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Abstract
Data integration is a classical problem in databases, typically decomposed into schema matching, entity matching and data
fusion. To solve the latter, it is mostly assumed that ground truth can be determined. However, in general, the data gathering
processes in the different sources are imperfect and cannot provide an accurate merging of values. Thus, in the absence of
ways to determine ground truth, it is important to at least quantify how far from being internally consistent a dataset is. Hence,
we propose definitions of concordant data and define a discordance metric as a way of measuring disagreement to improve
decision-making based on trustworthiness.We define the discordmeasurement problem of numerical attributes in which given
a set of uncertain raw observations or aggregate results (such as case/hospitalization/death data relevant to COVID-19) and
information on the alignment of different conceptualizations of the same reality (e.g., granularities or units), we wish to assess
whether the different sources are concordant, or if not, use the discordance metric to quantify how discordant they are.We also
define a set of algebraic operators to describe the alignments of different data sources with correctness guarantees, together
with two alternative relational database implementations that reduce the problem to linear or quadratic programming. These
are evaluated against both COVID-19 and synthetic data, and our experimental results show that discordance measurement
can be performed efficiently in realistic situations.

Keywords Data fusion · Trustworthiness · Data alignment · Multidimensional schema

1 Introduction

The focus of this work is decision-making environments
performing complex OLAP-like multidimensional queries
[2] that extensively use numerical aggregation and involve
multiple data sources requiring integration. Data integra-
tion traditionally has three steps [14]: (1) schema matching
and alignment, which overcomes semantic and structural
heterogeneity between attributes and entities from different
sources; (2) entity matching (a.k.a. record linkage), which
detects records that correspond to the same real-world entity;
and (3) data fusion (a.k.a. record merging), which aims to
identify the correct one among conflicting values. Thus,
data fusion refers to the combination of data from different,
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heterogeneous sources in order to provide a more precise
understanding of reality than offered by those sources sep-
arately [26]. The quality of its result is clearly affected by
the disparity of the involved sources. For instance, in data
warehousing environments, consistent and well- known data
from different sources go through a well-structured cleaning
and integration process. In the wild, sources are typically
incomplete and not well aligned, and such data cleaning
and integration processes are far from trivial, resulting in
imperfect comparisons. Like in the parable of the blind men
describing an elephant after touching different parts of its
body (i.e., touching the trunk, it is like a thick snake; the
leg, like a tree stump; the ear, like a sheath of leather; the
tail tip, like a furry mouse; etc.), in many areas like epi-
demiology, social sensing or information extraction, different
data sources reflect the same reality in slightly different and
partial ways, and there is not any ground truth available,
requiring truth discovery processes [30]. For example, dur-
ing the COVID-19 pandemic, it was problematic to have
reliable information on number of cases and deaths, since
many different actors were independently gathering data that
had later to be integrated to make them globally meaning-
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ful. Evaluating the reliability of each source was crucial for
decision-making, and we develop Eris a tool that facilitates
doing this.

In such a complex context, where estimating the source
reliability and inferring true information is necessary, we
require a tool to measure discrepancies for available data.
Typically, consistency is used to measure to which degree a
dataset is free of contradictions [26], which is done most of
the time by simply counting differences in the sources [19],
or maybe something more elaborate like using the Shapley
value to weight primary key violations as in [31], or based
on the number of necessary repairs like [7]. A more com-
plete overview and classification of these kinds of metrics
can be found in [38]. Nevertheless, we contend that better
measures than counting exist for many scenarios in the case
of coincidence of numerical attributes, whose distance can
be precisely quantified. Hence, in this case, a binary met-
ric aiming at full consistency does not look realistic and we
require a more precise one showing how far values are from
each other.
Problem. Thus, having in mind that we often analyze data by
placing different indicators/features/measures (e.g., number
of patients or deaths) in amultidimensional space (e.g., geog-
raphy and time), the problem we approach in this work is the
measurement of numerical disagreement between different
sources. To solve this problem we have to face several dif-
ficulties: a) sources need to firstly go through a difficult and
error prone alignment to make them comparable, (b) there
can be many alternative metrics, and (c) given the amount of
data in today’s scenarios, these must be computed efficiently.
Hence, we aim at defining a (a) declarative, (b) flexible and
(c) scalablemethod to quantify discrepancies in the different
numerical attributes.

Relational Database Management System (RDBMS) are
scalable and provide a declarative query language, together
with a flexible mechanism to deal with uncertain and incom-
plete information by using NULL values. However, they do
not provide anyguarantees on alignments and it iswell known
that NULLs are overloaded with different meanings such as
unknown, nonexisting or no-information [3].
Approach. First, we restrict the use of NULL only for nonex-
isting or no-information and propose to enrich the datamodel
with symbolic variables that allow to represent the partial
knowledge we might have about uncertain numerical val-
ues, and integrate this in an RDBMS whose query results
are processed in a solver to generate the desired metric.
Our approach is (a) declarative in that it provides a high-
level language (basedon standard relational query languages)
for expressing the intended alignments among sources. This
high-level language can be translated down to linear or
quadratic programming problems that can be solved effi-
ciently. The translation is proved correct and users do not
need to carry it out themselves or be concerned with the

low-level details of the encoding. It is (b) flexible because
users can firstly use different distance metrics and also make
changes to alignments (e.g., to accommodate changes to
source data formats) using the high-level language rather
than manually changing a low-level system of equations. It
is (c) scalable in that despite the NP-completeness of gen-
eral quadratic programming problems, our approach can find
optimal solutions measuring the discord (i.e., distance away
frombeing consistent) in a dataset quickly using off-the-shelf
solvers. This is so, because we only allow linear expressions
in the characterization of uncertainty of values and use con-
vex functions in the discord measurement.
Contributions. In this paper, we consider problems we call
concordance checking and discordance measurement. Con-
cordance is the problem of determining whether disparate
data sources we wish to integrate are consistent with each
other according to some specification (of how they should be
related). Discordance measurement is the problem of deter-
mining how close or distant the observed data are from being
concordant. We define a flexible setting, that can be instanti-
atedwith different distancemetrics (see [22] for alternatives),
for the evaluation of the trustworthiness of different sources
of multidimensional data based on their concordancy/dis-
cordancy using standard linear or quadratic programming
solvers. Moreover, since besides errors and conflicts in data,
different conceptualizations are also a problem [34], we
define an algebra that allows to easily describe alignments
between sources and guarantees the correctness of their sym-
bolic evaluation. While using symbolic variables for NULLs
is not a new idea, introduced for example in classical models
for incomplete information such as c-tables and v-tables [27]
and used more recently in data cleaning systems such as
LLUNATIC [23], our approach generalizes unknowns to be
arbitrary (linear) expressions.

To our knowledge, there is not any system that can auto-
matically generate the measurement of discordance and even
less in the presence of semantic heterogeneities between the
sources. More concretely, in this paper, we contribute:

1. A definition and formalization of the problem of dis-
cord measurement of databases under some merging
processes, independently of the concrete distance metric
being used.

2. A set of algebraic operations to describe high-level
alignment specifications that allow to describe merg-
ing processes of multidimensional tables with symbolic
numerical expressions.

3. An automatic translation from such specifications to low-
level linear or quadratic programs with accompanying
proofs of correctness.

4. A novel coalescing operator that automatically gener-
ates concordancy constraints over symbolic tables, that
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can be efficiently checked with off-the-shelf software, as
exemplified in our prototype.

5. A prototype, Eris,1 and an experimental comparison of
two alternative implementations using an RDBMS (Post-
greSQL) andaquadratic programming solver (OSQP [43]).
For the sake of prototyping, we assume data reside in a
single DBMS, but the same approach applies to virtual
data integration given the corresponding wrappers.

6. An analysis of discordances in the epidemiological
surveillance systems of six European countries during
the COVID-19 pandemic based on EuroStats and Johns
Hopkins University (JHU) data.

Organization. Sect. 2 presents a motivational example that
helps to identify the problem formally defined in Sect. 3,
whose solution based on an algebraic query language for
symbolic evaluation is presented in Sect. 4. Section5 details
two alternative relational implementations, which are eval-
uated in Sect. 6. Our experimental results show that both
approaches provide acceptable performance and illustrate
the value of our approach for assessing the discordance
of COVID-19 epidemiological surveillance data at differ-
ent times and countries between March 2020 and February
2021.Thepaper concludeswith relatedwork and conclusions
in Sects. 7 and 8. A preliminary short paper (presenting the
problem statement informally via examples and excluding
the main technical content in Sects. 3–6) has been published
in [1].

2 Motivating example

We used COVID-19 data in our experiments and examples,
which are widely available and of varying quality, making
them a good candidate for discordance evaluation. We con-
sider that a network of actors (i.e., governmental institutions)
take primary measurements of COVID-19 cases and derive
someaggregates from those. In an idealized setting,wewould
expect to know all the relationships and have consistent mea-
surements for each primary attribute, and each derived result
would be computed exactly with no error. However, some
relationships are unknown and both primary and derived
attributes are noisy, biased, unknown or imperfect. We illus-
trate now how to model it using database schemas and views
and describe the different problems we need to solve in this
scenario.2

Example 1 Spain, as depicted in Fig. 1, comprises nineteen
regions (RI, . . . , RXIX). In each region, there are several hos-
pitals and a person living in Ri is monitored by at most one

1 Eris is the Greek goddess of discord.
2 We assume some familiarity with relational model, queries, views,
SQL, etc. [3] as well as with the multidimensional data model [2].

Fig. 1 Spain’s map [source:Wikipedia]with epidemiological informa-
tion reported on week 2020W24 (total of 2,142 cases and three deaths
in the whole country)

hospital.Hospitals report their number of cases ofCOVID-19
to their regional governments, and each regional government
reports to the Ministry of Health (MoH).

Given their management autonomy, the different regions
in Spain use different and imperfect monitoring mechanisms
and report separately the COVID-19 cases they detect every
week. Suppose that despite being gathered daily at health
facilities, Spain is only reporting weekly to the European
Centre for Disease Prevention and Control (CDC) partial
information at the region level and the overall information of
the country. We can model this using relational tables with
the weekly region and country information, and try to use
SQL tomeasure discord between them.

ReportedRegion(region, week , cases)
ReportedCountry(week , cases) ♦

Thefirst thing thatmust be done beforemeasuring discrep-
ancies is to overcome semantic and schematic heterogeneity.
Thus, in terms of SQL, we can align the schemas through
named queries (a.k.a. views).

Example 2 Before making any measurement, we need to
align the two sources by describing the merging process.
In this case, the following view aggregates the regional data
for each week, which ought to coincide with the values per
country:

CREATE VIEW A g g R e p o r t e d AS
SELECT week , SUM ( c a s e s ) AS c a s e s
FROM R e p o r t e d R e g i o n GROUP BY week ; ♦

Once we know that quantities in the attributes are using
the same units, scales, etc., and assuming that we already
have properly identified the different entities, we can simply
count coincidences in the attribute values.
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Example 3 Ideally, if all COVID-19 cases were detected and
properly reported, the week should unambiguously deter-
mine the number of cases (i.e., information derived from
reported cases, both at region and country levels, must coin-
cide). In terms of SQL, as in [19], this could be checked with
the assertion of a concordancy constraint in the form of a
simple query like the following.

SELECT c o u n t ( ∗ )
FROM R e p o r t e d C o u n t r y
NATURAL JOIN A g g R e p o r t e d ; ♦

Nevertheless, as explained above, achieving exact consis-
tency seems unlikely in any real setting. Pure coincidence
(or even string similarity metrics such as Levenshtein dis-
tance [46]) does not give an idea of the magnitude of
discrepancies in numeric data. For example, in the case of
European countries, and according to the real data used in the
experiments in Sect. 6.2, we can see that the reported cases at
country and region level only coincide for one country (DE)
inweek 24. Ifwe useLevenshtein distancewith a threshold of
20% of the overall number of digits, we get three more coin-
cidences for UK and one more for IT (still none for ES, NL
and SE). Thus, using existing techniques (i.e., assertions) it
is possible to check full consistency (i.e., value coincidence)
among data sources when there is no uncertainty, but it is not
straightforward to quantify to which extent the various data
sources are consistent with the expected relationships, in the
presence of unknown values or suspected errors in reporting.

