds
on the joint (Shannon) entropy H (·, ·) between the clusters’
materializations, i.e., l(Ci ,C j) ≤minx∈Ci ,y∈C j H(x, y) and
u(Ci ,C j) ≥ maxx∈Ci ,y∈C j H(x, y). Similarly, let l(Ci) and
u(Ci) denote lower/upper bounds on the marginal entropies
of vectors in the cluster Ci . Consider the set of clusters S =
{Ci }pi=1 with Si denoting the i-th cluster in the set. Then,
for any set of vectors X = {x̂1, . . . , x̂p} such that xi ∈ Ci ,
multivariate correlation TC(X), can be bounded as follows:
TC(X) ∈

⎡

⎣
p∑

i=1

l(Ci) −
p−1∑

i=1

(min
1≤ j≤i

u(Ci+1|C j))

−u(C1),
∑

Ci∈S
u(Ci) − max

Ci ,C j∈S
l(Ci ,C j)

⎤

⎦

6 Similar to z-normalization for PC andMP, the l2-norm of each vector
can be computed and cached as a preprocessing step, afterwhich bounds
on the norms per cluster can be quickly derived on cluster initialization.

Theorems 1–3 are built on the observation that the multi-
variate correlation of a set of vectors can be expressed as a
function of the pairwise relations exhibited by the vectors in
that set. Then, this (exact) expression of a multivariate cor-
relation among individual vectors is extended to bounds on
the multivariate correlation among clusters of vectors, which
are in turn bounded by Lemma 1.

Although the Total Correlation of a set of vectors X can-
not be expressed as a function of cosine similarities, it can
be bounded by other pairwise relations, namely conditional
entropies with two variables [35]. This enables us to express
bounds the TC-value of a set of vectors as a function of
correlation bounds between pairs of clusters, similar to the
previous Theorems [52]. How these bounds on cluster pairs
are computed (and tightened) in the absence of Lemma 1will
be discussed in the following section.

Note that Theorem 4 bounds apply to both discrete and
continuous data, using differential entropy for the latter case.
In case exact probability functions are unknown for contin-
uous data, one can derive empirical distribution functions
through discretization.

3.2.2 Tightening the bounds

Empirical pairwise bounds.Thebounds ofLemma1—which
are used for deriving the bounds of Theorems 1, 2, and 3—
tend to be pessimistic, as they always account for the worst
theoretical case. In the example of Fig. 2c, the theoretical
lower bound (resp. upper bound) accounts for the case that
hypothetical vectors (depicted in pink) are located on the
clusters’ edges, resulting in the smallest (resp. largest) pos-
sible distance between any pair of points in the clusters.

Tightening the bounds on cosine similarities will in turn
tighten the bounds on PC, MP, and ES, which will lead to
more aggressive pruning power of the algorithm described
earlier in this section. The empirical bounds approach builds
on the observation that the cosine similarities of any pair of
vectors xi, xj drawn from a pair of clusters Ci ,C j , respec-
tively, is typically strongly concentrated around (l(Ci ,C j)+
u(Ci ,C j))/2, especially for high-dimensional vectors. The
approach works as follows. At initialization, we compute
all (pairwise) cosines and store these in an upper-triangular
matrix. Then, during execution of Algorithm 1, we compute
l(Ci ,C j) and u(Ci ,C j), when required, as follows:

l(Ci ,C j) = min
x∈Ci ,y∈C j

cos(θx,y)

and

u(Ci ,C j) = max
x∈Ci ,y∈C j

cos(θx,y)

123

Efficient detection of multivariate correlations with different correlation measures 489

with cos(θx,y) retrieved from the upper-triangular matrix.
The computed l(Ci ,C j) and u(Ci ,C j) are also cached and
reused whenever (Ci ,C j) is encountered in another cluster
combination.

It is important to note that the empirical bounds do not
induce errors, since they trivially satisfy the requirements of
Theorems 1–3 that l(Ci ,C j) ≤ minx∈Ci ,y∈C j cos(θx,y) and
u(Ci ,C j) ≥ maxx∈Ci ,y∈C j cos(θx,y). Therefore, the bounds
of multivariate correlations derived using these empirical
bounds are still correct. Finally, they are at least as tight as the
bounds of Lemma 1, since they account only the vectors that
are actually present in the clusters and not the hypothetical
worst case.

There is a clear tradeoff between the cost of computing
the empirical pairwise bounds (worst case, quadratic to the
number of vectors), and the performance improvement of CD
from the tighter bounds. Indicatively, in our experiments, the
theoretical pairwise bounds computed from Lemma 1 were
typically between two to eight times wider compared to the
empirical pairwise bounds. Exploiting the tighter empirical
bounds led to a reduction of the width of the bounds of The-
orem 1 by 50% to 90% (for PC(1, 2)), which empowered
CD to reach to decisive combinations faster. As a result,
total execution time of the algorithm with empirical bounds
was typically an order of magnitude less than the time with
the theoretical bounds. Therefore, all reported results will be
using the empirical bounds.

Lastly, note that the empirically-bounded versions of The-
orem 1 and 2 do not require z-normalization. Still, it is
performed in both cases to optimize pairwise cache compu-
tation and to ensure that MP ∈ [−1, 1], as suggested in [3].
However, z-normalization does not impact relative distances
and therefore the top-κ query answers are identical.
Total Correlation bounds. The empirical bounding approach
can also be used to compute bounds on the (conditional)
entropies between pairs of clusters, which are key in comput-
ing the TC bounds of Theorem 4. As H(A|B) = H(A, B)−
H(B), this can be done by (a) pre-computing and caching all
marginal entropies and (pairwise) joint entropies of vectors,
and, (b) iterating over the Cartesian products of clusters to
derive bounds on the entropies of cluster materializations.

Notice that the lower bound of TC(X) (see Theorem 4)
involves iterating over S in sequence, which indicates a
dependency on the ordering of clusters inS. Thereby, finding
the optimal permutation ofS that produces the tightest bound
will increase the lower bound without introducing errors in
the result set. The total number of permutations is O(p!),
where p is the number of vectors in the correlation pattern.
Here we introduce a heuristic that costs O(p2). The heuris-
tic, shown in Algorithm 2, computes a tight upper bound

Algorithm 2: TCPermHeuristic(H)

Input: A priority queue H with all marginal and conditional
entropy upper bounds for a set of clusters S = {Ci }pi=1

Output: Upper bound on the joint entropy of materializations of
S

1 U ← {}, HX = 0
2 while |U | < p do
3 H(Ci |C j) ← H.pop()
4 if Ci /∈ U ∧ C j /∈ U then
5 HX = HX + H(Ci |C j)

6 U ← U ∪ Ci

7 return HX

on the joint entropy H(X),7 by iterating over the sorted list
of marginal and conditional entropies to find a selection of
entropies that closely estimates H(X). Note that, for con-
ciseness, Algorithm 2 line 3 indicates we always fetch a
conditional entropy H(Ci |C j) from the head of the queue
H. However, as H also contains marginal entropies H(Ci),
the condition may also be empty.
Choosing a distance measure for clustering. The empirical
pairwise bounds tighten the bounds on correlations between
cluster pairs, leading to also tighter multivariate correlation
bounds, and improved efficiency of CD. Tightness of the
empirical bounds depends on the cluster radius—clusters
with large radii lead to weaker, albeit correct, bounds. This
is clear for PC, ES, andMP, where triangle inequality is also
present in the theoretical bounds (see Sect. 3.2.1). However,
our experiments have shown that tuning the clustering dis-
tance measure also benefits TC queries, even though TC does
not satisfy the triangle inequality. Therefore, the clustering
distance measure always impacts the pruning power of the
algorithm.

As Lemma 1 is based on angular distance, clustering for
PC and MP employs the clustering loss function (WCSS)
with angular radii. For ES, Euclidean distance is the obvious
choice, since it also considers vector norms, which are not
capturedwith the angular radii but are included inTheorem3.
Finally, for TC, our experiments showed that the normal-
ized information distance metric D(X ,Y) = 1 − I (X ,Y)

H(X ,Y)

(first introduced in [27]) leads to tight multivariate corre-
lation bounds. The intuition behind this observation is that
D(X ,Y) measures information proximity, similar to TC—
in fact, D(X ,Y) is simply a transformation of the pairwise
total correlation (i.e., mutual information) between two vari-
ables to a strict distance metric ranging between 0 and 1 [26].
Table 2 summarizes these choices.

7 H(X) is upper bounded by the factor
∑p−1

i=1 (min1≤ j≤i u(Ci+1|C j))−
u(C1) in TCLB(X).

123

490 J. E. d’Hondt et al.

3.2.3 Handling of additional constraints

CD supports both the irreducibility and minimum jump con-
straints, as described in Sect. 2. For irreducibility, the process
of identifying whether a simpler combination exists requires
testing whether a combination of any of the subsets of Sl and
Sr is already contained in the answers.

To avoid the cost of enumerating all O(2|Sl |+|Sr |) subsets
during the execution of Algorithm 1, only the pairwise cor-
relations between any two clusters Cl ∈ Sl and Cr ∈ Sr are
examined.

Precisely, we use l(Cl ,Cr), which is already computed
for Theorems 1–4. If there exist Cl ,Cr s.t. l(Cl ,Cr) ≥ τ ,
then any solution that can be derived from further examin-
ing the combination (Sl ,Sr) cannot satisfy the irreducibility
constraint. Therefore, (Sl ,Sr) can be discarded. The case of
minimum jump is analogous: if any l(Cl ,Cr) ≥ UB − δ,
where UB is calculated as in line 1 of Algorithm 1, then the
combination is discarded.

By considering only the pairwise correlations during the
pruning process may lead to inclusion of answers that do
not satisfy the constraints. Such combinations are filtered
from the query result before returning it to the user. Since the
number of answers is typically in the order of a few tens to
thousands, this final pass takes negligible time.

