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Abstract
Many real-world applications operate on dynamic graphs to perform important tasks. In this article, we study batch-dynamic
algorithms that are capable of updating distance labelling efficiently in order to reflect the effects of rapid changes on such
graphs. To explore the full pruning potentials, we first characterize the minimal set of vertices being affected by batch updates.
Then, we reveal patterns of interactions among different updates (edge insertions and edge deletions) and leverage them to
design pruning rules for reducing update search space. These interesting findings lead us to developing a new batch-dynamic
method, called BatchHL+, which can dynamize labelling for distance queries much more efficiently than existing work. We
provide formal proofs for the correctness and minimality of BatchHL+ which are non-trivial and require a delicate analysis
of patterns of interactions. Empirically, we have evaluated the performance of BatchHL+ on 15 real-world networks. The
results show that BatchHL+ significantly outperforms the state-of-the-art methods with up to 3 orders of magnitude faster in
reflecting updates of rapidly changing graphs for distance queries.

Keywords Shortest-path distance · Batch-dynamic graphs · 2-Hop cover · High-way cover · Distance labelling maintenance ·
Graph algorithms

1 Introduction

Batch-dynamic algorithms on graphs have attracted consid-
erable interest in recent years, for both fundamental research
and practical applications [2, 3, 14, 15, 18, 29, 41]. Dif-
ferent from traditional dynamic algorithms which handle
single changes sequentially—one at a time, batch-dynamic
algorithms focus on dynamically maintaining graph proper-
ties, albeit graphs may undergo rapid changes through large
batches of updates. Nowadays, many real-world applications
operate on rapidly changing graphs, such as communica-
tion networks [34], context-aware search in web graphs [37],
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social network analysis [7, 38], route-planning in road net-
works [1, 13], and management of resources in computer
networks [8].

Given a graph, a distance query computes the shortest
path distance between two vertices in the graph, which is
a fundamental problem both theoretically and in practice.
A classical approach to answer distance queries is to run
the Dijkstra’s algorithm for non-negative weighted graphs or
breadth-first search algorithm for unweighted graphs [36].
However, these algorithms are inefficient for large graphs. A
well-established technique for speeding up query response
time is to pre-compute and store distance labelling such
as 2-hop labelling [11] and in particular pruned landmark
labelling [4]. Although these labelling techniques have been
shown to be effective in improving query response time on
static graphs, the use of distance labelling poses an additional
challenge for dynamic graphs—“How to efficiently update
distance labelling in order to reflect changes on graphs, par-
ticularly when changes occur rapidly?”

Several studies have attempted to address this challenge
by developing dynamic 2-hop labellings (in particular pruned
landmark labellings) in the sequential setting which process
one single update (edge insertion or edge deletion) at a time
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Fig. 1 Ahigh-level overview of our batch-dynamicmethodBatchHL+:
(left) A graph G with a landmark 5 on which a batch update (a set
of edge insertions and deletions) is performed; (middle) A compari-
son of affected vertices being identified by the state-of-the-art method

BatchHL and our proposed method BatchHL+; (right) Three different
interaction patterns in which v can be pruned by BatchHL+ but cannot
be pruned by BatchHL

[5, 12, 23, 35]. However, the size of such distance labellings
can grow quadratically with the size of a graph. This not only
limits the applicability of these distance labellings to graphs
with up to millions of nodes and edges, but also increases
the difficulty and complexity of updating labellings. That is
to say, even if such distance labellings can be constructed on
graphs, the computational cost of updating them to reflect
rapid changes is still unbearably high.

Recently, a batch-dynamic method to answer distance
queries, namely BatchHL, has been proposed [18]. The key
idea of BatchHL is to combine pre-computed labelling with
online searches so as to exploit the merits of both sides—
accelerating query response time through a partial distance
labelling that is of limited size but can bound online search
space. Further, BatchHL can efficiently dynamize a partial
distance labelling to reflect large batches of updates on a
graph. It has been shown [18] that BatchHL offers significant
performance gains in comparison with other state-of-the-art
methods for answering distance queries on dynamic graphs
and can scale to billion-scale graphs without compromising
query and update performance.

In this work, we further explore possible ways to advance
the design of batch-dynamic algorithms for distance queries.
We first analyse how different types of updates (edge inser-
tion and edge deletion) interact with each other. Then, based
on that, we unearth new patterns of update interactions that
can be leveraged to design pruning rules for reducing update
search space. These interesting findings lead us to devel-
oping a new batch-dynamic algorithm, called BatchHL+,
which can dynamize labelling for distance queries much
more efficiently than BatchHL on graphs that undergo rapid
changes. Figure 1 presents a high-level overview of com-
paring BatchHL and BatchHL+ in terms of several typical

update interaction patterns. We can see that the search space
of BatchHL, the state-of-the-art method, is more exhaus-
tive than BatchHL+ when updating labelling to reflect batch
updates on a graph. This is because BatchHL+ further prunes
search space by exploiting interactions between different
types of updates. Concretely, in the lower right-hand corner
of Fig. 1, three update interaction patterns are presented, and
vertex v cannot be pruned by BatchHL but can be pruned by
BatchHL+ successfully. This enables BatchHL+ to perform
much more efficiently than BatchHL.

Novelty. This article is an extended version of the previous
work [18]. The following contributions are novel.

– We explore update interaction patterns and characterize
the minimal set of vertices affected by batch updates, for
which a “perfect” batch-dynamic algorithm may wish to
identify. We show that algorithms for only edge inser-
tions or only edge deletions can precisely identify such
vertices in each separate case. However, combining these
two algorithms fails to compute the exact set of vertices
affected by batch updates in the general case (Sect. 5).

– We propose an improved batch-dynamicmethod, namely
BatchHL+, which is equipped with optimized batch
search and batch repair algorithms. In the original work
of BatchHL, a vertex is flagged as affected if any short-
est path is eliminated. In contrast, BatchHL+ proposed
in this work only flags a vertex as affected if every short-
est path is eliminated. As a result, edge deletions can be
processed almost as quickly as edge insertions (Sect. 6).

– We present a comprehensive discussion on distinctive
characteristics of different batch-dynamic algorithms and
their relationships in terms of their capacity of identi-
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fying vertices that are “affected” by batch updates on
dynamic graphs. This leads to several different notions
of “affected” vertices and the connections between these
notions manifest the source of efficiency differences
among different batch-dynamic algorithms. For example,
BatchHL+ handles a much smaller subset of “affected”
vertices than BatchHL (Sect. 7).

– We provide detailed proofs for the correctness and min-
imality of BatchHL+. We note that the proof of correct-
ness for the batch search algorithm (i.e. Algorithm 6) of
BatchHL+ is non-trivial and requires a delicate analysis
of interaction patterns of batch updates. We also con-
duct the time and space complexity analysis ofBatchHL+
(Sect. 8).

Empirically, we have evaluated our method on 15 real-world
networks to verify efficiency and scalability. The results show
that ourmethod significantly improves update time compared
to the state-of-the-art methods. It can maintain labelling of a
very small size, while still answering distance queries in the
order ofmilliseconds, even on large-scale graphswith several
billions of edges that undergo large batches of updates. The
average update times on all these real-world networks are
less than one millisecond, and in general, our method is up
to 3 orders ofmagnitude faster than the recent state-of-the-art
method BatchHL.

2 Related work

Traditionally, distance queries can be answered using Dijk-
stra’s search, breadth-first search (BFS), or a bidirectional
scheme combining two such searches: one from the source
vertex and the other from the destination vertex [33, 36].
However, these algorithms may traverse an entire network
when two query vertices are far apart from each other and
become too slow for large networks. To accelerate response
time in answering distance queries, labelling-based methods
have emerged as an attractive way, which precompute a data
structure, called distance labelling [1, 4, 6, 10, 11, 13, 19, 22,
24, 28, 39, 40]. For example, Akiba et al. [4] proposed the
pruned landmark labelling (PLL) to pre-compute a 2-hop
distance labelling [11] by performing a pruned breadth-
first search from every vertex, and Li et al. [27] developed
a parallel algorithm for constructing PLL which achieved
the state-of-the-art results for answering distance queries on
static graphs.

Previously, several attempts have been made to study dis-
tance queries over dynamic graphs [5, 12, 16, 20, 23, 31,
35, 42] which only considered the unit-update setting, i.e.
to perform updates one at a time. Akiba et al. [5] studied
the problem of updating PLL for incremental updates (i.e.
edge additions). This work, however, does not remove out-

dated entries because the authors considered it too costly.
Qin et al. [35] and D’angelo et al. [12] studied the problem
of updating PLL for decremental updates (i.e. edge dele-
tions). Note that, in the decremental case, outdated distance
entries have to be removed; otherwise, distance queries can-
not be correctly answered. Their methods suffer from high
time complexities and cannot scale to large graphs, e.g. the
average update time of an edge deletion on a network with
19M edges is 135s in [35] and on a network with 16M
edges is 19 s in [12]. D’angelo et al. [12] combined the algo-
rithm for incremental updates proposed in [5] with their
method for decremental updates to form a fully dynamic
algorithm, which however does not scale beyond networks
with around 20M of edges. Hayashi et al. [23] proposed a
fully dynamic method which combines a distance labelling
with online search to answer distance queries. Their method
pre-computes bit-parallel shortest-path trees (SPTs) rooted
at each r ∈ R for a small subset of vertices R and dynami-
cally maintain the correctness of these bit-parallel SPTs for
every edge insertion and deletion. Then, an online search
is performed under an upper distance bound computed via
the bit-parallel SPTs on a sparsified graph. Very recently,
several methods have attempted to perform updates in the
batch-update setting (i.e. to perform multiple updates in a
batch) [17, 18]. For instance, BatchHL [18] has shown to
be much faster in performing batch updates as compared to
the other state-of-the-art methods. In our present work, we
further advance the design of BatchHL by studying patterns
that were left unexplored in the design of BatchHL.

Another line of research studied streaming graph algo-
rithms. In the streaming setting, a rapidly changing graph
is often modelled using certain compressed data structures
due to space constraints. Updates are received as a stream,
but may be accumulated into batches through a sliding win-
dow and applied to the underlying graph. In this setting,
a number of methods [21, 30, 32] have been proposed to
address distance queries. However, these methods operate
under certain constraints, e.g. limited amount of memory and
accuracy of graph structure. Different from these streaming
graph methods, our work considers applications which oper-
ate on batch-dynamic graphs that are explicitly stored and can
be processed in the main memory of a single machine. Nev-
ertheless, the ideas of our algorithm can be easily extended
to deal with batch updates in the streaming setting.

3 Preliminaries

Without loss of generality, we focus our discussion on
unweighted, undirected graphs in this paper and discuss the
extension to directed graphs in Sect. 9. Table 1 summarises
the frequently used notations.
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Table 1 Summary of notations

Notation Description

G = (V , E) A graph G with the set of vertices V and the set of edges E

R A subset of vertices, called landmarks

L(v) Label of a vertex v

� = (H , L) A highway cover labelling, consisting of a highway H and a distance labelling L

N (v) Set of vertices adjacent to v in a graph G

dG(u, v) Shortest path distance between u and v in a graph G

PG(u, v) Set of all shortest paths between u and v in a graph G

δH (u, v) Highway distance between u and v

δL (u, v) Labelling distance between u and v

G[V \R] A sparsified graph after removing R from G

d�
uv An upper distance bound between u and v

Q(u, v) An exact query between u and v

dL
G(r , v) Landmark distance between r and v in G

Vaff/Vaff+ Set of affected vertices, for some notion of “affected”

B A batch update

G ′ = (V ′, E ′) Graph after batch update B

�′ = (H ′, L ′) An updated highway cover labelling

N/B Set of all natural numbers / Boolean values

⊕ Append operator to update the landmark length of a path

dL
G(r , v) Landmark distance between r and v in G

dc(r , v) Composite distance between r and v

|S| Number of elements in a set S

dbou(v, S) Distance bound of a vertex v w.r.t. a set S

dL
bou(v, S) Landmark distance bound of a vertex v w.r.t. a set S

Let G = (V , E) be a graph where V is a set of vertices
and E ⊆ V × V is a set of edges. The distance between
two vertices s and t in G, denoted as dG(s, t), is the length
of a shortest path between s and t . If there does not exist
any path between s and t , dG(s, t) = ∞. We use PG(s, t) to
denote the set of all shortest paths between s and t in G, and
N (v) the set of neighbours of a vertex v, i.e. N (v) = {v′ ∈
V |(v, v′) ∈ E}.

