
The VLDB Journal (2024) 33:49–71
https://doi.org/10.1007/s00778-023-00797-x

REGULAR PAPER

A near-optimal approach to edge connectivity-based hierarchical
graph decomposition

Lijun Chang1 · Zhiyi Wang1

Received: 22 March 2022 / Revised: 24 March 2023 / Accepted: 14 April 2023 / Published online: 6 May 2023
© The Author(s) 2023

Abstract
The problem of efficiently computing all k-edge-connected components (k-ECCs) of a graph G for a user-given k has been
extensively studied recently in view of its importance in many applications. The k-ECCs of G for all possible values of k
form a hierarchical structure; that is, any two different k-ECCs for the same k value are disjoint and any k-ECC is contained
in a unique (k-1)-ECC. In this paper, we study the problem of efficiently constructing the hierarchy tree of the k-ECCs for
all possible k values, for a graph G. The existing approaches TD and BU construct the hierarchy tree in either a top-down
manner or a bottom-up manner, with both having the time complexity ofO

(
δ(G)×TKECC(G)

)
, where δ(G) is the degeneracy

of G and TKECC(G) is the time complexity of computing all k-ECCs of G for a specific k value. Here, the degeneracy of
G is defined as the maximum value among the minimum vertex degrees of all subgraphs of G and is at most

√
m where

m is the number of edges in G. To improve the time complexity, we propose a divide-and-conquer approach DC running
in O

(
(log δ(G)) × TKECC(G)

)
time; this time complexity is optimal up to a logarithmic factor. However, a straightforward

implementation of DC would take O((m + n) log δ(G)) main-memory space, which could easily run out-of-memory when
processing large graphs; here, n is the number of vertices in G. To reduce the main-memory footprint of our algorithm, we
propose adjacency array-based techniques to optimize the space complexity to 2m +O(n log δ(G)) and denote our resulting
algorithm by DC-AA. As a by-product of DC-AA, we also improve the space complexity of the state-of-the-art algorithm for
computing all k-ECCs for a specific k to 2m + O(n), by using the same technique as used in DC-AA. Finally, we propose
optimization techniques to improve the practical efficiency of the existing approach BU and denote the space-optimized
version of it as BU∗-AA which runs in O

(
δ(G) × TKECC(G)

)
time and 2m +O(n) space. Extensive experiments on large real

graphs and synthetic graphs demonstrate that our algorithms DC-AA and BU∗-AA outperform the state-of-the-art approaches
by up to 28 times in terms of running time and by up to 8 times in terms of main memory usage. In particular, our approach
BU∗-AA processes the Twitter graph, which has more than 1 billion undirected edges, in 29 min with 13.5 GB memory, while
the state-of-the-art approaches take more than 13 h after our space optimization; note that the state-of-the-art approaches run
out-of-memory if without our space optimization. Our empirical study also shows that BU∗-AA, despite having a higher time
complexity, performs better than DC-AA in practice. We also remark that BU∗-AA is much simpler and easier to implement
than DC-AA.

Keywords Edge connectivity · Hierarchical graph decomposition · Near optimal · Divide-and-conquer

B Lijun Chang
Lijun.Chang@sydney.edu.au

Zhiyi Wang
zwan9517@uni.sydney.edu.au

1 School of Computer Science, The University of Sydney,
Sydney, NSW, Australia

1 Introduction

The relationships among entities in real-world applications
can be naturally modeled by the graph model. As a result,
real graph data are abundant. With the proliferation of graph
data, one of the fundamental graph problems is to compute
the set of all maximal k-edge-connected subgraphs, called
k-edge-connected components and abbreviated as k-ECCs,
for a user-given k [3, 11, 40, 43]. A graph is k-edge con-
nected, if it remains connected after removing any set of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00797-x&domain=pdf

50 L. Chang, Z. Wang

Fig. 1 A toy graph and its ECo-decomposition

k − 1 edges. For the graph in Fig. 1a, the subgraphs induced
by vertices {v1, . . . , v5} and {v6, . . . , v9} are two 3-ECCs,
with the former also being a 4-ECC. Computing k-ECCs
has many applications, such as identifying closely related
entities for social behavior mining [2], discovering cohesive
blocks (communities) in social networks (e.g., Facebook)
[39], matrix completability analysis [14], and measuring
robustness of communication networks [11].

Specifying the appropriate k value for an application is,
however, non-trivial and usually needs several iterations of
the trial-and-error process. In addition, different applications
may need different k values. Hence, it is critical to pre-
compute a data structure, such that all k-ECCs for any given
k can be efficiently retrieved from the data structure which
then as a result can facilitate downstream tasks. It is known
that the k-ECCs for all possible k values form a hierarchical
structure [42], as the different k-ECCs for the same k value
are disjoint and each k-ECC is entirely contained in a unique
(k − 1)-ECC [7]. As an example, the hierarchy tree T for the
k-ECCs of the graph G in Fig. 1a is shown in Fig. 1b. Here,
the leaf nodes are vertices of G and non-leaf nodes corre-
spond to k-ECCs of G; to distinguish vertices of T from
that of G, we refer to vertices of T as nodes. From the con-
structed tree T , the set of k-ECCs for any k can be easily
extracted in time linear to the size of the k-ECCs. Thus, the
problem becomes efficiently constructing the hierarchy tree
for k-ECCs of all possible k values. We called this problem
Edge Connectivity-based hierarchical graph decomposition
and abbreviate it as ECo-decomposition.

Besides all the applications above, computing ECo-
decomposition (i.e., the hierarchy tree) also has its own
applications. Some example applications are as follows.

• Hierarchical Organization and Visualization of Graphs.
ECo-decomposition constructs a hierarchical organi-
zation of a graph. This hierarchical organization can
facilitate graph topology analysis [6] and assist users to
visualize a graph in a multi-granularity manner [29], for
example, zoom in and out based on the edge connectivi-
ties of subgraphs.

• Graph Sparsification. ECo-decomposition efficiently
computes the Steiner connectivity for all edges (see
Sect. 4.1). It is shown in [5, 20] that independently sam-

pling edges according to their Steiner connectivities
preserves the values of all cuts with a small multiplica-
tive error. Note that this reduces the number of edges and
thus sparsifies the graph.

• Steiner Component Search. ECo-decomposition is also
an inherent preprocessing step for the problem of online
Steiner component search [7, 25], which aims to com-
pute the subgraph that contains a set of user-given query
vertices and has the maximum edge connectivity [7].

The state-of-the-art approaches TD and BU compute the
ECo-decomposition (i.e., construct the hierarchy tree T)
either in a top-down fashion [7] or in a bottom-up fashion
[42]. TD computes k-ECCs of G for all possible k values
in increasing order and thus constructs the hierarchy tree in
a top-down fashion [7]. BU computes k-ECCs of G for all
possible k values in decreasing order and thus constructs
the hierarchy tree in a bottom-up fashion [42]. Computation
sharing techniques are exploited in TD and BU based on the
observation that theworking graph in an iteration for comput-
ing k-ECCs could be smaller than the input graphG, e.g., the
working graph in TD for computing k-ECCs is not G but the
set of (k − 1)-ECCs ofG which are the results of the previous
iteration [7]. The worst-case time complexities of TD and BU
are both O

(
δ(G) × TKECC(G)

)
, where TKECC(G) is the time

complexity of computing all k-ECCs ofG for a specific k and
δ(G) is the degeneracy of G. The degeneracy of G is defined
as the maximum value among the minimum vertex degrees
of all subgraphs of G [28]. Note that the time complexity
of O

(
δ(G) × TKECC(G)

)
is the same as the straightforward

approach that independently computes k-ECCs of G for all
possible k values, as the largest k will be no larger than δ(G).

Our Near-Optimal Approach. To improve the time com-
plexity, we separate the computation into two parts, by first
computing the Steiner connectivity for all edges of G and
then constructing the hierarchy tree T based on the com-
puted Steiner connectivities. Here, the Steiner connectivity
of an edge (u, v), denoted sc(u, v), is the largest k such that a
k-ECC ofG contains the edge.We in this paper show that the
hierarchy tree of the ECo-decomposition can be constructed
inO(m) time given the Steiner connectivities of all edges of
G, where m is the number of edges of G. Consequently, the
main problem of ECo-decomposition is to efficiently com-
pute the Steiner connectivity for all edges of G.

We propose a divide-and-conquer approach DC to com-
pute the Steiner connectivities of all edges. The general idea
is that given the set EH

L of edges of G whose Steiner connec-
tivities are in the range [L, H], i.e., EH

L = {(u, v) ∈ E(G) |
L ≤ sc(u, v) ≤ H},we compute the exact Steiner connectiv-
ity for all edges of EH

L as follows. If L = H , then sc(u, v) =
L for every edge (u, v) ∈ EH

L and the problem is solved.
Otherwise, let M = ⌈ L+H

2

⌉
, we divide the problem into

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 51

two subproblems, E ′ and E ′′, to be solved recursively; here,
E ′ = EM−1

L = {(u, v) ∈ E(G) | L ≤ sc(u, v) ≤ M − 1}
and E ′′ = EH

M = {(u, v) ∈ E(G) | M ≤ sc(u, v) ≤ H}.
The critical step is efficiently dividing a search problem EH

L
into two subproblems: E ′ and E ′′. We show that E ′ is exactly
the set of edges of EH

L that are not in M-ECCs of the sub-
graph of G induced by EH

L and all edges of G whose Steiner
connectivities are larger than H , and E ′′ is equal to EH

L \E ′.
In addition, we propose computation sharing techniques and
prove that DC runs in O

(
(log δ(G)) × TKECC(G)

)
time.

The time complexity of DC is optimal up to a logarithmic
factor, since the time complexity of any ECo-decomposition
algorithm is clearly lower bounded by TKECC(G). However, a
naive implementation ofDCwould takeO

(
(n+m) log δ(G)

)

main-memory space which makes it infeasible to process
large graphs. We show that the space complexity can be
improved to O(m + n log δ(G)). However, this is still too
high to be applied to billion-scale graphs as it will run out-of-
memory. Note that the constant hidden by the big-O notation
is large. In view of this, we further propose techniques,
based on adjacency array, to reduce the space complexity
to 2m + O(n log δ(G)) by explicitly bounding the constant
on m by 2, while not increasing the time complexity. We
denote our space-optimized approach as DC-AA, where AA
stands for adjacency array.