Both MP and TC have the property that correlation can
only increase when adding an extra variable (i.e., TC(X ∪
{y}) ≥ TC(X). We refer to this property as the monotonicity
over increasing pattern length. This reduces the relevance of
MP and TC threshold queries without any constraints, as for
any TC(X) ≥ τ with X ⊂ V , all supersets of X will be in the
result set, making it more cluttered. Therefore, we disallow
such queries for MP and TC, defaulting to the addition of
the irreducibility constraint. Note that we could still answer
unconstrained queries on MP and TC, essentially cost-free,
by expanding the result set R as follows:

{X ∪ A : A ⊆ V, X ∈ R∣∣|A| ∈ [1, p − |X |] ⊂ N
+}

However, we refrain from doing so as these additional results
do not provide new insights to the user.

3.3 Top-k queries

The top-κ variant addresses this issue by allowing users to
set the desired number of results, instead of τ . The answer
then includes the κ combinations of vectors with the highest
correlation that satisfy the correlation pattern.

Assuming an oracle that can predict the τ that would yield
exactly κ results, the top-κ queries could be transformed
to threshold queries and answered with the standard CD
algorithm. Since such an oracle is impossible, many top-
κ algorithms (e.g., Fagin’s threshold algorithm [16]) start

with a low estimate for τ , and progressively increase it,
by observing the intermediate answers. The performance of
these algorithms depends on how fast they can approach the
true value of τ , thereby filtering candidate solutions more
effectively.

The top-κ variant of CD (see Algorithm 3) follows the
same idea. The algorithm has the same core as the threshold-
based variant, and relies on three techniques to rapidly
increase τ .
Top-κ pairwise correlations First, at initialization, input
parameter τ is set to the value of the κ’th highest pairwise
correlation. Since all pairwise correlations are computed for
the empirical bounds, this causes zero additional cost.
Exploiting (soft) monotonicity. The second technique is
inspired by the property of monotonicity of MP and TC,
which implies thatmultivariate correlations can only increase
when adding an additional variable (i.e., vector) to the set
(i.e., correlation pattern). Thereby, given the top-κ combina-
tions of size s, Rs , one can guarantee that any combination
of size s + 1 that is a superset of a combination in Rs will
have a correlation greater than the lowest correlation in Rs ,
and will lead to an increase of threshold τ .

This observation is exploited by exhaustively computing
the correlations of all possible supersets of size s + 1 after
finding Rs , in order to quickly increase τ before traversing
the comparison tree with combinations of size s + 1 to con-
struct Rs+1. This technique showed to be very effective for
all correlation measures (despite PC and ES not possessing
the monotonicity property), as many of the supersets of Rs

were also included Rs+1.
Prioritization of candidates The last technique is an opti-
mistic refinement of the upper bound, aiming to prioritize
the combinations with the highest correlations. The algo-
rithm is executed in two phases. In the first phase, similar to
Algorithm 1, the algorithm traverses the comparison tree in
a Breadth-First manner (BFS), and computes the upper and
lower bound per combination. However, it now artificially
tightens the bounds by decreasing the value of the upper
bound as follows;

UBshrunk = (1 − γ)
UB + LB

2
+ γUB

where γ ∈ [−1, 1] is a shrink factor parameter with a
default value of 0. Now, decisiveness of cluster combinations
is determined based on (LB,UBshrunk) analogous to Algo-
rithm 1, with an exception of the case where UBshrunk ≤
τ < UB (Algorithm 3 lines 3,7,12). In this case, the cluster
combination is postponed for further inspection, and placed
in a priority queue based on the combination’s critical shrink
factor γ ∗—the minimum value of γ for whichUBshrunk sur-
passes τ (lines 12–14). Intuitively, a small γ ∗ means that
the combination (i.e., branch in the comparison tree) is more

123

Efficient detection of multivariate correlations with different correlation measures 491

Algorithm 3: Top-κ-Query(Sl , Sr , Corr , τ , κ , γ)

Input: Sets of clusters Sl and Sr that adhere to the user-defined
correlation pattern. correlation measure Corr , starting
threshold τ , desired output set size κ , shrinkfactor γ .

1 (LB,UBshrunk) ← CalcBounds(Sl ,Sr ,Corr , γ)

2 B ← new priority queue
3 if LB ≥ τ then
4 Add the contents of (Sl ,Sr) to the result set R
5 R ← SORT(R)[1:κ]
6 τ ← min

(X ,Y)∈R
Corr(X , Y)

7 else if UBshrunk ≥ τ then
// Replace largest cluster with subclusters and recurse with
Top- κ- Query (similar to lines 7–11 of Algorithm 1)

12 else
13 γ ∗ = τ−μ

UB−μ

14 B.add ((Sl ,Sr), γ ∗)
// Phase 2 – starts when Phase 1 is
completed for (Sl ,Sr) ∈ B do // Traverse
comp-tree DFS

15 ThresholdQuery(Sl , Sr , Corr , τ)
16 R ← SORT(R)[1:κ]
17 τ ← min

(X ,Y)∈R
Corr(X , Y)

promising to lead to higher correlation values as a large por-
tion of its bound range (UB − LB) exceeds τ . In the second
phase (lines 15–18), postponed branches are traversed in a
Depth-First manner (DFS) by invoking Algorithm 1 on each
combination sequentially. Since τ continuously increases,
and the first branches are likely to contain the highest corre-
lation values, most lower-priority branches do not needmany
cluster splits to reach decisive combinations. Similar to the
previous optimizations, the value ofγ only impacts efficiency
of the algorithm, and not completeness of the results. Our
experiments (see Sect. 5) have shown that values of gamma
around 0 lead to a good balance betweenDFS andBFS explo-
ration.

3.4 Progressive queries

The prioritization technique of Algorithm 3 can also be used
as a basis for a progressive threshold algorithm. Precisely,
Algorithm 3 can be initialized with a user-chosen τ and with
κ → ∞. This will prioritize the combinations that will yield
the strongest correlations, and thus also the majority of cor-
relations larger than τ . Prioritization is frequently useful in
exploratory data analytics: the user may choose to let the
algorithm run until completion, which will yield results iden-
tical to Algorithm 1, or interrupt the algorithm after receiving
sufficient answers. Recent work also established accurate
(any-time) prediction of result completeness and distance for
kNN queries [14]. Although valuable, their methods require
significant adaptations for our queries and are thus deferred
to future work. We evaluate CD on all proposed query types
in Sect. 5.2.

4 Detection of multivariate correlations in
streaming data

Data is frequently observed as a live stream. For example, in
finance, asset prices may need to be monitored in real-time
for detecting strong correlations in a market, for portfo-
lio diversification [39]. In weather monitoring, real-time
detection of correlations may reveal interesting short-term
weather events, whereas in server monitoring, detection of
unexpected correlations, e.g., on server requests originating
from many different IP addresses, may reveal attempts of
attacks [44]. Similarly, in neuroscience, real-time analysis of
fMRI streams to detect correlations brings novel exploitation
opportunities, e.g., for neurofeedback training [22, 31, 54].

Our streaming algorithm, called CDStream, builds on top
of CD such that it maintains CD’s solution over a sliding
window as new data arrives. CDStream does this efficiently
by storing the decisive cluster combinations in a custom
index, which can subsequently be used after each stream-
ing update to quickly identify the potential changes to the
result set. Clearly, the main challenge is to construct, main-
tain, and utilize this index efficiently, for processing streams
with high update rates. CDStream supports PC and ES
correlation measures. In the remainder of this section, we
will explain the underlying stream processing model and
CDStream algorithm in detail. We will also present an exten-
sion to CDStream named CDHybrid, which dynamically
switches between CDStream and repeated execution of CD
in order to adapt to sudden events and concept drift, and
improve robustness.

4.1 Stream processingmodel

CDStream builds on the basic windows model, which is
widely used for processing of data streams, e.g., in [19, 24,
51, 53]. The model works as follows: the sliding window,
of length w, is partitioned to a set of smaller, fixed-length
sub-windows (often called basic windows), each of length b.
All stream updates received within a basic window are pro-
cessed (typically aggregated), to generate a single value for
that basic window. In other words, the basic windows define
the time resolution handled by the algorithm.

The introduction of basic windows offers several bene-
fits: (a) it makes the results robust to outliers, noise in the
data, and time series with small-period oscillations, e.g.,
stocks with high trading volumes, (b) it allows for handling
time-misaligned and out-of-order arrivals, which are fairly
common in real-life data streams (e.g., stock ticks, sensors
with variable measurement intervals, weak/slow network
connections), and (c) it allows efficient handling of streams
with high update rates. At the same time, this approach intro-
duces a—potentially significant—delay on the results, which
can be as large as b time units. The latter constraint becomes

123

492 J. E. d’Hondt et al.

Fig. 3 Example of a stream representation with the BW+ model with
w = 100, b = 20, epoch = 5. With red we denote the index/position
of the basic window. The blue numbers correspond to the values of the
corresponding windows. The updates in the running basic window and
running epoch are shown in green color

limiting when processing periods of high activity (e.g., in
high-volatility periods of a stock market, or when a network
is under a DDoS attack), where it is critical that the user
observes intermediary results as soon as possible.

CDStream alleviates this limitation by disentangling the
period of recomputing the results (the key reason behind the
stale results) with the length of the basic window b. The
model, calledBW+ hereafter, offers an extra knob to the user,
called epoch, which controls the acceptable delay/lag for the
algorithm to account for new data. When epoch is set to be
equal to b, BW+ degenerates to the standard basic windows
model, e.g., as used in [53]. However, by setting epoch to
be less than b, the algorithm is instructed to recompute the
results more than once within the period of a basic window,
accounting also for the new arrivals in the incomplete basic
window. The aggregation unit remains unchanged, i.e., the
basic window of size b, which allows meaningful handling
of time misalignment, noise and outliers. Furthermore, all
completed basic windows are not impacted by the epoch—
hence their aggregate values are not recomputed. However,
whenever an epoch is completed, the algorithm updates the
aggregate value for the incomplete basicwindow and updates
the multivariate correlations, to include these new values.