Example 4 We can see that the following database is not con-
sistent with the view specification above, in part because
the cases of one of the nineteen Spanish regions (i.e., RXIX,
which in reality corresponds to Comunidad Valenciana) are
not declared, but also because the sum of cases per region
(1,995) do not add up to the overall amount in the country
(2,142). Thus, it is not enough to say that the database is
inconsistent, but we can see that there is a discrepancy of
2142 − 1995 = 147 cases.

ReportedRegion("I" ,"2020W24" ,13)
. . .

ReportedRegion("XVIII" ,"2020W24" ,12)
ReportedCountry("2020W24",2142)
AggReported("2020W24",1995)

First of all, it is important to realize that the simplistic
approach of using NULL just worsens the problem, because
replacing any value with it would only result in a loss of
information. Instead, we can assign an error factor εi to every
value vi in the database and measure the average of squared
difference from each number of weekly cases vi to the mid-
point m (a.k.a. average) so that vi · (1 + εi ) = m with the
following query. According to [22], one of the most common
goodness of fit measures is least squares error.

Fig. 2 Average squared error per week (against average)

SELECT week ,
( ( ( r . c a s e s + a . c a s e s ) / ( 2 . 0 ∗ r . c a s e s ) −1)^2
+ ( ( r . c a s e s + a . c a s e s ) / ( 2 . 0 ∗ a . c a s e s ) − 1 ) ^ 2 ) / 2

FROM R e p o r t e d C o u n t r y r JOIN AggRepo r t e d a
ON r . week=a . week ;

It is important to notice, firstly the dependence of the query
on the distance being used and also how its complexity grows
with the number of variables and their corresponding align-
ments. ♦

Example 5 We now consider the same Spain scenario, but
using the real data of six European countries discussed in
detail in Sect. 6.2. Taking as reference value simply the aver-
age of the two reported, we apply a similar query, obtain
the value for all 39 weeks in our case study and get the line
chart in Fig. 2, which shows the average discordance of each
dataset along time in a running average of five weeks. We
need to use logarithmic scale because the distance (measured
as the average squared difference) between values can vary
from one week to another in several orders of magnitude. ♦

Even though, as seen in the previous example, we can go
beyond simply counting discrepancies (a.k.a. voting) with
only SQL, we contend that we require some specific mecha-
nism to properly and flexibly quantify discordancy between
different sources. From the query generation point of view, it
is easy to realize that having more than two sources, or sim-
ply considering potential error variables in all tuples (e.g.,
those nineteen actually reported at region level) substantially
complicates the SQL code. Indeed, if we think of manually
generating the formula for any potential alignment (overcom-
ing any semantic heterogeneity) between multiple sources, it
is clear that it is not only error prone, but simply unfeasible.3

3 Sect. 6.2 presents, in the same COVID-19 case study, a more realistic
and complex alignment of 35 algebraic operations on multiple sources
(Fig. 13) showing all the potential of our discordance quantification
technique. For this case, Eris automatically generates, with all the cor-
rectness guarantees, two SQL queries of 145 and 225 operators in the
PostgreSQL access plan, and a Python file of 8538 characters.
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Moreover, the mechanism should be flexible enough to facil-
itate changing the definition of distance (e.g., from relative to
absolute values), or the function (e.g., from sum of squares to
simple sum of values), or even assigning weights to the dis-
tances depending on their sources. To our knowledge, there
is not any other tool that allows to do this.

3 Problem formulation

Given an idealized scenario (specified by its schema and
views) and a collection of actual observations (both primary
and derived), we can still consider two problems:

(A) Value estimation: Estimate the values of numerical
attributes of interest (e.g., the number ofCOVID-19 cases
across Spain) that make the system consistent, a special
case of Truth Discovery [30].

(B) Discord evaluation: Evaluate how far is the actual, dis-
cordant dataset from an idealized concordant one.

Problem (A) is thewell-studied statistical estimation prob-
lem through numerical fusion operators [11], so this can be
very difficult, especially where the interrelationships among
different data sources are complex (see [10] for a survey of
existing systems). Instead, we consider problem (B), which
is roughly analogous to computing the distance function
used in truth discovery approaches [30], as an indication of
source reliability. However, unlike conventional truth discov-
ery, which considers homogeneous datasets from different
sources that might have different reliability but follow a
common format, we consider situations where there are het-
erogeneous data sources providing complementary views of
the real phenomenon, but where the available data sources
have nontrivial relationships. Traditional truth discovery
seeks to identify consensus values that minimize the distance
from these to the observations, whereas in our setting, we
have a single, heterogeneous dataset and we want to measure
how far it is away from being consistent with our expec-
tations. That is, we wish to measure the distance from the
observed data to the nearest self-consistent dataset (of which
there may be infinitely many), not just a finite number of
distances between homogeneous datasets.

Given a (probably incomplete but overlapping) set of
instances, we assume only a merging process specification
in the form of expectations about their alignment, expressed
using database queries and views, and try to answer the fol-
lowing questions. Considering on the one hand the queries
and views specifying the expected behavior, and on the other
the data corresponding to observations of some of the inputs,
intermediate results, or (expected) outputs are the observed
numeric data complete and concordant considering the align-
ment specification? If there is missing data, can the existing

datasets be extended to some complete instance that is con-
cordant? Finally, how far from being fully consistent is the
numerical data?

Consequently, we aim at extending DBMS functionalities
for generic concordance evaluation as a way to quantify how
far away the data are from being consistent. Although our
goal in this paper is not to find a realistic estimate of the true
values of unknown or uncertain data, but instead to quantify
how close the data are to our expectations under the given
alignment, we need to make some assumption on this. As
in Example 4 and 5, taking the average of multiple points is
always possible, but over-simplistic. Thus, we contend that
using the valueminimizing the errors of all sources, although
more complex, is more principled (e.g., in our case, it gives
a more comparable measure and avoids the need of using
logarithmic scale, as in Fig. 2). It is important to clarify that
while the approach produces estimates for the uncertain val-
ues as a side-effect, they may not have any statistical validity
unless additional work is done to statistically characterize the
sources of uncertainty, which we see as a separate problem.
Notation. We assume some familiarity with foundations of
relational databases, as covered for example by textbooks
like Abiteboul et al. [3]. We use the following notational
conventions for tuples and relations: a tuple t is a finite map
from some set of attribute names {A1, . . . , An} to data values
d ∈ D. We use letters such as K ,U , V , andW to denote sets
of attribute names and sometimes write U , V to indicate the
union of disjoint attribute sets (i.e., U ∪ V when U and V
are disjoint) or U , A to indicate addition of new attribute A
to attribute set U (i.e., U ∪ {A} provided A /∈ U ). We also
write U\V for the difference of attribute sets. Data values
D include real numbers R, and (as discussed below) value
attributes are restricted to be real valued. The domain of a
tuple dom(t) is the set of attribute names it maps to some
value. We write t .A for the value associated with A by t ,
and t[U ] for the tuple t restricted to domain U . We write
t .A := d to indicate the tuple obtained by mapping A to d
and mapping all other attributes B ∈ dom(t) to t .B. Note
that dom(t .A := d) = dom(t) ∪ {A} and this operation is
defined even if A is not already mapped by t . Furthermore,
if V = {B1, . . . , Bn} is an attribute set and u is a tuple with
domain U ⊇ V , then we write t .V := u as an abbreviation
for (· · · (t .B1 := u.B1).B2 := u.B2 · · · ).Bn := u.Bn , that
is for the result of (re)defining t to match u on the attributes
from V . Finally, when the range of t, u happens to be R,
that is, t and u are real-valued vectors, we write t + u for
the vector sum, α · t for scalar multiplication by α ∈ R, and
when Z is a finite multiset of such real-valued vectors, we
write

∑
Z for their vector sum.

Relational databases generally have schemas that describe
the field names and types of each relation in the database,
as well as integrity constraints such as key and foreign key
constraints. Our approach assumes data adhering to a sim-
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ple multidimensional data model; specifically this means we
consider the fields of each relation to be split into two sets,
keys which identify a particular row uniquely and may be
either numeric or descriptive (e.g., geographical location,
date) and values that must be numeric and give quantita-
tive indicators associated with keys. Relations of this form
are essentially partial finite maps from the keys to the values.
We define schemas as follows to ensure that they have this
form.

Definition 1 (FiniteMap Signature) A finitemap signature is
a relational schema with a primary key annotation, which is
written K �V , where K and V are disjoint attribute names. A
relationmatches such signature if its attributes are K ∪V , the
key-fields K are elements of the data domain D, the value-
fields V are real numbers R, and it satisfies the functional
dependency (FD) K → V (i.e., any two tuples in the relation
that match on the fields in K also match on the fields in V ),
that is we write R : K �V for what is conventionally written
as R(A1, . . . , Am, B1, . . . , Bm)when K = A1, . . . , Am and
V = B1, . . . , Bm .

Definition 2 (Finite Map Schema) A finite map schema Σ

is an assignment of relation names R1, . . . , Rn to finite map
signatures. A database instance I matches Σ if each relation
R of I matches the corresponding signature Σ(R). We write
I nst(Σ) for the set of all instances of a schema Σ .

Example 6 Thus, our example in page 3 contains tables

ReportedRegion : {region, week} � {cases} and
ReportedCountry : {week} � {cases}.

We also introduce here (for later use) a new table

DeclaredDeaths : {week} � {deaths}

reporting the total number of deaths across thewhole country,
with the following data:

DeclaredDeaths("2020W24" ,3) ♦

Given that our goal is to define and measure the degree
of discordance of different data sources with complemen-
tary multidimensional information (e.g., ReportedRegion,
ReportedCountry, DeclaredDeaths) under a data fusion
process, it is important to notice that discrepancies occur
when they assign different values to the same key. Conse-
quently, we will work in a setting where not only the source
tables, but also query results (and view schemas) need to
satisfy such finite map constraints, indicating that differ-
ent coincident sources quantify features of the same object
or event. We introduce a specialized query language and
type system to maintain these constraints while dealing with
uncertainty, which arises from completely unknown/missing

values, or reported measurements that have some unknown
error.

Specifically, we define a high-level alignment definition
language and aflexibly configurablemetric (see [22] for alter-
natives) that can be efficiently computed with off-the-shelf
software. Indeed, the key contribution of this paper is that
both checking concordance and measuring discord can be
done by augmenting the data model with symbolic expres-
sions, and this in turn can be done consistently and efficiently
in an RDBMSwith the right set of algebraic operations guar-
anteeing correctness. We formalize this intuition next.

4 Proposed solution

In the following, we introduce the three mechanisms that
constitute our technique, and how to use them together to
tackle the problem at hand. Firstly, in Sect. 4.1, we define
a variant of relational algebra for queries over tables that
are finite maps. This guarantees that the result of any query
is still a finite map. Then, in Sect. 4.2, the concept of sym-
bolic tables representing uncertainty is defined and the effect
of each operator over them formally established and exem-
plified, together with their correctness proof. Afterward, in
Sect. 4.3, a new abstract operator (a.k.a. fusion) is introduced
to establish the behaviour in finding coincident instances
in the presence of an alignment specification of different
sources and show how it can be implemented by reduction to
linear or quadratic programming. Finally, in Sect. 4.4, using
the previous toolset, we formally define and exemplify the
concordance and discordance problems.