In addition, we also propose a practically efficient algo-
rithm BU∗-AA, which follows the general paradigm of BU.
That is, BU∗-AA also computes k-ECCs of G for all possible
values of k in decreasing order. However, instead of process-
ing all vertices when computing the k-ECCs for each k, we
show that we only need to process a subset of the vertices;
we propose techniques to efficiently extract this subset of
vertices as well as the subgraph induced by them. Although
the time complexity of BU∗-AA remains the same as that
of BU, i.e., O(δ(G) × TKECC(G)), BU∗-AA runs much faster
than BU and performs even better than DC-AA in practice.
Note that BU∗-AA is much simpler and easier to implement
than DC-AA. Furthermore, BU∗-AA has a space complexity
of 2m + O(n).

We conduct extensive empirical studies on large graphs to
evaluate our algorithms. The results show that our approach
DC-AA outperforms the state-of-the-art approaches TD and
BU by up to 28 times in terms of running time and by up to
8 times in terms of memory usage. Take the Twitter graph
that has 1.2 billion undirected edges as an example, DC-AA
finishes in 78 min by consuming 15 GB memory, while TD
and BU (as well asDC) run out-of-memory on amachine with
128 GB memory; on the other hand, our space-optimized
versions of TD and BU finish in 13.9 and 36.8 h, respectively.
Furthermore, our practical approach BU∗-AA runs faster and
consumes less memory than DC-AA, e.g., BU∗-AA finishes in
29 min with 13.5 GB memory for the Twitter graph.

Contributions. Our main contributions are summarized as
follows:

1. We propose a near-optimal approach to ECo-
decomposition, which improves the time complexity
from O(δ(G) × TKECC(G)) of existing approaches to
O((log δ(G)) × TKECC(G)) of our approaches.

2. We propose techniques to implement our algorithm such
that it takes 2m+O(n log δ(G))main-memory space and
thus can process billion-scale graphs in the main memory
of a commodity machine.

3. We also propose a simpler and practically efficient algo-
rithm that has space complexity of 2m + O(n).

4. As a by-product of our space optimization techniques,
we significantly reduce the memory usage of the state-of-
the-art k-ECC computation algorithm proposed in [11].
Moreover, we anticipate that our space optimization tech-
niques can also be generally applied to other graph
algorithms.

5. We conduct extensive empirical studies on large real
and synthetic graphs to evaluate the efficiency of our
approaches.

A preliminary version of this work has been published in
[10]. Compared with [10], we have proposed a new algo-
rithm BU∗-AA, added proofs for all lemmas and theorems,
and conducted new experimental studies on SSCA synthetic
graphs as well as the new algorithm BU∗-AA in this paper.

Organization. The rest of the paper is organized as fol-
lows. Section2 gives preliminaries of the studied problem,
and Sect. 3 presents the existing algorithms. We propose a
near-optimal approach in Sect. 4 and develop techniques to
reduce the memory usage of our algorithms in Sect. 5. We
further propose a simpler and practically efficient algorithm
in Sect. 6. Section7 reports the results of our experimental
studies, and Sect. 8 provides an overview of related works.
Finally, Sect. 9 concludes the paper.

2 Preliminaries

In this paper, we consider a large unweighted and undirected
graph G = (V , E), with vertex set V and edge set E . The
number of vertices and the number of undirected edges in G
are denoted by n = |V | and m = |E |, respectively. Given a
vertex subset Vs ⊆ V , the subgraph of G induced by vertices
Vs is denoted by G[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}).
Given an edge subset Es ⊆ E , the subgraph of G induced by
edges Es is denoted by G[Es] = (∪(u,v)∈Es {u, v}, Es). For
an arbitrary graph g, we use V (g) and E(g) to, respectively,
denote its set of vertices and its set of edges.

123

52 L. Chang, Z. Wang

Fig. 2 An example graph

A graph is k-edge connected if the remaining graph is
still connected after the removal of any k − 1 edges from
it. Note that, by definition, a graph with less than k edges
(e.g., consisting of a singleton vertex) is not considered to
be k-edge connected. Then, k-edge-connected component is
defined as follows.

Definition 1 (k-edge-Connected Component [11]) Given a
graphG, a subgraph g ofG is a k-edge-connected component
(abbreviated as k-ECC) of G if (i) g is k-edge connected and
(ii) g is maximal (i.e., any super-graph of g is not k-edge
connected).

Consider the graph in Fig. 2, the entire graph is a 2-ECC
but not a 3-ECC (since the graph will be disconnected after
removing edges (v5, v12) and (v9, v11)). The subgraph g1 is
a 4-ECC, and g3 is a 3-ECC. Note that g2, although is 3-edge
connected, is not a 3-ECC since its super-graph g1 ⊕ g2 is
also 3-edge connected (i.e., g2 is not maximal). Here, g1⊕g2
denotes the union of g1 and g2, which also includes the cross
edges between vertices of g1 and vertices of g2.

HierarchyTree of k-ECCs. It is shown in [7] that the k-ECCs
of a graph satisfy the following properties.

1. Each k-ECC is a vertex-induced subgraph.
2. Any two distinct k-ECCs for the same k value are disjoint.
3. Each k-ECC for k > 1 is entirely contained in a

(k − 1)-ECC.

Thus, the k-ECCs of a graph G for all possible k values
can be compactly represented by a hierarchy tree T , where
leaf nodes of T correspond to vertices of G and non-leaf
nodes of T correspond to distinct k-ECCs of G. Note that, to
distinguishvertices ofT from that ofG,we refer to vertices of
T as nodes. Figure3 illustrates the hierarchy tree for k-ECCs
of the graph in Fig. 2.

We call non-leaf nodes of T as ECC nodes, and each ECC
node is associated with a weight. An ECC node of weight k
corresponds to a k-ECC which is the subgraph of G induced
by all leaf nodes in the subtree of T rooted at the ECC node.
For example, the left 3-ECC node in Fig. 3 corresponds to
the 3-ECC g1 ⊕ g2 in Fig. 2, which is the subgraph induced

Fig. 3 Hierarchy tree T

by vertices v1, . . . , v9. Note that if a subgraph g is both a
k-ECC and a (k + 1)-ECC, it is only represented once in the
hierarchy tree by an ECC node of weight k+1. For example,
the entire graph G is both a 2-ECC and a 1-ECC and is
represented by the ECC node of weight 2. Thus, each non-
leaf node will have at least two children, and the size of the
hierarchy tree T is linear to n.

It is worth pointing out that for any given k, the set of all
k-ECCs of G can be efficiently obtained from the hierarchy
tree T in time linear to the size of the k-ECCs.

Problem Statement. Given a large graph G, we study the
problem of efficiently constructing the hierarchy tree for
the set of all k-ECCs of G. We term this problem as Edge
Connectivity-based hierarchical graph decomposition and
abbreviate it as ECo-decomposition.

In this paper, we will consider the algorithm for comput-
ing all k-ECCs of g for a given k as a black-box, denoted
KECC(g, k). While any of the algorithms in [3, 11, 43] can be
used to implement KECC(g, k), we implement the state-of-
the-art algorithm in [11] in our experiments.WeuseTKECC(G)

to denote the time complexity ofKECC(G, k)whenG is taken
as the input graph1 and assume that TKECC(G) is at least linear
to the number of edges of G.

3 Existing solutions

In this section, we briefly review the two state-of-the-art
approaches, and discuss their time complexities. The existing
approaches compute the ECo-decomposition (i.e., the hier-
archy tree) either in a top-downmanner [7] or in a bottom-up
manner [42].

A Top-Down Approach: TD. The top-down approach con-

structs the hierarchy tree in a top-down manner, which is
achieved by explicitly computing k-ECCs of G for all k
values in increasing order [7]. The pseudocode is shown in

1 Note that a more rigid definition of TKECC(G) would be
maxk TKECC(G, k), but all existing time complexity analyses of
KECC(G, k) are independent of k.

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 53

Algorithm 1: TD(G)

1 Create the root ECC node r of T with weight 1;
2 Construct-TD(r , 1,G);
3 return T ;

Procedure Construct-TD(ecc, k, g)
4 φk+1(g) ← KECC(g, k + 1);
5 if φk+1(g) is the same as g (i.e., g ∈ φk+1(g)) then
6 Change the weight of ecc to k + 1;
7 Construct-TD(ecc, k + 1, g);

8 else
9 foreach vertex v of g that is not in subgraphs of φk+1(g) do

10 Create a leaf node for v to be a child of ecc in T ;

11 foreach connected subgraph g′ ∈ φk+1(g) do
12 Create an ECC node ecc′ of weight k + 1 to be a child of

ecc in T ;
13 Construct-TD(ecc′, k + 1, g′);

Algorithm 1, denoted by TD. Initially, the root ECC node r
of weight 1, which corresponds to the entire input graph G,
is created for T (Line 1); note that, without loss of generality
here G is assumed to be connected. Then, it recursively adds
the set of children to each ECC node in a top-down fashion
by invoking Construct- TD (Line 2).

Given anECC nodeecc of weight k whose corresponding
graph is g (i.e., g is a k-ECC of G), Construct- TD con-
structs the set of children of ecc. To do so, it first computes
the set of (k + 1)-ECCs of g (Line 4), denoted φk+1(g). If
φk+1(g) is the same as g which means that g itself is (k+1)-
edge connected (Line 5), then the weight of ecc is increased
to k + 1 (Line 6) and the recursion continues for g (Line 7).
Otherwise, the set of children of ecc is added as follows:
(i) a leaf node is added for each vertex of g that is not in
φk+1(g) (Lines 9–10) and (ii) an ECC node is added for each
connected subgraph g′ of φk+1(g) (Lines 11–12). The recur-
sion continues for each newly added ECC node (Line 13).