As an example, consider the stream depicted in Fig. 3.
Assume that epoch is set to 5 msec, and the basic and sliding
window lengths, b andw, are set to 20 and 100 msec, respec-
tively. Then, at time 100, BW+ will have identical results to
the standard basic windows model. At time 105, BW+ will
recompute the results, accounting for the values that arrived
in basic windows 1–5, and within the first five seconds of the
(still incomplete) basic window 6. Therefore, if in the period
between time 100 and 105, there were drastic changes that
led to updates of the results, these will be detected by BW+.
The same process will be repeated at times 110 and 115,
whereas at time 120, basic window 1 will expire and the
results of BW+ will again become identical to the output of
the standard basic windows model (not shown in figure). It is
important to note that BW+ with an epoch less than b is not
equivalent to running the standard basic windows algorithm
with b = epoch. BW+ keeps the completed basic windows

Algorithm 4: HandleEpoch(S, A,C, I, τ)

Input: Set of streams S, set of arrivals A , pairwise correlations
cache C , DCC Index I, correlation threshold τ

1 for (i, v) ∈ A do // (i: stream id, v: value)
2 Recompute Si ’s last basic window’s aggregate
3 for j = 1 to n do // Update pairwise cache C
4 C[i, j] ←Corr(Si , S j)

5 for (i, v) ∈ A do // Check for violations
6 V ← QueryIndex(i, I) // Query violations
7 for (Sl ,Sr) ∈ V do // Recompute and re-index
8 ThresholdQuery(Sl ,Sr ,Corr , τ)

9 UpdateIndex(Sl ,Sr ,Corr , τ, I)

intact—it does not change their boundaries when an epoch
is complete. As we will explain in the following section,
this is leveraged by CDStream to optimize performance by
avoiding to store, or recompute, fine-grained partial results.
We will come back to the discussion about the properties of
BW+, and its impact in terms of computational efficiency
and accuracy/completeness of the results of the algorithm in
Sect. 4.4.
Time-based vs arrival-based epoch. Even though our previ-
ous discussion assumed that epochs are defined in time units
(seconds, minutes, etc.), this does not constitute a require-
ment of the model. Epochs can also be defined in number
of arrivals (e.g., every 10 arrivals). A definition based on
number of arrivals may be preferred in use cases where the
arrival rate of the streams changes abruptly, e.g., during a
market crash.

4.2 Algorithm core

We start with a high-level description of CDStream before
going over the details of the underlying custom index, which
is instrumental for increasing the throughput of the algo-
rithm. CDStream receives as an input the set of streams,
and the configuration parameters of the algorithm—length
of the sliding window w and basic window b, epoch, and
query threshold. The algorithm starts by executing CD on
the last w arrivals in the given streams, and prints the initial
results to the user. A byproduct of CD is an upper-diagonal
matrix that stores the pairwise correlations between all pairs
of streams. We will refer to this as the pairwise correla-
tions cache. Then, CDStream enters the monitoring phase.
In this phase, whenever an epoch is completed, the algorithm
(shown in Algorithm 4) first detects all streams that have at
least one update and recomputes the corresponding aggre-
gate for the last (potentially still incomplete) basic window
(line 2). It then refreshes the cache of pairwise correlations, to
account for the new arrivals (lines 3–4). Notice that this step
does not recompute the correlations from scratch; it updates
them from the previous correlation values and the change
in aggregate value for the running basic window. Following,

123

Efficient detection of multivariate correlations with different correlation measures 493

the algorithm goes through all updates within the epoch, and
checks whether these could lead to changes in the result set
(either new additions in the result or removals). This pro-
cess is supported by a custom-build index, which returns
all decisive cluster combinations with bounds impacted by
the newly arrived updates. These impacted bounds are then
reassessed using Algorithm 1, in order to detect the potential
changes in the result set, and to update the index (Algorithm4
lines 5–9).8 The described steps are repeated for �epoch/b�
epochs, after which a basic window is completed. In that
case, CDStream will additionally remove the expired basic
window, add the newly-completed basic window, and keep
repeating the above process (not depicted in Algorithm 4).

In the remainder of this section we will look at the custom
index, and how this is maintained and utilized by CDStream.
The DCC index In short, the index is used for storing a col-
lection of thresholds, that, when fired, signify a potential
change in the answer set.9 Particularly, the core idea is to
store decisive cluster combinations (abbreviated as DCCs)
for all clusters, and enable re-validating only these after every
stream update. Recall that each stream s belongs to a hierar-
chy of clusters. For example, vector e in Fig. 2b belongs to
C2 and C7. For a stream s, we denote the set of these clus-
ters as C(s). By construction, the algorithm takes a decision
concerning any stream s based solely on the decisive com-
binations including any cluster in C(s) (see the theoretical
results in Sect. 3.2.1). As long as those decisive combina-
tions are still valid, the final result will remain correct and
complete.

A naive approach would be to construct an inverted index
that maps each cluster to the decisive cluster combinations
it participates in. Then, after any update of a stream s, we
would look at all clusters in C(s), and find and re-validate
all their decisive combinations from the index. The use of
this index could become too slow for some use cases, par-
ticularly for large correlation patterns, due to the potentially
large number of decisive combinations associated with each
cluster that need to be checked. Two key observations can be
exploited to optimize the use of this index: (a) the empiri-
cal correlation bounds described in Sect. 3.2.2 do not depend
on all streams contained in the cluster, but are determined
solely by l(Ci ,C j) and u(Ci ,C j), the minimum and maxi-
mum pairwise correlations between all involved clusters in
the combination, and (b) the previous applies independent
of the number of the clusters contained in the left and right
side of the cluster combination. Therefore, the DCC index
is designed around these minimum and maximum pairwise
correlations.

8 In practice, method UpdateIndex is coded inside a custom imple-
mentation of Algorithm 1, to avoid duplicate work.
9 Similar indices were used in earlier works, e.g., [33], but for bounding
the values of individual correlations.

Figure 4a depicts an example of the internal organization
of the DCC index. At the outer layer, the index is an inverted
index that maps each stream s to a list of extrema pairs. A
pair of streams is called an extremum pair if there exists at
least one cluster combination for which this pair constitutes
a determining pair, i.e., it is the pair determining the value
of l(Ci ,C j) or u(Ci ,C j). For example, in Fig. 2c, the mini-
mum andmaximum extrema pairs for (C2,C3) are 〈h, g〉 and
〈b, f〉, determining the minimum value l(Ci ,C j) and max-
imum value u(Ci ,C j), respectively. At the inner layer, for
each extremum pair ep we keep a list of all opposite clus-
ters, i.e., the clusters that do not include s, and participate
in at least one decisive cluster combination having ep as an
extremum pair. For example, focusing at c in Fig. 4a, we see
that one of its extrema pairs is 〈b, f 〉, which is reused by both
clustersC2 andC8. The clusters are stored in decreasing size,
i.e., the cluster at position i + 1 will be a sub-cluster of the
cluster at position i . For each cluster, we store all decisive
combinations, and whether these are positive or negative. In
our running example, for cluster C2 we have a negative com-
bination (C2,C3) and a positive combination (C1, (C2,C3)).
This way of indexing and querying ensures that we only re-
validate DCCs with an actual change in bounds, and that this
set is complete (i.e., we do not miss any violations).

When an update is observed at stream s, the first step is to
use the index for retrieving all extrema pairs that involve a
cluster in C(s). For each extremum pair, we check the pair-
wise cache whether the pair has changed as a result of the last
update. This will happen, e.g., if the update of s has caused
s to form a new extremum pair with another stream, replac-
ing an older pair. If the extremum pair has not changed, we
can skip all contents grouped under this pair altogether. In
our running example, if c has been updated, but 〈b, f〉 is still
a valid extremum pair for cluster C2, no further validations
are needed for any of the combinations involving C2. Fur-
thermore, no validations are required for the combinations
involving C8 (and any other clusters following C2 with the
same extremum pair), since C8 is a strict subset of C2 (recall
that the clusters are ordered based on their size). If, on the
other hand, the update has invalidated an extremum pair, the
algorithm drills into the contents of the inner layer, and goes
over the clusters sharing this extremum pair. If, e.g., c was
updated and 〈b, f〉 is no longer an extremum pair for C2, we
need to check and adjust all combinations stored for C2 (in
this example, (C2,C3) and (C1, (C2,C3))). This is done by
adjusting the extrema pairs and bounds usingTheorems 1 and
3, re-validating whether the combination is still decisive—
positive or negative, and updating the solution accordingly.
In this step, the algorithm may even need to break a cluster
to two or more sub-clusters, until it again reaches to decisive
combinations. However, again, as soon as we find a cluster
forwhich the extremumpair does not change after the update,
we can move to the next extremum pair.

123

494 J. E. d’Hondt et al.

(a) (b)

Fig. 4 a Visualization of the decisive combination index; b Number of results and execution time per basic window, with BW+ and the standard
basic window model. BW+ is configured with epoch size 1. The results correspond to the Stocks dataset, with n = 1000, w = 120000, and b = 20

4.3 User constraints and top-� queries

To support the minimum jump and irreducibility constraints,
additional triggering functionalities, further described below,
are added to the index of CDStream.
Irreducibility constraint.Let X ,Y , X ′,Y ′ denote sets of clus-
ters. Consider combinations (X ,Y), and (X ′ ⊆ X ,Y ′ ⊆ Y),
with |X ∪Y | > |X ′ ∪Y ′|, i.e., irreducibility excludes (X ,Y)

from the results if (X ′,Y ′) is in. We need to detect two addi-
tional cases: (1) (X ,Y) needs to be removed from the result
set because (X ′,Y ′) just surpassed τ , and, (2) (X ,Y) needs to
be added in the result set, because (X ′,Y ′) was just removed
from the result set because its correlation dropped below τ .
Both cases can be triggered by an update of a vector from X
or Y (hence, also from X ′ and Y ′).

