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Abstract
Location-based alerts have gained increasing popularity in recent years, whether in the context of healthcare (e.g., COVID-19
contact tracing), marketing (e.g., location-based advertising), or public safety. However, serious privacy concerns arise when
location data are used in clear in the process. Several solutions employ searchable encryption (SE) to achieve secure alerts
directly on encrypted locations. While doing so preserves privacy, the performance overhead incurred is high. We focus on
a prominent SE technique in the public-key setting–hidden vector encryption, and propose a graph embedding technique to
encode location data in a way that significantly boosts the performance of processing on ciphertexts. We show that the optimal
encoding is NP-hard, and we provide three heuristics that obtain significant performance gains: gray optimizer, multi-seed
gray optimizer and scaled gray optimizer. Furthermore, we investigate the more challenging case of dynamic alert zones,
where the area of interest changes over time. Our extensive experimental evaluation shows that our solutions can significantly
improve computational overhead compared to existing baselines.

Keywords Hidden vector encryption · Secure alert zones · Graph embedding

1 Introduction

Location data play an important part in offering customized
services tomobile users.Whether they are used to find nearby
points of interest, to offer location-based recommendations,
or to locate friends situated in proximity to each other, loca-
tion data significantly enrich the type of interactions between
users and their favorite services. However, current service
providers collect location data in clear, and often share it
with third parties, compromising users’ privacy. Movement
data can disclose sensitive details about an individual’s health
status, political orientation, alternative lifestyles, etc. Hence,

B Gabriel Ghinita
gghinita@hbku.edu.qa

Sina Shaham
sshaham@usc.edu

Cyrus Shahabi
shahabi@usc.edu

1 Department of Computer Science, University of Southern
California, Los Angeles, CA, USA

2 College of Science and Engineering, Hamad Bin Khalifa
University, Qatar Foundation, Doha, Qatar

it is important to support such location-based interactions
while protecting privacy.

Our focus is on secure alert zones, a type of location-based
servicewhere users report their locations in encrypted form to
a service provider, and then they receive alerts when an event
of interest occurs in their proximity. This operation is very
relevant to contact tracing, which is proving to be essential
in controlling pandemics, e.g., COVID-19. It is important
to determine if a mobile user came in close proximity to
an infected person, or to a surface that has been exposed
to the virus, but at the same time one must prevent against
intrusive surveillance of the population. More applications
of alert zones include public safety notifications (e.g., active
shooter), and commercial applications (e.g., notifyingmobile
users of nearby sales events).

Searchable encryption (SE) [5, 16, 26] is very suitable
for implementing secure alert zones. Users encrypt their
location before sending it to the service provider using a
special kind of encryption, which allows the evaluation of
predicates directly on ciphertexts. However, the underlying
encryption functions are not specifically designed for geospa-
tial queries, but for arbitrary keyword or range queries. As a
result, a data mapping step is typically performed to trans-
form spatial queries to the primitive operations supported on
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ciphertexts.Due to this translation, the performanceoverhead
can be significant. Some solutions use Symmetric Searchable
Encryption (SSE) [9, 16, 26], where a trusted entity knows the
secret key of the transformation, and collects the location of
all users before encrypting them and sending the ciphertext
to the service provider. While the performance of SSE can
be quite good, the system model that requires mobile users
to share their clear text locations with a trusted service is not
adequate from a privacy perspective, since it still incurs a
significant amount of disclosure.

To address the shortcomings of SSE models, the work in
[5] introduced the novel concept of hidden vector encryption
(HVE),which is anasymmetric type of encryption that allows
direct evaluation of predicates on top of ciphertext. Each user
encrypts her own location using the public key of the trans-
formation, and no trusted component that accesses locations
in clear is required. This approach has been considered in the
location context in [13, 18], with encouraging results. How-
ever, the performance overhead of HVE in the spatial domain
remains high. Motivated by this fact, we study techniques
to reduce the computational overhead of HVE. Specifically,
we derive special types of spatial data mapping using graph
embeddings, which allow us to express spatial queries with
predicates that are less computationally-intensive to evaluate.

In existing HVE work for geospatial data [13, 18], the
data domain is partitioned into a hierarchical data structure,
and each node in this structure is assigned a binary string
identifier. The binary representation of each node plays an
important part in the query encoding, and it influences the
amount of computation that needs to be executed when eval-
uating predicates on ciphertexts. However, the impact of the
specific encoding is not evaluated in-depth. Our approach
embeds the geospatial data domain to a high-dimensional
hypercube, and then it applies graph embedding [7] tech-
niques that directly target the reduction of computation
overhead in the predicate evaluation step. Finally, no existing
work considers the case of alert zones that change over time.
Support for dynamic alert zones is very important, given that
inmost use case scenarios, phenomena of interest evolve over
time (e.g., places visited by COVID carriers, area affected by
a gas leak, etc). Our work tackles this important challenge1.

Our specific contributions are:

– We introduce a novel transformation of the spatial data
domain based on graph embedding and Gray codes that
is able to model accurately the performance overhead

1 This submission is an extended version of the work in [25]. Addi-
tional contributions include: a complexity analysis of Gray-based
approaches (Sect. 4.3); novel techniques for supporting dynamic alert
zones (Sect. 5); and an updated experimental section, including empir-
ical evaluation of dynamic alert zones algorithms.

incurred when running HVE queries for spatial predi-
cates;

– We transform the problem of minimizing HVE compu-
tation to a graph problem, and show that the optimal
solution is NP-hard;

– We devise three heuristics: Gray Optimizer (GO), Multi-
Seed Gray Optimizer (MSGO) and Scaled Gray Opti-
mizer (SGO), that can solve the problem efficiently in
the embedded space, while reducing significantly the
computational overhead. The heuristics produce distinct
trade-offs between the time required to compute the
cell mappings and the runtime overhead when matching
ciphertexts;

– We propose models that take into account the spatial and
temporal evolution of alert zones, and choose encodings
that improve performance under dynamic conditions;

– We perform an extensive experimental evaluation which
shows that the proposed approaches are able to halve the
performance overhead incurred byHVEwhenprocessing
spatial queries.

The rest of the paper is organized as follows: Sect. 2 intro-
duces necessary background on the system model, including
anHVEprimer. Section3 provides the details of the proposed
graph embedding transformation. Section4 introduces sev-
eral heuristic algorithms that solve the problem efficiently.
Section5 focuses on modeling of dynamic alert zones, and
on advanced encodings under changing conditions. Section6
evaluates thoroughly the proposed approach on real-life
datasets. We survey related work in Sect. 7 and conclude in
Sect. 8.

2 Background

2.1 Systemmodel

Consider a [0,1]×[0,1] spatial data domain divided into n
non-overlapping partitions, denoted as

V = {v1, , v2, . . . , vn}. (1)

We use the term cell to refer to partitions, which can have
an arbitrary size and shape. In practice, a well-established
indexing technique can first be applied on top of the data
domain to partition the space according to some application-
specific criterion, such as expected density. For example, a
k-d-tree can be used in conjunction with a public dataset of
points of interest to split popular areas intomore fine-grained
cells, whereas coarser cells can be used for sparser areas.

An example of such a partitioning is provided in Fig. 3a.
The system architecture of location-based alert system is rep-
resented in Fig. 1, and consists of three types of entities:
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Table 1 Summary of notations Symbol Description

n Number of cells

k Length of HVE index

V = {⋃ vi } Set of all cells

C j Encrypted location of user j

T K Token j

M j message of user j

G1(C, E1) k-cube; vertices C = {⋃ ci }; edges E1
G2(V, E2) Complete graph; vertices V = {⋃ vi }; edges E2
(H1,H2, E3) Bipartite graph; node sets H1 and H2; edges E3
Di |c j Set of nodes in C with Hamming distance i from c j

Lx Set of all complete x-bit gray cycles, Lx = {⋃ li }
Sn state space with n cells

Qn state transition matrix with n cells

Pois(λ) Poisson distribution; occurrence rate λ

s Stationary distribution vector

i state i

1. Mobile Users subscribe to the alert system and periodi-
cally submit encrypted location updates.

2. The Trusted Authority (TA) is a trusted entity that
decides which are the alert zones, and creates for each
zone a search token that allows to check privately if a
user location falls within the alert zone or not.

3. The Server (S) is the provider of the alert service. It
receives encrypted updates from users and search tokens
from TA, and performs the predicate evaluation to decide
whether encrypted location Ci of user i falls within alert
zone j represented by token T K j . If the predicate holds,
the server learns message Mi encrypted by the user, oth-
erwise it learns nothing.

Table 1 summarizes the notations used throughout the
manuscript.

The system supports location-based alerts, with the fol-
lowing semantics: a Trusted Authority (TA) designates a
subset of cells as an alert zone, and all the users enclosed by
those cells must be notified. The TA can be, for instance, the
Center for Disease Control (CDC), who is monitoring cases
of a pandemic, andwishes to notify users whomay have been
affected; or, the TA can be some commercial entity that the
users subscribe to, and who notifies users when a sales event
occurs at selected locations.