Example 1 Consider the graph in Fig. 2. φ2(G) = {G}; thus,
theweight of the root node r ofT is 2.φ3(G) = {g1⊕g2, g3};
thus, r has two children corresponding to g1 ⊕ g2 and g3,
respectively. φ4(g3) = ∅; thus, all vertices of g3 are added
to be the children of the ECC node corresponding to g3. The
final hierarchy tree T is the same as shown in Fig. 3.

ABottom-UpApproach: BU. The bottom-up approach con-

structs the hierarchy tree in a bottom-up fashion, which is
achieved by computing k-ECCs of G for all k values in
decreasing order [42]. The pseudocode is shown in Algo-
rithm 2, denoted BU. Initially, one leaf node is created in T
for each vertex ofG (Line 1), and an upper bound kmax(G) of
the largest k such thatG has a non-empty k-ECC is computed
(Line 2). Then, the set of k-ECCs φk(G) of G are computed,
for k varying from kmax(G) to 1 (Lines 3–4).

Algorithm 2: BU(G)

1 Create one leaf node in T for each vertex of G;
2 Compute an upper bound kmax(G) of the largest k such that G
has a non-empty k-ECC;

3 for k ← kmax(G) down to 1 do
4 φk(G) ← KECC(G, k);
5 foreach connected subgraph g ∈ φk(G) do
6 Create an ECC node ecc in T with weight k;
7 Add the set of nodes of T that correspond to vertices of g

to be the children of ecc;
8 Contract g into a single super-vertex in G, to which ecc

corresponds;

9 return T ;

Fig. 4 The graph in Fig. 2 after contracting g1 into super-vertex s1

For each connected subgraph g in φk(G) (Line 5), an ECC
node ecc is created in T (Line 6), its children are the nodes
of T that correspond to vertices of G (Line 7), and g is
then contracted into a super-vertex in G (Line 8); thus, ecc
corresponds to the resulting super-vertex in G obtained by
contracting g. Note that, when computing k-ECCs ofG, each
(k + 1)-ECC of G has already been contracted into a super-
vertex. As a result, if a subgraph is both a k-ECC and a
(k − 1)-ECC, it will only be computed, once, as a k-ECC.
The correctness of BU follows from the fact that for a k-edge-
connected subgraph g that is not (k + 1)-edge connected, if
we contract each (k + 1)-ECC of g into a super-vertex, then
the resulting graph is still k-edge connected.

Example 2 Consider the graph in Fig. 2 and assume the upper
bound is computed as kmax(G) = 4. In the first iteration, we
obtain φ4(G) = {g1}; thus, an ECC node of weight 4 is
created in T with five children v1, v2, v3, v4, v5. We contract
g1 into a single super-vertex, denoted s1; the resulting graph is
shown in Fig. 4 with two parallel edges between s1 and v7. In
the second iteration, we obtain φ3(G) = {s1 ⊕ g2, g3}; thus,
twoECC nodes ofweight 3 are created inT , corresponding to

123

54 L. Chang, Z. Wang

these two subgraphs, respectively. Then, s1⊕g2 is contracted
into a super-vertex, denoted s1,2, and g3 is contracted into
a super-vertex, denoted s3. In the third iteration, we obtain
φ2(G) = {s1,2 ⊕ s3}; thus, the root node of T is obtained.
The final result is shown in Fig. 3.

Time Complexities of TD and BU. We first prove the fol-

lowing lemma.

Lemma 1 Let kmax(G) be the largest k such that G contains
a non-empty k-ECC and δ(G) be the degeneracy of G which
is equal to the maximum value among the minimum vertex
degrees of all subgraphs of G [28]. Then, we have kmax(G) ≤
δ(G).

Proof We prove the lemma by contradiction. Suppose kmax

(G) > δ(G), and let g be a (kmax(G))-ECC of G. Then, the
minimum vertex degree of g is at least kmax(G), which is
larger than δ(G). This contradicts the fact that δ(G) equals
the maximum value among the minimum vertex degree of
all subgraphs of G. Thus, the lemma holds. �

We actually observe that kmax(G) = δ(G) for all real
and synthetic graphs tested in our experiments. Thus, the
largest k that is input to Construct- TD of Algorithm 1
is δ(G). As we assumed that TKECC(G) is at least linear to
the number of edges of G, the time complexity of TD is
O

(
δ(G)×TKECC(G)

)
.2 Note that the timecomplexity analysis

of TD is tight; for example, consider an input graph G that
itself is δ(G)-edge connected.

Following Lemma 1, the upper bound kmax(G) can be set
as δ(G) at Line 2 of Algorithm 2. Thus, the time complexity
ofBU isO

(
δ(G)×TKECC(G)

)
, 3 as the degeneracy ofG can be

computed in O(m) time [28]. Note that the time complexity
analysis of BU is also tight; for example, consider a graph that
has no k-ECCs other than a δ(G)-ECC and G itself which is
2-edge connected.

The degeneracy δ(G), although can be bounded by
O(

√
m) in the worst case [36], may still be large, especially

for large graphs. For example, δ(G) is more than 2000 for
the largest graphs tested in our experiments (see Table 1 in
Sect. 7). As a result, BU and TD are taking excessively long
time for processing large graphs due to their high time com-
plexity of O

(
δ(G) × TKECC(G)

)
, not to mention their high

space complexity (see Sect. 5).

2 Although the time complexity of TD is analyzed to be O
(
α(G) ×

TKECC(G)
)
in [7] where α(G) is the arboricity of G, this is the same as

O
(
δ(G) × TKECC(G)

)
since α(G) ≤ δ(G) ≤ 2α(G) − 1 [36].

3 It is worth pointing out that the original algorithm in [42] is designed
for I/O-efficient settings, and its time complexity cannot be bounded by
O

(
δ(G)×TKECC(G)

)
as the upper bound kmax(G) is set as themaximum

degree of G in [42].

Handling Dynamic Graphs. Techniques for handling
dynamic graphs have also been proposed in [7]. The general
idea is based on the fact that deleting an edge from a graph or
inserting a new edge into a graph will change the edge con-
nectivity of the graph by at most 1, and moreover, most of
the k-ECCs will remain unchanged. These techniques can be
directly adopted to maintain the hierarchy tree for dynamic
graphs. We omit the details, as we focus on speeding up the
construction of the hierarchy tree in this paper.

4 A near-optimal approach

In this section, we propose an approach for ECo-
decomposition that runs inO

(
(log δ(G)) × TKECC(G)

)
time.

To achieve this, we will need to avoid the explicit compu-
tation and enumeration of k-ECCs for all possible k values,
since the k-ECCs for all possible k values could be of total
size δ(G)×TKECC(G) in theworst case if TKECC(G) is roughly
linear to m. Consequently, simply reporting k-ECCs for all
possible k values would already take O

(
δ(G) × TKECC(G)

)

time. Instead, we use a two-step paradigm, which first com-
putes the Steiner connectivity for all edges of G and then
constructs the hierarchy tree based on the Steiner connectiv-
ities, as follows.

1 Step-I: Compute the steiner connectivity for all edges of G;
2 Step-II: Construct the hierarchy tree based on the computed
steiner connectivities;

We will show that given the Steiner connectivities of all
edges, the hierarchy tree can be constructed in linear time,
and thus, computing the Steiner connectivities of all edges
dominates the time complexity.As there are onlym edges and
thus only m Steiner connectivities to compute, it is possible
to compute them in time less than δ(G) × TKECC(G).

In the following, we first in Sect. 4.1 propose an algo-
rithm to compute the Steiner connectivities of all edges in
O

(
(log δ(G))×TKECC(G)

)
time and then in Sect. 4.2 present

an algorithm to construct the hierarchy tree in O(m) time
based on the computed Steiner connectivities.

4.1 Computing Steiner connectivities

The Steiner connectivity is defined as follows.

Definition 2 (Steiner Connectivity [7]) Given a graph G,
the Steiner connectivity of an edge (u, v), denoted sc(u, v),
is the largest k such that a k-ECC of G contains both u and
v.

For example, in Fig. 5, the Steiner connectivity of each
edge is computed as shown on the edge, e.g., sc(v1, v4) = 4.

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 55

Fig. 5 Steiner connectivities

Fig. 6 GS33(G) for the graph in Fig. 2

Given a graph G, let φk(G) be the set of k-ECCs of G, then
all edges of φk(G) have Steiner connectivity at least k and all
edges of G that are not in φk(G) have Steiner connectivity
smaller than k. In this subsection, we propose a divide-and-
conquer approach for computing the Steiner connectivities
of all edges in a graph. Note that, although the concept of
Steiner connectivity is borrowed from [7], all our techniques
in the following are new.

A Graph Shrink Operator GSk2k1(·). We first introduce a

graph shrink operator GSk2
k1

(·) for k1 ≤ k2. Given a graph G,

the result of GSk2k1(G) is still a graph. It is obtained fromG by
(1) removing all vertices and edges that are not in k1-ECCs
of G and (2) contracting each (k2 + 1)-ECC of G into a
super-vertex. Note that the resulting graph of GSk2

k1
(·) may

have parallel edges. For example, GS33(G) for the graph G in
Fig. 2 is shown in Fig. 6 which is obtained by (1) removing
edges (v5, v12) and (v9, v11) and (2) contracting subgraph g1
into a super-vertex s1. There are two parallel edges between
s1 and v7 in Fig. 6.

The graph shrink operator GSk2
k1

(·) has several properties
which will be useful for computing Steiner connectivities.
Firstly, applying the operator GSk2

k1
(·) preserves the Steiner

connectivity for all edges in the resulting graph.

Property 1 Given a graph G and two integers k1 ≤ k2, the
Steiner connectivity of each edge ofGSk2k1(G)when computed

in GSk2k1(G) is the same as that computed in G.