Without the irreducibility constraint, the index contains
the following extrema pairs: (a) for the negative decisive
combinations, the pairs required for upper bounding the cor-
relation, (b) for the positive decisive combinations, all pairs
required for lower-bounding the correlation. The irreducibil-
ity constraint requires also monitoring of the upper bounds
of positive decisive combinations (e.g., for case (1), when an
increase of Corr(X ′,Y ′) will cause the following condition
to hold:Corr(X ′,Y ′) > τ which will mean that (X ,Y) need
to be removed from the result set) and the lower bounds of
negative decisive combinations with any Corr(X ′,Y ′) > τ .
These decisive combinations are also added in the index,
under the extrema pairs, and checked accordingly.
Minimum jump constraint. Monitoring for the minimum
jump constraint is analogous to the irreducibility constraint.
The following cases need to be considered: (1) (X ,Y) needs
to be removed from the result set becauseCorr(X ′,Y ′)+δ >

Corr(X ,Y), and (2) (X ,Y) needs to be added in the result
set because Corr(X ′,Y ′) + δ < Corr(X ,Y). Both cases
are identified using the discussed method for monitoring the
irreducibility constraint.

Top-κ queries Recall that CDStream is initialized with the
result of CD. For a top-κ query, CDStream queries CD for a
slightly larger number of results κ ′ = bk ∗ κ , where bk is a
small integer, greater than 1. CDStream finds the minimum
correlation in these results, and uses it as a threshold τ in
the streaming algorithm. As long as the size of the result
set is at least κ , the true top-κ results will always have a
correlation higher than τ and will be contained in the top-κ ′
results maintained by the algorithm. Therefore, the top-κ out
of the detected top-κ ′ correlations are returned to the user.

Scaling factor bk controls the tradeoff between the robust-
ness of the streaming algorithm for top-κ queries, and its
efficiency. Settingbk = 1may lead to the situation that, due to
an update, fewer than κ results exist with correlation greater
than or equal to τ . CDStream then fails to retrieve enough
results, and resorts to CD for computing the correct answer,
and updating its index. Conversely, a large bk will lead to
a larger number of intermediary results, and to more effort
for computing the exact correlations of these results, which
is necessary for retaining the top-κ results. Our experiments
with a variety of datasets have shown that bk = 2 is already
sufficient to provide good performance without compromis-
ing the robustness of CDStream. We evaluate CDStream in
Sect. 5.3.

4.4 Impact of the extended basic windowmodel on
CDStream

Recall that CDStream leverages the proposed extended basic
window stream processing model (abbrev. as BW+) in order
to identify updates on the result set earlier. By construction,
BW+ is at least as good as the standard basicwindowsmodel
in terms of completeness of the result set, since it replicates its
behavior every time a basicwindow is completed. The further
improvement that we can expect from BW+—compared to
the standard basic windows model—depends on the volatil-

123

Efficient detection of multivariate correlations with different correlation measures 495

ity of the input streams. In periods where the input streams
contain negligible changes, BW+ will detect very few addi-
tional correlations (if any), compared to the standard model.
In periods of high volatility, such as market crashes, BW+
will detect updates and new correlations faster.

To examine the importance of BW+ and evaluate its
impact on the computational efficiency of CDStream, we
compared the results of CDStream, with and without BW+.
Figure4b presents the number of results (left axis) and run-
time (right axis) of CDStream of the two models. The results
correspond to processing of a streamwithminute-granularity
stock prices of 1000 stocks on 16 March 2020 (the dataset is
further described in Sect. 5). This day was selected because
it was the day of the largest price drop in the 2020 Covid
crash [1]. As ground truth, we used the results of CD on the
same input dataset (without basic windows), recomputed at
the end of each epoch.

We see that BW+ is able to identify jumps in the number
of results significantly earlier thanBW. Comparison with the
ground truth revealed that BW+ maintained a recall of 97.8%
during this periodwhileBW recall decreased to 69.0%. From
epoch 0 to 60 (prior the crash), the recall of BW+ was 100%.

It is also interesting to consider execution time per basic
window. Since the new model subsumes the basic window
model, it is slightly more expensive to maintain. However,
extra computation is only around 10%, for the more-detailed
epoch. This extra computation can of course be adjusted,
by increasing the epoch length. Therefore, all experiments
hereafter will only focus on the BW+ model.

4.5 CDHybrid: combining CD and CDStream

Recall that CDStream handles the stream updates in epochs.
The algorithm exhibits high performance when the updates
do not drastically change the results set. In streams where the
answer changes abruptly, it may be more efficient to simply
run CD after the completion of each epoch and recompute
the solution from scratch, instead ofmaintainingCDStream’s
index and the result through time. CDHybrid is an algorithm
that orchestrates CD and CDStream, transparently managing
the switch between the two algorithms based on the proper-
ties of the input stream.

Todecide betweenCDandCDStream,CDHybrid needs to
estimate the cost of both approaches for handling an epoch. A
goodpredictor for this is the number of arrivals in the epoch—
more arrivals tend to cause more changes in the result, which
takes longer for CDStream to handle. Therefore, CDHybrid
starts with a brief training period, where it collects statistics
on the observed arrival count and execution time of the two
algorithms. Simple (online) linear regression is then used
to model the relationship between execution time and the
observed number of arrivals. Note that the coefficients of a
simple linear regressionmodel can bemaintained in constant

time and space. Therefore, the regression model is continu-
ously updated, even after the training phase. Switching from
one algorithm to the other works as follows.
Switching fromCDStream toCD.Wecache the current results
of CDStream (we will refer to these as RCDStream) and stop
maintaining the index.When an epoch is completed, the vec-
tors are updated and passed to CD for computing the result.
Switching from CD to CDStream. Since the stream index
was not updated for some time, we need to update it before
we can use it again. We compute the symmetric difference
Δ of the current results of CD (denoted as RCD) with the
last results of CDStream RCDStream. Any result r contained
in Δ ∩ RCDStream is due to a positive decisive combination
that has now become negative, whereas any r contained in
Δ∩RCD leads to a newpositive decisive combination. In both
cases, the algorithm updates the index accordingly. There is
also the case that a decisive combination becomes indecisive.
In this case, the algorithm recursively breaks the combination
further, as shown in Algorithm 1. We evaluate CDHybrid in
Sect. 5.3.3.

5 Evaluation

The purpose of our experiments was twofold: (a) to assess
the scalability and efficiency of ourmethods, and, (b) to com-
pare them to a series of baselines. The baselines include the
state-of-the-art algorithms for multivariate correlation dis-
covery [2, 3], two variants of an exhaustive search algorithm,
as well as multiple modern database management systems
(DBMS) that can be used to detect multivariate correlations.
Our evaluation does not consider the practical significance
of multivariate correlations, as this was already extensively
demonstrated in earlier works and case studies from differ-
ent domains, e.g., [2, 3, 29] (see Sect. 1 for more examples).
Still, to ensure that our evaluation is conducted on data where
detection of multivariate correlations has practical signifi-
cance, we also compare our methods with the data used in
these past case studies (or data of the same type, where the
original data was inaccessible).
Hardware and implementations. All experiments, except for
the comparison with the DBMS systems, were executed on
a server equipped with two Xeon E5-2697v2 12-Core 2.70
GHz processors, and 500GB RAM. For CoMEtExtended
and CONTRa, we used the original implementations, which
were kindly provided by the authors [2, 3]. We addition-
ally configured the implementation of CoMEtExtended in
order to use all available cores of our server. Consequently,
all implementations, except CONTRa and two DBMS, were
multi-threaded. Algorithm performance comparisons are
exclusivelymadeundermatching execution styles (e.g., com-
paring single-threadedCDonly toCONTRa andDBMS).All
implementations, except of the UNOPT exhaustive search

123

496 J. E. d’Hondt et al.

Table 3 Default parameters for the experiments with static and streaming data

Dataset Static Streaming

n d κ γ K n Epoch size Basic window size w(h) Aggr. method Threshold PC Threshold ES

Stocks 1440 1309 100 0 10 1000 1 min 2h 2000 Sum 0.95 0.15

fMRI 1440 5470 100 0 10 1440 1 s 1 s 0.5 Last 0.9 0.12

SLP 1440 2927 100 0 10 1000 1h 6h 2160 Avg 0.99 0.7

TMP 1440 2927 100 0 10 1000 1h 6h 2160 Avg 0.99 0.7

Crypto 1440 713 100 0 10 1000 1 min 1h 216 Sum 0.95 0.15

Deep 1440 96 100 0 10 – – – – – – –

baseline, cached and reused the pairwise correlation compu-
tations, using our results presented in Sect. 3.2. This caching
was always beneficial for performance. The reported exe-
cution time for CD and CDStream corresponds to the total
execution cost including the steps of normalizing, cluster-
ing and calculating pairwise correlations. All reported results
correspond tomedians after 10 repetitions.Due to permission
constraints on the server, the DBMS experiments were exe-
cuted on another machine, with an Intel i7-10750H 12-Core
2.60 GHz processor, 32GB RAM, running Ubuntu 22.04.1
LTS.
Datasets. We present extensive evaluation results on seven
datasets, coming from distinct disciplines (neuroscience,
finance, crypto trading, climate science, and machine learn-
ing). See GitHub for download links, pre-processing steps,
instructions, and code for reading and processing the data.

• Stocks. Daily closing prices of 28678 stocks over the
period Jan. 2, 2016 to Dec. 31, 2020 leading to 1309
observations. For the streaming experiments, we used the
minute closing prices of the stocks.

• fMRI. Functional MRI data of a person watching a
movie.10 Five datasets were extracted by mean-pooling
the data with kernels of different size, leading to 237,
509, 1440, 3152, and 9700 time series, respectively, all
of 5470 observations. A similar dataset was used in the
case study of [2].