The privacy requirement of the system dictates that the
server must not learn any information about the user loca-
tions, other than what can be derived from the match
outcome, i.e., whether the user is in a particular alert zone
or not. In case of a successful match, the server S learns
that user u is enclosed by zone z. In case of a non-match,
the server S learns only that the user is outside the zone z,

but no additional location information. Note that, this model
is applicable to many real-life scenarios. For instance, users
wish to keep their location private most of the time, but they
want to be immediately notified if they enter a zone where
their personal safety may be threatened. Furthermore, the
extent of alert zones is typically small compared to the entire
data domain, so the fact that S learns that u is not within
the set of alert zones does not disclose significant informa-
tion about u’s location. The TA can be an organization such
as CDC, or a city’s public emergency department, which is
trusted not to compromise user privacy, but at the same time
does not have the infrastructure to monitor a large user pop-
ulation, and outsources the service to a cloud provider.

2.2 HVE encryption primer

Hidden vector encryption (HVE) [5] is a searchable encryp-
tion system that supports predicates in the form of conjunc-
tive equality, range and subset queries. Search on ciphertexts
can be performedwith respect to a number of index attributes.
HVE represents an attribute as a bit vector (each element has
value 0 or 1), and the search predicate as a pattern vector
where each element can be 0, 1 or ’*’ (star) that signifies a
wildcard (or “don’t care”) value. Let l denote the HVEwidth,
which is the bit length of the attribute, and consequently that
of the search predicate. A predicate evaluates to True for a
ciphertext C if the attribute vector I used to encrypt C has
the same values as the pattern vector of the predicate in all
positions that are non-star in the latter. Figure 2 illustrates
the two cases of Match and Non-Match for HVE.

HVE is built on top of a symmetrical bilinear map of com-
posite order [5], which is a function e : G × G → GT such
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Fig. 1 Location-based alert system

Fig. 2 HVE evaluation

that ∀a, b ∈ G and ∀u, v ∈ Z it holds that e(au, bv) =
e(a, b)uv .G andGT are cyclic multiplicative groups of com-
posite order N = P · Q where P and Q are large primes of
equal bit length. We denote by Gp, Gq the subgroups of G

of orders P and Q, respectively. Let l denote the HVEwidth,
which is the bit length of the attribute, and consequently that
of the searchpredicate.HVEconsists of the followingphases:

Setup. The T A generates the public/secret (PK /SK ) key
pair and shares PK with the users. SK has the form:

SK = (gq ∈ Gq , a ∈ Zp,∀i ∈ [1..l] : ui , hi , wi , g, v ∈ Gp)

To generate PK , the T A first chooses at random elements
Ru,i , Rh,i , Rw,i ∈ Gq ,∀i ∈ [1..l] and Rv ∈ Gq . Next, PK
is determined as:

PK = (gq , V = vRv, A = e(g, v)a,

∀i ∈ [1..l] : Ui = ui Ru,i , Hi = hi Rh,i , Wi = wi Rw,i )

Encryption uses PK and takes as parameters index
attribute I and message M ∈ GT . The following random
elements are generated: Z , Zi,1, Zi,2 ∈ Gq and s ∈ Zn .
Then, the ciphertext is:

C = (C
′ = MAs, C0 = V s Z ,

∀i ∈ [1..l] : Ci,1 = (U Ii
i Hi )

s Zi,1, Ci,2 = Ws
i Zi,2)

Token Generation. Using SK , and given a search predi-
cate encoded as pattern vector I∗, the TA generates a search
token T K as follows: let J be the set of all indices i where
I∗[i] �= ∗. TA randomly generates ri,1 and ri,2 ∈ Zp,∀i ∈ J .
Then

T K = (I∗, K0 = ga
∏

i∈J

(uI∗[i]
i hi )

ri,1w
ri,2
i ,

∀i ∈ [1..l] : Ki,1 = vri ,1, Ki,2 = vri ,2)

Query is executed at the server, and evaluates if the pred-
icate represented by T K holds for ciphertext C . The server
attempts to determine the value of M as

M = C
′
/(e(C0, K0)/

∏

i∈J

e(Ci,1, Ki,1)e(Ci,2, Ki,2) (2)

If the index I based on which C was computed satisfies T K ,
then the actual value of M is returned, otherwise a special
number which is not in the valid message domain (denoted
by ⊥) is obtained.

2.3 Problem statement

Prior work [13, 18] assumed that all cells are equally likely
be in an alert zone. However, that is not the case in practice.
Some parts of the data domain (e.g., denser areas of a city)
are more likely to become alert zones. The cost of encrypted
alert zone enclosure evaluation is given by the number of
operations required to apply HVE matching at the service
provider. As we discussed in our HVE primer in Sect. 2.3,
the evaluation cost is directly proportional to the number of
non-star bits in the tokens. Armed with knowledge about the
likelihood of cells to be part of an alert zone, one can create
superior encodings that reduce processing overhead.

Our goal is to find an enhanced encoding that reduces
non-star bits for a given set of alert zone tokens. Denote by
p(vi ) the probability of cell vi being part of an alert zone.
Themutual probability of multiple cells indicates how likely
they are to be part of the same alert zone. Given individual
cell probabilities, the mutual probability of a set of i cells
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Fig. 3 An example of embedding graphs generated based on a sample grid

L = {v′
1, , v

′
2, . . . , v

′
i } is calculated as:

p(L) =
i∏

j=1

p(v′
j ). (3)

The problem we study is formally presented as follows:

Problem 1 Find an encoding of the grid that on average
reduces the number of non-star bits in the tokens generated
from alert zone cells.

In the above formulation, the correlation between cells
becoming part of an alert zone is assumed to be negligible.
In essence, the assumption is that cells are independent in
time and space (in Sect. 5, we provide an advanced modeling
of the correlation of alert zones over space and time).

3 Location domainmapping through graph
embedding

Our approach minimizes the number of non-star bits in alert
zone tokens by modeling the data domain partitioning as an
embedding problem of a k-cube onto a complete graph. We
denote a k-cube as G1(C, E1), where C = {c1, , c2, . . . , cn}
and ci = {0, 1}k . Figure 3b illustrates a k-cube generated
based on the sample partitioning in Fig 3a. In G1, two nodes
ci and c j are connected if their Hamming distance is equal
to one. We refer to such a bit as Hamming bit.

Definition 1 (Hamming Distance and Bits). The Hamming
distance between two indices ci and c j in G1(C, E1) is the
minimum number of substitutions required to transform ci
to c j , denoted by the function dh(.). We refer to the bits that
need to be substituted as the Hamming bits of the indices.

Example 1 The Hamming distance between indices c1 =
0100 and c2 = 0010 is two (dh(ci , c j ) = 2), and the Ham-
ming bits are the second and third most significant bits of the
indices.

The second graph required to formulate the problem of
minimizing the number of non-stars is a complete graph gen-
erated by all cells in the partitioning, denoted by G2(V, E2).
The set V represents the nodes corresponding to cells, and
an undirected edge connects every two nodes in G2.

Note that, every token (including those containing stars),
can be related to several cycles on the k-cube. For example,
token 00** represents four indices 0000, 0001, 0010, 0011,
which correspond to cycles (c1, c2, c6, c3) and (c1, c3, c6, c2)
on the k-cube in Fig. 3b.Unfortunately, there is no one-to-one
correspondence between the tokens and the cycles. In partic-
ular, for a larger number of stars, there exist several cycles
representing the same token. To generate a one-to-one cor-
respondence, we incorporate Binary-Reflected Gray (BRG)
encoding on the k-cube to create unique cycles corresponding
to tokens.

Definition 2 (BRG path on k-cube). A BRG path between
two nodes with non-zero Hamming distance is defined as the
path on the k-cube going from one node to another based on
BRG coding on Hamming bits.

As an example, the Hamming bits between 0001 and 1000
are the least and most significant bits, and the BRG path
connecting them on the k-cube in Fig. 3b includes indices
0001, 1001, and 1000 in the given order. One can see that
as the BRG codes are unique, the BRG path between two
indices on the k-cube is also unique. This characteristic of
BRG paths is formulated in Lemma 1.

Lemma 1 A BRG path between two nodes on a k-cube is
unique.

Proof The uniqueness of the path between two nodes on the
k-cube follows from the uniqueness of BRG code, as only
one such path can be constructed. 	

Definition 3 (Complete x-bit BRG cycle). Given a k-cube,
a complete x-bit BRG cycle is a cyclic BRG path with the
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length of 2x , in which only x bits are affected. We denote the
set of all possible complete x-bitBRGcycles byLx = {⋃ li }.
Example 2 In Fig. 3b, token *0** entails eight indices 0000,
0001, 0011, 0010, 1010, 1011, 1001, 1000. This token maps
uniquely to the complete 3-bit BRG cycle on the 4-cube with
nodes (c1, c2, c6, c3, c9, c13, c8, c5) and start point c1.