Proof Consider an arbitrary edge (u, v) inGSk2
k1

(G). It is easy
to verify that the Steiner connectivity of (u, v)must bewithin
the range [k1, k2] when computed in GSk2k1(G) and also when
computed in G. Assume the Steiner connectivity of (u, v) in
G is k ∈ [k1, k2], and let g be the k-ECC of G that contains
(u, v). Then, by contracting each (k2 + 1)-ECC of g into
a super-vertex, the resulting graph is still k-edge connected
and is a k-ECC of GSk2k1(G). Thus, the Steiner connectivity

of (u, v) when computed in GSk2k1(G) is no smaller than that
computed in G. Similarly, we can prove that the Steiner con-
nectivity of (u, v) when computed in G is no smaller than
that computed in GSk2

k1
(G). Therefore, the property holds. �

Secondly, the Steiner connectivity for all edges ofGSkk(G)

is k. For example, all edges in Fig. 6 have Steiner connectivity
3.

Property 2 Given a graph G and an integer k, every edge of
GSkk(G) has Steiner connectivity k.

Proof This property directly follows from Property 1 and the
definition of Steiner connectivity. �

Thirdly, multiple operations of GSk2k1(·) can be chained
together.

Property 3 Given a graph G and four integers k1 ≤ k2
and k3 ≤ k4 such that max{k1, k3} ≤ min{k2, k4}, we have
GSk4k3

(
GSk2k1(G)

) = GSmin{k2,k4}
max{k1,k3}(G).

Proof This property directly follows from properties 1 and
2 and the hierarchical structure of k-ECCs for different k
values. �

OurDivide-and-ConquerApproach:DC. FromProperty 2,
we know that the Steiner connectivities of all edges of
GSkk(G) are k. Moreover, from the definitions of Steiner con-
nectivity and the graph shrink operator, we know that all
edges whose Steiner connectivities are k will be in GSkk(G).
Thus, to compute Steiner connectivities of all edges of G,
it suffices to compute GSk

k(G) for k ∈ [1, δ(G)]. Instead
of naively computing GSkk(G) independently for each k ∈
[1, δ(G)] which would take O

(
δ(G) × TKECC(G)

)
time, we

propose a divide-and-conquer approach based on the fact that
GSkk(G) is entirely contained in GSk2

k1
if k1 ≤ k ≤ k2.

The pseudocode of our approach is shown in Algorithm 3,
denoted DC. It first computes the degeneracy δ(G) of G
(Line 1) and then invokes procedureCompute-DCwith input
(G, 1, δ(G)) to compute the Steiner connectivities of all
edges (Line 2), while Line 3 constructs the hierarchy tree

123

56 L. Chang, Z. Wang

Algorithm 3: DC(G)

1 Compute the degeneracy δ(G) of G;
2 Compute-DC(G, 1, δ(G));
3 ConstructHierarchy(G, sc(·, ·)); /* See Algorithm 4
*/;

4 return T ;

Procedure Compute-DC(g, L, H)

5 if L = H then
6 foreach edge (u, v) ∈ E(g) do sc(u, v) ← L;

7 else
8 Choose an integer M such that L < M ≤ H ;
9 φM (g) ← KECC(g, M); /* Compute M-ECCs of

g */;
10 Let g1 be the graph obtained from g by contracting each

connected subgraph of φM (g) into a super-vertex, and g2 be
the union of subgraphs in φM (g); /* g1 = GSM−1

L (G),

g2 = GSH
M (G) */;

11 Compute-DC(g1, L, M − 1);
12 Compute-DC(g2, M, H);

and will be discussed in Sect. 4.2. The input to Compute-DC
consists of a graph g and an interval [L, H]. If L = H ,
then the Steiner connectivities of all edges of g are set as
L (Lines 5–6). Otherwise, an integer M is chosen such that
L < M ≤ H (Line 8), then the set φM (g) of M-ECCs of g
is computed (Line 9) and two graphs g1 and g2 are obtained
from g based on φM (g) (Line 10), and finally the algorithm
continues on g1 (Line 11) and on g2 (Line 12).

We prove by the following lemma that when initially
invoking Compute-DC with graph G and interval [1, δ(G)],
the graph g being processed for each recursion with interval
[L, H] is GSH

L (G).

Lemma 2 For Compute-DC, if the input graph g isGSH
L (G),

then the two graphs g1 and g2 obtained at Line 10 are exactly
GSM−1

L (G) and GSH
M (G), respectively.

Proof According to the definition of the graph shrink oper-
ation GSk2k1(·), it is easy to see that g1 = GSM−1

L (g) and

g2 = GSH
M (g). Based on the assumption that g = GSH

L (G)

and L < M ≤ H (see Line 8 of Algorithm 3), we have
g1 = GSM−1

L (g) = GSM−1
L (GSH

L (G)) = GSM−1
L (G) where

the last equality follows from Property 3. Similarly, we have
g2 = GSH

M (g) = GSH
M (GSH

L (G)) = GSH
M (G). Thus, the

lemma holds. �
Based on Lemma 2, the recursion tree of invoking

Compute-DC with input (G, 1, δ(G)) is shown in Fig. 7.
The correctness and time complexity of Algorithm 3 are

proven by the following two theorems.

Theorem 1 Algorithm 3 correctly computes the Steiner con-
nectivity for all edges of G.

Proof The recursive invocation of Compute-DC stops when
L = H (see Lines 5–6 of Algorithm 3). If L < H ,

Fig. 7 Recursion tree

then Compute-DC recursively solves two instances, one for
k ∈ [L, M − 1] (Line 11), and another for k ∈ [M, H].
Thus, it is easy to see that for each k ∈ [1, kmax(G)], there
is an instance of Compute-DC with input L = H = k.
Moreover, according to Lemma 2, the input graph to this
instance is g = GSk

k(G), as the input graph to the first invo-

cation of Compute-DC is GSδ(G)
1 (G) which is the same as

G. Thus, the recursion tree of invoking Compute-DC with
input (G, 1, δ(G)) is shown in Fig. 7. Property 2 states that
the instance of GS with input g = GSkk(G), L = k and
H = k correctly computes the Steiner connectivity for all
edges whose Steiner connectivities are k. Thus, the theorem
holds. �
Theorem 2 The time complexity of Algorithm 3 is O(h ×
TKECC(G)), where h is the height of the recursion tree in
Fig.7.

Proof We define the level of a node in the recursion tree as its
distance to the root. Then, the subgraphs of G, correspond-
ing to the nodes of the recursion tree that are at the same
level, have disjoint sets of edges. Thus, the time complex-
ity of the computation for each level of the recursion tree is
O(TKECC(G)), by assuming that TKECC(G) is linear or super-
liner to the number of edges of G. Consequently, the total
time complexity of Algorithm 3 is O(h × TKECC(G)) as the
recursion tree has h levels. �

Near-Optimal Time Complexity. Algorithm 3 correctly
computes the Steiner connectivities of all edges regardless
of the choice of M at Line 8, as long as L < M ≤ H . Yet,
the time complexity of Algorithm 3 would vary for differ-
ent choices of M . For example, if M is always set as L + 1
or always set as H , then the height of the recursion tree
would be δ(G) and thus the time complexity of Algorithm 3
would be O(δ(G) × TKECC(G)) on the basis of Theorem 2.
To make the time complexity as low as possible, we will
need to reduce the height of the recursion tree. Thus, we
propose to set M as

⌈ L+H
2

⌉
and prove in the following the-

orem that the time complexity of Algorithm 3 then becomes
O

(
(log δ(G)) × TKECC(G)

)
.

Theorem 3 By setting M = ⌈ L+H
2

⌉
, the time complexity of

Algorithm 3 is O
(
(log δ(G)) × TKECC(G)

)
.

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 57

Fig. 8 Running example of DC

Proof By setting M = ⌈ L+H
2

⌉
, the length of the interval

[L, H] for each node in the recursion tree will be only half
of that of its parent. Thus, the height of the recursion tree
becomes O(log δ(G)), as the interval for the root node is
[1, δ(G)]. Consequently, the time complexity of Algorithm 3
is O

(
(log δ(G)) × TKECC(G)

)
by following Theorem 2. �

Following the above theorem, we set M = ⌈ L+H
2

⌉

in Algorithm 3. The time complexity of DC, which is
O

(
(log δ(G)) × TKECC(G)

)
, is optimal up to a logarithmic

factor log δ(G). This is because the time complexity of
ECo-decomposition cannot be lower than TKECC(G), as ECo-
decomposition also implicitly computes the k-ECCs of G;
specifically, the k-ECCs of G can be obtained from the hier-
archy tree in time linear to the sizes of the k-ECCs.

Example 3 Here, we apply DC on the graph G in Fig. 2 as an
example. Figure8 indicates the whole running process of DC
on G, where the top-most part is G itself. The degeneracy
is δ(G) = 4. Then, we compute the Steiner connectivities
of all edges of G by invoking Compute-DC with input G
and [L, H] = [1, 4]. Here, GS41(G) is the same as G. As
L �= H and

⌈ L+H
2

⌉ = 3, we compute the 3-ECCs of G and
obtain the subgraphs induced by S1 = {v1, v2, . . . , v9} and
S2 = {v10, . . . , v13}, respectively. Thus, we obtain the two
graphs GS2

1(G) and GS43(G) as shown in the middle layer of

Algorithm 4: ConstructHierarchy
Input: A graph G with sc(u, v) for each edge (u, v)

Output: The hierarchy tree of ECo-decomposition of G

1 Initialize an empty hierarchy tree T ;
2 foreach vertex u ∈ V (G) do Insert a singleton node u into T ;
3 foreach edge (u, v) ∈ E(G) in non-increasing sc(u, v) order do
4 Let ru (resp rv) be the root of the tree in T containing u (resp

v);
5 if ru = rv then continue;
6 else if both ru and rv are ECC nodes with weight sc(u, v)

then
7 Merge ru and rv into a single ECC node;

8 else if none of ru or rv is an ECC node with weight sc(u, v)

then
9 Create a new ECC node in T with weight sc(u, v), and

add ru and rv as its children;

10 else
11 Without loss of generality, assume ru is an ECC node with

weight sc(u, v), and add rv as a child of ru in T ;

Fig. 8. The computation continues on these two graphs with
intervals [1, 2] and [3, 4], respectively.