4.1 Restricted algebra

Weconsider a variation of relational algebra over finitemaps,
whose type system ensures that the finite map property is
preserved in any query result.

c ::= A = B | A < B | ¬c | c ∧ c′
e ::= α ∈ R | A | e + e′ | e − e′ | e · e′ | e/e′
q ::= R | σc(q) | π̂W (q) | q��q ′ | q 
B q ′ | q\q ′

| ρB �→B′(q) | εB:=e(q) | γK ;V (q)

Conditions c and expressions e are typical sublanguages
containing Boolean combinations of (in)equalities among
attributes, and real-valued arithmetic operations over attributes,
respectively. Queries q are loosely based on the standard
relational algebra with extensions for grouping/aggregation
and expression evaluation. They include several standard
forms such as relation names R, selections σc(−), projec-
tions π̂W (−), set difference \, renaming ρB �→B′ and joins
(��), as well as discriminated union 
B , expression evalu-
ation εB:=e(−), and aggregation γK ;V (q). Figure3 defines
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Fig. 3 Well-formed queries

the well-formedness relation for queries. The rules in Fig. 3
define the relations Σ � q : K � V inductively as the least
relation satisfying the rules, where each rule is interpreted
as an implication “if the hypotheses (shown above the line)
hold then the conclusion (shown below the line) holds.” For
more background on type systems, inference rules and induc-
tive reasoning about them, see a standard textbook such as
Pierce [39]. The judgment Σ � q : K � V states that in
schema Σ , query q is well-formed and has type K �V . Intu-
itively, this means that if q is run on an instance of Σ , then
it produces a result relation that is a finite map R : K � V .
We make use of additional judgments for well-formedness
of selection conditions c (U � c : B) and expressions e
(U � e : R) which are standard and omitted. Later on, in
the next section, a type system is defined that specification
queries are required to adhere to, which is illustrated in Fig. 5,
page 11.

– Selection σc(R) behaves as in relational algebra; the
selection criterion c is evaluated on each row in the input
table and those rows satisfying c are retained in the out-
put, while the rest are discarded. The type system restricts
selection criteria to consider only predicates over key val-
ues that evaluate to boolean B = {true, false}.

– Projection-away π̂U (R) projects the fields in U away
(that is, removes them from the rows of its argument).
The type system only allows projection away of value-
fields, that is, requiresU ⊆ V ; this ensures the results of
these operations are still finite maps.

– Join R��S takes two finite maps, whose key-fields may
overlap, and returns tuples formed by fusing all pairs

of tuples whose common fields have the same values.
Unlike in general relational algebra, the arguments to a
join may only have overlapping key-fields and not shared
value-fields.

– Discriminated union R 
B S combines two finite maps,
adding a new field B whose value will differentiate the
tuples coming from the first or, respectively, second argu-
ment.We do not allow arbitrary unions because the union
of two finite maps is not a finite map if the domains over-
lap.

– Difference R\S removes the keys in S from R, where S
has no value-fields (i.e., is just a set of keys).

– Renaming ρB �→B′(R) that changes the name of field B
to B ′.

– Derivation εB:=e(R) performs arithmetic calculations by
adding a new value-field B which is initialized by evalu-
ating expression e using the field values in each row.

– Grouping/aggregation γK ;V (R) performs grouping on
key-fields K and aggregation by summing the value-
fields V . The constraint that grouping can only be
performed on key-fields and aggregation on value-fields
ensures that the results are still finite maps.

Example 7 Wenow illustrate the query language above on the
running example scenario introduced in page 3. Thus, we can
get the sum of all cases reported by region in a given week
using our query language as γweek;cases(ReportedRegion).
As discussed earlier, this results in a sum of 1,995 cases (not
the 2,142 one would expect). We also expect that the number
of deaths is 0.015 times the number of reported cases, which
would bewritten as εdeaths=0.015∗cases(ReportedCountry),
but again does not coincide with the three declared deaths. ♦

Someof these restrictions help ensure that the queryopera-
tions preserve the finite map property described by the typing
rules. Others, though not necessary for this purpose, are
nevertheless helpful later when we generalize the queries
to evaluate over symbolic values. In particular forbidding
selections or joins that involve comparing value-fields will
help avoid the need for some of the complexities encoun-
tered in c-tables [27] or work on provenance for aggregate
queries [4]. These restrictions have not posed problems in
part because, especially in the multidimensional model, it is
usually not necessary or desirable to perform exact compar-
isons on (continuous-valued) value-fields when describing
how different sources are aligned. Instead, we often do want
to express that different sources should be close together, but
we can do this by introducing symbolic variables that repre-
sent unknown errors distorting the true value and imposing
equational constraints using fusion and coalescing operators,
as explained later.

To allow for better understanding of howwell or badly the
data conforms to our expectations, expressed using queries,
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we next consider symbolic evaluation of queries over tables
in which some values can be variables (or more generally,
expressions).

4.2 Symbolic evaluation

The basic idea is to represent unknown real values with vari-
ables x ∈ X . Variables can occur multiple times in a table,
or in different tables, representing the same unknown value,
and more generally unknown values can be represented by
(linear) expressions. However, key values d ∈ D used in key-
fields are required to be known. This reflects the assumption
that the source database is partially closed [20], that is, we
assume the existence of master data for the keys (i.e., all
potential keys are coincident and known).

Definition 3 (Symbolic Expression) Let X be some fixed set
of variables. A symbolic expression e over X is a real-valued
expression inR[X ], the set of polynomials inRwith variables
from X . We normally consider only linear expressions (e.g.,
a0 + a1x1 + · · · + anxn).

Definition 4 (Symbolic Table) A symbolic table, or s-table
(over X) R : K � V is a table (with the name prepended
with �) in which attributes from K are mapped to discrete
non-null values in D (as before) and value attributes in V are
mapped to symbolic expressions in R[X ].

We define the domain of an s-table dom(R) to be the set
of values of its key attributes. We say that an s-table is linear
if each value attribute is a linear expression in variables X .

An s-table is ground if all of the value entries are actually
constants, i.e., if it is an ordinary database table (though still
satisfying the functional dependency K → V ). The restric-
tions we have placed on symbolic tables are sufficient to
ensure that symbolic evaluation is correct with respect to
evaluation over ground tables, as we explain below.

We now clarify how real-world uncertain data (e.g., con-
taining NULLs for unknown values instead of variables, or
containing values that might be wrong) can be mapped to
s-tables.

Suppose we are given an ordinary database instance I ∈
I nst(Σ), which may have missing values (a.k.a., NULLs)
and uncertain values (i.e., reported values which we do not
believe to be exactly correct). To use the s-table framework,
we need to translate such instances to s-instances I ′ that rep-
resent the set of possible complete database instances that
match observed data I . In doing this and to allow for the pos-
sibility that some reported values present in the data might be
inaccurate,we replace such valueswith symbolic expressions
containing variables from X . We restrict ourselves to linear
expressions for the sake of efficiency, but still our approach
allows to do this in many ways, with different justifications

based on the application domain, and consequently differ-
ent quantifications of discordance that should be interpreted
accordingly. To exemplify it, in this paper, we replace uncer-
tain values v with v · (1+ x) (or simply x if v = 0) where x
is an error variable. The reason for doing this and not simply
v + x is that the weight we associate in our experiments with
an error variable x is x2, so the cost of errors is scaled to
some extent by the magnitude of the value (e.g., it should
be easier to turn 1,000,000 into 2,000,000 than 1 into 10).
On the other hand, a natural way to handle missing values in
s-tables is to replace each one in the original relational table
with a distinct variable with no associated cost. In particu-
lar scenarios, we might instead prefer to replace each NULL
with an expression c · (1 + x) where c is an educated guess
as to the likely value, but here we consider only the simple
approach of a NULL mapped to a variable. In general, we
can assign to attributes any linear expression, with any num-
ber of variables and reuse these variables in any number of
attributes or tables.

Example 8 It is easy to see that, in our example on page 3,
there are many possibilities of assigning cases of COVID-19
to the different regions of Spain that add up to 2,142 in the
studied week and consequently improve the consistency of
our database, which may be easily represented by replacing
constants by symbolic expressions “vi (1 + xi ),” where vi is
the corresponding value and xi is an error parameter repre-
senting that cases may be missed or overreported in every
region. The cases for region RXIX, that were not reported
at all, could then be simply represented by a variable xXIX.
Nevertheless, this may not completely explain the mismatch
between cases reported at the country and region levels, and
there might also be some doubly counted or hidden cases
in Spain (for example, in the Ciudad Autonoma de Melilla,
which this week declared not to have any cases), which we
represent by variable (1+ y). On the other hand, we can also
consider census data and try to attribute all the excess deaths
to COVID-19, which clearly involves some imprecision, too.
So we should apply some error term (1 + z) to the declared
number of deaths coming from the census, aswell. Therefore,
s-tables �ReportedRegion : {region, week} � {cases},
�ReportedCountry : {week} � {cases} and �Declared-
Deaths : {week} � {deaths} would contain:

�ReportedRegion("I" ,"2020W24" ,13 ∗ (1 + xI))
. . .

�ReportedRegion("XVIII" ,"2020W24" ,12 ∗ (1 + xXVIII))
�ReportedRegion("XIX" ,"2020W24" ,xXIX )
�ReportedCountry("2020W24" ,2142 ∗ (1 + y))
�DeclaredDeaths("2020W24" ,3 ∗ (1 + z)) ♦

We now make the semantics of our query operations over
s-tables precise in Fig. 4. An essential property of this seman-
tics is that (for both ground and symbolic tables) the typing
rules ensure that a well-formed query evaluated on a valid

123



Eris: efficiently measuring discord in multidimensional sources 407

Fig. 4 Symbolic Evaluation

instance of the input schema yields a valid result table,
preserving the desired properties, that is, ensuring that the
resulting tables are valid s-tables, and moreover ensuring
that the semantics of query operations applied to s-tables
is consistent with their behavior on ground tables. Moreover,
symbolic evaluation preserves linearity, which is critical for
ensuring that the constrained optimization problems arising
from symbolic evaluation fit standard frameworks and can
be efficiently solved.

The following paragraphs describe and motivate the
behavior of each operator and informally explain and jus-
tify the correctness of the well-formedness rules ensuring
that the result of (symbolic) evaluation is a valid (symbolic)
table.

– Selection (σc(R) : K � V where R : K � V ). We permit
σc(R) when c is a Boolean formula referring only to
fields A, B, . . . ∈ K . If comparisons involving symbolic
values were allowed, then the existence of some rows in
the output could depend on unknown variable values, so
would not be representable just using s-tables.

– Projection-away (π̂W (R) : K � V \W where R : K � V
andW ⊆ V ). The projection operator projects-away only
value-fields. Discarding key-fields could break the finite
map property by leaving behind tupleswith the same keys
and different values.

– Join (R��S : K1 ∪ K2 � V1 ∪ V2 where R : K1 � V1,
S : K2 � V2 and V1 ∩ V2 = ∅). Joins can only overlap on
key-fields, for the same reason that selection predicates
can only select on keys: if we allowed joins on value-
fields, then the result of a join would not be representable
as an s-table.

– Discriminated union (R
D S : K , B�V where R : K �V
and S : K � V ). The union of two finite maps may not
satisfy the functional dependency from keys to values.
We instead provide a discriminated union that tags the
tuples in R and S with a new key-field B to distinguish
the origin.

– Renaming (ρB �→B′(R) : K [B �→ B ′] � V [B �→ B ′]
where R : K � V ). Note that since K and V are disjoint,
the renaming applies to either a key-field or a value-field,

but not both. In any case, this clearly preserves the finite
map property.

– Difference (R\S where R : K � V and S : K � ∅). The
difference of two maps discards from R all tuples whose
key-fields are present in S. The result is a subset of R
hence still a valid finite map. We assume S has no value
components; if not, this can be arranged by projecting
them away in advance.

– Derivation (εB:=e(R) : K � V , B where R : K � V and e
is a linear expression over value-fields V ). No new keys
are introduced so the finite map property still holds.