We can uniquely associate a token to a cycle on the k-cube.
Consider a tokenwith k bits and x stars. This token ismapped
to a complete x-bit BRG cycle on the k-cube, starting from a
node in which all the star bits are set to zero. Such a cycle is
unique and has a length of 2x . Based on this mapping, every
token is associated with a unique cycle on the k-cube, and
every complete x-bit BRG cycle is mapped to a unique token
with x-stars. Therefore, there is a one-to-one correspondence
between tokens and complete BRG cycles. The formulation
of Problem 1 based on graph embedding can be written as
follows:

Problem 2 Given two graphs G1(C, E1) and G2(V, E2), find
a mapping function F : G1 → G2 with the objective to

Maximize

{
k∑

i=1

p(Li )

}

. (4)

3.1 Gray optimizer (GO)

The problem of embedding a complete graph within a min-
imized size k-cube has been shown to be NP-hard [7]. We
develop an heuristic algorithm called Gray Optimizer that
solves Problem 2. Consider an initial node of the complete
graph vr ∈ V , and without loss of generality assume that it
is assigned to index c1. We refer to nodes in G1 interchange-
ably using their vertex id or binary index. The optimization
problem can be formulated as follows.

Problem 3 Given two graphs G1(C, E1) and G2(V, E2), and
the node vr ∈ V assigned to index c1, find amapping function
F : G1 → G2 that

Maximize

{
k∑

i=1

p(Li |vr )
}

. (5)

Problem 2 requires an assignment of vertices in G2 to
the nodes of G1 such that the probability of complete BRG
cycles is maximized; whereas Problem 3 seeks to maximize
the probability of cycles with respect to a particular node, in
this case vr , which is assigned to the index c1. A reasonable
candidate for assignment to c1 is the cell with the highest
probability, as it is most likely to be part of an alert zone. To
solve this problem, we propose the heuristic in Algorithm 1.
The input of the algorithm is the root index c1 ∈ G1, the root
node vr ∈ G2 (also called seed) and the graphs G1 and G2.

Algorithm 1: Gray Optimizer.
Input : G1; G2; c1; vr

1 Sort nodes in G2 based on probabilities
2 Assign vr to c1
3 for i in [1 : k] do
4 Initialize H1,H2 = ∅
5 H1 ← {(ki

)
non-assigned nodes in G2 with the highest

probability}
6 for c j ∈ Di |c1 do
7 Calculate p(l j/c j ) = ∏

v∈l j /c j p(v)

8 H2 ← p(l j/c j )
9 end

10 Sort nodes in H2
11 Match vertices in H1 to H2

12 end

Denote byDi |c1 the set of nodes on C that have aHamming
distance of i from c1. Note thatDi |c1 includes

(k
i

)
nodes, each

one having a Hamming distance of i from c1. The overall
assignment structure is as follows: first, Algorithm 1 assigns
the remaining nodes of V of the graph G2 to nodes in D1|c1 .
After assignment of all nodes inD1|c1 , the algorithm assigns
the nodes in D2|c1 and follows the same process until all
nodes are assigned (D1|c1 toDk|c1 ).An initial sorting of nodes
in V is conducted at the start of the algorithm, and is used
throughout the assignment process to reduce the computation
complexity.

The assignment objective in stage i of the process is to
maximize p(Li |vr ).

Note that (5) can be written as:

k∑

i=1

Maximize {p(Li |vr )} . (6)

where p(Li |vr ) represents the probability of all complete i-
bit BRG cycles that include c1 (vr → c1). Denote such a
cycle by l. Based on the following lemma, there exists one
and only one node c j in l that has a Hamming distance of
i from c1, which means that c j ∈ Di |c1 . Therefore, every
complete i-bit BRG cycle given index c1 includes one node
in Di |c1 . On the other hand, every node in Di |c1 corresponds
to a unique complete i-bit BRG cycle passing through c1,
as it results from Lemma 1. Therefore, all complete i-bit
BRG cycles are considered in stage i and we maximize their
probabilities in this stage of the assignment.

Lemma 2 For each node ci in a complete x-bit BRG cycle,
there exists oneandonly onenodewith theHammingdistance
of x from ci .

Proof A complete x-bit BRG cycle includes 2x nodes and
only x bits are affected. Therefore, the only index that can
exist with the Hamming distance of x from ci is the one in
which all x Hamming bits are flipped. 	
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Fig. 4 An example of embedding graphs generated based on a sample
grid

The assignment process in the stage i of GO creates a
bipartite graph, i.e., (H1,H2, E3), whereH1 andH2 are two
set of nodes, and E3 represents the set of edges. In this stage,
the nodes in setsD1|c1 ,D2|c1 ,…,Di−1|c1 are already assigned
and we aim to find the best assignment for the nodes in
Di |c1 such that p(Li |vr ) is maximized. Among the remain-
ing nodes in V , we choose (k

i

)
of them that have the highest

probabilities, as |Di |c1 | = (k
i

)
, and allocate them toH1.

On the other hand, for each node c j inDi |c1 , we construct
the unique complete i-bit BRG cycle including c j and c1.
Let us represent this cycle by l j . Note that all nodes included
in l j are assigned except c j . The algorithm calculates the
probability of the set of nodes in l j excluding c j and allocates
it to a node in H2. Based on (3), this probability can be
calculated as:

p(l j�{c j }) =
∏

v∈l j�{c j }
p(v), (7)

The algorithm repeats the process for all nodes inDi |c1 . Next,
the nodes inH2 are sorted, and the bestmatching is conducted
between these two sets of nodes by assigning the i th node
ofH1 to the i th node ofH2. The optimality of the matching
process is proven in Lemma 3, and the achievement of max-
imal assignment in each stage is proven in Lemma 4 (Fig.
4).

Lemma 3 Suppose in the i th step of the algorithm h1 to h(ki)
are the members ofH1 and h′

1 to h
′
(ki)

are the members ofH2

such that h1 ≤ h2 ≤ ... ≤ h(ki)
and h′

1 ≤ h′
2 ≤ ... ≤ h′

(ki)
.

The optimal value ofmatching is achievedwhen hi ismatched
with h′

i .

Proof Suppose that the converse is true. Hence, there exist
two nodes hi and hk which are paired with h′

j and h
′
t , respec-

tively, such that hi ≤ hk and h′
j ≥ h′

t . Since the current
matching is maximal by swapping h′

j and h′
t , we have

hi h
′
j + hkh

′
t + R > hi h

′
t + hkh

′
j + R, (8)

where R indicates the remaining pairing summation. Re-
writing equation (9) results in

(hi − hk) × (h′
j − h′

t ) > 0. (9)

However, hi ≤ hk and h′
j ≥ h′

t , therefore, the left hand side
of the equation is always less than or equal to zero, which
is a contradiction. The case for equality of equation (9) is
removed as swapping does not change the summation and
the lemma holds. 	

Lemma 4 In stage i , GO maximizes p(Li |vr ) given the cur-
rently assigned nodes (D1|c1, D2|c1, . . . , Di−1|c1).

Proof Weprove the lemmabased onmathematical induction.
Base case: For i = 1, given that the node vr is assigned to
c1, we aim to prove that GO maximizes p(L1|vr ). To start
with, GO chooses

(k
1

)
remaining nodes of V for the purpose

of assignment. The optimal assignment of nodes in D1|c1 is
a permutation of the chosen nodes; otherwise, they could be
replaced with a node with a higher probability that would
result in a higher value for p(L1|vr ). Next, the algorithm
generates a bipartite graph (H1,H2, E3). The probability of
chosen nodes are allocated toH1, and the nodes inH2 repre-
sent the probability of complete 1-bit gray cycles constructed
from c j ∈ D1|c1 and the node c1, excluding the probability
of c j itself. Next, the optimal matching is done by assigning
the j th maximum node in H2 to the j th maximum node in
H1, achieving maximal p(L1|vr ) given the node c1.

Induction step: Let us assume that GO has maximized the
probabilities of complete x-bit BRG cycles for x = 1 to i−1
in stages one to i − 1. We prove that in stage i , the algorithm
maximizes complete i-bit gray cycles, given the previously
assigned nodes.

Based on Lemma 2, all complete i-bit BRG cycles are
considered in stage i , as each such cycle includes exactly one
node inDi |c1 , which has the highest Hamming distance from
c1. GO starts by choosing the cells with the highest proba-
bilities and assigning them to H1. Same as in the base case,
we know that the optimal assignment in this stage includes
the chosen set of nodes. Next, the nodes in H2 are assigned
based onfinding the probability of complete i-bit BRGcycles
for nodes in Di |c1 , excluding the nodes themselves from the
probability. As the matching process is optimal match, the
best permutation of nodes inH1 is matched to complete i-bit
BRG cycles. 	
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4 Scaling up gray optimizer

The GO algorithm can lead to significant improvements in
the processing of HVE operations; however, there are two
major drawbacks once the algorithm is applied to grids with
high granularities. (i) The complexity of the algorithm cre-
ates a processing time bottleneck for its application in HVE;
(ii) The calculation of probabilities for large complete BRG
cycles may result in numerical inaccuracies. To make GO
applicable to grids with higher levels of granularity, we pro-
pose two variations.

The first proposed algorithm, called Multiple Seed Gray
Optimizer (MSGO) (Sect. 4.1), generates non-overlapping
clusters and appliesGOwithin each one of them. The second
algorithm, called Scaled Gray Optimizer (SGO) (Sect. 4.2)
takes a Breadth-First Search (BFS) [17] approach. The per-
formance of BFS is preferred to its counterpart Depth-First
Search (DFS) as the nodes closer to the seed have higher
probabilities. Thus, it is reasonable to consider those nodes
earlier in the process.