There are two types of edge updates on graphs: edge inser-
tion and edge deletion. A batch update is a set of edge
insertions and deletions. Node insertion or deletion can be
treated as a batch update containing only edge insertions or
only edge deletions, respectively. In the case that the same
edge is being inserted and deleted within one batch update,
we simply eliminate both of them. An update is valid if it
makes a change on a graph, i.e. inserting an edge (a, b) into
G when (a, b) /∈ E , and deleting an edge (a, b) fromG when
(a, b) ∈ E . Without loss of generality, we ignore invalid
updates.

Let R ⊆ V be a subset of special vertices inG, called land-
marks. A label L(v) for a vertex v is a set of distance entries
{(ri , δL(ri , v))}ni=1 where ri ∈ R, δL(ri , v) = dG(ri , v) and
n ≤ |R|. We call (ri , δL(ri , v)) the ri -label of vertex v. A

distance labelling overG is the set of labels for all vertices in
V . The size of a distance labelling is defined as

∑
v∈V |L(v)|.

In the literature, a distance labelling is often constructed fol-
lowing the 2-hop cover property [11] which requires at least
one common vertex in L(u) and L(v) to be on a shortest path
between any two vertices u and v.

Definition 1 (2-hop cover labelling) A distance labelling L
over G = (V , E) is a 2-hop cover labelling if for any s, t ∈
V ,

dG(s, t) = min{δL(ri , s) + δL(ri , t) |
(ri , δL(ri , s)) ∈ L(s), (ri , δL(ri , t)) ∈ L(t)}.

3.1 Highway cover labelling

Our work considers the highway cover labelling [19].

Definition 2 (Highway) A highway H = (R, δH ) consists
of a set R of landmarks and a distance decoding function
δH : R × R → N

+ s.t. δH (r1, r2) = dG(r1, r2) for any two
landmarks r1, r2 ∈ R.
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Definition 3 (Highway cover labelling) A highway cover
labelling� = (H , L) consists of a highway H and a distance
labelling L satisfying that, for any v ∈ V \R and r ∈ R,

dG(r , v) = min{δL(ri , v) + δH (r , ri ) |
(ri , δL(ri , v)) ∈ L(v)}.

Ahighway cover labelling requires that every label L(v)must
contain a distance entry to each landmark r ∈ R unless there
is another landmark on a shortest path between r and v. We
shall refer to this distance entry (or its absence) as the r -label
of v. Unlike a 2-hop cover labelling that can answer distance
queries for any two vertices in a graph, i.e. a full distance
labelling, a highway cover labelling can only answer distance
queries between any landmark and any vertex in a graph, i.e.
a partial distance labelling.

As discussed in the original paper [19], highway cover
labelling enjoys several nice theoretical properties, such
as minimality and order independence. A highway cover
labelling � = (H , L) over G is minimal if, for any highway
cover labelling �′ = (H , L ′) over G, si ze(L ′) ≥ si ze(L)

holds. A highway cover labelling � = (H , L) over G
is order-independent if � remains the same, regardless of
the order of applying landmarks in R. Given any fixed
set of landmarks, there exists a unique minimal highway
cover labelling, which is contained in every highway cover
labelling [19].

3.2 Query answering

A distance query can be answered via bounding online
searches on a sparsified search space based on the highway
cover labelling. Specifically, given a highway cover labelling
� = (H , L), an upper bound on the distance between any
pair of vertices s, t ∈ V in a graph G is computed as

d�
st = min{δL(ri , s) + δH (ri , r j ) + δL(r j , t) |

(ri , δL(ri , s)) ∈ L(s), (r j , δL(r j , t)) ∈ L(t)}.

Here, d�
st is the minimal length amongst all paths between

s and t that pass through the highway. Since there may
exist a shorter path not passing through the highway, we
conduct a distance-bounded shortest-path search over a spar-
sified graph G[V \R] (i.e. removing all landmarks in R from
G) under the upper bound d�

st to answer the distance query
Q(s, t) such that

Q(s, t) = min(dG[V \R](s, t), d�
st ).

In the implementation, dG[V \R](s, t) can be computed by
conducting a bidirectional BFS search from both s and t
[19] which terminates either after d�

st − 1 steps or when the
searches from both directions meet.

4 BatchHL: basic algorithm

In this section, we start by presenting the basic algorithm
of BatchHL, a batch-dynamic method that can efficiently
maintain a highway cover labelling for dynamic graphs [18].
Generally, BatchHL involves two phases: Batch Search and
Batch Repair, as described in Algorithm 1. Batch Search
identifies vertices for which labels may need to be updated,
while Batch Repair updates these vertices. These two phases
are done independently for each landmark.

Algorithm 1: BatchHL (Basic Algorithm)

1 Function BatchHL(G ′, B, R, �)
2 �′ ← �

3 foreach r ∈ R do
4 Vaff ← BatchSearch(G ′, B, r , �)

5 BatchRepair(G ′, Vaff, r , �, �′)
6 return �′

4.1 Batch search

LetG = (V , E) be a graph, R ⊆ V a set of landmarks and B
a batch update resulting in the updated graph G ′ = (V ′, E ′).
We denote the unique minimal highway labellings on G and
G ′ by � and �′, respectively.

Definition 4 (P-affected) A vertex v ∈ V is path-affected
(P-affected) by a batch update B w.r.t. a landmark r ∈ R iff
PG(r , v) �= PG ′(r , v).

We use Vaff(r , B) = {v ∈ V |PG(v, r) �= PG ′(v, r)} to
denote the set of all P-affected vertices by a batch update
B w.r.t. a landmark r . An edge insertion or deletion (a, b)
can create or eliminate shortest paths starting from r and
passing through (a, b). Any update on an edge (a, b) with
dG(r , a) = dG(r , b) is trivial w.r.t. a landmark r , since such
an update does not affect any vertices w.r.t. the landmark r .

For a non-trivial update (a, b), we call the vertex u ∈
{a, b} further away from r in G the anchor of (a, b), and the
other one its pre-anchor. We denote the anchor distance of
(a, b) by dG(r , u) = dG(r , u′)+1,where u′ is the pre-anchor
of (a, b).

As every newly created or eliminated path must pass
through an updated edge, we can use anchors to identify
P-affected vertices.

Lemma 1 For every P-affected vertex v we have

dG(r , v) ≥ (dG(r , u′) + 1) + dG ′(u, v). (1)
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Algorithm 2: Batch Search
1 Function BatchSearch(G ′, B, r , �)
2 foreach (a, b) ∈ B do
3 if dG(r , a) < dG(r , b) then
4 add (dG(r , a) + 1, b) to Q
5 else if dG(r , a) > dG(r , b) then
6 add (dG(r , b) + 1, a) to Q

7 while Q is not empty do
8 remove minimal (d, v) from Q
9 if v /∈ Vaff+ then

10 add v to Vaff+
11 foreach w ∈ NG′ (v) do
12 if d + 1 ≤ dG(r , w) then
13 add (d + 1, w) to Q

14 return Vaff+

for some non-trivial update (a, b) ∈ B with anchor u and
pre-anchor u′.

We make use of this characterization in Algorithm 2.
Specifically, we perform a search with anchors as starting
points, compute the minimal value of the right hand side of
Eq.1, and collect all vertices for which Eq.1 holds.

Example 1 Consider the graph below, where edges marked
by + are inserted and edges marked by − are deleted in one
batch update.

r a

b c d

e f v

x

y

z

+

+
-

-

+

-

Insertion of (a, d) triggers a search starting from the
anchor d with the anchor distance dG(r , a) + 1 computed
from �. The search then follows edges in G ′, including the
newly inserted edge (d, f ), andfinds thatd, c, f andv satisfy
(1). Insertion of (d, f ) is trivial since d and f are equidistant
from r in G, and does not lead to any search. Deletion of
(b, e) triggers a search starting from the anchor e with the
anchor distance dG(r , b) + 1 computed from �.

Combining the searches for (a, d) and (b, e) into one
search means that the edge ( f , v) is traversed only once.

Algorithm 2 eliminates unnecessary search paths by not
following vertices violating Eq.1 and also avoids traversing
vertices affected by multiple updates more than once. How-
ever, Algorithm 2 does not precisely compute the set of all
P-affected vertices, but the set of all vertices satisfying Eq.1,
which is a superset. The following example illustrates why

the characterization in Lemma 1 is not precise, and why pre-
cise discovery of P-affected vertices is difficult.

Example 2 Consider the graph below, where the dotted edge
between r and u indicates a long path between them, and the
dotted edge between r and v indicates another long path.

r

u

v

-

+

When both edge deletion (r , u) and edge insertion (u, v)

occur, the distance between r and u in G is used to compute
the anchor distance of v for the update (u, v), ignoring that
the distance between r and u has changed. It is difficult to
identify whether v is P-affected—it hinges on whether the
long path between r and v is longer (or equal) than the long
path between r and u plus 1, which cannot be ascertained by
�.

The set of vertices returned by Algorithm 2 can be pre-
cisely characterized as follows.

Definition 5 (Composite path) A path from r to v in G ∪ G ′
is a composite path iff it consists of two parts: a part that lies
in G followed by a part in G ′.

A composite path is significant iff it passes through at
least one deleted and at least one inserted edge. Consider
Example 1 again. r − x is an insignificant composite path,
r − x − y is a significant composite path, and r − x − y − z
is not a composite path. To see the latter, consider that any
inserted edge must belong to theG ′ part, and thus later edges
would need to lie in G ′ as well, i.e. cannot be deleted.

Definition 6 (CP-affected) A vertex v is composite-path-
affected (CP-affected) w.r.t. r ∈ R iff

(i) v is P-affected w.r.t. r , or
(ii) there exists a significant composite path from r to v of

length dG(r , v) or less.

Algorithm 2 returns the set of all CP-affected vertices
which includes all P-affected vertices. Additional vertices
due to condition (ii) are undesirable but hard to avoid, as
illustrated in Example 2. This happens because the starting
distance is calculated w.r.t. G, and we are thus effectively
considering paths forwhich the first part (from r to an anchor)
lies in G, and the rest in G ′. For example, the vertex y in
Example 1 is not P-affected but CP-affected, andAlgorithm2
returns it.
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Lemma 2 A vertex v is CP-affected w.r.t. r iff there exists a
composite path from r to v of length at most dG(r , v) that
passes through an updated edge.

Proof We show each direction separately.

– (if) Let p be a composite path from r to v of length
at most dG(r , v) that passes through at least one edge
in B. If p lies in G then it lies in PG(r , v) but not in
PG ′(r , v), so v is P-affected. If p lies in G ′ then either
it lies in PG ′(r , v), or there exists a strictly shorter path
p′ in PG ′(r , v). Neither p not p′ lies in PG(r , v), so v is
P-affected. If p lies neither in G nor in G ′ then it must
be significant.

– (only if) Let v be CP-affected. If PG(r , v) � PG ′(r , v)

then there exists a path p in G of length dG(r , v) that
passes through a deleted edge. If PG(r , v) � PG ′(r , v),
then there exists a path p inG ′ of length at most dG(r , v)

that passes through an inserted edge. Otherwise, there
exists a significant composite path of length at most
dG(r , v), which passes through edges in B by definition.

��
Lemma 3 Algorithm 2 returns the set of all CP-affected ver-
tices.

Proof We show that a vertex v is added to Vaff+ iff there
exists a composite path p of length at most dG(r , v) that
passes through an updated edge.

– (if) Let v ∈ Vaff+. Vertices are only added to Q and
thus to Vaff+ if they pass one of three distance checks. In
each case, this compares the length of a composite path
passing through an updated edge to the distance from r
in G.

– (only if) Let (a, b) be either the last deleted edge that p
passes through, or the first inserted edge, with dG(r , a) <

dG(r , b). Then, p can be split into pra from r to a, (a, b)
and pbv from b to v such that pra lies in G and pbv
in G ′. The search in Algorithm 2 starting at b will use
|prb| = dG(r , a)+1 as distance bound for b, and proceed
along pbv . Thus, for every vertex w ∈ pbv , including v,
it will obtain |prw| ≤ dG(r , w) as distance bound for w,
and add w to Vaff+.