– Aggregation (γK ′;V ′(R) where R : K � V and K ′ ⊆ K
andV ′ ⊆ V ).Weallowgrouping onkey-fields and aggre-
gation of value-fields (possibly discarding some of each).
We consider SUM as the only primitive form of aggrega-
tion; COUNT and AVERAGE can be easily defined from
it.

Example 9 Given �ReportedRegion : {region, week} �
{cases} and �ReportedCountry : {week} � {cases}, we
can define views:

�AggReported := γ{week};{cases}(�ReportedRegion)

�I n f erredDeaths := π̂cases(

εdeaths:=0.015∗cases(�ReportedCountr y))

The first one corresponds to the SQL in Example 2, while
the second assumes an average case-fatality ratio (CFR) of
1.5% to estimate the number of deaths based on the number of
reported COVID-19 cases in the country. Notice the projec-
tion is necessary, because the expression evaluation operation
adds a newfield, sowemust get rid of the cases for the result-
ing table’s signature to match that of DeclaredDeaths.
Regarding CFR, we use a single value for simplicity, but
it could be declared in an auxiliary table containing different
ones per week, as long as these do not contain any variable,
which would break the linearity of the expression. ♦

The above discussion gives a high-level argument that if
the input tables are finite maps (satisfying their respective
functional dependencies as specified by the schema) then the
result table will also be a finite map that satisfies its spec-
ified functional dependency. More importantly, linearity is
preserved: if the s-table inputs to an operation are linear,
and all expressions in the operation itself are linear, then the
resulting s-table is also linear.
Correctness We interpret s-tables as mappings from valua-
tions to ground tables, obtained by evaluating all symbolic
expressions in themwith respect to a global valuation h : R

X .

Definition 5 (Valuation) A valuation is a function h : R
X

assigning constant values to variables. Given a symbolic
expression e, we write h(e) for the result of evaluating e
with variables x replaced with h(x). We then write h(t)
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for the tuple obtained by replacing each symbolic expres-
sion e in t with h(e) and write h(R) to indicate the result
of evaluating the expressions in R to their values accord-
ing to h, that is, h(R) = {h(t) | t ∈ R}. Likewise for an
instance I , we write h(I ) for the ground instance obtained
by replacing each R with h(R). An s-table R represents the
set �R� = {h(R) | h : R

X } of ground tables obtained by
applying all possible h to R. We write �I � for the set of all
ground instances obtainable from an s-instance I by some
h ∈ R

X , defined as �I � = {h(I ) | h ∈ R
X }, and we write

q�I � for {q(I ′) | I ′ ∈ �I �}, the set of all possible results of
evaluating q on a ground table represented by I .

Given a query expression in our algebra, we can evaluate
it on a ground instance since every ground instance is an
s-instance and s-table operations do not introduce variables
that were not present in the input. Further, given a set of
ground instances, we can (conceptually) evaluate a query on
each element of the set.

Theorem 1 Let q be a well-formed query mapping instances
of Σ to relations matching K � V , and let I be an s-instance
of Σ . Then q�I � = �q(I )�.

The proof is in Appendix A and is similar to correctness
proofs for c-tables [27]; the main complication is that in s-
instances, variables occurring in different tables are intended
to refer to the same unknown values, whereas in c-tables such
variables are scoped only at the table level.

4.3 Fusion, alignment, and coalescing

We now consider how s-tables and symbolic evaluation can
be used to reduce concordance checking and discordance
measurement to linear programming and quadratic program-
ming problems, respectively, when we find more than one
tuple with the same key and multiple (symbolic) values for
the same attribute. We first consider an abstract fusion oper-
ator:

Definition 6 (Fusion) Given two ground relations R, S : K �
V , their fusion R � S is defined as R∪ S, provided it satisfies
the functional dependency K → V , otherwise the fusion is
undefined.

Thus, our goal is to fuse different sources. However, since
they are independent, their concrete values can come in a
variety of formats, being expressed in different units, scales
or even computation stages (e.g., benefit vs income and
expenses). As explained in [33], until the conflicts at the
representation level have been resolved, those at the data
level cannot be resolved (or even measured), either. There-
fore, we represent the expected relationships between source
and derived data using a generalization of view specifications
called alignment specifications. The alignments must always

Fig. 5 Well-formed alignment specifications [Σ,Ω,Δ]

be defined by the user, considering the domain knowledge,
but our set of algebraic operators guarantees the correctness
from a computational point of view (i.e., identity of tuples is
preserved and expressions are guaranteed to be linear). We
generalize fusion to many sources and actually allow align-
ment specifications to define derived tables as the fusion of
multiple views.

Definition 7 (Alignment Specification) Let Σ and Ω be
finitemap schemaswith disjoint table names R1, . . . , Rn and
T1, . . . , Tm , respectively. LetΔ be a sequence of view defini-
tions, one for each Ti , of the form Ti := q1 � · · · � qk , where
each qi is a query over finite maps, that refers only to table
names in Σ and T1, . . . , Ti−1. The triple Spec = [Σ,Ω,Δ]
is called an alignment specification.

Alignment specifications are considered well-formed
according to the rules in Fig. 5. The first rule handles the
base case where the Δ and Ω parts of the specification are
empty. The second rule says that a specification [Σ, (S :
K �V ,Ω), (S := q1 �· · ·�qn,Δ)] is well-formed provided
each qi is a query producing an output matching K � V and
provided the rest of Δ is well-formed with respect to Ω if
the type of S is added to Σ . The purpose of adding S to Σ

here is to ensure later view definitions may refer both to the
tables initially in Σ and to earlier view definitions, but view
definitions cannot be cyclic (for example S cannot refer to
itself or to a view defined later).

Example 10 Given the s-tables in Example 8 and views in
Example 9, we can specify the alignment of COVID-19 cases
(corresponding to Example 3) and deaths by the following
views:

�SumO f Cases := �ReportedCountry � �AggReported

�NumberO f Deaths := �DeclaredDeaths � �I n f erredDeaths

These view definitions express our intention that in concor-
dant data, the country-level reported data would correspond
to the sum of the region-level reports and the deaths accord-
ing to the census data would be 1.5% of reported cases, as
shown in the equations in Example 7. However, importantly,
the fusion operator is not restricted to two arguments, it can
express simultaneous coincidence among multiple inputs. ♦

We implement the abstract fusion operation on s-tables
by first making the discriminated union of the input relations
(R
B S) and then using a unary operation, called coalescing,
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whose behavior on sets R of ground tables R : K , B � V
is κB(R) = {π̂B(R) ∈ R | π̂B(R) satisfies K → V }.
Intuitively, coalescing of a set of tables R ∈ R applies a
projection π̂B to each R and returns those projected tables
that still satisfy the FD K → V . These are the rows where
the values associated with the corresponding keys are con-
sistent across all inputs in which the keys are present. To
represent the result of coalescing using s-tables, we aug-
ment them with constraints. A constraint φ is simply a
conjunction of linear equations; a constrained s-table is a
pair (R, φ) that represents the set of possible ground tables
�R, φ� = {h(R) | h : R

X , h |� φ}; finally a constrained s-
instance (I , φ) likewise represents a set of ground instances
of I obtained by valuations satisfying φ. We can implement
coalescing as an operation on constrained s-tables as follows:

κD(R, φ) = (T , φ ∧ ψ)

R+ = {t ∈ R | ∃t ′ ∈ R, t[K\D] = t ′[K\D] ∧ t[D] �= t ′[D]}
T = {t[K\D, B1 := Lt[K\D],B1 , . . . ] | t ∈ R+}

∪ {t[K\D, V ] | t ∈ R\R+}
ψ ≡ ∧

t∈R+
∧

Bi∈V Lt[K\D],Bi = t[Bi ]

That is, let R+ be the set of tuples in R for which there
exists another tuple that has the same values on K\D but
differs on D, and let R\R+ be the remaining tuples (for
which there are no such sibling tuples). Thus, R+ is the set
of tuples of R potentially violating the FD K\D → V , and
R\R+ is the largest subset of R that satisfies this FD. Then
κD(R) consists of table T obtained by filling in new vari-
ables Lt[K\D],Bi . L-values are used only where there may
be disagreement, and we use the value from R otherwise.
The constraintψ consists of equations between the observed
values of each attribute and the corresponding L-value. No
constraints are introduced for tuples in R\R+, where there
is no possibility of disagreement.

Example 11 Thus,�SumO f Cases is implemented in terms
of our algebra as

κD(�ReportedCountry 
D �AggReported),

and �NumberO f Deaths as

κD(�DeclaredDeaths 
D �I n f erredDeaths).

As a result, we introduce two new variables (i.e., respectively
L2020W24,cases and L2020W24,deaths) and would obtain the
following constrained s-tables:

�SumOfCases("2020W24" ,L2020W24,cases )

ψSumO f Cases ≡ L2020W24,cases = 2142(1 + y)
∧ L2020W24,cases = 13(1 + xI) + . . .

+12(1 + xXVIII) + xXIX

�NumberOfDeaths("2020W24" ,L2020W24,deaths )

ψNumberO f Deaths ≡ L2020W24,deaths = 0.015 ∗ 1995(1 + y)
∧ L2020W24,deaths = 3 ∗ (1 + z)

Notice that if another source had provided data at
region level, two possible alignments would appear: (a)
aggregating also the new source (as done before with
�ReportedRegion) and making the correspondence also
through the same existing fusion �SumO f Cases (i.e.,
L2020W24,cases would be simply reusedwith another conjunct
clause inψ), or (b) creating a new independent fusion of this
new source and �ReportedRegion which would generate
thirteen new L-values (one per region) and the correspond-
ing thirteen logic clauses to be added to ψ . Obviously, (b) is
more restrictive than (a), but the choice would depend on the
user defining the most appropriate alignment to the use case.

♦

4.4 Discordmeasurement

Having introduced (constrained) s-tables, and evaluation for
query operations and coalescing over them, we finally show
how these technical devices allow us to define concord and
measure discord.

Definition 8 (Concordant Instance) Given a specification
Spec = [Σ,Ω,Δ], an instance I of schema Σ is con-
cordant if there exists an instance J of Ω such that for
each view definition Ti := q1 � · · · � qn in Δ, we have
J (Ti ) = q1(I , J )�· · ·�qn(I , J )where q(I , J ) is the result
of evaluating q on the combined instance I , J and all of
the fusion operations involved are defined. The concordant
instances of Σ with respect to Spec are written Conc(Spec).

Definition 9 (Concordance) Given [Σ,Ω,Δ], let I be an s-
instance. We say I is concordant if there exists a concordant
instance C ∈ �I �.

Given an alignment specification Spec = [Σ,Ω,Δ] and
an s-instance I , we can check concordance by symbolically
evaluating Δ on I to obtain an s-instance J as follows. For
each view definition Ti := q1 � · · · � qn in Δ in order, eval-
uate q1, . . . , qn to their s-table results and fuse them using
the coalescing operator (repeatedly if n > 2). This produces
a new s-table T ′

i and a constraint φi . Add Ti := T ′
i to J and

continue until all of the table definitions inΔ have been sym-
bolically evaluated (i.e., J = [T1 := T ′

1, . . . , Tm := T ′
m]).

Thus, the constrained s-instance (I ′, φ) where φ = ∧m
i=1 φi

characterizes the set of possible concordant instances based
on I ′, and in particular I is concordant if φ is satisfiable.