4.1 Multiple seed gray optimizer (MSGO)

The starting point of the GO algorithm, which we refer to
as seed, was chosen as the node in G2 with the maximum
probability. However, the algorithm can work starting with
any initial seed, then follow the assignment process for other
nodes in ascending order of their Hamming distance from the
seed. Furthermore, as BRG cycles become larger, their asso-
ciated probability becomes smaller. Thus, one way to reduce
the complexity of GO is to run the algorithm up to a particu-
lar depth. Essentially, the algorithm aims at optimizing BRG
cycles up to a certain length. We enhance GO by running
Algorithm 1 with multiple seeds, and also by limiting the
depth of the assignment.

Definition 4 Depth: For a given seed c j , theGO algorithm is
said to runwith a depth of i if it only considers the assignment
of nodes in D1|c j , D2|c j , . . . , Di |c j .

The pseudocode of the proposed approach is presented in
Algorithm 2. The algorithm starts by assigning the node with
the highest probability in G2 to the origin of G1 or a random
index. However, instead of running GO with respect to this
index for all depths from one to k, MSGO runs GO with the
specified depth as input. The algorithm completes the process
of assignment for a cluster of indices in G1. MSGO then
chooses a random index of G1 among the remaining indices
and assigns it to the node in G2 with maximum probability
among remaining nodes. Similarly, this index is used as a
seed for GO with the specified depth and generates a new
cluster. The cluster-based approach continues until all nodes
are assigned to an index. The algorithm supports variable
cluster sizes based on the underlying application.

Algorithm 2:Multiple Seed Gray Optimizer (MSGO).
Input : G1; G2; depth

1 Sort nodes in G2 based on probabilities
2 Select a random index on G1 which is not currently assigned
3 Assign the index with the node that has the maximum probability
in G2

4 Apply Algorithm 1 on the selected index with the specified depth
5 Repeat lines 2-4 until all indices are assigned

The MSGO algorithm provides a robust solution for grids
with higher granularity. The algorithm no longer suffers the
drawbacks of GO when the grid size grows, such as numeri-
cal inaccuracies in the calculation of the probability of large
cycles. The complexity of the algorithmdepends on the depth
chosen as input, and in low depths, it can be implemented
in O(n(log2 n)). MSGO can significantly reduce the num-
ber of operations required for the implementation of HVE
in location-based alert systems, and therefore, making it
a practical solution for preserving the privacy of users in
location-based alert systems.

4.2 Scaled gray optimizer (SGO)

SGO considers overlapping clusters and necessitates that all
nodes act as seed during the assignment process. The pseu-
docode of the proposed approach is presented inAlgorithm3.
SGO starts by assigning the node with the highest probabil-
ity to an index on G1. However, instead of assigning indices
with all depths from one to k with respect to index c1, the
SGO algorithm runs GO with the depth of one. Next, SGO
sorts the indices inD1|c1 based on their assigned probabilities
in descending order and runs GO with the depth of one on
each index. Once the algorithm is applied on all the indices
in D1|c1 , the process repeats for indices in D2|c1 , D3|c1 ,…,
etc. The algorithm continues until all indices are assigned to
a node.

Algorithm 3: Scaled Gray Optimizer (SGO).
Input : G1; G2

1 Sort nodes in G2 based on probabilities
2 Assign vr ∈ G2 with the highest probability to the origin of G1,
i.e., c1

3 Apply Algorithm 1 on c1 with the depth of one
4 for i in [1 : k] do
5 Sort Di |c1 in descending order of probabilities assigned to its

indices
6 for c j in Di |c1 do
7 Apply Algorithm 1 on c j with the depth of one
8 end
9 end
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4.3 Complexity analysis

The key computation overhead of the GO algorithm is in the
calculation of probability of BRG cycles. Let the function
T (.) return the computational complexity. In the i th step of
the algorithm, the nodes with the hamming distance of i from
c1 are assigned to an index on the k-cube, i.e.,Di |c1 . The num-
ber of nodes in Di |c1 is

(log2(n)
i

)
. For each one of such nodes

the complete BRG path is calculated which requires the mul-
tiplication of 2i − 1 probabilities. Therefore, the assignment
process for the nodes in Di |c1 requires

T (Di |c1) = (2i − 2) ×
(
log2(n)

i

)

(10)

operations. Hence, the total number of operations required
for the algorithm is

⋃

i

T (Di |c1) =
log2(n)∑

i=1

(2i − 2) ×
(
log2(n)

i

)

(11)

=
log2(n)∑

i=1

2i
(
log2(n)

i

)

− 2
log2(n)∑

i=1

(
log2(n)

i

)

.

(12)

From the binomial theorem,

log2(n)∑

i=1

2i
(
log2(n)

i

)

= (1 + 2)log2(n) − 1 = 3log2(n) − 1, (13)

and

log2(n)∑

i=1

(
log2(n)

i

)

= 2log2(n) − 1. (14)

Therefore, Eq. (12) can be written as

⋃

i

T (Di |c1) = nlog23 − 2n + 1. (15)

In addition to the above operations, there exists an initial
sorting of the probabilities that can be implemented based
on merge sort with the complexity of O(n(log2 n)), and a
sorting process in each stage for the nodes in H2. For the
latter, the complexity can be written as

log2(n)∑

i=1

O(

(
log2(n)

i

)

× log2(

(
log2(n)

i

)

)) = (16)

log2(n)∑

i=1

O(log2

(
log2(n)

i

)(log2(n)

i )
) ≤ (17)

log2(n)∑

i=1

O
(
log2 n

(log2(n)

i )
)

≤ (18)

O(log2 n
∑log2(n)

i=1 (log2(n)

i )) = O(n(log2 n)) (19)

Therefore, accounting for sorting, the closed-form expres-
sion for the total complexity isO(2n(log2 n))+nlog23−2n+1.

The MSGO algorithm is based on executing the GO
algorithm with shorter depths in a cluster based approach.
Suppose that the depth is set to r where r ≤ log2n. Running
the algorithm in each cluster with similar logic as the GO
requires the following number of operations.

r∑

i=1

(2i − 2)

(
log2(n)

i

)

. (20)

On the other hand, the total number of clusters is approxi-
mately

#clusters ≈ n/

r∑

i=1

(
log2(n)

i

)

. (21)

Therefore, the total complexity considering the initial sort-
ing algorithm is calculated as

sO(n(log2 n)) +
(

r∑

i=1

(2i − 2)

(
log2(n)

i

)

×(n/

r∑

i=1

(
log2(n)

i

))

. (22)

Defining the binary entropy function as

H2(x) = x log2(
1

x
) + (1 − x)log(

1

1 − x
), (23)

the following approximation can be used for deriving closed-
form expression for various cluster sizes in Eq. (22)

(
n

i

)

� 2nH2(r/n). (24)

Lastly, the SGOalgorithmexecutes theGOalgorithmwith
the depth of one and has the computational complexity of
O(n(log2 n)). The low computational complexity of SGO
makes it a suitable option for the encoding of grids with
higher levels of granularity.

5 Supporting dynamic alert zones

So far, we considered the case of static alert zones, and we
optimized the data encoding and token generation under this
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scenario. However, in practice, alert zones vary over time.
Whether an alert corresponds to a natural phenomenon (e.g.,
gas leak) or a human activity (e.g., COVID carrier move-
ment), alert zones exhibit spatio-temporal patterns that must
be accounted for in order to obtain fast performance.

Wemaintain the grid-based partition of the spatial domain
used for the static case, and we denote by state of the grid the
set of all alert cells at a given time. The occurrence probabil-
ity of a state can be modeled analytically and used as a basis
for grid encoding. The higher the statistical model accuracy,
the more precise the encoding becomes, reducing HVE oper-
ations overhead. Next, we build a comprehensive statistical
model to characterize alert zone evolution in space and time.

Definition 5 (State Space). For a given grid

V = {v1, , v2, . . . , vn},

let X be a random variable defined on all possible subsets
of the cells. The state space of X is defined as the power set
Sn = {1, 2, . . . , 2n}.

The cardinality of a state i represents the number of cells
included in the state and is denoted by |i|. The set of all states
with the cardinality of j are denoted by S | j |

n . Note that, the
notation is not concerned with a precise order of states. For
example, a grid with two cells {v1, v2} leads to the state space
of
S2 = {{∅}, {v1}, {v2}, {v1, v2}}, which is depicted by S2 =
{1, 2, 3, 4}; however, the order of states is not captured by
the notation. Two examples of such an assignment can be
{1 = {∅}, 2 = {v1}, 3 = {v2}, 4 = {v1, v2}}, and {1 =
{{v1, v2}}, 2 = {v2}, 3 = {v1}, 4 = ∅}. We provide more
details on the construction of the state space and ordering in
Sect. 5.4.