• SLP & TMP. Segment of the ISD weather dataset [37]
containing sea level pressure (SLP) and atmospheric
temperature (TMP) readings of 3222 sensors. CD was
evaluated on the daily average values between January
1, 2016 and December 31, 2020, leading to 2927 read-
ings per time series. Streaming experiments were run on
hourly sensor measurements.

10 Available online at https://openneuro.org/datasets/ds002837/
versions/2.0.0. We used file sub-1_task-500daysofsummer_
bold_blur_censor, which already includes the recommended
pre-processing for voxel-based analytics.

• SLP-small. Sea Level Pressure data [25], as used in the
case study of [3]. The dataset contains 171 time series,
each with 108 observations.

• Crypto. 3-hour closing prices of 7075 crypto-currencies,
each with 713 observations, covering the period from
April 14, 2021 to July 13, 2021. Streaming experiments
were run on minute-level closing prices.

• Deep.A billion vectors of length 96, obtained by extract-
ing the embeddings from the final layers of a convolu-
tional neural network [41].

Whenever needed,we obtain subsets of these datasetswith
random sampling. To avoid repetition, in the following we
will mention the experimental configuration only when this
deviates from the default configuration, described in Table 3.
The remaining section is organized as follows. We start with
a comparison of our methods to the baselines (Sect. 5.1),
and then conduct an extensive sensitivity analysis of CD
(Sect. 5.2) and CDStream (Sect. 5.3).

5.1 Comparison to the baselines

We start by comparing CD to the baselines: (a) two algo-
rithms based on exhaustive search, (b) commercial and
open-source modern database management systems, (c)
CoMEtExtended [3], and (d) CONTRa [2]. Our experiments
compare both efficiency and recall of all systems for thresh-
old queries.
Comparison to exhaustive search baselines No other solu-
tion covers CD’s range of queries and correlations. For
reference on the complexity of the problem, we constructed
two baselines (UNOPT and OPT) that exhaustively com-
pute all multivariate correlations by iterating over all possible
combinations of vectors. OPT reuses cached pairwise corre-
lations (exploiting our results presented in Sect. 3.2), whereas
UNOPT recomputes them for every combination. This com-
parison only focuses on execution time, as all methods have
perfect precision and recall.

Figure 5 plots the time required from CD, UNOPT, and
OPT to execute a threshold query on different subsets of

123

https://github.com/CorrelationDetective/public
https://openneuro.org/datasets/ds002837/versions/2.0.0
https://openneuro.org/datasets/ds002837/versions/2.0.0

Efficient detection of multivariate correlations with different correlation measures 497

Fig. 5 Scalability of CD and exhaustive baselines for threshold queries on subsets of Stocks. Notice that the Y axis is in logarithmic scale. a
ES(1, 2), τ = 0.85; b MP(3), τ = 0.85; c PC(1, 2), τ = 0.85; d TC(3), τ = 1.7

Stocks, with sizes up to 12,800 vectors. All algorithms were
given at most 8h to complete. The thresholds were selected
such that all correlation measures bring approximately the
same number of results on each dataset. Our first observa-
tion is that execution time of CD grows at a much slower rate
compared to both baselines, for all correlationmeasures. Fur-
thermore, the difference in efficiency increases with dataset
size, which stresses the importance of having an efficient
solution like CD. Therefore, CD can handle significantly
larger datasets than the baselines.

Comparing OPT to UNOPT, we see that caching of the
pairwise correlations improves performance for ES, PC, and
MP, but not for TC. This is because TC is not amenable to
the caching optimization, i.e., the TC of three ormore vectors
cannot be expressed as a linear combination of the pairwise
TC values. Yet, even for the other three measures, OPT still
times out for larger datasets. The fact that CD scales better
than OPT indicates that its core performance boost comes
from the way it utilizes the cluster bounds.
Comparison to contemporary DBMS CD’s operation can be
expressed as an SQL query, as shown in Fig. 6a, which shows
a PC(1, 2) threshold query on a (z-normalized) table named
“fmri" in SQL. This observation allows us to compare perfor-
mance of CDwith general-purpose state-of-the-art RDBMS.
Our experiment used four off-the-shelf databases, all config-
ured with RAM-stored tables for equitable evaluation, given
CD’s RAM usage. DBMS1 and DBMS3 supported array
attributes, so we developed array functions for Pearson cor-
relation calculation. The other DBMSs stored data in long
format (with columns corresponding to a primary key, vec-
tor id, time, and value), utilizing a SPSVERBc1 clause for
Pearson correlation. Due to limited multi-threading support,
all approaches, including CD, ran single-threaded with an
eight-hour query limit.

Figure 6b shows the execution times for each system to
detect PC(1, 2) on different resolutions of the fMRI dataset.
The reported DBMS times do not include the one-off costs
of loading the dataset in the DBMS and creating the indices.
We see that CD outperforms all DBMS by several orders of
magnitude, and the difference between CD and the baselines
increases with dataset size. In particular, time complexity for

Fig. 6 a PC(1, 2) threshold query, implemented with SQL. The corre-
lation measure is implemented as a stored function. b Comparison of
CD with contemporary DBMS, PC(1, 2), τ = 0.8, δ = 0.1, fMRI

all DBMS seems to follow O(n3) for performing a triple
nested loop (n is the number of vectors), whereas CD’s
execution time grows at a much slower rate. Furthermore,
the results indicate that all DBMS perform similarly to an
exhaustive search algorithm, iterating over the full search
space.
Comparison to CoMEtExtended Our next experiment was
designed to compare CD with CoMEtExtended [3]. CoME-
tExtended’s goal differs slightly from our problem statement.
First, CoMEtExtended is approximate without guarantees.
Still, its recall can be tuned by parameter ρCE, which takes
values between−1 and 1. Values around 0 offer a reasonable
tradeoff between efficiency and recall [3]. In contrast, CD
delivers complete answers, making execution time and recall
both relevant in our comparison. Second, CoMEtExtended
focuses on maximal strongly correlated sets, whereas CD
finds all such sets (up to a specified cardinality). To ensure
a fair comparison for CoMEtExtended, we also considered
all subsets of the sets returned by CoMEtExtended. When a
subset of a CoMEtExtended answer satisfied the query, we
added it to the results, thereby increasing CoMEtExtended’s
recall. This post-processing step was not included in the exe-
cution time of CoMETExtended, i.e., it did not penalize its
performance. Table 4 presents the number of results and exe-
cution time of CoMEtExtended and CD on the same dataset
(SLP-small) and the configuration parameters used in [3].

123

498 J. E. d’Hondt et al.

Table 4 Comparison of CD
with CoMEtExtended on
SLP-small dataset: execution
time (s) and number of retrieved
results

CoMEtExtended Correlation detective

τ , δ ρCE = 0 ρCE = 0.01 ρCE = 0.02 MP(4) MP(5)

Time #res Time #res Time #res Time #res Time #res

0.4, 0.1 604 62663 1318 67110 3530 70921 7 71083 1132 88305

0.4, 0.15 511 7244 1218 7300 3393 7343 5 7559 579 7562

0.4, 0.2 501 2166 1210 2171 3327 2174 4 2183 248 2183

0.5, 0.1 459 30632 1099 33718 2836 36457 5 34592 635 51391

0.5, 0.15 398 3646 1006 3702 2760 3745 4 3961 355 3964

0.5, 0.2 390 1434 1006 1439 2701 1442 3 1451 193 1451

0.6, 0.1 246 7823 598 8892 1592 9859 3 9204 289 17349

0.6, 0.15 223 1569 577 1606 1559 1635 3 1840 177 1843

0.6, 0.2 219 771 568 776 1532 779 2 788 112 788

Table 5 Comparison of CD with CONTRa on fMRI dataset (n =
9700): execution time (s) and number of retrieved results

CONTRa CD (τ = 0) CD (τ = 0.5) CD (τ = 0.9)
time (#res) time (#res) time (#res) time (#res)

δ = 0.1:

> 24 h (23e6) 11510 (23e6) 1908 (21e6) 401 (432)

δ = 0.15:

11160 (73e4) 4927 (73e4) 1569 (73e4) 391 (102)

δ = 0.2:

5324 (21e3) 1983 (21e3) 1281 (21e3) 441 (24)

We only consider the MP measure, since CoMEtExtended
does not support the other three measures.

We see thatCD is consistently faster thanCoMEtExtended
—at least an order of magnitude—and often returns substan-
tially more results. Indicatively, forMP(4), CoMEtExtended
with ρCE = 0 (resp. ρCE = 0.02) is one to two (resp. two to
three) orders of magnitude slower than CD. Notice that for
queries with δ = 0.1, ρCE = 0.02 and τ = 0.4, CoMEtEx-
tended also found 281 results with 6 vectors, and one with
7. These amount to ∼ 0.3% of the total amount of discov-
ered results. These were not discovered by CD, which was
executedwith pl = 5, prioritizing the simpler andmore inter-
pretable results.Nevertheless, even for these settings,CDstill
found 25% more results than COMEtExtended, and in one
third of the time. Moreover, the case studies presented in [2,
3] amongst others on this dataset demonstrate the usefulness
and significance of relatively simple relationships, involving
at most four time series. Other works on multivariate corre-
lations also emphasize the discovery of relationships that do
not contain too many time series [9]. For these cases, with a
fixed lmax, CD is guaranteed to find a superset of COMEtEx-
tended’s result set, at a fraction of its cost.
Comparison to CONTRa We also compared CD to CON-
TRa [2] for discovery of tripoles (i.e., PC(1, 2) ≥ τ). To

ensure a fair comparison, CD was parameterized to find the
same results as CONTRa and to utilize the same hardware,
as follows: (a) CD was executed with τ = 0, i.e., pruning
was solely due the minimum jump constraint, and (b) CD
was configured to utilize at most one thread/core, since the
implementation of CONTRa was single-threaded. CONTRa
was configured to return exact results.