Example 12 From the constrained s-tables in Example 11,
obtained by the corresponding coalescing operation, we get
the next intertwined system of equations:

2142(1 + y) = 13(1 + xI) + · · · + 12(1 + xXVIII) + xXIX
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0.015 ∗ 1995(1 + y) = 3 ∗ (1 + z)

Obviously, this system has many solutions. One solution
S1 consists of taking all xi to be zero, y = −0.07 and z =
8.975. This corresponds to assuming there is no error in the
eighteen regions’ reports and there are no cases in Region
XIX. Another solution S2 sets xI = ... = xXVIII = 0 and
xXIX = 147, then y = 0 and z = 9.71 which corresponds
to assuming RXIX had all of the missing COVID-19 cases in
Spain that week. Of course, whether S1 or S2 (or some other)
is more plausible depends on domain-specific knowledge. ♦

Given a cost function δ assigning a cost to each solu-
tion, we can compare different solutions in terms of how
much correction is needed (or discord exists). Thus, the dis-
cord is, intuitively, the shortest δ-distance between the actual
observed, uncertain data (represented as a set of possible
instances) and a hypothetical concordant database instance
that is consistent with the alignment specification. The more
distant from any such concordant instance, the more discor-
dant our data are.

Definition 10 (Discordance) Given Spec = [Σ,Ω,Δ], let
δ : I nst(Σ) × I nst(Σ) → R be a measure of distance
between pairs of elements of I nst(Σ). The discordance of a
(constrained) s-instance I is

inf
J∈�I �,C∈Conc(Spec)

δ(J ,C)

Then, the degree of discordance of I given the alignment
Δ and according to δ (i.e., discδ(I , φ)) equals the solution
to the quadratic programming problem formed by minimiz-
ing δ subject to φ. Depending on the choices of metrics, this
leads to well-understood constrained optimization problems
such as linear programming or least squares optimization.
Linear programming has polynomial time complexity, and
the popular simplex algorithm is worst-case exponential but
has good behavior in practice [42]. Quadratic programming
is NP-Complete in general, but with good computational
behavior in many practical applications [43]. Moreover in
the convex case when the cost function is based on a posi-
tive semidefinitematrix, quadratic programming is very well
behaved, having a single global solution that can be found
in polynomial time [45]. In our experiments, we used the
convex metric δ defined as the sum of squares of the error
variables in I .

Like the alignment, the cost function evaluating the discor-
dance is also strongly domain knowledge dependent, but our
system is flexible enough to consider different alternatives
(e.g., different weights; if the weights are non-negative then
the problem remains convex). Nevertheless, in the rest of this
paper, wewill only use simplistic (and convex) cost functions
like the sumof squares suggested in [30]. This guarantees that

the problems we generate are solvable in polynomial time;
we also establish feasibility in practice for datasets of moder-
ate size. Although the underlying quadratic solver we use can
accommodate more general quadratic functions of the sym-
bolic variables, we leave exploration of more sophisticated
cost functions to future work.

Example 13 Considering simply the sum of the squares of
the variables:

c1(�x, y, z) =
⎛

⎝
∑

i∈{I,...,XIX}
x2i

⎞

⎠ + y2 + z2

For the two solutions in Example 12, S1 has cost ≈ 80.56,
while S2 has cost 21,703.28, so with the above cost function
the first one is much closer to being concordant, because a
large change to xXIX is not needed. Alternatively, we might
give the unknown number of cases in RXIX noweight, reflect-
ing that we have no knowledge about what it might be,
corresponding to the cost function

c2(�x, y, z) =
⎛

⎝
∑

i∈{I,...,XVIII}
x2i

⎞

⎠ + y2 + z2

that assigns the same cost to S1 but assigns cost 94.28 to S2,
indicating that if we are free to assign all unaccounted cases
to xXIX then the second solution is closer to concordance.

Furthermore, we could also weight variables considering
the reliability of the different regions as well as the central
government, and the historical information of the census, but
it is important to notice that such weights would depend on
knowledge of the domain. ♦

It is important to mention also that as a side-product, the
instanciations of the L-values introduced by coalescing could
be used to obtain a concordant instance, but this instance is
not guaranteed to provide the true values of the uncertain
indicators, it is only an estimateminimizing the distancemet-
ric. Thus domain-specific knowledge or statistical techniques
also need to be applied to characterize the quality of these
estimates.

5 Implementation

We now describe the techniques employed in Eris, an
implementation of our approach. The systems of equations
resulting from constraints generated on coalescing tables or
instances are linear, so they can be solved using linear alge-
bra solvers.However, itmay not be immediately obvious how
to evaluate queries over s-tables to obtain the resulting sys-
tems of equations efficiently. One strategy would simply be
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Fig. 6 Implemented encodings of s-tables

to load all of the data from the database into main mem-
ory and evaluate the s-table query operations in-memory.
While straightforward, this may result in poor performance
or duplication of effort, as many query operations which are
efficiently executed within the database (such as joins) may
need to be hand-coded in order to obtain acceptable per-
formance. Instead, we propose a relational representation of
s-table queries such that the s-table operations can be imple-
mented as ordinary (extended) relational algebra queries over
the representation. Thus, we consider two in-database repre-
sentations of s-tables, illustrated in Fig. 6: A denormalized
sparse vector representation using nested user-defined data
types (NF2) and a normalized representation using multiple
flat relations (Partitioning). Hence, whichever representation
we choose, we need to transform the original ground tables
into s-tables with variables. This could be done by creat-
ing simply a copy, but we found this would materialize a
great deal of intermediate data that is not ultimately needed.
Instead, the most efficient approach we found is defining the
s-tables as views over the sources. These views are straight-
forward, except for the generation of the variables (using
SQL:1999 features such as ROW_NUMBER to create unique
ids for each of them), and the consideration of special cases
(i.e., NULL and zero), that is done bymeans of standard SQL
CASE clauses to distinguish them. Notice that this approach
based on views and CASE clauses avoids the manual defini-
tion of expressions for every value and allows the definitions
of general rules based on the table name, attribute name, or
even concrete attribute values to do it. For example, a rule
could indicate the usage of a given expression for some con-

crete region or change the expression from a given point in
time on.

In the NF2 approach, we add a user-defined type for the
symbolic (linear) expression fields. There are several ways
of doing this, like for example using arrays to represent vec-
tors of coefficients for a (small) fixed number of variables,
or using a sparse representation that can deal with arbitrary
numbers of variables efficiently when most coefficients are
zero. Having experimented with several options, we chose a
representation in which symbolic expressions

∑
i ai · xi + b

are represented as sparse vectors, specifically as a pair of the
value of b and an array of pairs [(ai , xi ), . . .] of coefficients
and variable names. Thus, �ReportedRegion NF2 imple-
mentation would correspond to the following SQL view.

CREATE VIEW Repor tedReg ion_NF2 AS
SELECT r e g i o n , week ,
ROW(ARRAY[ROW(
CASE
WHEN c a s e s IS NULL OR c a s e s = 0 THEN 1
ELSE c a s e s
END , (

CASE
WHEN c a s e s IS NULL THEN ’MarkNULL_ ’
ELSE ’ ’
END | | ’ R e p o r t e dReg i o n _ c a s e s _ ’ ) | | row_number ( )
OVER (ORDER BY r e g i o n , week ) ) : : t e rm ] ,

CASE
WHEN c a s e s IS NULL THEN 0 . 0
ELSE c a s e s
END ) : : s p a r s e v e c AS c a s e s

FROM Repo r t e dReg i on ;

The keys remain unchanged, and for the value we define a
rowof typesparsevec, which is actually an array of terms,
represented by pairs “(coefficient,variable).” The coefficient
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Fig. 7 Translation of queries to
partitioning implementation

is “1” if the reported value was either NULL or zero, or the
reported value otherwise. Regarding the variable, we cre-
ate a different one for every tuple using the “row_number,”
and for the sake of traceability we concatenate to it both the
table and attribute names. Moreover, we also add a special
mark in case the reported value was NULL, so this can be
considered in the cost function. We implemented addition,
scalarmultiplication, and aggregation (sum) of linear expres-
sions using PostgreSQL’s user-defined function facility.With
this encoding, the SQL queries corresponding to our algebra
are straightforward by applying the standard translation and
inserting user-defined functions. We therefore do not present
this translation in detail.

Though many RDBMSs support similar mechanisms to
create user-defined functions and aggregates, they are not
standard and soNF2 is not very portable. Thus, the alternative
approach we present, Partitioning, relies only on standard
SQL:1999. In this approach, we represent an s-table R :
K � V with n symbolic value-fields B1, . . . , Bn using n + 1
relational tables, as follows:

– R0 : K � V is a ground table with all constant terms.
– For each symbolic field Bi ∈ V , RBi : K , X � C is a

ground table mapping keys K and an additional key X
(corresponding to the variables) to a real value-field C ,
so that (k, x, c) ∈ RBi when c is the coefficient of x in
the Bi -attribute of R(k).

We consider the relations corresponding to the symbolic
value-fields to be collected in a record �R = (B1 = RB1 , . . .),
and we write (R0, �R) for the full representation. This repre-
sentation admits relatively simple translations of each of the
s-table query operations, as shown in Fig. 7.

The operations γ̃ and ε̃ are zero-filtering versions of aggre-
gation and derivation, respectively, which remove any rows
whose C-value is zero. Filtering out zero coefficients is
not essential but avoids retaining unnecessary records since
absent coefficients are assumed to be zero. In the rule for
selection, recall predicate P only mentions key attributes;
we write σP ( �R) for the result of applying the selection to
each table in �R. In the rule for projection-away, we assume
R : K � V and W ⊆ V , and �R[V \W ] is the record result-
ing from discarding the fields corresponding to attributes

in W . Likewise in the rule for renaming, �R[B �→ B ′]
stands for renaming field B of �R to B ′ if present, other-
wise applying ρ[B �→B′](−) to each table in �R. In the rule
for addition, we introduce a dummy discriminant in the
union and just use zero-filtering aggregation γ̃K ,X;C to sum
coefficients grouped by key and variable name (i.e., getting
rid of the dummy discriminant). Likewise, in the case for
scalar multiplication, ε̃C :=α·C (RB0) operation does an in-
place update and finally filters out any zero coefficients.
Note that for the sake of understanding, we provide sep-
arate rules for assigning a field a constant value, adding
two fields, and scalar multiplication of a field, while the
query language given earlier allows derivations to assign
a new field the result of any linear expression. Arbitrary
linear expressions can be handled by introducing interme-
diate fields and projecting them away at the end, for example
εB:=C+42(q) = π̂D(εB:=C+E (εE :=42(q)). The rule for dif-
ference is slightly tricky because since S0 does not have value
attributes in the key, so just subtracting it from each of the
R.B would not work. Instead, we compute the set of keys
present after the difference and restrict each R.B to that set
of keys (using a join). The rule for join is likewise a little
more involved: given R : KR � VR and S : KS � VS , since
VR and VS are disjoint, it suffices for each field BR of VR to
join the corresponding table R.BR with the keys of S0, i.e.,
πKS (S0), and symmetrically for S’s value-fields BS . Finally,
for aggregation we assume R : K � V with K ′ ⊆ K and
V ′ ⊆ V and again use γ̃ .

Finally, we comment on constraint generation performed
by the coalescing operator. It simply detects repeated values
after projecting out the discriminant and generates the cor-
responding constraints as an extra query (i.e., a query over
an s-table is actually a pair of queries: one retrieving the
data I ′ without repetitions in the key and fresh L-values
in the values and another independent query creating the
constraints φ over those L-values). With this approach, coa-
lescing (hence fusion) becomes first-class and can be freely
composed with the other operations, so we can convert a
specification into a single composed query (referring to the
views that define the s-tables) whose translation generates
the equations directly. This is the approach we have evalu-
ated, which significantly improves the naive materialization
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Fig. 8 Eris architecture

approach, because it avoids the need to load and scan numer-
ous intermediate s-tables.

6 Evaluation

Eris (whose components are depicted in Fig. 8) was imple-
mented4 in approximately 4000 lines of Scala code, with
approximately 100 lines of SQL defining auxiliary oper-
ations, user-defined types, and functions involving sparse
vectors.