��
In particular, it follows that (1) characterizes CP-affected

vertices, rather than P-affected ones.

4.2 Batch repair

Algorithm 3 describes the approach for repairing the labels
of affected vertices returned by Algorithm 2. At its core, the

algorithm starts with boundary vertices that lie on the bound-
ary of affected and unaffected vertices, and whose distances
to r are computed from neighbouring vertices whose dis-
tance did not change. Importantly, even though a vertex may
be affected by multiple edge updates in a batch, its r -label
only needs to be updated once.

Definition 7 (Boundary vertex) A vertex v is a boundary ver-
tex w.r.t. a landmark r if v is an affected vertex (for some
version of “affected”, e.g. CP-affected) but has an unaffected
neighbour w.

Denote by Vaff+ the set of affected vertices, and let v ∈
Vaff+. For every neighbour w of v in G ′, dG ′(r , v) must be
upper-bounded by dG ′(r , w) + 1. If such a neighbour lies
outside of Vaff+, the value of dG ′(r , w) = dG(r , w) can
easily be obtained – while we employ different variants of
“affected” throughout the paper, “unaffected” vertices will
always retain their distance to r . By taking the minimum of
such known upper bounds, we get a readily available distance
bound for v.

Definition 8 (Distance bound) Let S ⊂ V \ {r} be a set of
vertices. The distance bound of v w.r.t. S is:

dbou(v, S) := min{dG ′(r , w) + 1 | w ∈ NG ′(v) \ S}.

The following lemma allows us to compute the distance
of vertices in Vaff+ from r in G ′ using their distance bounds.

Lemma 4 Let S ⊂ V \{r} and v ∈ S with minimal distance
bound. Then dG ′(r , v) = dbou(v, S).

Proof For dG ′(r , v) = ∞ this is trivial. Otherwise, let p be
a shortest-path from r to v in G ′, v′ be the first vertex in
p that lies in S, and w its predecessor in p. Since w /∈ S
we have dbou(v

′, S) ≤ dG ′(r , w) + 1 = dG ′(r , v′). If v′ �=
v then dG ′(r , v′) < dG ′(r , v) ≤ dbou(v, S), and therefore
dbou(v

′, S) < dbou(v, S). This contradicts the minimality of
dbou(v, S), so v′ = v. It follows that dbou(v, S) = dG ′(r , v).

��
Note that dG ′(r , v) = dbou(r , S) does not generally hold

for every boundary vertex v. Based on Lemma 4, we repair
labels by starting with boundary vertices that have the small-
est distance bound. After each iteration, we treat affected
vertices with repaired labels as being unaffected and find
boundary vertices that have the smallest distance bound
again. This process terminates only when the labels of all
affected vertices are repaired.

Algorithm 3 shows the pseudo-code of the batch repair
algorithm used by BatchHL. Given a graphG ′ and a set of all
affected vertices Vaff+, we first compute the distance bounds
of vertices in Vaff+ using their unaffected neighbours. We
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Algorithm 3: Batch Repair

1 Function BatchRepair(G ′, Vaff+, ri , �, �′)
2 foreach v ∈ Vaff+ do
3 Dbou[v] ← dbou(v, Vaff+) // use � to compute

4 while Vaff+ is not empty do
5 Vmin ← {v ∈ Vaff+ | Dbou[v] is minimal}
6 remove Vmin from Vaff+
7 foreach v ∈ Vmin do
8 set r -label of �′(v) to (ri , Dbou[v])
9 foreach w ∈ NG′ (v) ∩ Vaff+ do

10 Dbou[w] ← min(Dbou[w], Dbou[v] + 1)

then find vertices in Vaff+ with the minimal distance bounds
and remove them from Vaff+. By Lemma 4, their distances
to r in G ′ equal their distance bounds. For each v ∈ Vmin, we
set the r -label of v to (ri , Dbou[v]) (Line 8) and assign new
distances to the affected children of v in Vaff+ (Lines 9-10).
We continue this process until Vaff is empty.

Note that Algorithm 3 does not eliminate redundant r -
labels. We will address this issue in Sect. 6.2.

Remark 1 We note that the work in [18] has proposed sev-
eral optimization techniques to reduce the set of CP-affected
vertices returned by Algorithm 2 and can thus efficiently
repair the affected vertex set. These optimization techniques
have been shown to significantly improve the performance
of updating labelling. Thus, in our experiments (Sect. 10),
we will compare the performance of our proposed method
BatchHL+ against the method of BatchHL that has incorpo-
rated these optimization techniques.

5 Separate algorithms—insertion and
deletion

We observe that changes to shortest paths between r and v do
not always cause a change in distance. Based on this observa-
tion,we shall differentiate betweennewand eliminated paths,
and strengthen the pruning condition d + 1 ≤ dG(r , w) in
Line 12 of Algorithm 2 to d + 1 < dG(r , w) for new paths.
For eliminated paths, we examine all neighbouring vertices
to ensure that all shortest paths have been eliminated.

However, things get a little trickier as we may need to
eliminate redundant labels, or restore previously eliminated
labels when they become non-redundant. Even if the distance
between r and v does not change, the highway labelling may
need to be updated.

Example 3 Consider the followinggraphs andupdates,where
the landmarks are circled. In all cases, vertex v is affected,
but the distance between r and v does not change. For case (a)
adding the edge (b, v) does not cause a label change for v. It

does however for case (b) where b is a landmark, causing the
r -label of v to be deleted. Deletion of (b, v) does not cause
a change on the label of v in case (c), but causes a change in
case (d) where an r -label needs to be inserted.

r

a b

v +

(a) no change

r

a b

v +

(b) change

r

a b

v
-

(c) no change

r

a b

v
-

(d) change

A core difficulty in identifying whether affected vertices
have changes on their labels is that label changes can happen
far away from updates, and computing the changed labels of
such verticesmay require the consideration of verticeswhose
labels do not change due to being redundant, as illustrated
by the example below.

Example 4 Consider the graph below, where r and b are land-
marks and the edge (r , b) is deleted.

a b c

v

r d e
-

r -label changes

The distance between r and c changes, but the label of c
does not change. That is because the shortest path between
r and c goes through the landmark b without changes. At
the same time the label of v does change, as the edge (r , b)
eliminates a shortest path between r and v that passes through
the landmark b, similar to case (d) in Example 3. Although
the label of c does not change, the changed distance between
r and c is needed for computing the changed label of v.
Therefore, c needs to be captured as well.

We thuswant to return (at least) all those vertices forwhich
either label or distance changes.

Definition 9 (LD-affected) A vertex v is landmark-distance-
affected (LD-affected) by a batch update B w.r.t. a landmark
r ∈ R iff there is a

(i) label-change: the r -label of v changes, or
(ii) distance-change: distance between r and v changes.

As seen in Example 3, changes to r -label without changes
to distance happen whenever a new shortest path passing
through another landmark is created where none existed pre-
viously, or when the last such path is deleted. To identify such
cases, we track whether a shortest path to r passes through
another landmark.

Definition 10 (Landmark length) The landmark length of a
path p starting from r ∈ R is a tuple (d, l) ∈ N × B where

123



BatchHL+: batch dynamic labelling for distance queries on large-scale networks 109

– d is the length of p (number of edges), and
– l is the landmark flag, with l = True iff p passes through

a landmark other than r .

We denoted this landmark length as |p|l. The landmark dis-
tance between r and v in G is the minimal landmark length
of paths between them, denoted as

dL
G(r , v) := min

{|p|l | pis a path betweenrandvinG
}

The ordering used to compare landmark length tuples is the
lexicographical one, with True < False. The latter ensures
that the landmark flag of dL

G(r , v) is set iff any of the shortest
paths between r and v passes through another landmark.

Lemma 5 Let dL
G ′(r , v) = (d, l). If d = ∞ or l = True, then

v has no r-label in �′. Otherwise, v has the r-label (r , d).

Proof If v has any r -label in �′ it must be (r , d). As �′ is
minimal, this r -label exists iff it is not redundant. For d = ∞
redundancy of (∞, r) is obvious. Otherwise (d, r) is redun-
dant iff the correct distance could also be computed using the
highway. This happens iff a shortest path between r and v

passes through another landmark, which is indicated by the
landmark flag. ��
Lemma 6 A vertex v is LD-affected iff it satisfies:

dL
G(r , v) �= dL

G ′(r , v).

Proof Let lG and lG ′ denote the landmark flags of dL
G(r , v)

and dL
G ′(r , v), respectively. Condition (ii) of Definition 9

states dG(r , v) �= dG ′(r , v). It suffices to show that for
dG(r , v) = dG ′(r , v) condition (i) holds iff lG �= lG ′ . This is
trivial for dG(r , v) = dG ′(r , v) = ∞. For finite distances, it
follows from Lemma 5. ��

5.1 Insertion-only batch search

To identify LD-affected vertices in the case of edge inser-
tions, for an inserted edge (a, b), we need to compute the
minimal landmark length of paths from r to b passing through
a as an upper bound for the landmark distance of b. Since
this may lead to frequently updating the landmark length of
a path when appending another vertex, we define an operator
for this:

(d, l) ⊕ w :=
{

(d + 1,True) ifw is a landmark,

(d + 1, l) otherwise.

Batch search for insertions is described in Algorithm 4.
Its correctness is straightforward.

Lemma 7 Algorithm4 returns the set of LD-affected vertices.

Algorithm 4: Insertion-Only Batch Search

1 Function BatchSearchInsert(G ′, B, r , �)
2 foreach (a, b) ∈ B do
3 if dL

G(r , a) ⊕ b < dL
G(r , b) then

4 add
(
dL
G(r , a) ⊕ b, b

)
to Q

5 else if dL
G(r , b) ⊕ a < dL

G(r , a) then

6 add
(
dL
G(r , b) ⊕ a, a

)
to Q

7 while Q is not empty do
8 remove minimal (d, l, v) from Q
9 if v /∈ Vld- aff then

10 add v to Vld- aff
11 foreach w ∈ NG′ (v) do
12 if (d, l) ⊕ w < dL

G(r , w) then
13 add ((d, l) ⊕ w,w) to Q

14 return Vld- aff

Proof Any vertex added to Vld- aff must be LD-affected, as
its landmark distance in G ′ is lower than in G.

Conversely, if v is LD-affected, there must exist a strictly
shorter path p in G ′. Let p be the shortest such path, b be the
first LD-affected vertex in p and a its predecessor. Then the
edge (a, b)must be inserted, and all vertices from b onwards
must be LD-affected. As vertices are processed in order of
distance, the computed distance boundwill beminimal, caus-
ing b and all later vertices in p to be added to Vld- aff. ��

5.2 Deletion-only batch search

The key idea for identifying an LD-affected vertex v in
the case of edge deletions is to examine its neighbourhood.
While this will not always give us its landmark distance in
G ′ as neighbours may not have been updated yet, it does
provide a lower bound that is sufficient for determining LD-
affectedness. In case v turns out to be LD-affected, we will
need to examine its neighbours anyways to identify other LD-
affected vertices, and some of the required computations can
be reused.

To identify a vertex v as LD-affected, we use two criteria:

1. There must exist a path between r and v in G of length
dL
G(r , v) that passes through a deleted edge.

2. There must not exist a path between r and v in G ′ of
length dL

G(r , v).

The first criterion provides us with candidates to examine
further, while the second criterion is used to confirm or reject
candidates. However, simply storing whether a vertex is LD-
affected is not enough for this purpose.

Example 5 Consider the graph below, where r , b and v are
landmarks and edge (b, c) is getting deleted.
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r a

b c v-

Here, c is LD-affected as its landmark distance reduces
from (2, L) to (2,−). However, v is not LD-affected as its
landmark distance remains as (3, L). Deciding the latter is
impossible if all we know is that its only neighbour is LD-
affected.

While the issue could be solved by storing the new land-
mark distance for LD-affected vertices, we do not have this
information available during batch search (e.g. for vertex a
in Example 6). However, we can decide whether a path of
equal length—but not passing through another landmark—
still exists in G ′, and storing this information is sufficient for
deciding LD-affectedness of other landmarks.

Another key observation concerns the neighbours of v

through which a path violating the second criterion (path in
G ′ of equal length) might pass. By processing vertices in
order of their distance from r in G, we ensure that these will
already have been processed.