Table 5 includes execution time and number of results per
method.11 We see that CD ismore efficient thanCONTRa for
detecting identical results, even with τ = 0. However, τ = 0
yields an impractically large amount of results. As such, we
also evaluate CD with τ = 0.5 (corresponding to the low-
est correlation reported in the case studies of [2]), and with
τ = 0.9, which gives a more reasonable amount of results.
This further decreases the execution time of CD by one to
two orders of magnitude, while preventing an overwhelming
number of results.

Summary.Comparison of CDwith two state-of-the-art
algorithms, two exhaustive baselines, and four DBMS
demonstrates that CDconsistently outperforms all com-
petitors, requiring at least an order of magnitude less
time. This enables CD to find more complex query pat-
terns on larger datasets.

5.2 CD on static data

The following experiments are designed to evaluate the effi-
ciency of CD under different conditions (configurations,
datasets, and queries). We first examine the impact of CD’s
configuration parameters (the shrink factor and the cluster-
ing distance) to CD’s efficiency. We do not consider recall,
since CD is exact, always giving complete answers. Then,

11 For this experiment, the minimum jump parameter δ is defined as in
[2], to represent the minimum difference between the squared correla-
tions.

123

Efficient detection of multivariate correlations with different correlation measures 499

Fig. 7 Effect of κ values and dataset on execution time, with ES(1, 2),MP(3), PC(1, 2), TC(3). a Effect of κ , Stocks; b Effect of κ , fMRI; c Top-κ
on all datasets

we evaluate the performance of CD for top-κ and threshold
queries.

5.2.1 Optimizing configuration parameters

Wealso tested the impact of the values ofγ and K (shrink fac-
tor and number of sub-clusters per cluster) onCD’s efficiency
for different configurations. The results showed that both
very small (γ = −0.8) and very large (γ = 0.8) shrink fac-
tor values lead to sub-optimal performance of CD (roughly
38–72% slower than the optimal γ value), as they delay
the increase of the running threshold τ . Similarly, extreme
values of K also led to sub-optimal performance, with exe-
cutions being as much as 2x slower for ES, PC, and MP
queries, and up to 4x slower for TC queries, compared to
the execution times with optimal K values. Detailed results
can be found in the technical report [12]. However, setting
γ = 0 and K = 10 led to near-optimal performance at all
configurations—at most 17% worse than the optimal perfor-
mance in each case. Therefore, for the following experiments
we set γ = 0 and K = 10.

5.2.2 Top-� queries

Effect of κ . Figure 7a, b show the execution time of CD for
different values of κ for Stocks and fMRI. We see that a
decrease of κ typically leads to increased efficiency. A low
value of κ allows for a rapid increase of the running threshold
τ , leading to more aggressive pruning at Algorithm 1, line
4. Interestingly, this effect is not equally visible among all
considered correlationmeasures. For example, a reduction of
κ gives a significant boost toES, but a much smaller boost for
MP. This discrepancy is attributed to the correlation values
in the result set and the tightness of the bounds. Indicatively,
in this experiment, the lowestMP value in the result set only
decreases from 0.998 (top-100) to 0.9972 (top-500) on the
Stocks dataset. In contrast, the lowest ES value in the result
set decreases from 0.694 (top-100) to 0.672 (top-500) on the
same dataset.

Effect of the correlation pattern Table 6 presents execution
time of CD for different correlation patterns. As expected,
increasing the complexity of the correlation pattern leads to
an increase of the computational time. However, even though

the size of the search space follows O
((n

pl+pr

))
, execution

time of CD grows at a much slower rate. Indicatively, for
the fMRI dataset, the search space size grows 5 orders of
magnitude between PC(1, 2) and PC(1, 4), whereas CD’s
execution time increases by only three orders of magnitude,
indicating efficient pruning of the search space.
Experiments with different datasets Fig. 7c shows the exe-
cution time of CD for all correlation measures on different
datasets. We see that efficiency of CD does not vary signif-
icantly for ES and PC. However, performance for queries
involving TC fluctuates significantly across datasets. This is
again attributed to the inherent characteristics of the datasets:
analysis of the distributions of the multivariate correlation
values in the datasets revealed that the correlations in each
dataset followed gamma-like distributions. For TC, it is
sometimes the case that the mean of this distribution is
very close to the minimum correlation in the answer set,
i.e., the correlation of the top-κ’th answer. In other words,
total correlation is not sufficiently discriminating on these
datasets. These situations could be prevented by performing
exploratory analysis on the correlation value distribution of
a small sample of the dataset. If this analysis does not indi-
cate exceptionally high correlations in the dataset, the data
analyst could opt for an alternative correlation measure.

5.2.3 Threshold queries

Effect of threshold Figure 8 shows the effect of threshold τ

on the execution time of CD for the Stocks (left Y -axis) and
fMRI dataset (right Y -axis) for each correlationmeasure, and
for different constraints. Our first observation is that increas-
ing the threshold leads to higher efficiency for all correlation
measures and both datasets. This is expected, since a higher
threshold enablesmore aggressive pruning of candidate com-
parisons: the upper bounds derived by Theorems 1–4 will be

123

500 J. E. d’Hondt et al.

Table 6 Execution times of CD with different correlation patterns on Top-κ queries (seconds)

Pattern/dataset ES MP PC TC

(1,2) (1,3) (1,4) (2,2) (2,3) (3) (4) (1,2) (1,3) (1,4) (2,2) (2,3) (3) (4)

fMRI 7 31 4819 168 14,251 6 743 4 19 2808 20 8303 111 11

Stocks 6 12 629 39 2039 6 626 3 7 466 9 1112 12 1570

below τ more often, leading to less recursions. For similar
reasons, the addition of stronger constraints (i.e., higher δ or
introduction of the irreducibility constraint) generally leads
to better performance due to increased pruning power. Fur-
thermore, CD is noticeably faster for PC compared to MP
for the same τ values. This is due to two reasons: (a) the high
complexity of the computation of eigenvalues of a matrix
(cubic to pl), which is required for computing the bounds
for MP (Theorem 2), and, (b) MP typically results in higher
correlation values and more answers for the same value of τ

compared to PC.
Progressive variant of CD It is desired for progressive algo-
rithms to collect the majority of results quickly, in order
to give early insights to the user about the results, and to
enable them to modify/adjust their queries. To evaluate this
characteristic of progressive CD (Sect. 3.4), we modified our
code such that it saves the discovered results at different
time points, and compared these intermediary results with
the ground truth, in order to compute recall. In this set of
experiments, we focused exclusively on queries which take
significant time to complete, since these are the ones that
would mostly benefit from a progressive algorithm.

Figure 9 plots the number of results returned by progres-
sive CD at different time points, for all correlation measures
on the Stocks dataset. We see that for all correlation mea-
sures, CD retrieves more than 90% of the results in the first
few seconds – less than 10% of the total execution time.
This property of CD is particularly appealing for cases where
approximate results will suffice.

Summary. The default configuration parameters for
CD (number of clusters and shrink factor) provide near-
optimal performance. Complexity of CD grows at a
much slower rate compared to size of the search space,
and CD is more efficient in scenarios where the chosen
correlation measure and threshold are discriminating
for the dataset. Finally, progressive CD retrieves more
than 90% of the results within the first few seconds.

5.3 CDStream on streaming data

The third set of experiments was designed to evaluate the
performance of CDStream. We used the timestamps con-
tained in all datasets (except Deep, which did not contain the
notion of time) for generating the streams. Hereafter, we will

present detailed results for the Stocks dataset, and include
results with the other datasets only when these provide addi-
tional insights. We start with experiments with a time-based
epoch definition (Sect. 5.3.1), and then investigate the perfor-
mance of CDStream using arrival-based epochs (Sect. 5.3.2).
In the technical report [12] we present additional experi-
ments, including an analysis of the algorithm’s performance
when executed for a prolonged time period, and an analy-
sis of the impact of the sliding window size on CDStream’s
efficiency.

5.3.1 Experiments with time-based epochs

Effect of number of streams Figure10a presents the aver-
age processing time per epoch of CDStream, for different
numbers of streams. Since there is no streaming baseline
for CDStream, the plot includes the average execution time
taken by CD, per epoch, to compute the answers, using
the same sliding window data (of course, repeated execu-
tions of CD are needed to maintain the results with the
streaming updates). We see that CDStream is more efficient
than CD for small correlation patterns, requiring only a few
milliseconds per epoch—an order of magnitude less com-
pared to CD for both correlation measures. Also note that,
even though the search space grows at a combinatorial rate
with the number of vectors, the growth in execution time
of CDStream is substantially slower. This is attributed to
the grouping technique in the CDStream index, which effec-
tively reduces the work for processing each update. Also
notice that CD outperforms CDStream onmore complex cor-
relation patterns. This is because of the index maintenance
cost of CDStream: for more complex correlation patterns,
the number of combinations that need to be maintained in
the index also grows, eventually surpassing the performance
boost coming from the index. Since CD does not depend on
this index, it avoids this cost. This observation clearly demon-
strates the importance of an automated algorithm (similar to
the hybrid algorithm proposed in Sect. 4.5) that can dynam-
ically switch between the two for optimizing performance.
Effect of the query parameters Table 7 presents the effect
of τ and additional constraint values (minimum jump and
irreducibility) on CDStream’s performance. We see that effi-
ciency of CDStream is robust to constraints—a constraint
only causes a small difference in the number of decisive com-

123

Efficient detection of multivariate correlations with different correlation measures 501

Fig. 8 Effect of constraint and τ on query performance (Stocks and fMRI), a ES(2, 2); bMP(4); c PC(2, 2); d TC(3)

Fig. 9 Number of retrieved results over execution time, for progressive execution of queries on the Stocks dataset. a ES(1, 3) query,τ = 0.58, δ =
0.03; bMP(4) query, τ = 0.8, δ = 0.05; c PC(1, 3) query, τ = 0.7, δ = 0.12; d TC(3) query,τ = 0.25, δ = 1.3