The graph GS4
3(G) is composed of the two 3-ECCs of G

as shown in right part of the middle layer of Fig. 8. We com-
pute the 4-ECCs of GS43(G) and obtain the subgraph induced
by vertices {v1, v2, . . . , v5}. Thus, all edges among vertices
{v1, v2, . . . , v5} have Steiner connectivities 4 as indicated in
GS44(G), while the other edges have Steiner connectivities 3
as demonstrated in GS33(G).

The graph GS2
1(G) is obtained by contracting each of S1

and S2 into a super-vertex as shown in the left part of the
middle layer of Fig. 8. In GS21(G), there are two parallel
edges between s1 and s2, corresponding to edges (v9, v11)

and (v5, v12). As GS21(G) is 2-edge connected, the Steiner-
connectivities of (v9, v11) and (v5, v12) are 2. �

4.2 Constructing the hierarchy tree

Given the Steiner connectivities of all edges of a graph
G, Algorithm 4 constructs the hierarchy tree of ECo-
decomposition ofG in a bottom-up manner. The main idea is
as follows. First, the hierarchy tree T is initialized as a forest
of singleton nodes. Then, for each edge (u, v) ∈ E(G) in
non-increasing order regarding sc(·, ·), we identify the tree
in T (specifically, the root ru of the tree) containing u and
the tree (specifically, the root rv of the tree) containing v.
If u and v are already in the same tree (i.e., ru = rv), then
we do nothing. Otherwise, we merge the two trees into one
in T , with the root of this newly formed tree having weight
sc(u, v).

The pseudocode of constructing the hierarchy tree is illus-
trated in Algorithm 4, denoted by ConstructHierarchy. The
input of the algorithm is a graphGwith sc(u, v)precomputed

123

58 L. Chang, Z. Wang

for each edge (u, v). It first initializes an empty hierarchy tree
(Line 1) and creates a single-node tree in T for each vertex
of G (Line 2). Then, the trees in T will be merged with each
other to form ECC nodes in the hierarchy tree. For each edge
(u, v) ∈ E(G) sorted by sc(u, v) in non-increasing order
(Line 3), the roots of the trees in T containing node u and
node v are found, represented by ru and rv , respectively (Line
4). If ru = rv , it implies that vertices u and v have already
been merged into the same tree so that the algorithm skips
the current edge (Line 5); otherwise, the algorithmmerges ru
and rv into a single tree based on the following three cases.
(1) If both ru and rv are ECC nodes with weight sc(u, v), it
merges ru and rv into a single ECC node (Lines 6–7). (2) If
neither ru nor rv is an ECC node with weight sc(u, v), it
creates a new ECC node in T with weight sc(u, v) whose
children are ru and rv (Lines 8–9). (3) The last situation is
that one of ru or rv is an ECC node with weight sc(u, v) and
the other is not; note that, if the other one is an ECC node,
then its weight must be larger than sc(u, v). Assume that ru
is the one with weight sc(u, v), rv would be added as a child
of ru . Similar steps would be applied to the situation where
rv is the one with weight sc(u, v) (Lines 10–11).

The most time-consuming operation in Algorithm 4 is
Line 4, which aims to find the root of the tree that contains a
node u in a forestT . A naive implementation of this operation
would take O(n) time by tracing the parent pointers starting
from node u in the tree, and then the total time complexity
of Algorithm 4 would be O(n × m). This can be improved
toO(m) by resorting to the disjoint-set data structure. Recall
that a disjoint-set data structure D partitions a universe of
elements into a collection of sets, and each set is represented
by one of its element (called representative) [17]. There are
two operations supported by the data structureD: Find the set
that contains a specific element and merge two sets into one.
In our case, the universe of the data structure D is the set of
leaf nodes of the hierarchy tree T , and there is a one-to-one
correspondence between sets inD and trees in T . Whenever
we merge two trees in T , we also union the two correspond-
ing sets in D. Moreover, we point each set (specifically, the
representative element of the set) of D to the root of the tree
in T to which the set corresponds. This pointer is used for
efficiently identifying the root of the tree that contains a node
(i.e., Line 4). As each of the two operations onD takes amor-
tized constant time [17] 4 and sorting the edges at Line 3 can
be achieved in linear time by counting sort [17], the time
complexity of Algorithm 4 is O(m).

4 To be more precise, the amortized time complexity of each operation
onD is the inverse of theAckermann function of n [17]. As this function
grows very slowly and is bounded by 4 for all practical values of n, we
consider it as a constant.

Fig. 9 Doubly linked list-based graph representation

5 Optimizing the space usage

A straightforward implementation of Algorithm 3 would
result in a space complexity of O((m + n) log δ(G)), i.e.,
each level of the recursion tree of Fig. 7 would require storing
a separate copy of the input graph G. This space complexity
is too high for large graphs. In this section, we focus on opti-
mizing the space usage of DC. We first in Sect. 5.1 discuss
how to implement DC in O(m + n log δ(G)) space by using
doubly linked list-based graph representation, where the con-
stant hidden by the big-O notation is large. Then, in Sect. 5.2
we further optimize the space usage ofDC by using adjacency
array-based graph representation and other non-trivial opti-
mizations; this results in our space-efficient algorithmDC-AA
that has space complexity 2m +O(n log δ(G)). As a result,
we can process billion-scale graphs with an ordinary PC.
For example, experiments in Sect. 7 show that our adjacency
array-based algorithms can process twitter-2010 and com-
friendster, which have 1.2 and 1.8 billion undirected edges,
respectively, with at most 15GB and 24GBmainmemory. In
contrast, the linked list-based algorithms run out-of-memory
even with 128 GB memory.

5.1 Doubly linked list-based implementation

In this subsection, we discuss how to implement DC
by using doubly linked list-based graph representation,
which is also the representation used by the state-of-the-art
KECC algorithm [11] and the two state-of-the-art ECo-
decomposition algorithms [7, 42]. The main reason for the
existing approaches to choose this representation is thatKECC
iteratively modifies the graph—i.e., contract two (super-
)vertices into one and remove (super-)vertices of degree less
than k [11]—which can be easily implemented by using the
linked list-based graph representation. We abstract these two
graph modification operations as vertex contraction and ver-
tex removal, respectively. Note that TD also uses the vertex
removal operation (see Lines 11–13 of Algorithm 1) and BU
uses the vertex contraction operation (see Line 8 of Algo-
rithm 2).

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 59

Recall that the linked list-based graph representation
stores the adjacent edges of each vertex in a linked list [17].
For example, Fig. 9 illustrates the linked lists for the adjacent
edges of vi and v j . In addition, a cross pointer is constructed
in the implementation for each edge (vi , v j) which points to
its reverse direction (v j , vi), as each undirected edge will
have two copies in the representation, one copy for each
direction. Vertex removal can be implemented efficiently
as follows. Suppose we are removing vertex vi from the
graph; note that we also need to remove all edges ending
at vi which scatter across the linked lists. To achieve this,
we iterate through all the adjacent edges of vi , and for each
edge (vi , v j), we first locate its reverse edge (v j , vi) via the
cross pointer and then remove (v j , vi) from the doubly linked
list of v j which can be achieved in constant time. When it
comes to vertex contraction, the process becomes slightly
more complicated. Suppose we are contracting vi and v j .
We use one of the vertices (e.g., vi) to represent the resulting
super-vertex, and the process is divided into two parts: the
edges starting from v j should start from vi ; the edges end
at v j ought to end at vi . For the first part, we could simply
connect the head of the linked list of v j to the tail of the
linked list of vi . For the second part, we iterate through all
the adjacent edges of v j , and for each edge (v j , vk), we first
locate its reverse edge (vk, v j) via the cross pointer and then
update the edge to be (vk, vi).

Based on the linked list-based graph representation, DC
(i.e., Algorithm 3) can be implemented fairly easily. Specif-
ically, to construct g1 = GSM−1

L (g) and g2 = GSH
M (g) =

φM (g) from g = GSH
L (G) at Line 10 of Compute-DC, we

first split each linked list (that corresponds to the adjacent
edges of a vertex) into two, one to be used in g1 and the other
in g2, as g1 and g2 have disjoint sets of edges. We then apply
the contraction operation for the edges in g1. In this way,
we do not create any new edges in Compute-DC; note, how-
ever, that the number of vertices may double (i.e., one copy
in g1 and one in g2). Overall, DC has a space complexity of
O(m + n log δ(G)), by noting that it traverses the recursion
tree of Fig. 7 in a depth-first manner.

5.2 Adjacency array-based implementations

Although the space complexity ofDC has been reduced from
O((m + n) log δ(G)) toO(m + n log δ(G)) in Sect. 5.1, this
is still too high to be applied to large graphs (see our experi-
mental results in Sect. 7) as the constant hidden by the big-O
notation is large. Firstly, for each edge in the linked lists,
three pointers and one number (where the number indicates
the other end-point of the edge) need to be stored. Thus, the
graph representation will consume at least 8m integers, by
noting that each undirected edge is stored twice. Secondly,
the graphmay be stored three times (i.e., simultaneously have
three copies in main memory) during the computation, i.e.,

Fig. 10 Adjacency array-based graph representation

once inCompute-DC and twice in KECC as KECCwill modify
the graph that is input to it [11]. In this subsection, we pro-
pose an adjacency array-based implementation to explicitly
bound the constant onm by 2 such that the space complexity
becomes 2m+O(n log δ(G)), and at the same time keep the
time complexity unchanged which is challenging. Note that
we do not optimize the constant on n log δ(G), as real-world
graphs usually have much more edges than vertices, i.e., m
usually is the dominating factor.