Example 6 Consider the graph below, where edges (r , a) and
(b, v) are getting deleted.

r a

b v

c

-

-

To confirm that v is LD-affected, we examine its neighbours
a and c inG ′. Here a has already been processed and marked
as LD-affected, as it is closer to r than v. Vertex c may not
have been processed yet, and thus may wrongly suggest a
path between r and v of length 3 in G ′. However, this is
irrelevant for deciding whether a path of length dG(r , v) or
dL
G(r , v) exists in G ′.
The resulting algorithm for batch search in case of deletion

is given as Algorithm 5. Here Vd- aff contains distance-
affected vertices. We show its correctness next.

Lemma 8 Algorithm 5 returns the set of LD-affected vertices.

Proof Let v be added to Vld- aff. This only happens if
(dv, lv, v) was previously added to Q, at which point it was
checked that (dv, lv) equals the landmark distance dL

G(r , v).
Additionally, line 16 must not have been reached, meaning
the checks for a path in G ′ of landmark length that equal to
(dv, lv) must have failed. For the correctness of this check,
consider that any such path would need to pass through some
neighbour of v in G ′, and this neighbour would need to
be closer to r and not distance-affected. It follows that G ′
contains no path from r to v of landmark length dL

G(r , v),
meaning that v is LD-affected.

Algorithm 5: Deletion-Only Batch Search

1 Function BatchSearchDelete(G ′, B, r , �)
2 foreach (a, b) ∈ B do
3 if dL

G(r , a) ⊕ b = dL
G(r , b) then

4 add
(
dL
G(r , a) ⊕ b, b

)
to Q

5 else if dL
G(r , b) ⊕ a = dL

G(r , a) then

6 add
(
dL
G(r , b) ⊕ a, a

)
to Q

7 while Q is not empty do
8 remove minimal (dv, lv, v) from Q
9 if v /∈ Vld- aff then

10 N ← ∅, v_daff ← True
11 foreach w ∈ NG′ (v) \ Vd- aff do

// check for path of equal (landmark) length
12 if dv = dG(r , w) + 1 then
13 v_daff ← False
14 if (dv, lv) = dL

G(r , w) ⊕ v then
15 if w /∈ Vld- aff ∨ v ∈ R then
16 continue from line 7

// check if w might be LD-affected
17 else if (dv, lv) ⊕ w = dL

G(r , w) then
18 add ((dv, lv) ⊕ w,w) to N

19 add v to Vld- aff
20 if v_daff then
21 add v to Vd- aff

22 add tuples in N to Q

23 return Vld- aff

Conversely, let v be LD-affected and p be some shortest
path from r to v in G w.r.t. landmark length. As p does not
lie in G ′, it must pass through one or more deleted edges. Let
(a, b) be the deleted edge in p closest to v, with b closer to v

than a. Then, all vertices in p between b and v must be LD-
affected. By inductionwemay assume that all of them except
v will be added to Vld- aff. As all neighbours of vertices in
Vld- aff are checked for being LD-affected, v will be checked
as well and added to Vld- aff. ��

Remark 2 Both insertion-only anddeletion-onlybatch search
algorithms can compute LD-affected vertices when they
handle only edge insertions or only edge deletions. How-
ever, when applying these two algorithms together on batch
updates with mixed inserted and deleted edges, e.g. apply-
ing insertion-only algorithm on edge insertions first and then
deletion-only algorithm on edge deletions, or the reversed
order, they fail to compute the exact set of LD-affected ver-
tices. The next section will discuss the reasons in detail,
which motivates our development of an improved algorithm
BatchHL+.
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6 BatchHL+: improved algorithm

In principle, one could handle any batch update consisting
of both insertions and deletions by processing insertions first
and deletions after, or vice versa. However, the issue with
such an approach is that vertices may be affected by both
insertions and deletion, causing them to be processed twice.
It is even possible that insertions and deletions cancel each
other out so that vertices are processed twice even though
they would not need to be processed at all.

Example 7 Consider the following graphs and updates.When
considering insertions and deletions together, v is not LD-
affected in either of the three cases. However, for cases (a)
and (b), processing insertions first and deletions after will
cause v to be LD-affected at both times. Similarly, for case
(c), processing deletions first and insertions after will cause
v to be LD-affected at both times.

r

a

v

-

+

(a) Ins + Del

r

a

v

+

-

(b) Ins + Del

r

a b

v

- +

(c) Del + Ins

While it is challenging to identify all cases where inser-
tions and deletions cancel each other out, we will be able to
avoid some of them. For example, we can avoid returning
v for cases (b) and (c) in Example 7, but not for case (a).
For case (a), the difficulty lies in not knowing the distance
between r and a in the changed graph G ′. As illustrated in
Example 6, computing this during batch search is tricky.

Even though we will present an improved algorithm for
processingmixed batches in the next section, it may be worth
pointing out a small trick when splitting a batch B into inser-
tions B+ and deletions B−. Instead of running Algorithm 4
on the graph obtained by applying B+ to G, we can run it on
the graph obtained by apply the whole batch B. This prevents
us from following paths that pass through a deleted edge after
first passing through an inserted edge, as depicted in case (b)
of Example 7.

Clearly, there are still cases where this trick cannot stop
an unaffected vertex from getting flagged as affected. Case
(a) of Example 6 was one such case. There are other cases as
shown in the example below.

Example 8 Consider the following graph and updates.

r

a b

v

-

+

Here, v is not LD-affected but still returned by Algorithm 4,
even with all of B used in constructing G ′.

The improved algorithm presented next will avoid return-
ing v, as the insertion of (a, v) will only be processed after
the deletion of (r , a) has already been considered. Here the
existence of the alternate path r − b− v, which has the same
length as r − a − v, is crucial in avoiding the difficulties
illustrated in Example 6. By the time v is being processed,
we can be sure that b is unaffected and can thus conclude that
v is unaffected.

6.1 Improved batch search

To combine Algorithms 4 and 5, consider their search pro-
cess. Both algorithms track the lengths of paths r . . . a −
b . . . v passing through an updated edge (a, b). As the dis-
tance between r and a is computed using the highway
labelling �, and edges used to extend the paths lie in G ′, we
are effectively considering paths that lie partially in G and
partially in G ′. Therefore, we define the notion of composite
distance.

Definition 11 (Composite distance) The composite distance
between r and v over (G,G ′) is the length of the shortest
composite paths between them. We denote it as

dc(r , v) := min
{|p| | p is composite path from r to v

}

Example 9 Consider again the cases from Example 7. Here
r − a − v is a composite path for case (a) but not for case
(b). The composite distance between r and v is 2 for case (a)
and ∞ for case (b).

Our improved algorithm is presented as Algorithm 6. A
detailed discussion is deferred until Sect. 8, where we prove
that the vertex set identified by it can be characterized as
follows.

Definition 12 (LCD-affected) A vertex v is landmark-
composite-distance-affected (LCD-affected) w.r.t. a land-
mark r iff one of the following conditions is satisfied:

– Landmark distance changes: dL
G ′(r , v) �= dL

G(r , v);
– Composite distance changes: dc(r , v) �= dG(r , v).

Clearly, this includes all LD-affected vertices, but may
also include others, e.g. case (a) in Example 7, which is unde-
sirable. The reason for those additional vertices is that we
cannot easily compute dL

G ′(r , v) during batch search. How-
ever, we can compute dc(r , v) and decide whether a path
of length dc(r , v) exists in G ′, essentially the same way as
this was done in Algorithm 5. We call vertices where such a
path exists stable, and use this to resolve situations similar
to Example 8.

We note that whenever B contains only inserted or only
deleted edges, vertices are LCD-affected iff they are LD-
affected. That is because edge deletions do not change the
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composite distance, while the absence of edge deletions
means that a change in composite distance implies a change
in landmark distance.

6.2 Improved batch repair

Now, we introduce improved batch repair algorithm to repair
LCD-affected vertices Vaff+ returned by Algorithm 6. To
eliminate redundant r -labels, we need to track landmark
distance, which requires the following notion of landmark
distance bound.

Definition 13 (Landmark distance bound) Let S ⊂ V \ {r}
be a set of vertices. The landmark distance bound of vertex

Algorithm 6: Improved Batch Search

1 Function BatchSearch(G ′, B, r , �)
2 Q,Q+ ← InitQueues(B, r , �)
3 while Q ∪ Q+ is not empty do
4 if minimal tuple in Q ∪ Q+ lies in Q then
5 remove minimal (dv, lv, stable, v) from Q
6 else
7 remove minimal (dv, lv, stable, v, a) from Q+
8 if a ∈ Vaff+ then
9 continue

10 if v /∈ Vaff+ then
11 N ← ∅
12 if ¬lv ∧ dv = dG(r , v) then

// check for path of equal (landmark) length
13 foreach w ∈ NG′ (v) \ Vunstable do
14 (dw, lw) ← GetLD(w)
15 if dv = dw + 1 then
16 stable ← True
17 if dL

G(r , v) = (dw, lw) ⊕ v then
18 continue from line 3

19 foreach w ∈ NG′ (v) \ Vaff+ do
// check if w might be LCD-affected

20 if dv + 1 ≤ dG(r , w) then
21 add w to N

22 add v to Vaff+
23 if stable then
24 LD[v] ← (dv, lv)
25 foreach w ∈ N do
26 if dL

G(r , v) ⊕ w = dL
G(r , w) < (dv, lv) ⊕ w or

(dv, lv) ⊕ w < dL
G(r , w) then

27 add
(
(dv, lv) ⊕ w, True, w

)
to Q

28 else
29 add v to Vunstable
30 foreach w ∈ N do
31 if dv + 1 < dG(r , w) or

dL
G(r , v) ⊕ w = dL

G(r , w) then
32 add (dv + 1, False, False, w) to Q

33 return Vaff+

Algorithm 6: (Continued)
1 Function InitQueues(B, r , �)
2 foreach inserted (a, b) ∈ B do
3 if dL

G(r , a) ⊕ b < dL
G(r , b) then

4 add
(
dL
G(r , a) ⊕ b, True, b, a

)
to Q+

5 else if dL
G(r , b) ⊕ a < dL

G(r , a) then

6 add
(
dL
G(r , b) ⊕ a, True, a, b

)
to Q+

7 foreach deleted (a, b) ∈ B do
8 if dL

G(r , a) ⊕ b = dL
G(r , b) then

9 add
(
dG(r , b), False, False, b

)
to Q

10 else if dL
G(r , b) ⊕ a = dL

G(r , a) then
11 add

(
dG(r , a), False, False, a

)
to Q

12 return (Q,Q+)

13 Function GetLD(w)
14 if w ∈ Vaff+ then
15 return LD[w]

16 else
17 return dL

G(r , w)

v w.r.t. S is:

dL
bou(v, S) := min{dL

G ′(r , w) ⊕ v | w ∈ NG ′(v) \ S}.

The following lemma allows us to compute the land-
mark distances of vertices in Vaff+ from a landmark r in
the changed graph G ′ using their landmark distance bounds.

Lemma 9 Let S ⊂ V \{r} and v ∈ S with minimal landmark
distance bound. Then dL

G ′(r , v) = dL
bou(v, S).

Proof For dG ′(r , v) = ∞ this is trivial. Otherwise, let p be a
shortest-path from r to v in G ′ w.r.t. landmark length, v′ the
first vertex in p that lies in S, andw its predecessor in p. Since
w /∈ S, we have dL

bou(v
′, S) ≤ dL

G ′(r , w) ⊕ v = dL
G ′(r , v′).

If v′ �= v then dG ′(r , v′) < dG ′(r , v) ≤ dbou(v, S), and thus
dbou(v

′, S) < dbou(v, S). This contradicts the minimality of
dbou(v, S), so v′ = v. It follows that dL

bou(v, S) = dL
G ′(r , v).