Before launching anything, all the user data need to be
uploaded into regular PostgreSQL tables. Then, on choos-
ing the preferred representation of s-tables (either NF2 or
Partitioning), the corresponding views are created to virtu-
ally generate the variables. Once this is done, the input of
the system is any alignment specification expressed in our
algebra. Our Scala code transforms such a specification into
regular SQL that returns the requested data from user ground
tables. As soon as some of the s-tables are coalesced and
some potential violations of the corresponding FDs appear,
L-values are automatically created, and this triggers another
SQL query for the generation of the constraints and the spe-
cific Python code to find the values of the involved variables
from the retrieved information. The corresponding linear and
quadratic programming subproblems are solved using ver-
sion 0.6.1 of OSQP [43], called as a Python library with the
default configuration and no parameter tuning.

Since, to our knowledge, there is not any other system that
can automatically generate a (configurable) measurement
of discordance in the presence of semantic heterogeneities
between the sources, we cannot make any meaningful com-
parison to show that this is faster or can do things that the
others can not. Instead, we show its scalability in terms of
query performance, and the expressive power and usefulness
by means of a use case. We do not try to justify the goodness
of the sum of squares as an indicator of discordance, because
this is absolutely configurable in Eris, hence, justifying its
use is out of the scope of this work.

4 https://github.com/dtim-upc/Eris.

Experiments were run on a workstation equipped with
an Intel Xeon E5-1650 with 6 cores, 32 GB RAM, running
Ubuntu 16.10, and using a standard installation of Post-
greSQL 9.5. They evaluate Eris from the perspective of both
performance and usefulness.

6.1 Performancemicrobenchmarks

We considered the following questions:

Q1. How does the time taken for symbolic query evalua-
tion usingNF2 and Partitioning vary depending on data
size?

Q2. How does the time taken for equation generation vary
depending on data size?

Q3. Howdoes the time taken byOSQP for solving compare
to that needed for equation generation?

Q4. How does overall time taken vary depending on the
number of variables?

Q5. How does the measured discordance vary depending
on the amount of distortion in the data?

Q1 and Q2 measure the performance of our system without
considering the time taken by OSQP. Q3 determines whether
our system produces QP problems that are feasible for OSQP
to solve, because such problems could be encoded in several
different ways. Q4 assesses whether and how performance
depends on the amount of source data being symbolic, while
Q5 investigates how discordance behaves when data that we
know to be consistent is distorted to different degrees.

Although there are several benchmarks for entity resolu-
tion and evaluation of the distance between descriptive data,
there is not any available benchmark with multiple sources
of overlapping numerical data suitable for our system, so we
adopted a microbenchmarking approach with synthetic data
and simple queries. We defined a simple schema with tables
R : A, B�C, D and S : B�E, F and a randomdata generator
that populates this schema, for a given parameter n, by gener-
ating n rows for S and for each such row (b, e, f ), generating
between 0 and

√
n rows for R with the same B field. Thus

on average the resulting database contains n + n
2

√
n rows in

total. We generated databases for n ∈ {100; 1,000; 10,000};
note that n = 10,000 actually corresponds to approximately
510,000 rows. For each n, we performed five trials using five
different randomly generated datasets and took the median
running time (or for Q5, median distortion) over these five
runs. We consider the following queries to exercise the most
complex cases of the translation of Sect. 5:
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Fig. 9 Query evaluation performance (milliseconds)

Fig. 10 Equation generation and solving

q1 = R′
��S′

q2 = εW :=C+D(R′)
q3 = εX :=W∗C (εW :=1(R′))
q4 = γA;C (R′)
q5 = γB;C (R′)
q6 = R 
Z R′
q7 = κZ (q6)

T1 = κZ (q1 
Z (R��S))

T2 = κZ (q2 
Z εW :=C+D(R))

T3 = κZ (q3 
Z εX :=W∗C (εW :=1(R)))

T4 = κZ (q4 
Z γA;C (R))

T5 = κZ (q5 
Z γB;C (R))

Given two source tables R, S, in a database generated
as explained above, we create observation tables Ro, So
by distorting them as follows: For each row, we randomly
replace each value-field with NULL with some probability
(i.e., p = 0.01) and otherwise add a normally distributed dis-
tortion. Next, symbolic views R′, S′ of both distorted tables
are defined, as outlined in Sect. 4.2. Once we have these two
versions of the tables (i.e., the source R, S and the distorted,
symbolic one R′, S′), we considered two modes of execu-
tion of these queries: in the first mode (q1 . . . q7), we simply
evaluate the query over a symbolic input (i.e., R′ and S′) and
construct the result; in the second mode (T1 . . . T5), we eval-
uate the result of aligning the distorted query result with the
result over the original source tables (i.e., R and S). Thus,
for example, for T1 we generate the equations resulting from
the fusion expression q1�(R��S), actually implemented like
κZ (q1 
Z (R��S)). Finally, the resulting system of equations
is solved, subject to the metric giving each error variable x a
weight of x2 and each null variable a weight of 0.

For Q1, executions are summarized in Fig. 9, where
reported times include the time to receive the symbolic
query results. These show that the Partitioning and NF2 have
broadly similar performance; despiteNF2’s comparative sim-
plicity, its running time is often faster with the exceptions
being q4 and q5, the two aggregation queries. Particularly
for q4, aggregation can result in large symbolic expressions
which are not always handled efficiently by the NF2 sparse
vector operations usingPostgreSQLarrays;we experimented

with several alternative approaches to try to improve perfor-
mance without success. Thus, in cases where the symbolic
expressions do not grow large, NF2 seems preferable.

For Q2 and Q3, we measured the time taken for equation
generation and forOSQP solving for each query, using differ-
ent database sizes as described above. The results are shown
in Fig. 10. In Fig. 10a, the time taken for equation genera-
tion, including querying and serializing the resulting OSQP
problem instances, is shown (again in logarithmic scale). The
OSQP solving times for Partitioning and NF2 are coincident
and so not shown. In Fig. 10b, the percentage of time spent
on equation generation and on OSQP solving for the largest
database instance (n = 10,000) is shown, and we can appre-
ciate that they are always in a similar order of magnitude so
neither can be claimed to be a bottleneck in front of the other.

For Q4, we considered a fixed database size (n=1000)
and modified the data generation process and specifications
so that for each input table, each row was treated as sym-
bolic with some probability psym . We considered psym ∈
{0.01, 0.25, 0.5, 0.75, 0.99}. Only the values in these sym-
bolic rows were augmented with variables and only these
rows were distorted. We reran the evaluation for Q2 and Q3
to compute the total time in each case, for both encodings,
in order to assess how the performance varies as the number
of variables/symbolic fields in the input increases. Figure11
shows the results, in each case reporting the median time
observed out of five runs. For both Partitioning and NF2

strategies, the total time increases roughly linearly. We fur-
ther inspected the results for equation generation and solving
time and found that generally the solving times for problems
generated by Partitioning and NF2 were close to each other,
thus the difference in performance (especially in the case of
T4) is mostly due to difference in query evaluation times for
equation generation, in line with the general trends noticed in
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Fig. 11 Number of variables evaluation impact

Fig. 12 Distortion evaluation impact

Fig. 10a. Thus, the scalability of the approach is not compro-
mised by our addition to the model, but follows the expected
behaviour of regular ground queries (without variables).

ForQ5we again considered afixed database size (n=1000)
and separately varied the probability of replacing a valuewith
null (pnull ) and the standard deviation of the normally dis-
tributed noise (σ ). We would expect increasing the number
of NULLs to decrease the discordance (all else being equal)
because null variables carry no weight, while increasing the
standard deviation of the distortion should increase the dis-
cordance. We considered pnull ∈ {0, 0.05, 0.1, 0.2, 0.4} and
σ ∈ {0.1, 1, 10, 100}. For each combination of parameters,
we evaluated five randomly generated inputs and computed
the distance found by OSQP, taking the median discordance
in each case. The results are shown in Fig. 12. We report
only once the results obtained, because the discordance value
found does not depend on the implementation strategy. These
results confirm that increasing the amount of distortion (σ )
generally increases the discordance, while increasing the
number of NULLs (pnull ) tends to decrease discordance
(because it introduces degrees of freedom to the problem
that do not incur any penalty in the cost metric).

6.2 Case study

We might use our tool to get a best-fit database. However,
this would only be useful if sources are close to each other
(and hence to reality). If they are relatively discordant (like
the blind men describing the elephant), all we can aim at is to
measure and study the evolution of such discordancy. Thus,
we applied our prototype to the study of challengingCOVID-
19 data, which is publicly available, and see from that the
improvement of reporting in different countries during the

pandemic. More specifically, we considered two different
sources:

– Johns Hopkins University (JHU) The Center for Systems
Science and Engineering (CSSE) at JHU was gathering
COVID-19 data since the very beginning of the pandemic
and became a referent worldwide [17]. On the one hand,
we have used its daily time series at country level5 con-
taining both cases and deaths. Unfortunately, on the other
hand, regional data are scattered in different files in the
JHU repository, so we used a more compact version.6

– EuroStatsAs second data source for comparison,we used
the weekly European mortality by EuroStats,7 follow-
ing the Nomenclature of Territorial Units for Statistics
(NUTS).8

JHU was going through a continuous consolidation and
cleaning process, but still resulted in quite poor quality. Obvi-
ously, EuroStats data are of much higher quality and more
reliable. Indeed, the weekly mortality per country appears
to be historically quite stable (less than 5.5% coefficient of
variation for the six countries of our study). Hence, we took
the weekly mortality of the five years previous to the pan-
demic as ground truth. However, for some countries, most
recent figures were either tagged as provisional or estimated.
While we considered the former to be an administrative issue
and still part of the error-free ground truth, we put the latter

5 https://github.com/CSSEGISandData/COVID-19/tree/master/csse_
covid_19_data/csse_covid_19_time_series
6 https://github.com/coviddata/coviddata
7 https://ec.europa.eu/eurostat/databrowser/view/demo_r_mwk2_ts/
default/table
8 https://ec.europa.eu/eurostat/web/nuts/background
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Table 1 Summary of the tables
in the experiment

Table Loc. Times Rows First Last

EU(r,w,#d) 222 1043 152, 938 2000W01 2019W52

EUe(r,w,#d) 222 73 15, 001 2000W01 2021W20

EU(c,w,#d) 33 1043 26, 177 2000W01 2019W52

EUe(c,w,#d) 34 1116 4125 2000W01 2021W20

JHU(c,d,#c,#d) 197 479 94, 363 20200119 20210521

JHU(r,d,#c,#d) 550 385 211, 365 20200129 20210216

together with the mortality of 2020/2021 in an s-table and
treated those data in the same way as the ones coming from
JHU.

We loaded the different data in a PostgreSQL database
with Pentaho Data Integration. These were divided in the six
tables shown in Table 1, together with the counters of differ-
ent locations and times, number of rows, and first and last
time point available. Data were split firstly according to the
source (namely EuroStats or JHU). Ground truth mortality
(i.e., until the end of 2019 and free of errors) is in ground
tables EU , while estimates and data of 2020/2021 are in
s-tables EUe. Different s-tables are also generated for dif-
ferent geographic granularities (namely region r or country
c), and relevantly, data from Eurostats are available per week
w, while data from JHU are available daily d. Both loca-
tion and temporal dimensions result in different (underlined)
key attributes for the corresponding tables. From EuroStats,
we only used the number of deaths #d, while from JHU we
took both COVID-19 cases #c and deaths #d. Attribute #d
is declared as free of variables in both EU ground tables
and its instances are consequently constants. Values coming
from EuroStats correspond exactly to the reported ones, but
to mitigate the noise (e.g., cases not reported during week-
ends being moved to the next week by some regions) in those
coming from JHU, we followed the common practice of tak-
ing the average in the previous seven days for both cases and
deaths.