The adjacency array-based graph representation is also
known as the compressed sparse row (CSR) representation.
It uses two arrays to represent a graph, and assumes that the
vertices are taking ids from {0, . . . , n − 1}. We denote the
two arrays by pstart and edges. The set of adjacent edges
(specifically, neighbors) of each vertex is stored consecu-
tively in an array, and then, all such arrays are concatenated
into the large array edges. The start position of the set of
adjacent edges of vertex i in edges is stored in pstart[i],
and thus, the set of adjacent edges of vertex i is stored con-
secutively in the subarray edges[pstart[i], . . . , pstart[i +
1]− 1]. Figure10 demonstrates such a representation for the
subgraph g2 of Fig. 2; please ignore the part of “pend” for
the current being. The array pstart is of size n + 1, while
the array edges is of size 2m.

Efficient Implementation of Vertex Removal and Con-
traction. To achieve the space complexity of 2m+O(n log δ

(G)), we will not be allowed to create any new copies of
edges, even if temporarily. This makes it challenging to
efficiently implement vertex removal and vertex contraction
which are the two primitive operations used by the algo-
rithms. In the following, we discuss how to implement these
two operations efficiently with the help of some additional
data structures of size O(n).

Vertex removal in the adjacency array-based graph rep-
resentation can be implemented by marking the vertex as
“removed”. Recall that, when vertex i is “removed”, the edge
(j, i) that ends at i should also be removed from the adjacent
edges of j for each neighbor j of i . This cannot be imple-
mented efficiently without cross pointers, but storing cross
pointers is not affordable for achieving the space complexity
of 2m + O(n log δ(G)). To circumvent this, we propose to
remove (j, i) from the adjacent edges of j in a lazyway, i.e.,
delay it to the moment when we actually need to traverse all

123

60 L. Chang, Z. Wang

Fig. 11 After removing vertex v7

adjacent edges of j . Thus, we introduce another array, named
pend, of size n, where the entry pend[j] explicitly stores the
last position of the adjacent edges of vertex j in edges and is
initialized with pstart[j+1]−1; see Fig. 10.Whenwe need
to traverse all the adjacent edges of j , we loop through all
the index values idx from pstart[j] to pend[j]: If the edge
edges[idx] should have been removed (i.e., the other end-
point of this edge is “removed”), we first swap edges[idx]
with edges[pend[j]] and then decrement pend[j] by one.
In this way, all the remaining (i.e., active) adjacent edges of
vertex j would be consecutive in edges starting fromposition
pstart[j] and ending at pend[j], while the edges in edges
whose indices are between pend[j]+1 and pstart[j+1]−1
are “removed”. Thus, the amortized timeof removing an edge
is constant. For example, the result of removing vertex v7
from the graph of Fig. 10 is shown in Fig. 11; here, for illus-
tration purpose, we assume that the graph has been traversed
once such that edges is reorganized.

When contracting vertex i and vertex j , following the
same ideas as Sect. 5.1 we also use vi to represent the result-
ing super-vertex and divide the process into two parts: the
edges starting from v j should start from vi ; the edges ending
at v j ought to end at vi . For the first part, instead of moving
adjacent edges around which would create temporary copies
of edges and furthermore increase the time complexity, we
use two additional arrays, sv_next and sv_last , each of size
n to represent the super-vertices. That is, sv_next chains
together all vertices that belong to the same super-vertex,
implicitly represented as a singly-linked list; specifically,
sv_next[i] stores the id of the next vertex (i.e., after i)
in the super-vertex. To efficiently merge two super-vertices
(that are represented as singly-linked lists), we also store
in sv_last[i] the id of the last vertex in the super-vertex
i . For example, Fig. 12a shows the values of sv_next and
sv_last for the graph of Fig. 10; note that the part in the
dotted rectangle illustrates the linked lists that represent the
super-vertices and is not physically stored. When contract-
ing (super-)vertex i with (super-)vertex j , we first update
sv_next[sv_last[i]] to j to connect the two linked lists into
one, and then update sv_last[i] to sv_last[j]; this can be
conducted in constant time. Note that sv_last[i] is only use-
ful and up-to-date if i is the first vertex in a linked list, i.e.,
sv_last[·] for all other vertices are not updated and will

Fig. 12 Example of contracting v6 and v8

not be used. Figure12b shows the result of contracting v6
and v8; notice that v6 and v8 are now linked together. To
iterate over all edges adjacent to (super-)vertex i , we use
a pointer p which is initialized as i and is then iteratively
updated by sv_next[p] until reaching the end of the linked
list. These p values correspond to ids of the vertices that are
contracted into (super-)vertex i . Thus, the edges adjacent to
(super-)vertex i are edges[pstart[p], . . . , pend[p]] for all
p values along the iterations.

For the second part of vertex contraction (i.e., edges
ending at v j ought to end at vi), explicitly modifying the
edge end-points without maintaining cross pointers would
be time-consuming. To tackle this issue, we propose to use
an additional disjoint-set data structure of size O(n) to rep-
resent the super-vertices. The universe of the data structure is
the vertex set V , and each super-vertex corresponds to a set in
the data structure that consists of the vertices contained in the
super-vertex. When we contract two super-vertices, we also
union their corresponding sets in the data structure. In addi-
tion, we point the representative of a set in the data structure
to the vertex that represents the corresponding super-vertex,
in the same way as that in constructing the hierarchy tree

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 61

in Sect. 4.2. The last row of Fig. 12 illustrates the disjoint
sets, where the representative of a set is shown in bold, e.g.,
v6 and v8 are in the same set in Fig. 12b with v6 being the
representative.

Our Space-Optimized Algorithms. With the ideas pre-
sented above, we first optimize the space usage of KECC by
using the adjacency array-based graph representation, as it
is an essential procedure used in DC. We denote our space-
optimized version of KECC as KECC-AA. Note that, with the
above implementations of vertex removal and vertex contrac-
tion, the input graph to KECC-AA is always represented by
pstart and edge which are not changed, although the order
of the adjacent edges for each vertex may change. Thus, we
do not need to store another copy of the input graph, and the
space complexity of KECC-AA is 2m + O(n).

With KECC-AA, we are now ready to present our space-
optimized version ofDC. It is worth pointing out that directly
replacing KECC with KECC-AA in Algorithm 3 will not
achieve our desired space complexity. The main idea is still
based on the fact that g1 and g2 in Algorithm 3 have disjoint
sets of edges. But now, we cannot afford to first construct
g1 and g2 from g and then release the memory of g, as this
will double the intermediate memory consumption. To tackle
this issue, we always expand the right child of a node in the
recursion tree (see Fig. 7) before expanding the left child.
This is based on the observation that, for a non-leaf node
in the recursion tree, the graph processed by its right child
is always a subgraph of the current graph, while the graph
processed by the left child is obtained by contracting each
connected component (of the graph of the right child) into a
super-vertex in the current graph. Thus, to process the right
child, we can directly work on pstart and edges by rear-
ranging the adjacent edges of each vertex and using a local
array of size n to bookmark the number of adjacent edges of
each vertex in the subgraph. After expanding the right child
(and its descendants) and to process the left child, we further
create a local copy of sv_next , sv_last and the disjoint-set
data structure, which are all of size O(n), to implement the
contraction operation.

The pseudocode of the adjacency array-based implemen-
tation ofDC is illustrated in Algorithm 5, denoted byDC-AA.
It is generally similar to Algorithm 3, with three differences.
Firstly, it invokes KECC-AA instead of KECC at Line 10.
Secondly, it expands the right child first (Lines 11–13).
Thirdly, it interleaves the execution of Algorithm 4 with
Construct-DC-AA (Lines 2, 3, 7). The reason of interleaving
is that explicitly storing the Steiner connectivities of all edges
would increase the space consumption by at least 2m+O(n),
and interleaving eliminates the requirement of storing the
Steiner connectivities. This interleaving is correct because
the right child is always expanded before the left child for
each node in the recursion tree (Fig. 7), and thus, the Steiner

Algorithm 5: DC-AA(G)

1 Compute the degeneracy δ(G) of G;
2 Execute Lines 1–2 of Algorithm 4;
3 Construct-DC-AA(G, 1, δ(G));
4 return T ;

Procedure Construct-DC-AA(g, L, H)

5 if L = H then
6 foreach edge (u, v) ∈ E(g) do
7 Execute Lines 4–11 of Algorithm 4 with sc(u, v) equal to

L;

8 else
9 M ← ⌈ L+H

2

⌉
;

10 φM (g) ← KECC-AA(g, M);
11 foreach connected subgraph g′ ∈ φM (g) do
12 Construct-DC-AA(g′, M, H);
13 Contract g′ into a super-vertex in g;

14 Construct-DC-AA(g, L, M − 1);

connectivities are computed in non-increasing order. Note
that we also exploit this interleaving to reduce the memory
consumption for DC, TDand BUin our experiments.

The correctness of DC-AA directly follows from the cor-
rectness of the discussions in the above two paragraphs, and
the time complexity of DC-AA remains the same as DC since
our adjacency array-based implementation does not increase
the time complexity of vertex removal and contraction. The
space complexity ofDC-AA becomes 2m+O(n log δ(G)), as
it conducts a depth-first traversal of the recursion tree (Fig. 7)
and each level of the recursion tree only requires a local data
structure of size O(n).

With the same idea as DC-AA, we can also implement TD
and BU by using the adjacency array-based graph represen-
tation such that their space complexities become 2m+O(n),
while their time complexities remain unchanged. We denote
our space-optimized versions of TD and BU by TD-AA and
BU-AA, respectively.

6 A practically efficient approach

In this section, we propose a simpler and practically efficient
approach for ECo-decomposition by optimizing BU-AA. Our
empirical studies in Sect. 7.1.1 (specifically, Fig. 15) show
that BU-AA can outperform DC-AA when the degeneracy
δ(G) is small (e.g., less than 25 or so), but is outperformed
by DC-AA when δ(G) becomes large. The main reason of
BU-AA outperforming DC-AA for small δ(G) is that (1) the
difference between δ(G) and log δ(G) is small when δ(G) is
small and (2) BU-AA is simpler and thus has a smaller con-
stant coefficient in the time complexity analysis. When δ(G)

becomes larger, BU-AA is outperformed by DC-AA because
BU-AA needs to invoke KECC on G (or more precisely, a

123

62 L. Chang, Z. Wang

contracted version of G) for a large number (i.e., δ(G)) of
iterations (see Line 4 of Algorithm 2). We propose a simple
optimization technique, called k-core reduction, to improve
the efficiency of Line 4 ofAlgorithm2 by significantly reduc-
ing the graph that is input to KECC when δ(G) is large. The
definition of k-core is as follows.