Let X0, X1, . . . , Xi , ... denote the sequence of random
variables modeling the occurrence of alert zones. The set of
possible values for Xi is the state space of the grid, and the
index i denotes the evolution of the process in time. The
probability of Xi being in a particular state j is denoted as
p(Xi = j). The probability of a cell becoming part of an alert
zone depends on underlying phenomena properties, existing
correlations among cells, and the history of alert zones on the
map. Moreover, probabilities do not remain constant over
time. We identify several distinct scenarios, and we create
a statistical model for each: (i) the states are independent
in both space and time; (ii) the states are independent in
space, but dependent in time (i.e., temporal causality); (iii)
the states are independent in time but exhibit space correla-
tion (i.e., spatial causality); and (iv) the states are dependent
in both time and space. The first case corresponds to the
static case introduced in the previous sections; the last case
is the most general one, whereas cases (ii) and (iii) are spe-
cial cases of (iv). Each case may be relevant under different

types of applications and data domains. Next, we investigate
in details each of the cases, and propose a data encoding and
token generation technique for each. Our goal is to obtain
an accurate representation of how the probabilities Xi are
distributed over the state space.

5.1 Independence in time and space

Having the independence assumption in space and time
greatly simplifies the problem formulation as the sequence
of random variables X0, X1, . . . , Xi , ... become a sequence
of independent and identically distributed (iid) random vari-
ables defined over the state space. Such modeling indicates
that the random variables X1 to Xi provide no information
about the random variable Xi+1. Therefore, the probabil-
ity mass function (PMF) of Xi depends on the probabilities
of individual cells. For a given Xi , the probability of cell
vi ∈ V becoming part of the alert zone is denoted by p(vi ),
and corresponds to a value between zero and one. Themutual
probability of a subset of cells L = {v1, , v2, . . . , vi } being
in an alert zone can be calculated as

p(L) =
i∏

j=1

p(v j ). (25)

The calculation of mutual probabilities is the direct result of
the independence assumption, which indicates that there are
no correlations between cells.

5.2 Independence in space, dependence in time

In this case, the grid state no longer consists of iid ran-
dom variables following the same PMFs. The probability
of state i at time j is no longer assumed to be equal to
the probability of being in state i at a different time k, i.e.,
p(X j = i) �= p(Xk = i). Our objective is to determine
whether the system reaches a steady state in which the prob-
abilities no longer change significantly over time. We model
the evolution of alert cells over time usingMarkov chains.We
assume that alert zones evolve incrementally by addition or
removal of a single cell at a time (this can always be achieved
by properly choosing the time granularity). Our choice of
modeling approach for alert zone evolution is guided by the
fact that several types of natural phenomena have been suc-
cessfully captured using Markov chains, such as gas leaks
[27], infectious disease spread [28] and even earthquakes
[6].Markovmodels have also been used extensively tomodel
human mobility, which would be relevant to alerts that are
triggered by human behavior (e.g., traffic jams, active shooter
situations).

The proposed model is represented in Fig. 5. States i and
j are connected if and only if the difference between their
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cardinality is one, |i− j| = 1. The only exception is the state
including all cells (if all cells are within the alert zone, then
all have the same status). The model assumes that each state
depends only on the previous state, and therefore, it follows
Markov chain properties, i.e., for all k ≥ 0,

p(Xk+1 = j|Xk = i, Xk−1 = ik−1, . . . , X0 = i0)

= p(Xk+1 = j|Xk = i).

(26)

The forward propagation to a state with a higher cardinal-
ity indicates the addition of an alert cell, whereas forward
propagation to a state with a lower cardinality indicates the
removal of an alert cell.

The value of p(Xk+1 = j|Xk = i) is called the transition
probability from state i to state j and we implicitly make the
assumption that the transition probabilities are homogeneous
over time. We are interested in understanding what the like-
lihood of being in a state is starting from any other state, and
whether the chain reaches a stationary distribution in which
the probabilities of individual states do not change over time.

First, we review three properties of the proposed Markov
chain:

Property 1 All states in the proposed model are recurrent.
Therefore, starting from any state of the chain, it is possible
to reach any other state, eventually.

Property 2 The proposedMarkov chain is irreducible, as for
any two states i and j, it is possible to reach one from the other
in a finite number of steps.

Property 3 The proposed Markov chain for modeling alert
zones is aperiodic, as the period of states is equal to one.

The above properties help to characterize the long-term
behaviour of the Markov chain. If after a certain period of
time the transition matrix of the chain reaches a stationary
distribution, it enables us to know the probability of each
state in the state space. The state transition matrix is defined
as follows:

Definition 6 (Transitionmatrix). For aMarkovchain X0, X1,

. . . , Xi , ... with a state space Sn = {1, 2, . . . , 2n}, let qi j =
p(Xk+1 = j|Xk = i) be the transition probability from state
i to state j. The 2n × 2n matrix Qn = (qi j ) is called the
transition matrix of the chain. The value of qi j for i < 2n is
defined as p(v), where v is the alert cell which exists in state
i (row) and does not exist in state j (column).

Recall that two states are connected if and only if their
cardinality differs by one. The last row of the matrix repre-
sents the only outgoing directed edge from the state with the
cardinality of n to the state with cardinality of zero. Thus,

Fig. 5 Proposed Markov model for alert zone evolution

the first element of the last row is one (q2n1 = 1) and all its
other elements are zero. Such a row ensures the aperiodicity
of the chain.

It can be inferred that the i th row of the transition matrix
corresponds to outgoing edges from the state i of theMarkov
chain. Therefore, in order for the matrix to maintain the
Markovian properties, the values in each row should sum
up to one, which is indeed the case for the proposed tran-
sition matrix. This property is termed as Markovian matrix
property. Let a row vector t = [t1, t2, . . . , t2n ] be the PMF
of X0, where ti = p(X0 = i). Then, based on the proper-
ties of Markovian chains, the marginal distribution of Xm is
given by the j th component of tQm

n , i.e., p(Xn = j). The
marginal distribution indicates that given a initial state i, the
probability of being in state j after m transitions is the j th

component of the vector tQm
n . We are interested in the long

run behaviour of the system and to understand if the proposed
model will reach a stationary distribution.

Definition 7 (Stationary distribution). Given aMarkov chain
with the transitionmatrix Qn , a row vector s = [s1, . . . , s2n ],
such that si ≥ 0 and

∑
i si = 1, is a stationary distribution if

sQn = s (27)

We elaborate further on the meaning of the vector s. Suppose
that the i th element of the vector corresponds to the state i. If
the proposed Markov chain reaches a stationary distribution,
this value represents probability p(Xn = i) for any n after
reaching the stationary distribution. Thus, the importance of
each state is revealed by its corresponding value in s.

Example 3 Consider a map with two cells v1 and v2, where
p(v1) = 0.2 and p(v2) = 0.8. The state space includes
four states {{∅}, {v1} {v2} {v1, v2}}, and the transition matrix
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is calculated as

Q2 =

⎡

⎢
⎢
⎣

0 0.2 0.8 0
0.2 0 0 0.8
0.8 0 0 0.2
1 0 0 0

⎤

⎥
⎥
⎦ ,

Solving Eq. (27) for the matrix Q2 results in the eigen
vector s = [0.4310, 0.0862, 0.3448, 0.1379]. Hence, the
probability of states are p({∅}) = 0.4310, p({v1}) = 0.0862,
p({v2}) = 0.3448, p({v1, v2}) = 0.1379.

There are three important questions to be answered about
the stationary distribution: (a) does it exist? (b) is it unique?
and (c) does theMarkov chain converge to the stationary dis-
tribution? The stationary distribution is the left eigenvector
of the transition matrix corresponding to the eigenvector of
one as shown by Eq. (27). The existence and uniqueness of
a stationary distribution for the proposed Markov model is
proven in the following theorem.

Theorem 1 There exists a unique stationary distribution for
the proposed Markov chain to model alert zones.

Proof According to [2], a stationary distribution exists for
any finite-state Markov chain, and if the chain is irreducible,
the solution is unique. Based on property 2, there exists
a unique stationary distribution for the model. Later in
Sect. 5.4, we present the recursive construction of matrix Qn

and show that the cardinality of the null space of the matrix
s(Qn − I ) is one. 	


The above theorem shows that there exists a unique sta-
tionary distribution for the proposed Markov model regard-
less of the initial probabilities of the cells; however, to reach
the stationary distribution, the chain needs to be aperiodic as
well as irreducible. Based on Property 3, the proposed model
is aperiodic. However, particular initial probabilities, includ-
ing zero values, can result in periodic chains. To address this
problem, we adopt a similar approach as the PageRank algo-
rithm [23], used to rank the relevance of webpages. Suppose
that before moving to a new state on the chain, a coin is
tossed with probability α of heads. If the result of the coin
toss is heads, the state evolves using the transition matrix Q;
otherwise, the system jumps to a state in a uniformly random
distribution. The resulting transitionmatrix is represented as:

On = αQ + (1 − α)
Jn
2n

, (28)

where Jn is a 2n × 2n matrix of all ones. The recommended
value [23] of α is 0.85. It can be observed that all elements of
On are positive, and therefore, the aperiodicity of the chain
is guaranteed. Hence, solving Eq. (27) for On has a solution
leading to a stationary distribution (s) as well as converging

to the stationary distribution. Similarly, the i th element of
the vector s for the new transition matrix On indicates the
significance of state i, as it represents p(Xm = i) for any
large value of m. In the following, we consider that the tran-
sition matrix is aperiodic, and we use the matrix Qn as our
reference.