��
Note that again dL

G ′(r , v) = dL
bou(r , S) does not generally

hold for every boundary vertex v. Algorithm 7 shows the
pseudo-code of our improved batch repair algorithm. For a
graphG ′ and a set of all affected vertices Vaff+, we first com-
pute the landmark distance bounds of vertices in Vaff+ using
their unaffected neighbours. We then find vertices in Vaff+
with minimal distance bounds and remove them from Vaff+.
By Lemma 9 their landmark distances to r in G ′ equal their
landmark distance bounds. We use these landmark distances
to update their r -labels, as well as their highway distances in
the case of landmarks. Finally, we update the landmark dis-
tance bounds of neighbouring vertices in Vaff+. We continue
this process until Vaff+ is empty.
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Algorithm 7: Improved Batch Repair

1 Function BatchRepair(G ′, Vaff, ri , �, �′)
2 foreach v ∈ Vaff do
3 Dbou[v] ← dL

bou(v, Vaff) // use � to compute

4 while Vaff is not empty do
5 Vmin ← {v ∈ Vaff | Dbou[v].d is minimal}
6 remove Vmin from Vaff
7 foreach v ∈ Vmin do
8 if Dbou[v].d = ∞ ∨ Dbou[v].l then
9 remove r -label from �′(v)

10 else
11 set r -label of �′(v) to (ri , Dbou[v].d)

12 if v is a landmark then
13 δ′

H (ri , v) ← Dbou[v].d
14 foreach w ∈ NG′ (v) ∩ Vaff do
15 Dbou[w] ← min(Dbou[w], Dbou[v] ⊕ w)

6.3 An illustrative example

The following example illustrates the individual steps which
our improved algorithm BatchHL+ runs through.

Example 10 Consider the following graph and updates:

a

b r1 c r2 d

e f g h i

-

+

+

The initial highway labelling � = (H , L) looks like this:

H = {δH (r1, r2) = 2},

L =
a b c d e f g h i

(r1,1) (r1,1) (r1,1) (r1,2) (r1,1) (r1,2) (r1,3)

(r2,1) (r2,1) (r2,2) (r2,1) (r2,2) (r2,2)

BatchHL+ initializes �′ as � and then runs BatchSearch
(Algorithm 6) and BatchRepair (Algorithm 7) for both land-
marks r1 and r2.

For landmark r1, Algorithm 6 returns the following set of
affected vertices:

Vaff+ = { f , g, h}

Due to the inserted edge (a, r2), the new paths from a to
r2, d and i have the same landmark length as existing ones
and are thus pruned. The eliminated path r1 − f − g− h − i
has strictly greater landmark length than the existing path
through r2 and is also pruned. For vertex e, the stable path
r1 − b − e ensures us that e is not LCD-affected.

For comparison, the BatchSearch of BatchHL described
by Algorithm 2 would return the following larger set of ver-
tices:

Vaff+ = {r2, d, e, f , g, h, i}

Note that, here, vertex e is not P-affected, but still returned
due to the composite path r1 − f − e.

Now,we runAlgorithm7on Vaff+ = { f , g, h}. The initial
landmark distance bounds for this set are

dL
bou(r1, . . .) = f g h

(3,False) (3,True) (5,True)

In the first iteration f and g have minimal distance bounds.
Thus, the r1-label in L ′( f ) is updated to (r1, 3) and the r1-
label in L ′(g) is removed. After that, dL

bou(r1, h) is updated
to (4,True) and the r1-label in L ′(h) is removed. This leaves
L ′ as

L ′ =
a b c d e f g h i

(r1,1) (r1,1) (r1,1) (r1,2) (r1,3)

(r2,1) (r2,1) (r2,2) (r2,1) (r2,2) (r2,2)

For landmark r2, Algorithm 6 and Algorithm 2 return
Vaff+ = {a, e} and Vaff+ = {r1, a, b, e}, respectively.

Then, running Algorithm 7 on Vaff+ = {a, e} inserts
(r2, 1) into L ′(a) and (r2, 2) into L ′(e) for the updated high-
way labelling as

L ′ =
a b c d e f g h i

(r1,1) (r1,1) (r1,1) (r1,2) (r1,3)

(r2,1) (r2,1) (r2,1) (r2,3) (r2,2) (r2,1) (r2,2) (r2,2)

7 Comparison of batch search algorithms

In this section, we provide a brief theoretical comparison
between different batch search algorithms, including the
algorithms used in BatchHL (Sect. 4), the algorithms of han-
dling insertions and deletions separately (Sect. 5), and the
improved algorithm used in BatchHL+ (Sect. 6). Recall that,
ideally, we would only want to return vertices that are LD-
affected w.r.t. an entire batch update, but all these algorithms
fail at that and return additional vertices.

Figure 2 summarizes the relationships between different
concepts defined andvertex sets returnedby these algorithms.
Here, BatchHL was originally introduced in [18], BHLI+D

and BHLD+I denote the sequential applications of insertions
before deletions or deletions before insertions as described
by Algorithms 4 and 5, and BHLI+D

trick sequential application
with the trick described in Sect. 5, and BatchHL+ refers to
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LD-affected

BHLD+I P-affected

LCD-affected
(BatchHL+) BHLI+D

trick BHLI+D

BatchHL

CP-affected

Fig. 2 Relationships between “affected” vertex sets defined and/or
returned by different batch search algorithms. Each arrow indicates a
subset containment
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Fig. 3 Graphs illustrating differences between “affected” vertex sets
defined and/or returned by batch search algorithms

Table 2 Containment of vertex v in Fig. 3 in the vertex sets of different
batch search algorithms

(a) (b) (c) (d) (e) (f) (g)

P-affected No No Yes Yes Yes No Yes

LD-affected No No No No No No No

CP-affected Yes No Yes Yes Yes Yes Yes

LCD-affected Yes No No No No No No

(BatchHL+)
BatchHL Yes No No Yes Yes Yes No

BHLD+I No No No No Yes No Yes

BHLI+D Yes Yes No No No Yes No

BHLI+D
trick Yes No No No No Yes No

our improved algorithm as described by Algorithms 6 and 7
in Sect. 6.

Figure 3 illustrates cases that differentiate the vertex set
definitions and algorithm outputs. For each of these cases,
Table 2 lists whether vertex v can be identified by different
“affected” notions and algorithms.

We note that case (g) in Fig. 3 is designed to trigger the
corner case of Algorithm BatchHL, described in the proof of
Lemma 5.18 in [18], where the search follows a path whose
extended landmark length is not minimal. This corner case
preventsBHLD+I fromalways returning a subset ofBatchHL.

In the following, we denote by VI+D the set of vertices
returned by eitherAlgorithm4 or 5 if insertions are processed
first, and byVD+I if deletions are processedfirst.Wenote that
VD+I does not need to contain all LCD-affected vertices, as
evidenced by case (a) of Example 7, where v is LCD-affected
but not returned. However, it may also contain vertices that
are not LCD-affected, as seen in case (c) of Example 7, where
v is returned but it is not LCD-affected. Thus we can only
compare it against Algorithm 6 experimentally. However, we
can easily establish a relationship between VD+I and the set
of P-affected vertices as in Definition 4.

Lemma 10 VD+I contains only P-affected vertices.

Proof If v is returned by Algorithm 5, then by Lemma 8 v

is LD-affected w.r.t. deletions. Thus, a shortest path in G is
eliminated, and v is P-affected.

If v is not returned by Algorithm 5 but returned by Algo-
rithm 4, then by Lemma 7 v is LD-affected w.r.t. insertions
into the intermediate graph G−, the result of applying edge
deletions to G. Thus the landmark distance between r and
v is strictly smaller in G ′ than it is in G−. Since v was not
returned by Algorithm 5, the landmark distance between r
and v in G is the same as in G−. Thus, v is LD-affected and
P-affected w.r.t. the combined batch update. ��

For VI+D , the situation is nonetheless different. As seen
in case (b) of Example 7, VI+D may contain vertices that are
not LCD-affected. However, as we will show below, it will
never return fewer.

Lemma 11 VI+D contains all LCD-affected vertices.

Proof Let v be LCD-affected. Definition 12 requires

dc(r , v) < dG(r , v) or dL
G ′(r , v) �= dL

G(r , v)

If dc(r , v) < dG(r , v) then v is LD-affected w.r.t. inser-
tions only, and thus returned by Algorithm 4. If dL

G ′(r , v) �=
dL
G(r , v) then v is LD-affected w.r.t. the combined batch

update, and thus returned. ��
We note that Lemma 11 still holds if the final graph G ′

is passed to Algorithm 4 (the “trick” mentioned in Sect. 5).
This can be seen by considering that for dc(r , v) < dG(r , v)

the algorithm will use the last inserted edge in a shortest
composite path as a starting point, and by Definition 5 all
subsequent edges must lie in G ′. Example 8 shows that non-
LCD-affected vertices may still be returned.
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8 Theoretical discussion

8.1 Proof of correctness

Now we prove that Algorithm 6 returns precisely the set of
LCD-affected vertices. As illustrated in Example 8, we are
particularly interested in vertices for which the distance to r
in G ′ is precisely the composite distance. In these cases we
can compute the landmark distance to r in G ′, which enables
us to determine with certainty whether or not its landmark
distance changes.

Definition 14 (Stable path and stable vertex) We call a path
from r to v stable iff it lies in G ′ and has length dc(r , v).
We call v stable w.r.t. r iff such a stable path exists, i.e. iff
dG ′(r , v) = dc(r , v).

As mentioned before, we can determine the updated land-
mark distance of stable vertices during batch search. For
others we can only determine the composite distance. This
motivates the following definition.

Definition 15 (Composite landmark distance) Given a com-
posite path p, the composite landmark length of p is its
landmark length if it lies in G ′, and (|p|,False) otherwise.
Accordingly, the composite landmark distance of a vertex is
defined as

dL
c (r , v) :=

{
dL
G ′(r , v) if v is stable;

(dc(r , v),False) otherwise.

Definition 16 (Stable landmark distance) The stable land-
mark distance additionally stores whether v is stable:

dS
c (r , v) :=

{
(dL

G ′(r , v),True) if v is stable;

(dc(r , v),False,False) otherwise.

The distance component of dL
c (r , v) is dc(r , v) in both

cases, while the landmark flag indicates the existence of a
stable path that passes through another landmark.When com-
paring stable landmark length values, we use lexicographical
ordering with True < False, as for landmark length. This is
needed to ensure that stable paths are processed first, so that
the stable variable is set correctly if the check in line 12 fails
in Algorithm 6.

We first prove the following lemma.

Lemma 12 A vertex v is LCD-affected iff

(i) v is unstable, or
(ii) dL

c (r , v) �= dL
G(r , v)

Proof We prove the “if” and “only if” below.

– (if ) Let v be unstable, meaning dc(r , v) �= dG ′(r , v). If
dc(r , v) �= dG(r , v) then its composite distance changes.
If dc(r , v) = dG(r , v) then dG ′(r , v) �= dG(r , v) and
its landmark distance changes. Otherwise v must be
stable and dL

c (r , v) �= dL
G(r , v). This means dL

G ′(r , v)

�= dL
G(r , v) and its landmark distance changes.

– (only if ) Let v be LCD-affected but stable so that
dL
c (r , v) = dL

G ′(r , v). If dL
G ′(r , v) �= dL

G(r , v) then
dL
c (r , v) �= dL

G(r , v) follows. Otherwise dc(r , v) �=
dG(r , v) and dL

c (r , v) �= dL
G(r , v) follows.

��
Note that together with the landmark distance, the stable

landmark distance provides precisely the information needed
to check the conditions of Lemma 12.

The following terminology will be useful for identifying
paths through which vertices are visited by Algorithm 6. In
particular, this is restricted by the checks in lines 26 and 31
of Algorithm 6.

Definition 17 (LCD-parent) We call v an LCD-parent of w,
and w an LCD-child of v, iff

(a) v and w are LCD-affected, and
(b) w is a neighbour of v in G ′, and

(c) dL
c (r , w) =

{
dL
c (r , v) ⊕ w if v is stable,

(dc(r , v) + 1,False) otherwise, and
(d) dc(r , v) + 1 < dG(r , w), or

dL
G ′(r , v) ⊕ w < dL

G(r , w), or
dL
G(r , v) ⊕ w = dL

G(r , w) < dL
G ′(r , w).

We use the terms LCD-ancestor and LCD-descendant to
denote the reflexive and transitive closures of the LCD-parent
and LCD-child relationships.

Note that conditions (2) and (3) mean that v is the pre-
decessor of w on a path from r to w of minimal composite
landmark length. The conditions of (4) correspond precisely
to those of Definition 12: either a path through v reduces
the composite distance to w, or it reduces the landmark dis-
tance to w, or the landmark distance of w increases due to
elimination of a shortest path passing through v.