Figure 13 shows a logical representation of our alignment
of the sources. Notational elements are introduced to facili-
tate the understanding, like “avg” instead of the “sum/count”
actually used in the current prototype. Dimensional tables
like date and firstadminunit and their corresponding joins
to facilitate selections over year and week of year (woy), or
the relationships between countries and regions, are omitted
for the sake of simplicity. This alignment reflects the knowl-
edge about the behaviour of COVID-19 pandemic, but other
alternative alignments could have been easily explored with
Eris. On the first hand, we take EU and EUe tables and
generate the weekly surplus of deaths after the sixth week
of 2020 by subtracting from the declared amounts, the aver-
age deaths in the last five years for the same week. This is
done both per region and country, since these values are not

always concordant (even if coming from the same source).
Then, regional results are aggregated per country andmerged
in the same table with the information provided already at
that level using a discriminated union to keep track of the
different origins. On the other hand, looking now at JHU
tables, we aggregate regional data in three different ways:
deaths per country and day, also deaths per region and week,
and finally cases per region and week with a lag of three
weeks (we will empirically justify this concrete value later).
Under the assumption of case-fatality ratio of 1.5% (observed
median on June 22nd, 2021 is 1.7% according to JHU9),
such transformation is applied to the cases before merging
and coalescing the weekly regional cases and deaths. Daily
deaths reported per country and those obtained after aggre-
gating regions are also coalesced and then aggregated per
week. Both branches of JHU data are finally merged with
a discriminated union into a single table. Finally, the four
branches (namely EuroStats regional data, EuroStats country
data, JHU regional data aligning cases and deaths, and JHU
regional data coalesced with JHU country data) are merged
into a single table with a discriminated union and finally coa-
lesced to generate the overall set of equations.

We restricted our analysis to only the six countries in
Table 2, chosen because of their relevance in the pandemic
and availability of regional data in both EuroStats and JHU.
Regarding the time, we only considered until February 2021,
to avoid the impact of vaccination. As previously explained,
to avoid the cost of errors is scaled to some extent by the
magnitude of the value, we replaced uncertain values v in
the ground tables with v · (1 + x) (or simply x if v = 0)
where x is an error variable. For each country and week, our
alignment generates a different system of intertwined equa-
tions, which is solved minimizing the discord (i.e., sum of
squared error variables as proposed in [30]).

In the table,we can see for each country, the number of sys-
tems of equations with the maximum number of variables10

(i.e., all possible data are available, what happens between
weeks 2020W26 and 2021W06, except for UK whose data
are only available in EuroStats until 2020W51), as well as

9 https://coronavirus.jhu.edu/data/mortality
10 We ignored 2020W53, because of its exceptional nature (nonexistent
for other years).
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Fig. 13 COVID data alignment (κz(R 
z S) is the implementation of fusion operation R � S in Definition 6)

Table 2 Characteristics of the equations per country

Country #Sys #Eqs #Vars Gener. Solve

DE 37 50 247 2.77s 0.24s

ES 37 54 278 2.79s 0.24s

IT 37 60 322 2.80s 0.24s

NL 37 42 187 2.73s 0.24s

SE 37 59 306 2.68s 0.25s

UK 30 26 75 2.73s 0.24s

Fig. 14 Error per different alignments of #c and #d

the equations and variables per system in those cases. The
average time in seconds to generate each system of equations
as a Python input to OSQP and solve it are also reported.

The line charts in Figs. 14 and 15 plot in the vertical axis
discordance (i.e., sum of squared errors in our case) divided
by the number of variables (i.e., average squared error per
variable), to make them more comparable, since depending
on the number of regions, different countries generate more
or less variables (see Table 2). Firstly, Fig. 14 varies the lag
between reported cases and deaths, for values from one to
eight weeks. We can see that the average discordance is min-
imized in all cases between two and four weeks (three in the
average). Thus, in the other charts, we used a lag of three

weeks between cases and deaths, which minimizes the aver-
age squared error of all six countries.

Figure 15a shows the evolution of the discordance since
2020W26until the lastweek being considered.We can appre-
ciate that during the first weeks reporting regional data,
countries adjusted and eventually improved their COVID-
19 surveillance mechanisms. However, all of them except
UK are too sensitive to the increase of cases and their con-
cordancy with real deaths is clearly affected by the arrival of
the second wave after summer and the third one at the end
of the year (we can clearly appreciate the two peaks in the
five other countries). Unfortunately the UK data reporting
to Eurostats stopped on December 31, 2020 due to Brexit,
so we cannot see from the Eurostats data whether the UK’s
error remained low during the rest of the infection wave in
early 2021.

Finally, Fig. 15b shows the clearer but less computa-
tionally challenging evolution of discordancy without con-
sidering regionally reported data (the small pointer in the
horizontal axis indicates the horizontal coincidence of both
charts). We can see a clear peak of discordancy during the
first wave that eventually improves, just to be more or less
affected again by the second and third waves depending on
the country. As a derived calculation of the observed dis-
cordancy, we can take the Pearson correlation coefficient
between those and the running average of the number of
cases (i.e., DE: 36%; ES: 80%; IT: 50%; NL: 73%; SE: 23%;
UK: 93%). Thus, we can observe that in the case of ES, NL
and UK, more than 70% of variation in the discordancy can
be explained by changes in the number of cases.

Without Eris, this study had been simply impossible,
because manually generating the corresponding SQL and
Python code had been too difficult for a humanbeing. Instead,
we generated them automatically and with all the correctness
guarantees from a relatively simple algebraic sequence of
operations. Alternatively, we could have also somehow eas-
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Fig. 15 Discordancy analysis of COVID-19 data aligning #c and #d with a lag of three weeks

ily defined the corresponding static assertions over JHU data
(indicating that they must exactly coincide) and count how
many times they were violated. Nevertheless, given the poor
quality of the source, all we had gotten is a flat line indicating
that all values are simply inconsistent in each and every week
with regard to those from EuroStats. Thus, our novel discord
measuring mechanism could be easily further integrated in a
more complex truth discovery iterative method to obtain the
trustworthiness weight of each source. We consider this to
be a potential direction for future work.

7 Related work

Out of the many papers identified in a recent systematic lit-
erature review on information fusion techniques [26], just
one [44] was found making use of consistency to evaluate
the quality of input data. However, it only uses the difference
between pairs of numbers as the basis for this evaluation.
Moreover, this is not actually done with the purpose of
evaluating the overall quality of the sources, but rather the
coincidence between instances with matching purpose.

There is existing work such as [18], [6] and [24] on
measuring differences in the descriptive multidimensional
data and their structure. Instead, we aim at evaluating the
reliability of the numerical indicators, given some required
alignment declaration (e.g., aggregation or scale correction).
At this point, it is important to highlight that, even if some
work like [36] proposes to treat textual data as indicators
(allowing to aggregate them too), we restricted ourselves to
numerical measures, whose discrepancies cannot be evalu-
ated using string similarity metrics. The latter would instead
be part of a preliminary step of entity matching over dimen-
sional descriptors.

Thus, the problems defined above are related to Consistent
QueryAnswering (CQA) [16],which tries to identify the sub-
set of a database that fulfills some integrity constraints and

corresponds to the problem of identifying certain answers
under open world assumption [5]. In CQA, distance between
two database instances is captured by symmetric difference
of tuples. However, in our case, the effects of an alignment
are not only reflected in the presence/absence of a tuple,
but also in the values it contains. This leads to the much
closer Database Fix Problem (DFP) [8, 12], which aims at
determining the existence of a fix at a bounded distance mea-
suring variations in the numerical values. Both DFP as well
as CQA become undecidable in the presence of aggrega-
tion constraints. Nonetheless, these have been used to drive
deduplication [15]. However, our case is different since we
are not questioning correspondences between entities to cre-
ate aggregation groups, but instead trying to quantify their
(in)consistency in the presence of complex transformations.

Another known result in the area of DFP is that prioritiz-
ing the repairs by considering preferences or priorities (like
the data sources in our case) just increases complexity. An
already explored idea is the use of where-provenance in the
justification of the new value [23], but with pure direct value
imputation (without any data transformation). In contrast, we
consider that there is not any master data, but multiple con-
tradictory sources, and we allow aggregates, while [23] only
uses equalities (neither aggregation nor any real arithmetic)
between master and target DBs. Related to this, in the area of
machine learning, we have [40], which aims at finding coun-
terfactual explanations for a prediction. The purpose in this
case is not to directly change the data, but to tell the user what
should have been done to get a different prediction. Like in
our case, this is treated as an optimization problem.

From the perspective of incompleteness in multidimen-
sional databases, attention is paid to missing values in the
measures. [37] presents an approach to maximize entropy,
and [9] a linear programming-based framework to impute
missing values under constraints generated by sibling data at
the same aggregation level, and parent data in higher levels.
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We could consider the later a special case of our approach,
with a single data source and predefined alignment.

In the context of data fusion, although our purpose is not
to merge records, but only evaluate how far they are from
one another, we can still position our work according to the
characteristics in [14] as follows:

– Data types we consider are continuous (a.k.a. quantita-
tive);

– Heterogeneity of data types is not considered in ourwork,
as we focus on dealing with purely numerical attributes;

– Single-truths (i.e., each attribute has a single value in
reality) is assumed;

– Source quality is the focus of our work by measuring
their discrepancies;

– Copying between sources is not considered (i.e., instead,
we consider they provide their values independently);

– Object relationships can be naturally expressed in the
form of symbolic expressions sharing variables;

– Object popularity and difficulty can be considered in the
cost functions.

The setting we have described in the context of data
fusion and truth discovery shares also many motivations
with previous work on provenance. The semiring provenance
model [25] is particularly related, explaining why why-
provenance [13] is not enough (e.g., in the case of alternative
sources for the same data) and we need how-provenance
to really understand how different inputs contribute to the
result. They propose the use of polynomials to capture such
kind of provenance. Further, [4] extended the semiring prove-
nance model to aggregations by mixing together annotations
and values, but the fine-grained provenance information may
become large.However, to the best of our knowledge no prac-
tical implementations of it exist. In contrast, our approach
does not have row-level annotations recording the conditions
that make a row present in the result, limits aggregation to
value- fields, and considers only sum and averaging forms of
aggregation, but we have provided practical implementations
of this more limited model. As noted earlier, our s-tables are
similar in some respects to c-tables studied in incomplete
information databases [27]. Our data model and queries are
more restricted in some ways, due to the restriction to finite
maps, and because we do not allow for conditions affecting
the presence of entire rows, but our approach supports aggre-
gation, which is critical for our application area and which
was not handled in the original work on c-tables. Similarly,
attribute-level uncertainty bounds (AU-BDs) in [21] allow to
annotate values with intervals (and a selected guess) encod-
ing a set of possible worlds. However, this does not help
to find the most likely world (beyond the provided selected
guess).

There have been implementations of semiring provenance
or c-tables in systems such as Orchestra [28], ProQL [29],
ProvSQL [41], and Mimir [35]. In Orchestra, provenance
annotations were used for update propagation in a distributed
data integration setting. ProQL and ProvSQL implement the
semiring model but do not allow for symbolic expressions in
data or support aggregation. Mimir is a system for querying
uncertain and probabilistic data based on c-tables; however,
in Mimir symbolic expressions and conditions are not actu-
ally materialized as results, instead the system fills in their
values with guesses in order to make queries executable
on standard RDBMSs. Thus, Mimir’s approach to c-tables
would not suffice for our needs since we need to generate the
symbolic constraints for the QP solver to solve. On the other
hand, our work shows how some of the symbolic computa-
tion involved in c-tables can be implemented in-database and
it would be interesting to consider whether this approach can
be extended to support full c-tables in future work.