Fig. 10 a Effect of dataset size and correlation pattern, with τ = 0.95, Stocks, b Effect of epoch size (time-based), PC(1, 2) with τ = 0.95, Stocks,
c Effect of top-κ , PC(1, 2), Stocks

binations that need to bemonitored. In contrast, an increasing
value of τ leads to better performance, as decisive combina-
tions are reached earlier, similar to the case of CD.
Effect of epoch size For the next experiment, we fixed the
basic window size to 10min, and measured the processing
time per basic window (i.e., sum of epoch execution times),
for different epoch sizes. Since the basicwindow size is fixed,
epoch size also determines the number of epochs per basic

window. The results, presented in Fig. 10b for the Stocks
dataset, demonstrate that CDStream utilizes larger epochs to
increase efficiency: larger epochs (alternatively, fewer epochs
per basic window) allow CDStream to optimize the checks
on the affected DCCs, by combining multiple updates and
checking the affected DCC only once. Furthermore, a larger
epoch increases the probability that arrivals with outlier val-
ues (potentially due to noise)—which would otherwise cause

Table 7 Effect of τ and δ on
CD and CDStream’s average
execution time per epoch (in
seconds) with streaming data,
Stocks

CD CDSTREAM

τ \ δ 0.0 0.05 0.1 0.15 irr 0.0 0.05 0.1 0.15 irr

ES(1, 2) 0.10 0.416 0.396 0.385 0.378 0.377 0.036 0.036 0.032 0.029 0.025

0.15 0.402 0.382 0.381 0.372 0.372 0.032 0.030 0.030 0.027 0.027

0.20 0.402 0.369 0.362 0.360 0.360 0.031 0.029 0.029 0.029 0.029

PC(1, 2) 0.80 1.025 0.903 0.772 0.756 0.723 0.234 0.226 0.214 0.206 0.206

0.90 0.441 0.426 0.412 0.412 0.402 0.085 0.079 0.069 0.069 0.070

0.95 0.370 0.366 0.365 0.346 0.342 0.051 0.045 0.045 0.046 0.045

123

502 J. E. d’Hondt et al.

temporary invalidations of DCCs—are dampened by other
arrivals on the same stream.

We also see that, for all configurations withES, CDStream
requires less cumulative time per basic window to maintain
the results, compared to a single execution of CD at the end
of the basic window. In other words, CDStream updates the
resultsmore frequently compared to CD (up to 10 timesmore
frequently in this experiment), and still requires less total
execution time. With PC, CDStream with 1 and 2 epochs
per basic window has comparable performance with a single
execution of CD. Increasing the number of epochs further
enables CDStream to provide even more frequent updates
compared to CD, yet with a slight degradation of efficiency
(up to 20% more time). This discrepancy of results for the
two correlation measures is due to the inherent distribution
of the correlation values—the results for PC change more
rapidly compared to the results for ES in this dataset, which
causes a higher cost for maintaining the index.
Top-κ queries Figure 10c plots the average processing time
per epoch for top-κ queries PC(1, 2) and ES(1, 2), for differ-
ent κ values. The results correspond to the Stocks datasetwith
1000 stocks. We see that processing time for both algorithms
increases with κ for both correlation measures, but at a much
slower rate for CDStream compared to CD. In CD, execution
time grows almost linearly with κ (from 4.94 to 17.20 s for
ES(1, 2)), whereas for CDStream the time increases by only
7% for the same queries. The reason for this notable differ-
ence in efficiency is that CDStream only maintains the top-κ
solutions, already having a good estimate for the threshold of
the top-κ highest correlation fromprevious runs,whereasCD
has to start each run from scratch. Therefore, for CDStream,
the only increase in execution time for higher κ-values comes
from updating and sorting a slightly larger result set and
buffer set.

5.3.2 Experiments with arrival-based epochs

Effect of epoch size Figure11a plots the average processing
time per arrival, for varying epoch sizes. As a reference, the
plot also includes the average processing time for a periodic
re-execution of CD after the end of every epoch (amortized
on the epoch’s arrival).

We see that increasing the epoch size also increases
CDStream’s performance. This behavior is expected, since
a larger epoch provides more opportunities to CDStream for
reducing the number ofDCCs that need to be checked. There-
fore, similar to the case of time-based epochs (Sect. 5.3.1),
epoch size provides a knob to the user for fine-tuning the
trade-off between freshness of results and CPU/total execu-
tion time.

Also observe that the execution time per arrival for CD
approaches that of CDStream as the epoch size increases. In
the case of PC, the processing time for the two algorithms

Fig. 11 Effect of query parameters on CDStream’s performance with
an arrival-based epoch. a Effect of epoch size, with τ = 0.95, Stocks;
b Effect of dataset

crosses at epoch size 80, whereas for ES, this crossing hap-
pens at epoch size 160. This difference is due to the inherent
distribution of correlations according to the two correlation
measures in this dataset.
Effect of dataset Figure11b presents the average execution
time per arrival (i.e., epoch size of 1), for PC(1, 2) and
ES(1, 2) threshold queries on all datasets. The cost of a
periodic execution of CD at the end of every epoch is also
included in the figure, as a reference.We see that, even though
arrivals are processed in at most 50 msec, processing cost is
noticeably higher for the two weather sensor datasets (SLP
andTMP) compared to all others. This can be attributed to the
lower time resolution in these two datasets(minimum arrival
rate for these datasets is 1h, compared to seconds/minutes
for the others). This leads to a substantially higher volatility
of the result set, and consequently, to more frequent updates
in the DCC index.

5.3.3 Evaluation of CDHybrid

For the final set of experiments, we test the ability of CDHy-
brid to switch seamlessly and efficiently between CD and
CDStream, in order to minimize processing cost in the pres-
ence of stream bursts. Since our streams did not present
significant bursts that could cause noticeable differences to
CDStream throughout the runtime of CDStream, we intro-
duced an artificial burst at all streams between epochs 70 and
90, by temporarily increasing the arrival rate by a factor of 30
(i.e., speeding up all streams during these epochs). CDHybrid
was allowed a small warmup period of 40 epochs, where it
was processing the updates, but was also switching between
CD and CDStream in order to collect initial measurements
and train the cost regression model.
Algorithm effectiveness Figure12a depicts the processing
time per epoch (moving averages over 5 epochs), for process-
ing Stocks with CD, CDStream, and CDHybrid. The figure
also includes the number of arrivals within each epoch (right
Y axis). We observe that when the burst starts—at around
epoch 70—CDStream becomes substantially slower than
CD, whereas performance of CD is not impacted. CDHy-
brid immediately recognizes the burst and switches to CD,

123

Efficient detection of multivariate correlations with different correlation measures 503

Fig. 12 a Efficiency of CDHybrid over time, PC(1, 2), n = 1000, Stocks, b Impact of dataset on CDHybrid efficiency, ES(1, 2), c Impact of
dataset on CDHybrid efficiency, PC(1, 2)

thereby maintaining peak performance. After the burst is
completed (shortly after epoch 90), CDHybrid switches back
to CDStream. This switch includes a small additional over-
head for updating the DCC index. However, this overhead is
insignificant.
Effect of dataset Figure12b, c show the average process-
ing time per epoch for CD, CDStream, and CDHybrid on
all datasets (excluding the warm-up time), for ES(1, 2) and
PC(1, 2) queries, respectively.We see that CDHybrid consis-
tently outperforms both CD and CDStream. This means that
neither CD nor CDStream is the best algorithm for process-
ing the whole stream. Yet, CDHybrid efficiently switches
between the two as a response to the varying arrival rate,
thereby providing near-optimal performance for each epoch.

Summary. CDStream outperforms CD in most scenar-
ios for processing of streams. Epoch size provides a
useful knob to the user, for balancing throughput of
CDStream with freshness of results. Finally, CDHy-
brid seamlessly combines the execution of CD and
CDStream, offering consistently better performance
than both.

6 Conclusions

We considered the problem of detecting high multivariate
correlations with four correlation measures, and with dif-
ferent constraints. We proposed three algorithms: (a) CD,
optimized for static data, (b) CDStream, which focuses on
streaming data, and (c) CDHybrid for streaming data, which
autonomously chooses between the two algorithms. The
algorithms rely on novel theoretical results, which enable us
to bound multivariate correlations between large sets of vec-
tors. A thorough experimental evaluation using real datasets
showed that our contribution outperforms the state of the art
typically by an order of magnitude.

The current methods are limited to correlations over lin-
ear combinations of vectors. Future work should extend them

to also accommodate nonlinear aggregations like MIN and
MAX, which find applications in the discussed domains.
Furthermore, detailed analysis showed that caching pair-
wise statistics (through ’empirical bounds’) greatly boosted
CD’s performance.While all proposedmeasures suited these
bounds, future ones might not. Thus, optimizing the appli-
cation of the more general theoretical bounds will be vital as
the proposed techniques evolve.