Example 4 Going back to Example 3, the transition matrix is
derived as

O2 =

⎡

⎢
⎢
⎣

0.0375 0.2075 0.7175 0.0375
0.2075 0.0375 0.0375 0.7175
0.7175 0.0375 0.0375 0.2075
0.8875 0.0375 0.0375 0.0375

⎤

⎥
⎥
⎦ .

SolvingEq. (27) for thematrix O results in the eigenvector
of s = [0.4111, 0.1074, 0.3171, 0.1644]. Hence, the new
probability of states are p({∅}) = 0.4111, p({v1}) = 0.1074,
p({v2}) = 0.3171, p({v1, v2}) = 0.1644. One can check
the convergence by choosing a large enough value of m and
calculating t Om

2 starting by an arbitrary PMF on t . As an
example, if the vector t = [0.25, 0.25, 0.25, 0.25], then tO50

2
will result in

[0.4111, 0.1074, 0.3171, 0.1644]

which is the stationary distribution vector s.

5.3 Dependence in both space and time

In this section, we study how to capture correlation among
alert cells over timeby incorporating spatial distance between
cells within the Markov model. We embed spatial correla-
tions in the transition matrix while maintaining Markovian
properties, and thus the long-term behaviour of the model
can be better defined. We use as starting point the proposed
model from Fig. 5.

Consider a grid with two cells {v1, v2} and the state space
of S2 = {1 = {∅}, 2 = {v1}, 3 = {v2}, 4 = {v1, v2}}. The
matrix Q2 is derived as

Q2 =

⎡

⎢
⎢
⎣

0 p({v1}) p({v2}) 0
p({v1}) 0 0 p({v2})
p({v2}) 0 0 p({v1})

1 0 0 0

⎤

⎥
⎥
⎦ .

Investigating the transition matrix closely, one can see the
impact of independence between cells in thematrix. Consider
the entry Q2(2, 4) as an example. This entry indicates the
probability of going from state 2 = {v1} to state 4 = {v1, v2}
is p({v2}). In other words, the transition captures the fact
that the existence of another alert zone cell v1 did not impact
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the cell v2 (i.e., spatial independence between cells). More
formally, from the Bayes rule:

p({v1, v2}) = p(v2|v1)p(v1) → p({v1, v2}) = p(v2)p(v1),

(29)

given that

p(v2|v1) = p(v2). (30)

In Sect. 5.2, we assumed independence between states. To
address this issue, we propose the following method to cap-
ture the correlations between states without eliminating the
Markov property of the matrix Qn . The main idea behind the
approach is that cells that are in close proximity to the alert
zone are more likely to become part of the zone in the future.

Let X0, X1, . . . , Xi , ... be an order one Markov sequence
of random variables modeling the occurrence of the alert
zones, where Xi ’s are defined over the state space of the
grid. Without loss of generality assume that the j ′th row of
the matrix Q corresponds to the state {v1, v2, . . . , v j }. Based
on the proposedMarkov model in Fig. 5, it is known that this
state can evolve by the addition or removal of a single alert
cell. Therefore, there exist n non-zero elements in each row
of the matrix. For all vk ∈ V , we calculate the probability of
its removal or addition as:

If vk /∈{v1, v2, . . . , v j } then;
p({vk} ∪ {v1, v2, . . . , v j }) = p(vk)/(d(vk, c)) × β

If vk ∈{v1, v2, . . . , v j } then;
p({v1, v2, . . . , v j } − {vk}) = p(vk)/(d(vk, c)) × β,

where the function d(.) returns the Euclidean distance
between twopoints,β is a normalization factor over the entire
row, and the point c is the centre point of {v1, v2, . . . , v j },
calculated as

c =
⎛

⎝
j∑

i=1

v j

⎞

⎠ / j . (31)

Note that, in all above calculations, each cell’s center
point is used as its representative. The intuition behind
the approach is that the correlation between cells becomes
smaller as we go further away from the alert zone. The only
special case is when there exists a single-cell alert zone, and
we seek the probability of its removal. In this case d(vk, c)
becomes close to zero and p(vk)/(d(vk, c)) tends to go to
infinity. As there exist no other alert zone cell for this case, we
consider this probability as p(vk) instead of p(vk)/(d(vk, c))
to avoid inaccuracies. As an example, consider a grid with
three cells {v1, v2, v3} and the average point c. Suppose that

the j th row of thematrix Q3 corresponds to the state {v1, v2}.
In this row, there exist three nonzero elements:

p({v1}) = p(v2)/(d(v2, c)) × β

p({v2}) = p(v1)/(d(v1, c) × β

p({v1, v2, v3}) = p(v3/(d(v3, c)) × β,where

β = 1/(p(v2)/(d(v2, c)) + p(v1)/d(v1, c) + p(v3/d(v3, c)))

(32)

Theproposedmethod satisfies theMarkovianmatrix prop-
erty. Hence, it can be used as part of the Markov model in
Sect. 5.2 to capture the long-term behavior of the system.

5.4 Recursive construction andmonte carlo
sampling

Finding the eigenvector ofmatrix Qn corresponding to eigen-
value one is necessary to determine the probability of being in
a particular state at a given time p(Xn = i). The eigenvector
provides valuable information that enables us to prioritize
more likely states in the grid encoding process. However,
there are two important issues with its calculation: em (i)
The matrix Qn has dimensions of 2n × 2n . Even considering
a small grid with 100 cells, it requires an extremely large
storage capacity. (ii) The calculation of the eigenvector for
such a largematrix is expensive, withO(n3) [21] complexity.
For example, based on Householder transformations, eigen-
values and eigenvectors can be calculated with complexity
O(n2)+4n3/3. To address the high computational overhead,
we approximate the stationary distribution based on random
walks on the Markov model.

We start by explaining the recursive construction of the
matrix Qn . The rows and columns of the matrix depend on
the order in which states are chosen. We propose to construct
the states of the n + 1 cells, v1 to vn+1, from the grid with n
cells, v1 to vn as follows:

S2 = {{∅}, {v1}, {v2}, {v1, v2}}, (33)

Sn+1 = {Sn, Sn

⋃
vn+1}. (34)

For instance, S3 is constructed as

S3 = {{∅}, {v1}, {v2}, {v1, v2},
{v3}, {v1, v3}, {v2, v3}, {v1, v2, v3}},

(35)

The matrix Qn+1 can be constructed recursively as

Qn =
[

Wn−1 p(vn)I2n−1

p(vn)I2n−1 Wn−1

]

− Wn(2
n, :) + K2n , (36)
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where I2n is the identity matrix and K2n is an all-zero 2n ×2n

matrix except for element K2n (2n, 0) = 1, and

Wn =
[

Wn−1 p(vn)I2n−1

p(vn)I2n−1 Wn−1

]

(37)

given that

W2 =

⎡

⎢
⎢
⎣

0 p(v1) p(v2) 0
p(v1) 0 0 p(v2)
p(v2) 0 0 p(v1)
0 p(v2) p(v1) 0

⎤

⎥
⎥
⎦ .

The above representation of Qn works under the spa-
tial independence assumption, but the construction of states
holds regardless of that assumption.

To tackle the high computational complexity of determin-
ing eigenvectors, we use a probabilistic approach. PageR-
ank’s approach [23] to this problem is incorporating the
power iteration method to calculate the eigenvectors, but
still incurs a high computational complexity. An alternative
approach is the Monte Carlo approximation, which is widely
used in literature and results in an enhanced estimation of
the stationary distribution. The Monte Carlo method pro-
vides several advantages over deterministic power iteration
methods such as significantly lower computation complexity,
opportunities for parallel implementation, and it facilitates
updating of probabilities.

Themain idea behind theMonte Carlo approximation is to
start R random walks on the Markov model’s primary node,
i.e., state 1. Each random walk terminates with the proba-
bility of 1 − c and makes a transition to the next outgoing
node with the PMF specified in the transition matrix Qn . The
fraction of walks ending at a state over all the random walks
indicates the probability or significance of that state. The
vector of calculated probabilities for all states is the approx-
imation of stationary distribution. The number of samples
required to estimate the stationary distribution is shown to
pessimistically be in the order O(n2), where n indicates the
number of states; however, it is shown that n random walks
are enough to provide a reasonable approximation of a sta-
tionary distribution [1].

6 Experimental evaluation

6.1 Experimental setup

We conduct our experiments on a 3.40GHz core-i7 Intel pro-
cessor with 8GB RAM running 64-bit Windows 7 OS. The
code is implemented in Python, and we used the LogicMin
Library [10] for binary minimization of token expressions.

We compare the proposed approaches (GO, MGSO and
SGO) against the hierarchical Gray encoding technique from
[13] (labeled HGE), the state-of-the-art in location alerts on
HVE-encrypted data.

To model the probability of partition cells becoming
alert zones, we use the sigmoid function S(x) = 1/(1 +
exp−b(x−a)), where a and b are parameters controlling the
function shape. The output value is between zero and one.
The sigmoid function is a frequent model used in machine
learning, and we chose it because in practice, the probabil-
ity of individual cells becoming part of an alert zone can
be computed using such a model built on a regions’ map of
features (e.g., type of terrain, building designation, point-of-
sale information, etc). Parametera of the sigmoid controls the
inflection point of the curve, whereas b controls the gradient.