We have reduced the concordancy evaluation problem to
quadratic programming, a well-studied optimization prob-
lem. Solvers such as OSQP [43] can handle systems with
thousands of equations and variables. However, we have not
made full use of the power of linear/quadratic programming.
For example, we could impose additional inequalities on
unknowns, to ensure that certain error or null values have to
be positive or within some range. Likewise, we have defined
the cost function in one specific way but quadratic program-
ming permits many other cost functions, like using different
weights for each variable or with additional linear cost fac-
tors. As suggested at the end of the last section, it may be
worthwhile to combine Eriswith other truth discovery tech-
niques to simultaneously estimate the weights needed for the
cost function and the guessed true values of the uncertain
data.

As noted in Sect. 2, we have focused on the problem of
evaluating concord/discord among data sources and not on
using the different data sources to estimate the actual values
being measured (like [33]). It would be interesting to extend
our framework by augmenting s-tables and queries with a
probabilistic interpretation, so that the optimal solution found
by quadratic programming produces statistically meaningful
consensus values (similarly to [32]).

8 Conclusions

In most data integration and cleaning scenarios, it is assumed
that there is some source of ground truth available (i.e., mas-
ter data or user input). However, in many realistic data fusion
settings, such as epidemiological surveillance, ground truth
is not obtainable and we need to integrate discordant data
sources with different levels of trustworthiness, complete-
ness and self-consistency. In such scenarios, we still would
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like to be able to flexibly and efficiently measure how close
the observed data are to our idealized expectations. Thus, we
proposed definitions of concordance and discordance cap-
turing, respectively, when data sources we wish to fuse are
compatiblewith one another, andmeasuring how far away the
observed data are from being concordant. Consequently, we
can compare measurements over time to understand whether
the different sources are becoming more or less consistent
with one another. We showed how to flexibly and efficiently
solve this problem by extending multidimensional relational
queries with symbolic evaluation and gave two relational
implementations of this approach reducing it to linear pro-
gramming or quadratic programming problems that can be
solved by an off-the-shelf library. We explored the perfor-
mance of the two approaches via microbenchmarks to assess
the scalability in data size and number of variables, illus-
trated the value of this information using a case study based
on COVID-19 case and death reporting from 2020-2021 and
found that the error calculated for six European countries at
different times correlates with intuition.

Different cost functions, alternatives in themanagement of
NULL values and zeros, as well as alternatives for variables
generation need to be carefully analyzed. However, the most
appropriate one will be case-dependent and so we plan to
do this separately. Moreover, our approach to symbolic eval-
uation of multidimensional queries appears to have further
applications which we plan to explore next, such supporting
other forms of uncertainty expressible as linear constraints,
and adapting our approach to produce statistically meaning-
ful estimates of the consensus values.

Acknowledgements The work of A. Abelló has been done under
project PID2020-117191RB-I00 funded by MCIN/AEI/ 10.13039
/501100011033. The work of J. Cheney was supported by ERC Con-
solidator Grant Skye (grant number 682315).

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Proofs

We state the desired correctness property for the type system
formally as follows:

Theorem 2 Suppose Σ � q : K � V is derivable using the
rules in Fig. 3. Then q denotes a function from Inst(Σ) to
relations R : K � V .

Proof The proof is by induction on the structure of deriva-
tions of Σ � q : K � V . Most cases are standard or
straightforward. The interesting cases are those where con-
straints are necessary to preserve the finite map property:
for example, projection-away and discriminated union. We
sketch the reasoning in each case.

For projection-away, we may only discard value-fields, so
the key-fields in the result are the same as those in the input
relation resulting from evaluating the subquery. Hence, the
finite map property is preserved.

For discriminated union, it is clear from the definition of
the semantics that the keys of the result are a tagged disjoint
union of the keys of the two input relations, which are both
finite maps. Hence the result is a finite map satisfying the FD
K , B → V .

For aggregation, the result may drop both key and value-
fields, but the value-fields will be aggregated (summed)
according to whatever keys remain, so the result will be a
finite map K ′ � V ′ by construction. ��

Note that some of the constraints on queries are not necessary
to ensure well-formed queries produce valid finite maps, but
are only needed to ensure that symbolic evaluation is correct
on s-tables. For example, if selection conditionswere allowed
on value-fields (that might be symbolic), then the presence
of a tuple with symbolic tested fields in the output would
depend on the unknown variable values. This conditional
membership is not supported in s-tables, but was considered
in c-tables inwhich the presence of a tuple in the output can be
constrained by a formula. While this would be an interesting
extension, we do not have a pressing need for this capability
in OLAP tools whereas it would significantly complicate the
formalism and implementation.

Figure 5 presents additional well-formedness rules for
alignment specifications. The judgmentΣ � Δ : Ω says that
in schema Σ , the definition of views Δ is well-formed and
produces a result matching schema Ω; that is, the new tables
defined in Δ are as specified in Ω . This well-formedness
judgment satisfies the following correctness property:

Theorem 3 Suppose Spec = [Σ,Ω,Δ] is an alignment
specification and Σ � Δ : Ω holds. Then we may inter-
pret Δ as a partial function from instances of Σ to instances
of Ω .

The proof is straightforward; the interpretation of Δ

attempts to construct the instance ofΩ one relation at a time,
using the (partial) fusion operation in each step. Fusion is
associative and commutative, so the result is well defined.
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A.1 Linearity

In order to ensure that constraints generated by symbolic
evaluation and fusion/coalescing are valid linear program-
ming problems, we need to restrict the s-tables/s-instances
to include linear expressions only and also restrict queries
so that derivation steps only involve linear combinations of
attributes. Subject to these restrictions, we can verify that for
well-formed queries and alignment specifications, the result-
ing s-tables, s-instances, and constraints are linear as well.

Theorem 4 Suppose q is well-formed, satisfying Σ � q :
K � V , and all occurrences of derivations in q are linear
expressions. Suppose in addition I is a well-formed linear
s-instance. Then, q(I ) is a well-formed linear s-table q(I ) :
K � V .

Proof The proof is by induction on the structure/well-
formedness derivation of q. Many cases, e.g., the base
case q = R, selection, projection, join, renaming, etc.,
are straightforward. The case of derivation follows because
derivations are required to be linear expressions over fields.
The case of aggregation follows because the only kind of
aggregation allowed is SUM, and adding together any num-
ber of linear expressions is still a linear expression. ��
Theorem 5 Suppose Spec = [Σ,Ω,Δ] is well-formed, sat-
isfying Σ � Δ : Ω , and all occurrences of derivations in Δ

are linear expressions. Suppose in addition I is awell-formed
linear s-instance matching Σ . Then, the result of evaluating
Δ on I , a constrained s-instance (J , φ), is linear, that is, J
is a linear s-instance matching Ω , and φ is a conjunction of
linear constraints.

Proof The proof is by induction on the structure/well-
formedness derivation of Σ � Δ : Ω . The base case is
immediate. For the inductive stepwhereΔ consists of a bind-
ing T := q1 � · · · � qn followed by another sequence Δ′,
note that in this case Ω must be of the form T : K � V ,Ω ′
and the well-formedness relations Σ � qi : K � V (for
each i) and Σ, T : K � V � Δ′ : Ω ′ must hold. Using
Theorem 4, since each qi is well-formed in Σ satisfying
Σ � qi : K � V , we know that each qi preserves linearity,
so qi (I ) is linear for each i . Moreover, the fusion of all of
the qi ’s can be expressed as an n-way coalescing of qi (I )
and we can inspect the definition of coalescing to check that
its result (T ′, φ) is a linear s-instance and a conjunction of
linear constraints. Since Σ, T : K � V � Δ′ : Ω ′ holds, we
can apply the induction hypothesis using the specification
[(Σ, T : K � V ),Δ′,Ω ′] and to I extended with T = T ′,
since I and T ′ are both linear. Thus, we can conclude that
the final s-instance and constraint (J , φ′) obtained are linear
also. ��

We assume from now on that the s-tables are linear and the
queries only involve linear expressions in derivation steps.

A.2 Correctness of symbolic evaluation

We require that symbolic evaluation correctly abstracts
ground evaluation, in the sense that evaluating symbolically
and then filling in ground values yields the same results as
evaluating on fully ground input tables. We also expect that,
as s-tables represent sets of ground tables, the symbolic eval-
uation of query operations over tables correctly reflects the
possible sets of ground tables resulting from the query oper-
ation.

These properties are closely related and similar to the stan-
dard correctness properties used for incomplete information
representations such as c-tables [27]. However, there is an
important difference: in the classical setting, the variables
representing unknown values are “scoped” at the level of
tables. That is, if table R and S both mention some variable
x , the occurrences in R and, respectively, S are local to the
respective table, and the value of x in R may not have any-
thing to do with that in S. In our case, however, we wish
to reason about situations where unknown values propagate
from source tables in I through view definitions in J , and we
definitely do not want the variables appearing in different
tables to be unrelated; instead, we want the variables to have
global scope.

To prove the main correctness property, we first need a
lemma concerning the behavior of the individual operators.

Lemma 1 Each s-table operation commutes with valuations:

1. σc(h(R)) = h(σc(R))

2. π̂W (h(R)) = h(π̂W (R))

3. h(R)��h(S) = h(R��S)

4. h(R) 
B h(S) = h(R 
B S)

5. h(R)\h(S) = h(R\S)

6. ρB �→B′(h(R)) = h(ρB �→B′(R))

7. εB:=e(h(R)) = h(εB:=e(R))

8. γK ′;V ′(h(R)) = h(γK ′;V ′(R))

Proof We consider selected cases; the rest are straightfor-
ward.

For part (1), we need to show that the result of a selection
applied to a grounded symbolic table h(R) is the same as
performing the selection symbolically and then applying the
grounding valuation. This is the case because the selection
condition cannot mention value-fields, and so the decision
whether to select a tuple cannot depend on symbolic fields
that might be affected by h.

For part (2), again since projection-away can only affect
value-fields, the key-fields are unaffected so performing the
projection-away on the grounded table h(R) is the same as
grounding the projected-away symbolic table.
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For part (3) the reasoning is similar to that for selec-
tion, since joins can only involve common key-fields and
not value-fields.

For part (4) again since the discriminant field B is a key-
field which cannot be affected by h, the result is immediate.

Parts (5) and (6) are likewise straightforward.
For part (7), the expression e used in the derivation will

not mention any variables in X (but only attributes of R),
so h will commute with e, and the desired result follows by
calculation.

Finally, for part (8) we again note that since key-fields
may not be symbolic, the keys of the result of aggregating the
grounded h(R) are the same as for aggregating the symbolic
table R, and by unfolding definitions we can check that the
results obtained are the same. ��
We now prove a slight generalization of Theorem 1:

Theorem 6 For any well-formed query q such that Σ � q :
K �V , any s-instance I ∈ I nst(Σ)with variables X and any
valuation h : R

X , we have h(q(I )) = q(h(I )). Moreover,
q�I � = �q(I )�.

Proof The second part (corresponding to Theorem1) follows
from the first. The proof of the first part is by induction on the
structure/ well-formedness judgment of q. Each case (except
for the base case of a relation name) corresponds to part of
Lemma 1. For the second part, we reason as follows:

q�I � = {q(J ) | J ∈ �I �} = {q(h(I )) | h : R
X } =

{h(q(I )) | h : R
X } = �q(I )�

��
This is similar to the standard results about c-tables showing
that they form a strong representation system for relational
queries over incomplete databases [27]. The main difference
is that, as previously said, in our setting, the variablesmapped
by h are globally scoped. This means that to correctly simu-
late operations that take multiple tables, such as joins and
unions, we do not need to rename the variables to avoid
unintended overlap. In fact, this would be incorrect: sup-
pose I (R) = {(a : 1, b : x)} and I (S) = {(a : 1, c : x)}.
Then using our semantics, the join R��S evaluated in I is
{(a = 1, b = x, c = x)} which represents all tuples where
a = 1 and the b and c fields are equal real numbers. In
contrast, using c-table semantics, the variables in R and S
would be renamed so the join result would be some variant
of {(a : 1, b : x ′, c : y′)} which represents all tuples whose
a component is 1, with no constraint relating b and c.
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