Acknowledgements This work has received funding from the Euro-
pean Union’s Horizon Europe research and innovation programme
STELAR under Grant Agreement No. 101070122.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. 2020 stockmarket crash -wikipedia. https://en.wikipedia.org/wiki/
2020_stock_market_crash

2. Agrawal, S., Atluri, G., Karpatne, A., Haltom, W., Liess, S., Chat-
terjee, S., Kumar, V.: Tripoles: a new class of relationships in time
series data. In: Proceedings of the SIGKDD’17

3. Agrawal, S., Steinbach, M., Boley, D., Chatterjee, S., Atluri, G.,
Dang, A.T., Liess, S., Kumar, V.: Mining novel multivariate rela-
tionships in time series data using correlation networks. TKDE
32(9), 1798–1811 (2020)

4. Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational
information bottleneck. In: ICLR’17

5. Arthur, D., Vassilvitskii, S.: K-Means++: the advantages of careful
seeding. In: Proceedings of the SODA’07

6. Carlborg,Ö.,Haley,C.S.: Epistasis: Toooftenneglected in complex
trait studies? Nat. Rev. Genet. 5(8), 618–625 (2004)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/2020_stock_market_crash
https://en.wikipedia.org/wiki/2020_stock_market_crash

504 J. E. d’Hondt et al.

7. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I.,
Abbeel, P.: Infogan: Interpretable representation learning by infor-
mation maximizing generative adversarial nets. In: NIPS’16

8. Cheng, P., Min, M.R., Shen, D., Malon, C., Zhang, Y., Li, Y.,
Carin, L.: Improving disentangled text representation learningwith
information-theoretic guidance. In: Proceedings of the ACL’20

9. Chiang, R.H., Huang Cecil, C.E., Lim, E.P.: Linear correlation
discovery in databases: a data mining approach. Data Knowl. Eng.
53(3), 311–337 (2005)

10. Das, A., Kempe, D.: Algorithms for subset selection in linear
regression. In: Proceedings of the STOC’08

11. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-
sensitive hashing scheme based on p-stable distributions. In:
Proceedings of the SCG’04

12. d’Hondt, J., Papapetrou, O., Minartz, K.: Efficient detection
of multivariate correlations with different correlation mea-
sures. Technical Reports (2023). Available in https://github.com/
CorrelationDetective/public

13. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.:
Querying and mining of time series data: experimental comparison
of representations and distance measures. In: Proceedings of the
VLDB’08

14. Echihabi, K., Tsandilas, T., Gogolou, A., Bezerianos, A., Palpanas,
T.: Pros: data series progressive k-nn similarity search and classifi-
cation with probabilistic quality guarantees. VLDB J. 32, 763–789
(2023)

15. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: The
Lernaean hydra of data series similarity search: an experimental
evaluation of the state of the art. In: Proceedings of the VLDB’18

16. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)

17. Foundation, S.: SPARK for autism. https://sparkforautism.org/
portal/page/autism-research/

18. Garner, W.R.: Uncertainty and Structure as Psychological Con-
cepts. Wiley, New York (1962)

19. Gedik, B., Bordawekar, R.R., Yu, P.S.: Cell Join: a parallel stream
join operator for the cell processor. VLDB J. 18, 501–519 (2009)

20. Handwerker, D.A., Roopchansingh, V., Gonzalez-Castillo, J., Ban-
dettini, P.A.: Periodic changes in fMRI connectivity. Neuroimage
63(3), 1712–1719 (2012)

21. He, Y., Ganjam, K., Chu, X.: Sema-join: joining semantically-
related tables using big table corpora. In: Proceedings of the
VLDB’15

22. Heunis, S., Lamerichs, R., Zinger, S., Caballero-Gaudes, C.,
Jansen, J.F., Aldenkamp, B., Breeuwer, M.: Quality and denoising
in real-time functional magnetic resonance imaging neurofeed-
back: a methods review. Hum. Brain Mapp. 41(12), 3439–3467
(2020)

23. Härdle, W.K.: Applied Multivariate Statistical Analysis, 2nd edn.
Springer, Berlin (2007)

24. Jiang, L., Kawashima, H., Tatebe, O.: Incremental window aggre-
gates over array database. In: Proceedings of the IEEE BigData
2014

25. Kistler, R., Kalnay, E., Collins,W., Saha, S.,White, G.,Woollen, J.,
Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., van den
Dool, H.: The NCEP/NCAR 50-year reanalysis: monthly means
CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247–
268 (2001)

26. Kraskov, A., Grassberger, P.: Mic: mutual information based hier-
archical clustering. Information theory and statistical learning, pp.
101–123 (2009)

27. Li, M., Chen, X., Li, X., Ma, B., Vitányi, P.M.B.: The similarity
metric. IEEE Trans. Inf. Theory 50(12), 3250–3264 (2004)

28. Licher, S., Ahmad, S., Karamujić-Čomić, H., Voortman, T., Leen-
ing, M.J.G., Ikram, M.A., Ikram, M.K.: Genetic predisposition,

modifiable-risk-factor profile and long-term dementia risk in the
general population. Nat. Med. 25(9), 1364–1369 (2019)

29. Liess, S., Agrawal, S., Chatterjee, S., Kumar, V.: A teleconnection
between the west Siberian plain and the ENSO region. J. Clim.
30(1), 301–315 (2017)

30. Mangram, M.E.: A simplified perspective of the Markowitz port-
folio theory. Glob. J. Bus. Res. 7(1), 59–70 (2013)

31. Megumi, F., Yamashita, A., Kawato, M., Imamizu, H.: Functional
MRI neurofeedback training on connectivity between two regions
induces long-lasting changes in intrinsic functional network. Front.
Hum. Neurosci. 9, 160 (2015)

32. Mitra, I., Lavillaureix, A., Yeh, E., Traglia,M., Tsang, K., Bearden,
C.E., Rauen, K.A.,Weiss, L.A.: Reverse pathway genetic approach
identifies epistasis in autism spectrum disorders. PLoS Genet. 13,
1–27 (2017)

33. Mueen, A.: Enumeration of time series motifs of all lengths. In:
Proceedings of the ICDM’13

34. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for mas-
sive time-series data. In: Proceedings of the SIGMOD’10

35. Nguyen, H.V., Müller, E., Andritsos, P., Böhm, K.: Detecting cor-
related columns in relational databases with mixed data types. In:
Proceedings of the SSDBM’14

36. Nguyen, H.V., Müller, E., Vreeken, J., Efros, P., Böhm, K.: Mul-
tivariate maximal correlation analysis. In: Proceedings of the
ICML’14

37. Oceanic, N., Administration, A.: NOAA integrated surface dataset.
https://www.ncei.noaa.gov/access/search/dataset-search

38. O’sullivan, A., Sheffrin, S.M.: Economics: Principles in Action.
Pearson Prentice Hall, London (2003)

39. Rostoker, C., Wagner, A., Hoos, H.: A parallel workflow for real-
time correlation and clustering of high-frequency stock market
data. In: Proceedings of the IPDPS’07

40. Satuluri, V., Parthasarathy, S.: Bayesian locality sensitive hashing
for fast similarity search. In: Proceedings of the VLDB’12

41. Skoltech computer vision | deep billion-scale indexing. https://
sites.skoltech.ru/compvision/noimi/

42. Segaran, T.: Programming Collective Intelligence: Building Smart
Web 2.0 Applications. O’Reilly Media, Inc., Sebastopol (2007)

43. Studenỳ, M., Vejnarová, J.: The multi-information function as a
tool for measuring stochastic dependence. Learn. Gr. Models 89,
261–297 (1998)

44. Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P.: A system for
denial-of-service attack detection based onmultivariate correlation
analysis. IEEE Trans. Parallel Distrib. Syst. 25(2), 447–456 (2014)

45. Wang, J., Zhu, Y., Li, S., Wan, D., Zhang, P.: Multivariate time
series similarity searching. Sci. World J. 2014(1) (2014)

46. Watanabe, S.: Information theoretical analysis of multivariate cor-
relation. IBM J. Res. Dev. 4(1), 66–82 (1960)

47. Wu, Y., Yu, J., Tian, Y., Sidle, R., Barber, R.: Designing succinct
secondary indexing mechanism by exploiting column correlations.
In: Proceedings of the SIGMOD’19

48. Yang, K., Shahabi, C.: A PCA-based similarity measure for multi-
variate time series. In: Proceedings of the ACM-MMDB’04

49. Yang, K., Shahabi, C.: An efficient k nearest neighbor search for
multivariate time series. Inf. Comput. 205(1), 65–98 (2007)

50. Yu, C., Luo, L., Chan, L.L.H., Rakthanmanon, T., Nutanong, S.:
A fast LSH-based similarity search method for multivariate time
series. Inf. Sci. 476, 337–356 (2019)

51. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.:
Discretized streams: fault-tolerant streaming computation at scale.
In: Proceedings of the SOSP’13

52. Zhang, X., Pan, F., Wang, W., Nobel, A.: Mining non-redundant
high order correlations in binary data. In: Proceedings of the
VLDB’08

53. Zhu, Y., Shasha, D.: Statstream: statistical monitoring of thousands
of data streams in real time. In: Proceedings of the VLDB’02

123

https://github.com/CorrelationDetective/public
https://github.com/CorrelationDetective/public
https://sparkforautism.org/portal/page/autism-research/
https://sparkforautism.org/portal/page/autism-research/
https://www.ncei.noaa.gov/access/search/dataset-search
https://sites.skoltech.ru/compvision/noimi/
https://sites.skoltech.ru/compvision/noimi/

Efficient detection of multivariate correlations with different correlation measures 505

54. Zilverstand, A., Sorger, B., Zimmermann, J., Kaas, A., Goebel,
R.: Windowed correlation: a suitable tool for providing dynamic
fmri-based functional connectivity neurofeedback on task diffi-
culty. PLoS ONE 9(1), 1-13 (2014)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Efficient detection of multivariate correlations with different correlation measures
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Correlation measures
	2.2 Problem definition
	2.3 Related work

	3 Detection of multivariate correlations in static data
	3.1 Initialization and clustering
	3.2 Threshold queries
	3.2.1 Theoretical bounds
	3.2.2 Tightening the bounds
	3.2.3 Handling of additional constraints

	3.3 Top-k queries
	3.4 Progressive queries

	4 Detection of multivariate correlations in streaming data
	4.1 Stream processing model
	4.2 Algorithm core
	4.3 User constraints and top-κ queries
	4.4 Impact of the extended basic window model on CDStream
	4.5 CDHybrid: combining CD and CDStream

	5 Evaluation
	5.1 Comparison to the baselines
	5.2 CD on static data
	5.2.1 Optimizing configuration parameters
	5.2.2 Top-κ queries
	5.2.3 Threshold queries

	5.3 CDStream on streaming data
	5.3.1 Experiments with time-based epochs
	5.3.2 Experiments with arrival-based epochs
	5.3.3 Evaluation of CDHybrid

	6 Conclusions
	Acknowledgements
	References