Definition 3 (k-core [34]) Given a graph G and an integer k,
the k-core of G is themaximal subgraph g of G such that the
minimum degree of g is at least k.

Like k-ECC, k-core is also a vertex-induced subgraph. For
example, for the graph in Fig. 2, the entire graph is a 3-core,
and g1 as induced by vertices {v1, v2, v3, v4, v5} is a 4-core.

A related concept is core number, denoted core(·), where
core(u) is the largest k such that u is included in the k-
core. For example, for the graph in Fig. 2, the core numbers
for {v1, v2, v3, v4, v5} are 4, while the core numbers for all
other vertices are 3. It is known that the k-core is simply
G[{v | v ∈ V (G) s.t. core(v) ≥ k}], i.e., the subgraph of G
induced by the set of all vertices with core number at least k
[9].

The following lemma claims the relationship between the
k-core and k-ECCs of a graph.

Lemma 3 [11]Given a graph G and an integer k, all k-ECCs
of G are subgraphs of the k-core of G.

For example, for the graph in Fig. 2, g1 ∪ g2 and g3 are
the two 3-ECCs of the graph and g1 is the only 4-ECC.

Following Lemma 3, when computing k-ECCs, it is suf-
ficient to restrict the computation to the k-core of the graph,
which could be much smaller than the entire graph. We call
this process the k-core reduction. It is worth pointing out
that although the k-core reduction has already been utilized
in the existing algorithms TD and BU, more specifically in
KECC-AA, the full potential of k-core reduction has not been
exploited. This is because KECC-AA applies the k-core reduc-
tion to reduce its input graph, and although the k-core can
be computed in time linear to the number of edges [4, 28],
the input graph to KECC-AA could be much larger than the
k-core. In view of this, we propose to optimize BU-AA by
restricting the input of KECC-AA to be the k-core of the input
graph, or more precisely a contracted version of the k-core.5

The pseudocode of our optimized BU-AA is shown in
Algorithm 6; we denote the optimized version by BU∗-AA.
The approach is very similar to Algorithm 2, with the only
differences at Lines 2–5 and 7–8. Specifically, KECC-AA is
now invoked on a subgraph G ′ of G instead of on the entire

5 Note that it is in principle also possible to optimize TD-AA andDC-AA
by the k-core reduction. However, this is much more complicated and
may be not efficient, e.g., by noting that the input to KECC at Line 4 of
Algorithm 1 could be even smaller than the k-core of G. Thus, we only
optimize BU-AA by the k-core reduction in this paper.

Algorithm 6: BU∗-AA(G)

1 Create one leaf node in T for each vertex of G;
2 core(·) ←− CoreDecomposition(G);
3 Reorganize the adjacency edges of each vertex;
4 Sort the vertices in non-increasing order regarding their core
values;

5 δ(G) ← maxu∈V core(u);
6 for k ←− δ(G) down to 1 do
7 G ′ ← the subgraph of G induced by vertices whose core

numbers are at least k;
8 φk(G ′) ←− KECC-AA(G ′, k);
9 for each connected subgraph g ∈ φk(G ′) do

10 Create an ECC node ecc in T with weight k;
11 Add the set of nodes of T that correspond to vertices of g

to be the children of ecc;
12 Contract g into a single super-vertex in G, to which ecc

corresponds;

13 return T ;

graphG at Line 8, whereG ′ is extracted at Line 7. Moreover,
the subgraph G ′ is extracted from G in time that is linear to
the number of edges of G ′, rather than linear to the number
of edges of G. This is achieved through Lines 2–4, details of
which will be introduced shortly.

In accordance with Lemma 3, φk(G ′) computed in Algo-
rithm6 is exactly the same asφk(G) computed inAlgorithm2
for all possible k values. Thus, the hierarchy tree constructed
by invoking BU∗-AA is the same as the one constructed by
invoking BU-AA. Based on the definition of k-core, the k1-
core of a graph must be a subgraph of the k2-core of the
graph if k1 ≥ k2. Therefore, when k = δ(G), G ′ is the δ(G)-
core of G, which is typically only a small part of the entire
graph. After decrementing k by 1, G ′ is then expanded to the
(δ(G) − 1)-core of G. So on so forth, G ′ would finally be
expanded to the whole graph when k gets to some smaller
number. Nevertheless, along the expansion of G ′, k-ECCs
are contracted into super-vertices, which reduces the size of
G and thus the extracted G ′. Intuitively, KECC-AAwould sel-
dom be invoked on an extremely large graph based on the
analysis. Hence, BU∗-AA is expected to perform much more
efficiently compared to BU-AA in practice. However, note
that the worst-case time complexity of BU∗-AA remains the
same as that of BU-AA.

Example 4 Here,we applyBU∗-AA on the graphG in Fig. 2 as
an example. Core values for {v1, v2, v3, v4, v5} are computed
as 4, and core values for the other vertices inG are computed
as 3; thus, δ(G) is 4. Initially, 13 leaf nodes are created in
the hierarchy tree T for the thirteen vertices ofG. During the
first iteration, G ′ is the 4-core of G, which is equivalent to
the subgraph g1. It could be found that φ4(g1) = g1 so that
an ECC node of weight 4 with five children v1, v2, v3, v4, v5
is added into T . g1 is contracted into a single super-vertex
denoted by s1. Then, in the second iteration, G ′ is the entire

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 63

graph where g1 is contracted into a single super-vertex s1; it
could be obtained that φ3(G ′) = {s1 ⊕ g2, g3}. As a result,
two ECC nodes of weight 3 are added into T . Similarly,
s1 ⊕ g2 are contracted into a super-vertex denoted by s1,2,
and g3 is contracted into a super-vertex denoted by s3. In the
third iteration, we have φ2(G ′) = {s1,2⊕s3} given the 2-core
of G is G itself. Finally, we obtain the same hierarchy tree
as shown in Fig. 3.

Efficiently Extracting k-core. Recall that Line 8 of Algo-

rithm6processes the k-core of a contracted version ofG; note
that subgraphs are contracted into super-vertices at Line 12.
To facilitate an efficient extraction of the k-core, we pro-
pose to compute the core number core(·) for each vertex
of G (Line 2) and reorganize the edges and vertices in the
graph representation based on the computed core numbers
(Lines 3–4). As a result, the k-core can be extracted in time
linear to the size of the k-core (Line 7).

Recall that the adjacent edges (or neighbors) of a vertex
v are stored consecutively in the subarray edges[pstart[v],
. . . , pstart[v + 1] − 1]. Specifically, this subarray is reor-
ganized in two steps as follows:

1. Split the subarray into two parts.We first split the sub-
array into two parts by putting all its neighbors whose
core numbers are at least core(v) at the front (referred to
as Part1), followed by the other neighbors (referred to as
Part2). Note that, in this step, the order within each part is
arbitrary. This is achieved by using two pointers p1 and p2
which are initialized as pstart[v] and pstart[v +1]−1,
respectively. Then, as long as core(edges[p1]) is no less
than core(v), we increment p1 by 1, and as long as
core(edges[p2]) is smaller than core(v), we decrement
p2 by 1. Otherwise, core(edges[p1]) < core(v) and
core(edges[p2]) ≥ core(v); we swap edges[p1] with
edges[p2]. This process terminateswhen the two pointers
meet each other. In this case, edges[pstart[v], . . . , p1 −
1] isPart1 and edges[p1, . . . , pstart[v+1]−1] isPart2.

2. Sort the neighbors in Part2 into non-increasing order
regarding their core numbers.We achieve this by using
bin sort.

Let deg(v) be the degree of v in G. It is easy to see that the
time complexity of Step 1 is O(deg(v)) and the time com-
plexity of Step 2 isO(deg(v)+core(v)) = O(deg(v)); note
that for the bucket sort in Step 2, the maximum key value is
core(v). Thus, the overall time complexity of organizing the
adjacent edges of all vertices is O(

∑
v∈V deg(v)) = O(m).

With vertices and adjacent edges in order, we can extract
the k-core in time linear to the size of the k-core regardless
of the size of the graph, as follows. The k-core contains all
vertices with core number larger than or equal to k, which

can be extracted by scanning vertices in non-increasing core
number order until a vertex with core number lower than k is
encountered. Then, edges of the k-core can be recovered by
looking into the neighbors of each extracted vertex. That is,
for each extracted vertex u, we scan its neighbors from the
beginning until meeting a neighbor with core number lower
than k. As all neighbors in Part1 of the neighbors of u are
guaranteed to be included in the k-core whenever u is in the
k-core, we did not enforce any order for the Part1 neighbors
of each vertex when reorganizing the edges.

Example 5 Figure13 comes up with a detailed example indi-
cating the intuition of extracting the k-core for different
k values with our adjacency array-based graph representa-
tion. Two arrays, pstart and edges in Fig. 13b, represent
the example graph in Fig. 13a. The array core stores the
core number of all vertices as computed by core decomposi-
tion on the example graph. The peel array sorts vertices in
non-increasing order regarding their core numbers; note that
this peel array actually can be directly obtain from the core
decomposition, which peels vertices in the reverse order.

Neighbors in edges are ordered in the correct order
according to their core numbers. It is worth pointing out that
v2 can be ahead of v3 in the edges array within v1’s neigh-
bors despite that the core number of v3 is larger than the core
number of v2, since the core numbers of both vertices are
larger than or equal to the core number of v1. On the other
hand, v1, v2, and v7 have to be arranged in descending order
according to their core numbers in v3’s neighbors because
their core numbers are smaller than the core number of v3. In
this case, the 3-core of the graph is composed by vertices and
edges marked red. Then, the 2-core of the graph is made up
of vertices and edges marked blue, together with the 3-core.
Finally, the 1-core is the graph itself, which is green part in
addition to the 2-core.