Example 11 Consider the following graphs and updates.

r a

b c v

-

-
r a

b c v

+

+

For the graph on the left, the LCD-ancestors of v are a, c and
v itself. Here, b is not an LCD-parent of c as the conditions
of (4) are violated: dL

G(r , c) < dL
G ′(r , c) but dL

G(r , b) ⊕ c �=
dL
G(r , c). For the graph on the right, the LCD-ancestors of v
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are again a, c and v itself. b is not an LCD-parent of c as the
conditions of (3) are violated.

The following lemma shows that all LCD-affected ver-
tices can be traced back to a vertex initially enqueued in
Algorithm 6.

Lemma 13 Let b beLCD-affectedwith noLCD-parent. Then,
there exists a vertex a such that either

(a) edge (a, b) is inserted, dL
G(r , a) ⊕ b = dL

c (r , b) <

dL
G(r , b), and a is not LCD-affected, or

(b) edge (a, b) is deleted, dL
G(r , a) ⊕ b = dL

G(r , b), and
(dG(r , b),False) = dL

c (r , b).

Proof Since b is LCD-affected, Definition 12 requires

– dc(r , b) < dG(r , b) or
– dL

G ′(r , b) < dL
G(r , b) or

– dL
G ′(r , b) > dL

G(r , b).

As b has no LCD-parents, every vertex a must violate one of
the conditions (1)-(4) of Definition 17.

(1) Assume dc(r , b) < dG(r , b). Let p be a composite
path from r to b of minimal composite landmark length, and
a the predecessor of b in p. Then, dc(r , a) + 1 = dc(r , b),
so condition (4) holds. If a is stable, then dL

c (r , a) ⊕ b =
dL
c (r , b); otherwise, the landmark flag of dL

c (r , b) is False
by Definition 15. Thus, condition (3) holds in both cases.
Condition (2) must hold as well—otherwise the last edge
(a, b) in the composite path p is a deleted edge,which implies
that p lies inG, contradicting dc(r , b) < dG(r , b). This only
leaves condition (1) to be violated, so a cannot be LCD-
affected. Thus, dL

G(r , a) ⊕ b = dL
c (r , a) ⊕ b = dL

c (r , b),
and therefore dG(r , a) + 1 < dG(r , b). It follows that (a, b)
must be inserted and dL

G(r , a) ⊕ b = dL
c (r , b) < dL

G(r , b)
holds.

(2) Assume dc(r , b) = dG(r , b) and dL
G ′(r , b) <

dL
G(r , b). Then, dc(r , b) ≤ dG ′(r , b) ≤ dG(r , b) = dc(r , b)

so b is stable. Let p be a stable path from r to b of mini-
mal landmark length, and a the predecessor of b in p. Then,
conditions (2) and (3) clearly hold. Since dL

G ′(r , a) ⊕ b =
dL
G ′(r , b) < dL

G(r , b) condition (4) holds as well, so con-
dition (1) must be violated and a cannot be LCD-affected.
Thus, dL

G(r , a) ⊕ b = dL
c (r , a) ⊕ b = dL

c (r , b) < dL
G(r , b),

implying that (a, b) is inserted.
(3) Assume dc(r , b) = dG(r , b) and dL

G ′(r , b) >

dL
G(r , b). Ifb is unstablewehavedL

c (r , b) = (dc(r , b),False)
= (dG(r , b),False) by Definition 15. Otherwise dG(r , b) =
dc(r , b) = dG ′(r , b), so dL

G ′(r , b) > dL
G(r , b) is only pos-

sible if dL
G ′(r , b) = (dG(r , b),False). Thus dL

c (r , b) =
dL
G ′(r , b) = (dG(r , b),False), so the last condition in case

(b) of Lemma 13 holds in both cases.

Let p be a path from r to b in G of minimal land-
mark length, and a the predecessor of b in p. This implies
dL
G(r , a) ⊕ b = dL

G(r , b), so it only remains to show that
(a, b) is deleted. Assume to the contrary that (a, b) lies in
G ′, so condition (2) holds immediately. Since p has length
dc(r , b) we have dc(r , b) = dc(r , a) + 1. Together with
earlier results this gives us dL

c (r , b) = (dc(r , b),False) =
(dc(r , a)+1,False). Thus condition (3) holds if a is unstable.
If a is stable, then dL

c (r , b) ≤ dL
c (r , a)⊕b. This is only pos-

sible if the landmark flag of dL
c (r , a)⊕b is False, so condition

(3) holds again. Finally dL
G(r , a)⊕b = dL

G(r , b) < dL
G ′(r , b)

so condition (4) holds as well. Thus, condition (1) must
be violated, so a cannot be LCD-affected. It follows that
dL
G ′(r , a) = dL

G(r , a), and thus

dL
G ′(r , b) ≤ dL

G ′(r , a) ⊕ b = dL
G(r , a) ⊕ b = dL

G(r , b)

violating dL
G ′(r , b) > dL

G(r , b), a contradiction. ��
The next lemma shows that every LCD-child meets the

pruning conditions in lines 20, 26 and 31 of Algorithm 6.

Lemma 14 Let w be an LCD-child of v. Then,

(i) dc(r , v) + 1 ≤ dG(r , w)

(ii) if v is stable, then dL
c (r , v) ⊕ w < dL

G(r , w) or
dL
G(r , v) ⊕ w = dL

G(r , w) < dL
c (r , v) ⊕ w

(iii) if v is unstable, then dc(r , v) + 1 < dG(r , w) or
dL
G(r , v) ⊕ w = dL

G(r , w)

Proof Consider the cases in condition (4) of Definition 17.
If dc(r , v) + 1 < dG(r , w) then conditions (1), (2) and (3)
follow immediately.

If dL
G ′(r , v) ⊕ w < dL

G(r , w) then dG ′(r , v) + 1 ≤
dG(r , w), and condition (1) follows from dc(r , v) ≤
dG ′(r , v). If v is stable, then dL

c (r , v) = dL
G ′(r , v) and con-

dition (2) follows. If v is unstable, then dc(r , v) < dG ′(r , v)

and thus dc(r , v) + 1 < dG ′(r , v) + 1 ≤ dG(r , w), showing
condition (3).

If dL
G(r , v) ⊕ w = dL

G(r , w) < dL
G ′(r , w) then condition

(3) follows immediately, and condition (1) from dc(r , v) +
1 ≤ dG(r , v) + 1 = dG(r , w). For condition (2) stability of
v gives us

dL
G(r , v) ⊕ w = dL

G(r , w) < dL
G ′(r , w)

≤ dL
G ′(r , v) ⊕ w = dL

c (r , v) ⊕ w

showing condition (2). ��
We are now ready to prove our main result.

Theorem 1 Algorithm 6 returns the set of all LCD-affected
vertices.
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Proof We prove it by showing the following:

(a) For each (d, l, s, v) ∈ Q, we have

dL
c (r , v) ≤ (d, l) and d ≤ dG(r , v).

If l = True, then s = True and (d, l) < dL
G(r , v).

(b) From line 10 onwards, we have

dL
c (r , v) ≤ (dv, lv) and dv ≤ dG(r , v).

If lv = True, stable = True and (dv, lv) < dL
G(r , v).

(c) From line 11, we have dv = dc(r , v).
(d) In line 14 either dw ≥ dc(r , w) ≥ dv , or (dw, lw) =

dL
c (r , w) and w is stable.

(e) If line 18 is reached, then v is not LCD-affected.
(f) If line 19 is reached, then v is LCD-affected.
(g) From line 19, we have (dv, lv, stable) = dS

c (r , v).
(h) The while loop has the following invariant:

If v is LCD-affected with v /∈ Vaff+, then Q ∪ Q+ con-
tains a tuple (d, l, . . .) with (d, l) ≤ dL

c (r , v).

Once shown, (h) guarantees that every LCD-affected vertex
is included in Vaff+, while (f) ensures that these are the only
ones. By considering only the first time any condition would
be violated, we may assume they all hold for earlier steps.
Case (a): For insertions prior to thewhile loop, the conditions
clearly hold. Let (d, l, s, w) be the first tuple inserted during
the while loop that violates the condition, and consider the
iteration duringwhich this insertion occurred. By (g)we have
(dv, lv) = dL

c (r , v), and the check in line 23 succeeds iff v

is stable.
If v is stable, then insertion occurs in line 27. Thus,

(d, l) = (dv, lv) ⊕ w = dL
c (r , v) ⊕ w

= dG ′(r , v) ⊕ w ≥ dG ′(r , w) ≥ dL
c (r , w).

Otherwise, insertion occurs in line 32, and we have

(d, l) = (dv + 1,False) = (dc(r , v) + 1,False)

≥ (dc(r , w),False) ≥ dL
c (r , w).

This shows the first inequality. The check in line 20 ensures
the second inequality d ≤ dG(r , w).

Finally, let l = True. Then, (d, l, s, w) must have been
inserted in line 27. Thus, we have (d, l) = (dv, lv) ⊕ w,
s = True and either (dv, lv) ⊕ w < dL

G(r , w) or dL
G(r , w) <

(dv, lv) ⊕ w. In the first case (d, l) < dL
G(r , w) follows

immediately. Otherwise, we have dL
G(r , w) < (d, l) and

dG(r , w) ≤ d, which together with the second inequality
implies d = dG(r , w). Thus, dL

G(r , w) < (d, l) is only pos-
sible for l = False, a contradiction.

Case (b): If (dv, lv, . . .) comes from Q, the claim follows
from (a). Note that variable stable will never be updated to
False.Otherwise, (dv, lv, stable, v, a) comes fromQ+. Then,
stable is True, (a, v) lies in G ′, and (dv, lv) = dL

G(r , a) ⊕
v < dL

G(r , v). Thus, dv ≤ dG(r , v) holds. Since the check
in line 8 succeeded a /∈ Vaff+. By (h) and minimality of
dv > dG(r , a) ≥ dc(r , a), it follows that a is not LCD-
affected. Thus dL

c (r , v) ≤ dL
c (r , a) ⊕ v = (dv, lv).

Case (c): The check in line 10 must have succeeded, so v /∈
Vaff+. If v is LCD-affected, then (dv, lv) ≤ dL

c (r , v) by (h)
and the claim follows from (b). If v is not LCD-affected, then
dL
c (r , v) = dL

G(r , v) by Lemma 12 and the claim follows
from (b).
Case (d): If w ∈ Vaff+, then (dw, lw) = LD[w] = dL

c (r , w)

by (g), and w is stable by (g); thus, (d) holds. Otherwise,
(dw, lw) = dL

G(r , w); thus, dw = dG(r , w) ≥ dc(r , w). If
dc(r , w) ≥ dv , then (d) holds. Let dc(r , w) < dv . Since dv

was minimal in Q ∪ Q+ and w /∈ Vaff+, w cannot be LCD-
affected by (h). By Lemma 12 w is stable and dc(r , w) =
dL
G(r , w) = (dw, lw), so (d) holds.

Case (e): Assume to the contrary that v is LCD-affected.
Then, (h) implies (dv, lv) ≤ dL

c (r , v) as (dv, lv) is minimal
inQ∪Q+, and thus (dv, lv) = dL

c (r , v) by (b). Denote byw

the neighbour of v for which line 18 is reached. The checks
in lines 12 and 15 ensure that dG(r , v) = dw + 1. Thus,
w is stable and (dw, lw) = dL

c (r , w) by (d). This implies
dc(r , v) = dc(r , w) + 1, so v is stable. The check in line 17
ensures that

dL
G(r , v) = dL

c (r , w) ⊕ v ≥ dL
c (r , v).

Hence, either dL
c (r , v) < dL

G(r , v) or v is not LCD-affected
by Lemma 12. Assume the former. Since dG(r , v) = dv =
dc(r , v), this requires dc(r , v) = (dv,True). But that means
lv = True and the check in line 12 would have failed.
Case (f): Assume to the contrary that v is not LCD-affected.
Wewill show that execution would have reached line 18 first.

If lv = True, we would have dL
c (r , v) ≤ (dv, lv) <

dL
G(r , v) by (b) which contradicts Lemma 12, and thus

lv = False. By (c) and Lemma 12, we have dv = dc(r , v) =
dG(r , v), and the check in line 12 succeeds.

By Lemma 12, v is stable. Hence, there must exist a stable
path p from r to v of landmark length dL

c (r , v). Let w be the
predecessor of v in p so that w is stable and dL

c (r , w) ⊕
v = dL

c (r , v). From (g) it follows that Vunstable contains
precisely the unstable vertices in Vaff+. Hence, w lies in
NG ′(v) \ Vunstable.