For each data point in the graphs, we average results over
500 queries.We use ten distinct seeds for all the random com-
ponents of our solution, and we display error bars (standard
deviation of results) for performance improvement figures.
(We excluded the error bars from the HVE operation count
results, since their variability may be high due to the differ-
ence in queries. Our purpose is to measure the improvement
in overhead per query among methods, and not differences
in overhead for distinct queries, which are expected to differ
significantly even for the same method).

Section6.2 evaluates GO in comparison with the HGE
benchmark from [12]. Section6.3 investigates the perfor-
mance of the proposedMSGO and SGO heuristics relative to
GO. Section6.4 provides an analysis of the effect that imper-
fect knowledge about cell probabilities has on performance
for GO, MSGO and SGO. Finally, Sect. 6.5 focuses on tech-
niques that support dynamic alert zones.

6.2 Gray optimizer evaluation

GO is our core proposed algorithm to reduce the number of
HVE operations required to support alert zones. Specifically,
by HVE operations we refer to the computation executed
by the server to determine matches between tokens and
encrypted user locations. Recall that, for each non-star item
in a token, a number of expensive bilinear map operations
are required. GO aims to minimize the number such non-star
items in tokens by choosing an appropriate encoding of the
domain. Our comparison benchmark is the approach from
[13] which uses a hierarchical quadtree structure to partition
the data domain. We refer to this approach as HGE, and we
present our result as an improvement in terms of computation
overhead compared with [13].

6.2.1 Improvement in HVE operations

Figure 6 summarizes the evaluation results of GO for three
logistic function parameter settings. The grid size is set to
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Fig. 6 Evaluation of GO, grid size = 100 cells

100 cells (recall from our earlier discussion that GO can only
support relatively low granularities). Figure 6 shows the total
number of bilinear pairings performed for a ciphertext-token
pair. GO clearly outperforms the approach from [13]. The
relative gain in performance of GO increases when the size
of the alert zone increases (i.e., when there aremore grid cells
covered by the alert zone). This can be explained by the fact
that a larger input set gives GO more flexibility to optimize
the encoding and decrease the number of non-star entries
in a token. In terms of percentage gains, GO can improve
performance by up to 40%, which is quite significant. Also,
note that the gains are significant for all parameters of the
sigmoid function used. In general, we identified that a higher
a value leads to more pronounced gains. This is an encourag-
ing factor, because a higher a corresponds to a more skewed
probability case, where a relatively small number of cells are
more likely to be included in an alert zone than others. In
practice, one would expect that to be the case, since events
that trigger alerts also tend to be concentrated over a relatively
small area (e.g., very popular hotspots, certain facilities that
present higher risks, like a chemical plant, etc.).

Fig. 7 Performance evaluation of GO for varying depth (100 cells)

6.2.2 Impact of depth

Recall that the reduction in computation achieved by GO
depends on the depth atwhich the algorithm is run (GOworks
similar to a depth-first search graph algorithm). In general,
running the algorithmwith a higher depth will produce better
results in terms of performance gain at runtime (i.e., when
matching is performed at the server), but it also requires a
lot more computational time to compute a good encoding
(which is a one-time cost). Figure 7 captures the impact of
depth on improvement. In this experiment, GO is executed on
a single cell with different depths, and the remaining cells are
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Fig. 8 Execution time

assigned randomly (the experiment is specifically designed
to show the effect of using lower depths onGO).As expected,
there is a clear increasing trend, with higher depths resulting
in better improvement factors. However, after a sharp ini-
tial gain (illustrated by the large distance between the chart
graphs corresponding to depths 2 and 3), the improvement
stabilizes, and it may no longer be worth increasing the depth
of the computation considerably (the gains are stabilizing
between depths 3 and 4).

6.2.3 Execution time

Figure 8a illustrates the execution time ofGO.Recall that, the
execution time of GO is influenced by the granularity of the
grid (finer granularities increase execution time). The results
show that GO can complete within a short execution time for
smaller grid sizes; however, as the grid granularity increases,
there is a sharp increase in execution time. Therefore, GO
may not be practical to apply for high granularity grids, and
that is themainmotivation behind our two variations,MSGO
and SGO (which are evaluated next). Moreover, as the grid
granularity increases, the length of cycles becomes larger,
which will also result in numerical inaccuracies when exe-
cuting GO. The execution time required by GO for values up
to 600 cells is around 10s. We observed that this value is the
maximum number of cells for which GO performs reason-
ably; beyond this level, the algorithm is not suitable due to
increased execution time and numerical inaccuracies associ-
ated with the calculation of probabilities for large cycles.

6.3 Evaluation of GO variations on higher
granularity grids

As discussed previously, GO does not perform well when
directly applied to high granularity grids. To improve the
computational complexity of GO, we proposed two exten-
sions of the algorithm, namely, MSGO and SGO. Next, we
evaluate experimentally both these variations.

6.3.1 MSGO

Figure 9 illustrates the performance of MSGO for vari-
ous algorithms depths. Unlike the single seed GO, we are
able to evaluate the performance of MSGO for grids with
much higher granularity (i.e., 1024 cells in this case). There
is a similar trend in terms of gain as we have observed with
GO, where larger alert zones provide more opportunities
for advantageous encodings, and thus overall performance
is improved (the percentage of HVE operations eliminated
is higher). The relative gain obtained is very close to 40%
compared to the benchmark. Also, the absolute amount of
improvement is better than for GO in all cases. This occurs
due to the fact that MSGO can support higher-granularity
grids, and in this setting there is more flexibility in choosing
a good encoding (due to the larger number of cells, there are
significantly more choices for our algorithm). As expected,
increasing the depth of MSGO leads to higher improvement
percentage, but the trade-off is a larger computation com-
plexity.

Comparing Figs. 6 and 9, we remark that the MSGO
algorithm obtains similar performance gains as the core algo-
rithm GO for low granularity grids, but with a much lower
computational overhead. For high granularity grids, GO can-
not keep up in terms of computational overhead, whereas
MSGO scales reasonably well, and it is able to still obtain
significant improvements. Onemain reason is thatMSGO no
longer requires the calculationof probabilities of large cycles,
avoiding numerical inaccuracies and reducing overall com-
putational overhead. The complexity of the algorithm can be
as low asO(n(log2 n)) depending on the chosen depth value,
which provides a robust and efficient solution for reducing
the number of HVE operations.

The execution time of MSGO is illustrated in Fig. 8b.
The graph indicates that even for a high level of granularity,
such as 4, 000, the algorithm requires less than 15 minutes to
encode the grid, depending on the specified depth at the input.
As expected, by increasing the depth of the algorithm, better
performance can be achieved in terms of HVE operations,
at the cost of higher computational overhead. The MSGO
algorithm can be extended for an arbitrary number of cells on
the grid, and also it may have various cluster sizes depending
on the application.
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Fig. 9 Performance evaluation of MSGO (grid size = 1024 cells)

Fig. 10 SGO performance evaluation, varying grid size

6.3.2 SGO

Figure 10 illustrates the performance gain obtained by SGO.
In this experiment, we focused on applying the algorithm
to much larger number of cells, up to 202, 500 (which is
equivalent to a 450×450 square grid). Similar to the MSGO
algorithm, the improvement achieved by SGO occurs even

when the alert zones are small. Since the overall number of
cells is larger, the SGO algorithm has even more flexibility
in choosing an advantageous encoding, resulting in strong
performance gains. For example, at 9% ratio of alert cells, the
SGO algorithm results in 25.8, 26, and 27.3% improvements
for grid sizes of 10, 000, 28, 900, and 50, 625, respectively.
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Fig. 11 Performance of algorithms, varying grid size, 30% of cells on alert

The execution time of SGO is shown in Fig. 8c. Even for
very large grid sizes, such as 50, 625, the algorithm requires
less than six minutes to encode the grid. Therefore, the sys-
tem can be set to regularly update the probabilities and run
the algorithm at six-minute intervals, if needed. To compare
this time performance with GO, consider the maximum grid
size for which the encoding can be computed within 60s in
each case. As shown in Fig. 8a, this number corresponds to
a grid size of 1200 for GO, whereas in a similar time, SGO
can be applied on the grid size of 22, 000 cells. Therefore,
the SGO algorithm requires significantly lower computation
overhead to execute compared with GO and even MSGO
algorithms, while the performance gain in terms of HVE
operations reductions is still solid.

Figure 11 presents the result of algorithms by fixing the
percentage of alerted cells to 30% and varying the grid size. It
can be seen that the performance improvement of algorithms
stays in a comparablemargin for varyinggrid sizes. The slight
fluctuation in graphs is due to two primary reasons (i) as all
codewords have the same length, increasing the quantization
level result in an addition of a bit to all codewords, and (ii)
the initial probabilities are assigned to the cells in a random
process based on the sigmoid activation function.