By (d) and dc(r , w) < dc(r , v) = dv , we have (dw, lw)

= dL
c (r , w). It follows that dv = dc(r , v) = dc(r , w) +

1 = dw + 1 and dL
G(r , v) = dL

c (r , v) = dL
c (r , w) ⊕ v =

(dw, lw) ⊕ v. Thus, w passes all checks required to reach
line 18, and line 19 is not reached.
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Case (g): By (f), v is LCD-affected. Hence, (h) implies
(dv, lv) ≤ dL

c (r , v), and (dv, lv) = dL
c (r , v) by (b). It

remains to show that variable stable is True iff v is stable.
If tv came fromQ+ with anchor a, then stable is True and

dc(r , a) ≤ dG(r , a) < dG(r , a) + 1 = dv . Since the check
in line 8 must have succeeded, we have a /∈ Vaff+. By (h) it
follows that a is not LCD-affected. Since dc(r , v) = dv =
dG(r , a)+1 = dc(r , a)+1wemay conclude that v is stable.

Let tv have come fromQ. If stable was initially True, then
the tuple must have been inserted in line 27 while examining
a parent vertex u. As (g) holds for all earlier iterations, umust
have been stable with dc(r , u)+ 1 = dv = dc(r , v), and v is
stable. So let stable have been initially False. lv = False by
(a). We distinguish two cases. (i) If dv = dG(r , v) then the
check in line 12 succeeds. By Definition 15 v is stable iff v

has a stable neighbourw in G ′ with dc(r , w)+1 = dc(r , v).
By (d) line 16 is reached iff such a neighbour exists, so the
claim holds. (ii) If dv �= dG(r , v), then the check in line 12
fails. Thus, stable will still be false by the time when line 19
is reached. Assume to the contrary that v is stable. Then, it
must have a stable neighbour a in G ′ with dc(r , a) + 1 =
dc(r , v) = dv < dG(r , v).

If a is not LCD-affected, then (a, v) must have been
inserted. Hence, a tuple ta = (dc(r , v), l,True, v, a) must
have been inserted into Q+. Minimality of tv in Q ∪ Q+
means that ta must have been removed from Q+ earlier. At
this point the checks in lines 8 and 12 would have failed,
causing v to be added to Vaff+, a contradiction.

If a is LCD-affected, then a ∈ Vaff+ by (h) and min-
imality of dv in Q ∪ Q+. Since a is stable, a tuple ta =
(dc(r , v), l,True, v) must have been inserted inQ in line 27
when processing a. Minimality of (dv,False,False) in Q ∪
Q+ means that ta must have been removed from Q earlier.
At this point the check in line 12 would have failed, causing
v to be added to Vaff+, a contradiction.
Case (h): We will show a stronger invariant, namely that if v

is LCD-affected with v /∈ Vaff+ then either

– (Q)Q contains a tuple (d, l, s, b) with (d, l) ≤ dL
c (r , v)

where b /∈ Vaff+ is an LCD-ancestor of v, or
– (Q+) Q+ contains a tuple (d, l, s, b, a) with (d, l) ≤

dL
c (r , v) where b /∈ Vaff+ is an LCD-ancestor of v and a
is not LCD-affected.

For every LCD-affected vertex v, there exists an LCD-
ancestor of v that has no LCD-parent, possibly v itself. Thus
InitQueues will add a tuple satisfying either (Q) or (Q+) by
Lemma 13, so the invariant holds initially.

Consider now an iteration of the while loop where v is
LCD-affected with v /∈ Vaff+. We need to show that the
invariant is maintained for its LCD-descendants. Denote by
tv the tuple removed from Q ∪ Q+. If tv ∈ Q+, then by
(f) a /∈ Vaff+, and the check in line 8 fails. Thus, execution

reaches line 10 in both cases, and the check here passes by
assumption. By (e) line 18 is never reached, and execution
reaches line 22where v is added toVaff+. Hence, the invariant
is maintained for v.

Finally, letw be an LCD-child of v. By Lemma 14 and (g),
the checks in lines 20 and 26 (if v is stable) or 31 (otherwise)
succeed. Thus, a tuple (dw, lw, s, w) is added toQ in line 27
or 32. By condition (3) of Definition 17, we have (dw, lw) =
dL
c (r , w), and the invariant is maintained for w and its LCD-
descendants. ��

8.2 Proof of minimality

Theorem 2 The highway labelling�′ that BatchHL+ returns
is the minimal highway labelling for G ′.

Proof By Lemma 6 and Theorem 1, the vertex set Vaff+
returned by Algorithm 6 contains all LD-affected vertices.
By Lemma 6, for vertices outside of Vaff+ the landmark dis-
tance to ri does not change. In line 3 of Algorithm 7 the value
of dL

bou(v, Vaff+) can be computed from �. From Lemma 9,
it follows that Dbou[v] = dL

G ′(ri , v) whenever vertex v lies
in Vmin.

For each landmark r and each LD-affected vertex v w.r.t.
r , we update the r -label of v in �′ based on its landmark
distance to r in G ′. By Lemma 5, these updates are correct.
As the r -labels of vertices outside of Vaff+ do not change, and
we initialized�′ using�, this leave all verticeswith correct r -
labels, for all r ∈ R, so the distance labelling of �′ is correct
and minimal. Highway is updated for vertices in Vaff+ for all
r ∈ R, and do not change for others by Definition 9. ��

8.3 Complexity analysis

We analyse the time and space complexity of BatchHL+. Let
a be the total number of affected vertices, l be the maximum
label size, and d be the maximum degree. We perform |R|
BFSs to construct highway labelling in O(|R| · |V |) time and
space. The time complexity of Algorithm 6 is O(a · d · l),
where it visits O(a) vertices and for each affected vertex per-
forms d queries to check its affected neighbours in O(d · l)
time. Note that a in Algorithm 6 refers to the total num-
ber of LCD-affected vertices which is much smaller than the
total number of CP-affected vertices being referred to as a by
Algorithm 2 of BatchHL. In practice, l and d are closer to the
average values, and a is usually orders of magnitudes smaller
than the total number of vertices in a graph. Further, in con-
trast to Algorithm 3 of BatchHL which repairs CP-affected
vertices returned by Algorithm 2, Algorithm 7 of BatchHL+
repairs LCD-affected vertices returned byAlgorithm6. In the
worse case, both Algorithm 3 and Algorithm 7 could repair
the labels of all affected vertices. When repairing the label of
an affected vertex, we check its neighbours in O(d). Thus,
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the time complexity of Algorithm 7 is (a · d), and the over-
all time complexity of BatchHL+ is O(|R| · a · d · l) using
O(V ) space. We omit l from the time complexity of Algo-
rithms 3 and 7 because we store distances for all unaffected
neighbours of affected vertices in Algorithms 2 and 6.

9 Implementation optimizations

When implementingAlgorithm6, landmark length and stable
landmark length values can be encoded as single integers to
save storage space and speedup computation. Further, storing
computed landmark distances in G for later reuse can also
speed up processing.

For undirected graphs, the for loop in line 19 can be inte-
grated into the for loop in line 13 if the latter is reached.
For directed graphs, it can be eliminated altogether, in which
case the for loops in lines 25 and 30 iterate over the outgoing
neighbours.

Case (g) in Theorem 1 ensures that LD[v] = dL
G ′(r , v) for

all stable LCD-affected vertices. Hence the highway labels
for these can be updated directly, and batch repair can be
restricted to unstable vertices. Eliminating duplicate values
inQ or checking whether a value has already been processed
in line 10 stops vertices fromgetting processedmultiple times
(whereas checking containment in Vaff+ only prevents this
for LCD-affected vertices). Case (e) shows that this will not
cause any LCD-affected vertices to be missed. However, the
overhead of tracking visited vertices may not be worth it in
situations where repeated visits are rare.

10 Experiments

We have implemented our proposed method BatchHL+ to
answer the following questions:

(1) How efficiently can BatchHL+ perform in comparison
with the state-of-the-art dynamic algorithms for answer-
ing distance queries?

(2) How does the number of landmarks affect the perfor-
mance of BatchHL+?

(3) How does the number of affected vertices effect the
performance of BatchHL+ in comparison with the state-
of-the-art dynamic algorithms?

(4) What is the effect of the size of batch updates on the
performance of BatchHL+?

Experimental setup. In our experiments, all algorithms are
implemented in C++11 and compiled using g++ 5.5.0 with
the -O3option.All the experiments are performedusing a sin-
gle thread on a Linux server (Intel Xeon W-2175 (2.50GHz
CPU) with 28 cores and 512GB of main memory).

Baseline methods. We compare our proposed method
BatchHL+ with the following state-of-the-art methods.

– BatchHL [18]: A batch-dynamicmethodwhich performs
graph changes in the batch-update setting to efficiently
maintain a highway cover distance labelling. Then, it
combines the updated labelling with graph traversal
algorithm to answer distance queries. We compare our
proposed method with the optimised version of BatchHL
in our experiments.

– FulHL [20]:A fully dynamicmethodwhich presents two
algorithms IncHL and DecHL to maintain a highway
cover distance labelling as a result of graph changes in
the single-update setting. Then, it combines the updated
labelling with graph traversal algorithm to answer dis-
tance queries.

– FulFD [23]: A fully dynamic method that incorporates
two algorithms IncFD and DecFD to maintain a dis-
tance labelling in the single-update setting as a result of
graph changes. Then, it combines the updated distance
labelling with a graph traversal algorithm to answer dis-
tance queries.

– PSL* [27]: A parallel algorithmwhich constructs pruned
landmark labelling for static graphs to answer distance
queries.

– BiBFS [23]: An online bidirectional BFS algorithm
which answers distance queries using an optimized strat-
egy to expand searches from the direction with fewer
vertices.

The code for FulFD, FulPLL and PSL* was provided by
their authors and implemented in C++. We use the same
parameter settings as suggested by their authors unless other-
wise stated. For a fair comparison, we also select high degree
landmarks and set them to 20 in the same way as FulFD for
our methods. We set the number of threads to 20 for PSL*.
Datasets.Weuse 15 large real-world networks from a variety
of domains to verify the efficiency, scalability and robustness
of our algorithm. Among them, Italianwiki and Frenchwiki
are two real dynamic networks whose topology evolves over
time. We treat these networks as undirected and unweighted
graphs, and their statistics are summarized in Table 3. These
datasets are accessible at Stanford Network Analysis Project
[26], Laboratory for Web Algorithmics [9], and the Koblenz
Network Collection [25].
Test data generation. For batch-dynamic algorithms, we
generate 10 batches of updates for all the 13 datasets, where
each batch update contains 1000 edges that are randomly
selected from E . We consider three batch update settings for
testing:

(1) Decremental—delete these batches of updates and mea-
sure the average deletion time;
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Table 3 Datasets, where
si ze(G) denotes the size of a
graph G with each edge
appearing in the forward and
reverse adjacency lists and being
represented by 8 bytes

Dataset Network n m m/n Avg. deg Max. deg Avg. dist si ze(G)

Youtube social (u) 1.1M 3M 2.63 5.265 28754 5.3 23 MB

Skitter comp (u) 1.7M 11M 6.54 13.08 35455 5.0 85 MB

Flickr social (u) 1.7M 16M 9.07 18.13 27224 5.3 119 MB

Wikitalk comm (d) 2.4M 5M 1.95 3.890 100029 3.9 36 MB

Hollywood social (u) 1.1M 114M 49.5 98.91 11467 3.9 430 MB

Orkut social (u) 3.1M 117M 38.1 76.28 33313 4.2 894 MB

Enwiki social (d) 4.2M 101M 21.9 43.75 432260 3.4 701 MB

Livejournal social (d) 4.8M 69M 8.84 17.68 20333 5.6 327 MB

Indochina web (d) 7.4M 194M 20.4 40.73 256425 7.7 1.1 GB

IT web (d) 41M 1.2B 24.9 49.77 1326744 7.0 7.7 GB

Twitter social (d) 42M 1.5B 28.9 57.74 2997487 3.6 9.0 GB

Friendster social (u) 66M 1.8B 27.4 55.06 5214 5.0 13 GB

UK web (d) 106M 3.7B 31.4 62.77 979738 6.9 25 GB

Italianwiki web (d) 1.2M 35M 16.6 33.25 81090 3.5 153 MB

Frenchwiki web (d) 2.2M 59M 13.2 26.36 137021 3.9 223 MB

Fig. 4 Distance distribution of
batch updates

(2) Incremental—add these batches of updates after decre-
mental updates and measure the average insertion time;

(3) Fully dynamic—randomly select 50% updates from each
of 10 batches of decremental updates as insertions and
the remaining 50% as deletion. We report the average
update time.