6.4 Imperfect probabilities information

The knowledge of cell probabilities plays an important role
in the reduction of HVE operations. These probabilities are
input to GO and its extensions SGO and MSGO, used to
find an enhanced encoding of space. Having imperfect initial
cell probabilities can negatively impact the performance of
algorithms by deviating the optimization result. Therefore,
we aim at investigating the effect of imperfect initial prob-

abilities on the improvement achieved compared with the
previous work (HGE). This is done by the addition of noise
to cell probabilities at the input of algorithms modeling the
inaccuracies that might exist. Let us briefly illustrate how
the addition of noise is conducted. Given the vector of cell
probabilities:

Probability of alert = [p(v1), p(v2), . . . , p(vn)],

each probability is added with an iid uniformly distributed
random noise n between [0, u], where u indicates the maxi-
mum noise value. For example, if the percentage of noise is
20%, this value is set to 0.2, and the random noise is gen-
erated uniformly in the interval of [0, 0.2]. Doing so, the
transformed probabilities are acquired as

[p(v1)′, p(v2)
′, . . . , p(vn)

′], where p(vi )
′ = p(vi ) + ni .

Note that the values are considered to be cyclic between zero
and one, i.e., if the noise of 0.5 is addedwith a cell probability
of 0.8, the resulting value would be recorded as 0.3. Hence,
with 100% of noise, it is expected that the numbers would
be uniformly distributed.

Figure 12 indicates the sensitivity of GO, MSGO, and
SGO to imperfect probability values used as input. For each
algorithm, the number of HVE operations required is shown
as well as the improvement gained in the performance com-
pared with the previous work. The x-axis represents the
percentage of noise added to the perfect probability infor-
mation varied between 0 to 100, and the y-axis indicates
HVE operations required side by side to the improvement
achieved. The percentage of alerted cells is set to 40% in all
graphs.
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Fig. 12 Sensitivity analysis of algorithms, 40% alerted cells

Theoverall trendof reduction in theperformance improve-
ment by the addition of noise is consistent across all three
algorithms. The improvement gained from algorithms stays
at its highest when there exists no amount of noise at the
input. The figure gradually drops as more noise is applied
between zero to 50%, after which the performance improve-
ment becomes almost negligible.

As expected, in the case of maximum noise, no informa-
tion is available regarding probabilities, and therefore, no
further gain could be made with respect to HGE. Hence,
at 100% of noise, the number of HVE operations required
fromall algorithms converges to theHVEoperations ofHGE.
The rate of sensitivity to imperfect information varies among
algorithms. Looking at 10% of noise, it can be seen that the
drop in MSGO performance occurs at a higher rate than the
other two algorithms with GO and SGO indicating 25% loss
in the performance against the loss of 40% for the MSGO
algorithm. Overall, MSGO shows a higher sensitivity com-
pared with the GO and SGO algorithms.

6.5 Dynamic alert zones

So far, we evaluated techniques for static alert zones. Next,
we measure the performance of our proposed technique for
dynamic alert zones introduced in Sect. 5.

Figure 13 investigates the performance gain acquired by
applying the proposed Markov model. The random path
approach (Monte Carlo sampling) is used as the underlying
method to compute the transitionmatrix’s stationary distribu-
tion, minimizing the induced computation complexity on the
system.The x-axis of the graphs shows the percentage of alert
cells, and the y-axis represents the percentage of improve-

ment as well as the number of HVE operations required. To
distinguish between the two modeling approaches, perfor-
mance improvement achieved by incorporating the Markov
model is labeled as dynamic, and the scenario in which the
time dependence is not considered is referred to as static.
The experiment is designed by initializing both static and
dynamic approacheswith the same set of initial probabilities;
however, the system would continue evolving in a uniformly
distributed manner. Therefore, if there are m outgoing edges
from a state of themodel, the corresponding probability is set
to 1/m. The aim is to see if the Markov model is able to cap-
ture the evolution of the system and how much improvement
can be achieved with the gained information. As before, the
value of the a and b are set to 0.75 and 10with the termination
probability of 0.4.

Figure 13 shows that the dynamicmethod can predict well
the evolution of alert zones, as the resulting encoding requires
far fewer HVE operations. The performance gain achieved
for all three of the algorithms is significant. The percentage
of improvement is approximately 35% to 50%, indicating
more impact on GO compared to MSGO and SGO.

7 Related work

7.1 Location privacy

Preserving the privacy of users in communication networks
and online platforms has been one of the most challenging
research problems in the past two decades. In the widely
accepted scenario, users provide their location to service
providers in exchange for location-based services they offer.

123



204 S. Shaham et al.

Fig. 13 Markov model versus static approach

The goal is to provide the service without user privacy being
compromised by any of the parties involved. Early works
to tackle this problem were focused on hiding or obfus-
cating user locations to achieve a privacy metric termed as
k-anonymity. The location of a user is said to be k-anonymous
if it is not distinguishable from at least k − 1 other queried
locations [22].

In [15], the authors aim to provide k-anonymity by hiding
the location of user among k−1 fake locations and requesting
for desired services for all k locations at the same time. The
generation of such dummy locations based on a virtual grid or
circle was considered in [20]. The authors in [19] conducted
the selection of dummy locations predicated on the num-
ber of queries made on the map and aimed at increasing the
entropy of k locations in each set. In [8], random regions that
enclose the user locations were introduced to bring uncer-
tainty in the authentication of user locations. Unfortunately,
fake locations can be revealed particularly in trajectories and
with the existence of prior knowledge about the map and
users.

Later on, approaches based on Cloaking Regions (CRs)
proposed by [14] gained momentum in the literature. The
principal idea behind this method is to use a trusted
anonymizer that clusters k real user locations and query the
area they are enclosed by to retrieve points of interest. Doing
so, CRs aim to achieve k-anonymity for users and preserve
their privacy. This approach is partially effective when snap-
shots of trajectories are considered, but once users are seen
in trajectories, their location privacy would be severely at
risk [24]. Even for individual snapshots, it must be noted
that a coarse area of real locations is released to the ser-

vice provider, which could threaten the location privacy of
users. Moreover, the CR-based approaches are susceptible to
inference attacks predicated on the background knowledge
or so-called side information. One such side information is
the knowledge about the number of queriesmade on different
locations of the map [19].

More recently, a model for privacy preservation in statisti-
cal databases named differential privacy (DP) was developed
in [11]. DP only supports aggregate queries, thus it is not
suitable for alert systems, such as ours, since it forbids any
disclosure that leaks the presence of an individual record in
the data. In the case of location alerts, we need to assess spa-
tial predicates and notify individual users, which goes against
the founding principle of DP. Therefore, protecting location
attributes with searchable encryption is the preferred solu-
tion.

Closer to HVE approach, a private information proto-
col was proposed in [12]. The PIR technique is based on
cryptography and shown to be secure for private retrieval
of information. Despite the promising results, there exists an
assumption behind PIR approach that the user already knows
about the points of interest. Therefore, PIR is not suitable for
location-based alert systems as users are not aware of alert
zone whereabouts.

7.2 Searchable encryption

Originated from works such as [26], the concept of search
encryption was proposed to provide a secure cryptographic
search of keywords. Initially, only the exact matches of key-
wordswere supported and later on the approachwas extended
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Table 2 Summary of the proposed algorithms

Algorithms Possible granu-
larity

Complexity Recommended
depth

Number of seeds Application

Gray Optimizer Low O(2n(log2 n)) +
nlog23 − 2n + 1

| log2 n| one The core algo-
rithm used in
MSGO and SGO,
which is suitable
for low granular-
ity grids due to
high complexity

MSGO Medium to high The minimum
of O(n(log2 n))

depending on the
depth variable

Depth=4 when
the clusters are of
equal length, oth-
erwise it depends
on the application

Equal to number
of clusters

Advantageous in
scenarios where
the optimization
is required for
particular sub-
sets of the grid.
For example, the
service is needed
for two major
non-overlapping
organizations

SGO High O(n(log2 n)) One n SGO requires
the lowest com-
plexity, and it is
advantageous in
scenarios where
the aim is to opti-
mize the number
of HVE opera-
tions for all the
cells with equal
significance

for comparison queries in [4], and to subset queries and con-
junctions of equality in [5]. The authors in [5] also proposed
the concept of HVE, used as the underlying tool to provide
a secure location-based alert system. This approach and its
extension in [3] preserves the privacy of encrypted messages
and tokenswith the overheadof high computational complex-
ity. The authors in [13] introduced and adopted the HVE for
location-based alert systems, conducting the predicate match
at a trusted provider, preserving the privacy of encrypted
messages as well as tokens. Despite the promising results
of the approach for privacy preservation in location-based
alert systems, further reduction of computational overhead
is necessary to increase the practicality.

8 Conclusion

We proposed a family of techniques to reduce the compu-
tational overhead of HVE predicate evaluation in location-
based alert systems. Specifically, we used graph embeddings
to find advantageous domain space encodings that help
reduce the required number of expensive HVE operations.
Our heuristic solutions provide a significant improvement in

computation compared to existing work, and they can scale
to domain partitionings of fine granularity. In addition, we
studied how to extend these techniques to work for the chal-
lenging setting of dynamic alert zones. Table 2 summarizes
the properties of the proposed approaches.

In future work, we will focus on deriving cost models and
strategies to reduce the HVE overhead based on workload-
specific requirements. Certain families of tasks may exhibit
specific patterns of operations, which can be taken into
account to optimize HVE matching performance, as well as
to re-use computation. We will also investigate extending
the graph embedding approach to other types of searchable
encryption, beyond HVE (e.g., Inner Product Evaluation),
which exhibit different types of internal algebraic operations.
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