For the two datasets that are real-world dynamic networks,
we select 10 batches in the order of their timestamps,
each containing 1000 real-world inserted/deleted edges and
measure the average update time after applying them in a
streaming fashion.

For themethods FulHL and FulFD, we randomly sample
1000 edges and follow the same update settings as above
to measure the update time of performing updates one by
one. These settings enable us to explore the impacts of edge
insertions and edge deletions, respectively, in addition to their
combined effect.

Figure 4 shows the distance distribution of edges in these
batches after deleting. The distances in all datasets are small
ranging from 1 to 6. This shows that the updates are mostly
fromdensely connected components of these networkswhich
may cause fewer vertices to be affected in the incremental

setting. Only a small number of updates are disconnected in
most of these datasets.

For queries, we randomly sample 100,000 pairs of ver-
tices in each dataset to evaluate the average querying time
on graphs being changed as a result of fully dynamic batch
updates. We also report the average labelling size produced
by our batch-dynamicmethodBHL++ after performing fully
dynamic batch updates.

11 Experimental results

11.1 Performance comparison

We compare our methods against the baseline methods in
terms of update time, labelling size and query time.

11.1.1 Update time

Table 4 presents the average update time in the fully
dynamic, incremental, and decremental settings of our pro-
posed method and the baseline methods.
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Fully dynamic setting. Table 4 shows that BatchHL+ sig-
nificantly outperforms BatchHL.We observe that BatchHL+
is up to 3 orders of magnitude faster than BatchHL on large
datasets. BatchHL+ also significantly outperforms FulHL
and FulFD on all datasets. In particular, BatchHL+ is over 15
times faster than FulHL on most of the datasets and several
orders of magnitude faster than FulFD. Further, the perfor-
mancedifferenceofBatchHL+ andBatchHL is due to the fact
that our improved batch search in BatchHL+ further prunes
affected vertices that do not need a repair in their labels, and in
practice they are significant in amount as can be seen in Table
6. Our method BatchHL+ is also much faster than BatchHL,
FuLHL and FuLFD on the real-world dynamic networks:
Italianwiki and Frenchwiki. We can observe that the aver-
age update time of BatchHL+ is always by far smaller than
recomputing labelling from scratch, i.e. construction time
of BatchHL+ in Table 5. Further, the construction time of
BatchHL+ is significantly smaller than the construction of
the baseline methods on all datasets. We can also see that
the parallel variant of PLL (PSL*) still failed to construct
labelling for the largest three datasets.
Incremental setting. Table 4 also shows that BatchHL+ is
comparablewith BatchHLbecause of no technical difference
in the batch search approach of both methods. On the other
hand, it significantly outperforms IncHL and IncFD. This is
because IncHL and IncFD involve in repeated and unnec-
essary computations while performing updates and require
extra usage of resource for each single update.
Decremental setting. In Table 4, we can also see that
BatchHL+ is much faster than BatchHL in this setting. This
is because it further categorises and prunes out affected ver-
tices whose labels do not need to be changed. In contrary,
BatchHL failed to recognise such vertices. The difference in
the amount of affected vertices repaired by BatchHL+ and
BatchHL is shown in Table 6. It is clear that BatchHL+ has
to repair much smaller fraction of affected vertices in the
decremental setting. Furthermore, BatchHL+ significantly
outperforms DecHL and DecFD on all the datasets. Espe-
cially, BatchHL+ can achieve outstanding performance on
networks which have a high average degree such as Twit-
ter, Flickr and Hollywood. Due to inherent complexity of
edge deletion on graphs (i.e. increasing distances), DecHL
and DecFD take very long in identifying and updating labels
of affected vertices. BatchHL+ outperforms these methods
because it leverages the benefit of handling updates in a batch
and significantly reduce repeated computations during iden-
tifying and repairing the labels of affected vertices.

11.1.2 Labelling size

Table 5 shows that BatchHL+ yields significantly smaller
labelling sizes than FulFD and PSL* on all the datasets.Note
that BatchHL+, BatchHL and FulHL produce labelling of

equal sizes after performing update operations because they
are designed using highway cover property. When an update
occurs, the labelling size of FulFD remains unchanged
because they store complete shortest-path trees at all times. In
contrast, BatchHL+ similar to state-of-the-art BatchHL and
FulHL stores pruned shortest-path trees based on highway
cover property. Nonetheless, the labelling size of BatchHL+
remains stable in practice because the average label size is
bounded by a constant, i.e. the number of landmarks. The
parallel variant of PLL (PSL*) which exploit PLL properties
to reduce labelling size still produces labelling of very large
size as compared to BatchHL+.

11.1.3 Query time

Table 5 shows that the average query time of BatchHL+ is
comparablewithFulFD. Itwas reported [12] that the average
query time is largely dependent on labelling size. Since the
dynamic operations do not considerably affect the labelling
size for BatchHL+ and FulFD, their query times remain sta-
ble. On Twitter, the query time of BatchHL+ underperforms
FulFD. This is because FulFD also maintains the shortest-
path information for the neighbourhood of landmarks and the
maximum degree of Twitter is very high which might cause
many pairs to be covered by landmarks.

Although the query time of PSL* in Table 5 is better than
BatchHL+ on some datasets, it only handles static graphs.
For dynamic graphs, it has several limitations including: (1)
the cost of re-constructing labelling from scratch after each
batch update is too high to afford, particularly when batch
updates are frequent or when underlying dynamic graph is
large which is evident from Table 5, (2) the labelling size is
much larger than BatchHL+. As we can see in Table 5, PSL*
produces the labelling of size almost 99% larger than the
labelling of BatchHL+ for Orkut thus possess a high query
cost as well. Considering the overall performance w.r.t. three
main factors, i.e. query time, labelling size and construction
time, BatchHL+ stands out in claiming the best trade-off
between these factors.

11.2 Performance under varying landmarks

Figure 8 and Fig. 9 show how the update time of our
methodBatchHL+ in the fully dynamic setting behaveswhen
increasing the number of landmarks. We can see that the
update time in Fig. 8 for almost all datasets grows to 30 land-
marks and then either decreases or grows linearly. This is
because selecting a larger number of landmarks can better
leverage the pruning power of our method. Figure 9 shows
that the query time decreases or remains the same for almost
all datasets with the increased number of landmarks. Partic-
ularly, the query time of Twitter decreases because of a very
high average degree and selecting a larger number of high
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degree landmarks contributes greatly towards shortest-path
coverage and makes querying process faster.

11.3 Performance under varying batch sizes

We compare the total time of querying and updating on
dynamic graphs. We randomly select 10,000 updates from
E and process them in batches of varying size. For each
batch, we first delete 50% updates and then perform a batch
in the fully dynamic setting. To make a fair comparison, the
total time of our method BatchHL+, and the baseline meth-
ods BatchHL, FulHL and FulFD is the total time to perform
a batch update plus the query time to perform 1000 queries
after performing a batch update and then averaged over 1000
queries, denoted as BatchHL++QT, BatchHL+QT, FulHL
and FulFD+QT, respectively.

Figure 5 presents the results. For the baseline method
BiBFS, we take only the query time averaged over 1000
queries after applying a batch update. The overall perfor-
mance of BatchHL++QT is significantly better than the
baseline methods on all datasets. It is worth noticing that
BatchHL++QT is not only more efficient than BatchHL, but
also their efficiency gap remain significant with the increased
size of batch updates on majority of datasets. This shows
that the novel batch search strategy used in BatchHL++QT
is effective in reducing the size of affected vertex set.We also
observe that the update time along with the query time of our
methods grows fast for batches of smaller sizes (with up to
1000 updates) and then grows very slowly when batch sizes
become very large which shows that our methods are robust
w.r.t the increased batch size.

11.4 Scalability test

We analyse the update time performance of our method
BatchHL+ under varying batches of insertions and deletions
separately. We randomly select 10,000 updates from E and
process them in batches of varying size.We start with a batch
of 500 updates and then iteratively increase the batch by 500
updates to 10,000 updates. We process these batches in the
incremental setting followed by the decremental setting. Fig-
ures 6 and 7 show the average update times after constructing
the labelling from scratch, and updating the labelling after
each batch increase. We observe from Fig. 6 that the update
time of BatchHL+ for batches of insertions is always below
the construction time of labelling and significantly faster
than the baseline methods. As compared with BatchHL+,
it does not show any performance difference because both
algorithms repair roughly the same set of affected vertices
(as can be seen in Table 6). Figure 7 shows that BatchHL+
performs well on all the datasets. The performance gap of
the proposed method BatchHL+ compared to state-of-the-
art methods BatchHL in the batch-update setting as well
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Fig. 5 Total time of querying and updating by the proposed and baseline methods under varying batches of mixed updates ranging from 500 to
10,000

Fig. 6 Update time of the proposed and baseline methods under varying batches of insertions ranging from 500 to 10,000

as DecHL and DecFD in the single-update setting is huge
which can be verified by the amount of repairs each algorithm
has to perform in Table 6. Overall, the update time perfor-
mance is dependent on the fraction of affected vertices to be
repaired and our method can scale to perform large batches
of updates efficiently.

11.5 Performance on directed graphs

Table 7 shows our experimental results on directed graphs in
the fully dynamic setting (as describedunder “Test data gener-
ation”). The update time of our proposed method BatchHL+
significantly outperforms the state-of-the-art method
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Fig. 7 Update time of the proposed and baseline methods under varying batches of deletions ranging from 500 to 10,000

Table 7 Comparing update
time, construction time (CT),
query time (QT) and labelling
size (LS) on directed graphs

Datasets BatchHL+[s] BatchHL[s] CT[s] QT[ms] LS

Wikitalk 0.013 0.098 2.53 0.007 131 MB

Enwiki 0.034 27.91 55.8 0.037 436 MB

Livejournal 0.028 27.51 50.9 0.064 548 MB

Indochina 0.067 66.92 16.91 1.311 161 MB

Twitter 0.051 150.1 1122 0.368 4.19 GB

UK 12.12 1127 348.1 10.51 4.76 GB

Table 8 Average number of
affected vertices after
performing batch updates on
directed graphs

Methods Wikitalk Enwiki Livejournal Indochina Twitter UK

BatchHL 217K 6,224K 11,224K 89,999K 17,746K 1,094,136K

BatchHL+ 14K 4K 11K 78K 5K 9,596K

BatchHL. The difference in the amount of affected vertices
repaired by BatchHL+ and BatchHL is shown in Table 8. It
is clear that BatchHL+ has to repair a much smaller fraction
of affected vertices. Note that the performance of BatchHL+
and BatchHL in terms of CT, QT and LS is the same because
both of them dynamically maintain the highway labelling for
fast distance querying. We also see that BatchHL+ is sev-
eral orders of magnitude faster in updating labels w.r.t. 1000
updates than constructing labelling from scratch for most of
the datasets (Figs. 8, 9).

12 Extension to weighted graphs

For non-negative weighted graphs, we use the Dijkstra’s
algorithm in place of BFSs in our batch search and batch
repair algorithms in order to compute and maintain a high-
way cover distance labelling for fast querying. We consider
graph updates in the formof edgeweight increase or decrease
instead of edge insertion or deletion. Our methods can then
handle weight increases in a similar way to edge deletions
and weight decreases in a similar way to edge insertions.
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Fig. 8 Update time of the proposed method BatchHL+ under varying landmarks ranging from 10 to 50

Fig. 9 Query time of the proposed method BatchHL+ under varying landmarks ranging from 10 to 50

13 Conclusion

In this article, we have proposed an efficient method to
answer distance queries on dynamic graphs undergoing batch
updates. We have explored combined and separate effects
of different types of updates in a batch to further reduce
search space for maintaining distance labelling against graph
changes. We have analysed the correctness and complex-
ity of our method and showed that it preserves the labelling
minimality. We have empirically verified the efficiency and
scalability of our method on 15 real-world networks. For
future work, we plan to explore the applicability and exten-
sion of the proposed method to road networks.
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