ComplexityAnalysis.Here, we analyze the time complexity
of Lines 2–4 and 7 of Algorithm 6, which are the lines added
in addition toAlgorithm 2. Firstly, Line 2 takesO(m) time by
the peeling algorithm [4, 28], which iteratively removes the
vertex with the minimum degree from the graph. Secondly,
Line 3 can be conducted in O(m) time as discussed above.
Thirdly, Line 4 can be conducted in O(n) time by bin sort.
Lastly, Line 7 can be conducted in time that is linear to the
size of the extracted graph G ′ by noting that for each vertex
u in G ′ we access at most one of its adjacent edges that
is not in G ′. Thus, the time complexity of Algorithm 6 is
the same as that of Algorithm 2, i.e., O(δ(G) × TKECC(G)).
Compared with Algorithm 2, the additional computations of
Algorithm 6 can be conducted very efficiently, and the input
to KECC-AA in Algorithm 6 can be much smaller than that
in Algorithm 2; hence, the optimization of Algorithm 6 can
bring an enormous improvement in practice.

123

64 L. Chang, Z. Wang

Fig. 13 k-core extraction on an example graph

Regarding the space complexity, we note that Algorithm 6
can be implemented to take space 2m+O(n). To achieve this,
we donot actually explicitly extract and store the subgraphG ′
at Line 7. Instead, whenever we need to access the neighbors
of a vertex u inG ′, we access the longest prefix of the adjacent
edges in edges[pstart[u], . . . , pstart[u+1]−1] such that
the core numbers of the end-points are at least k.

7 Experiments

In this section, we conduct extensive performance studies to
evaluate the efficiency and effectiveness of our techniques.
Specifically, we evaluate the following ECo-decomposition
algorithms:

• TD (Algorithm 1): the existing top-down approach pro-
posed in [7] that uses the doubly linked list-based graph
representation.

• BU (Algorithm 2): an adaptation of the existing bottom-
up approach proposed in [42] that uses the doubly linked
list-based graph representation.

• DC (Algorithm 3): our near-optimal approach (Algo-
rithm 3) that uses the doubly linked list-based graph
representation and has a space complexity of O(m +
n log δ(G)).

• TD-AA, BU-AA, andDC-AA: space-optimized versions of
TD, BU and DC by using the adjacency array-based graph
representation (Sect. 5.2).

• BU∗-AA (Algorithm 6): our core optimized version of
BU-AA.

In addition, we also evaluate two k-ECC computation algo-
rithms:

• KECC: the state-of-the-art algorithm proposed in [11] that
uses the doubly linked list-based graph representation.

• KECC-AA: our space-optimized version of KECC that
uses the adjacency array-based graph representation
(Sect. 5.2).

The source code of our algorithms is available at https://
lijunchang.github.io/ECo-Decompose/. All algorithms are
implemented in C++ and compiled with GNU GCC with
the -O3 optimization. All experiments are conducted on a
machine with Intel(R) Xeon(R) 3.6GHz CPU and 128 GB
memory running Ubuntu. We evaluate the performance of
all algorithms on both real and synthetic graphs as follows.

Real Graphs. We evaluate the algorithms on fourteen real
graphs from different domains, which are downloaded from
theStanfordNetworkAnalysis Platform 6 and theLaboratory
of Web Algorithmics .7 Statistics of the graphs are shown in
Table 1, where the second last column and the last column,
respectively, show the average degree and the degeneracy.
The graphs are ranked regarding their numbers of edges. We
denote the graphs by D1, . . ., D14.

Synthetic Graphs. We also evaluate the algorithms on two
kinds of synthetic graphs that are generated by the graph
generator GTGraph .8

• Power-law graphs: A power-law graph is a random graph
in which edges are randomly added such that the degree
distribution follows a power-law distribution.

• SSCA graphs: An SSCA graph contains a collection
of randomly sized cliques and also random inter-clique
edges.

Firstly, we generate 14 power-law graphs, PL1, . . ., PL14,
where the number of vertices varies from 16 thousand to 133
million with an increasing factor of 2. The average degree of
the power-law graphs is around 24.5; as a result, the number
of undirected edges of the power-law graphs varies from 198
thousand to 1.6 billion. The degeneracy of these graphs varies
from 18 to 25.

Secondly, we further generate six power-law graphs fixing
the number of vertices to be the same as PL7 (i.e., around
one million), PL7_1, . . ., PL7_6, where the number of edges

6 http://snap.stanford.edu/.
7 http://law.di.unimi.it/datasets.php.
8 http://www.cse.psu.edu/~madduri/software/GTgraph/.

123

https://lijunchang.github.io/ECo-Decompose/
https://lijunchang.github.io/ECo-Decompose/
http://snap.stanford.edu/
http://law.di.unimi.it/datasets.php
http://www.cse.psu.edu/~madduri/software/GTgraph/

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 65

Table 1 Statistics of graphs
ID Dataset m n d̄ δ

D1 ca-CondMat 91,286 21,363 8.55 25

D2 soc-Epinions1 405,739 75,877 10.69 67

D3 web-Google 3,074,322 665,957 9.23 44

D4 as-Skitter 11,094,209 1,694,616 13.09 111

D5 cit-Patents 16,518,947 3,774,768 8.75 64

D6 soc-pokec 22,301,964 1,632,803 27.32 47

D7 wiki-topcats 25,444,207 1,791,489 28.41 99

D8 com-lj 34,681,189 3,997,962 17.35 360

D9 soc-LiveJournal1 42,845,684 4,843,953 17.69 372

D10 com-orkut 117,185,083 3,072,441 76.28 253

D11 uk-2002 261,556,721 18,459,128 28.34 943

D12 webbase 854,809,761 115,554,441 14.79 1,506

D13 twitter-2010 1,202,513,344 41,652,230 57.74 2,488

D14 com-friendster 1,806,067,135 65,608,366 55.06 304

d̄, average degree; δ, degeneracy

increaseswith a factor of 2. The resulting degeneracy of these
graphs increases from21 (for PL7) to 1, 380 (for PL7_6), also
roughly with a factor of 2.

Thirdly, we generate 12 SSCA graphs, SSCA1, . . .,
SSCA12, where the number of vertices varies from 4 thou-
sand to 8 million with an increasing factor of 2. The average
degree of the SSCA graphs varies from 12 to 135, and the
number of undirected edges varies from 24 thousand to 567
million. The degeneracy of the SSCA graphs varies from 15
to 202.

Evaluation Metrics. For all the evaluations, we record both
the processing time and the peak main-memory usage. Each
testing is run three times, and the average results are reported.
All algorithms are run in main memory and use a single
thread. For the reported processing time, we exclude the I/O
time that is used for loading a graph from disk to main mem-
ory. The peak memory usage of a program is recorded by
/usr/bin/time .9

7.1 Results for ECo-decomposition

We first compare DC-AA with the existing algorithms
in Sect. 7.1.1 and then compare BU∗-AA with DC-AA in
Sect. 7.1.2.

7.1.1 Comparing DC-AA with existing algorithms

In this subsection, we evaluate the six ECo-decomposition
algorithms, TD, BU, DC, TD-AA, BU-AA, and DC-AA, regard-
ing their processing time and main-memory usage.

9 https://man7.org/linux/man-pages/man1/time.1.html.

Results on Real Graphs. We first evaluate the algorithms
on real graphs. The results are illustrated in Fig. 14. For bet-
ter comparison, we separate the algorithms into two groups:
linked list-based algorithms (i.e., TD,BU, andDC), and space-
optimized algorithms (i.e., TD-AA, BU-AA, and DC-AA). The
processing time of the three linked list-based algorithms
is illustrated in Fig. 14a. We can see that our near-optimal
approach DC consistently runs faster than the two state-
of-the-art approaches TD and BU, which is inline with our
theoretical analysis that the former has a lower time complex-
ity than the latter two.However, all the three algorithms fail to
process the two billion-scale graphsD13 andD14, due to run-
ning out-of-memory. On the other hand, our space-optimized
algorithms are able to process these billion-scale graphs
as shown in Fig. 14b, due to their reduced main-memory
usage. The overall trend is similar to their counterparts in
Fig. 14a, i.e., DC-AA consistently performs the best. When
comparing the top-down approach TD-AA with the bottom-
up approachBU-AA, there is no clearwinner despite of having
the same time complexity, as their practical performance is
sensitive to the graph topology. For example, the processing
time of TD-AA, BU-AA, and DC-AA on D13 is, respectively,
13.9hrs, 36.8hrs, and 1.3hrs, while that on D14 is, respec-
tively, 29.4hrs, 13.3hrs, and 3.3hrs.

The main-memory usage of the six algorithms is demon-
strated in Fig. 14c. It is evident that our space-optimized
algorithms (TD-AA, BU-AA, DC-AA) consume much less
memory than the linked list-based algorithms (TD, BU, DC),
where TD and BU are the two state-of-the-art approaches.
For example, the peakmemory usage of our space-optimized
algorithms is at most 15 GB for D13 and is at most 24 GB
for D14, while the linked list-based algorithms run out-of-
memory even with 128 GB memory. There are three things

123

https://man7.org/linux/man-pages/man1/time.1.html

66 L. Chang, Z. Wang

Fig. 14 Comparing DC-AA with existing algorithms on real graphs (best viewed in color)

Fig. 15 Comparing DC-AA with existing algorithms on synthetic graphs

worthmentioning for Fig. 14c. Firstly, it appears that TD con-
sumes more memory than DC. This is due to implementation
differences, i.e., we used the original implementation of TD
from [7] while our implementations of BU and DC slightly
optimized the constant on m in the space complexity. We do
not optimize the code of TD, as linked list-based implemen-
tations, which are outperformed by their space-optimized
counterparts, are not our main focus. Secondly, the linked
list-based algorithm consume more memory on D13 than on
D12, while for our space-optimized algorithms, the situation
is the opposite. This is because (1) D13 has more edges but
less vertices than D12, (2) the memory usage of linked list-
based algorithms is mainly dominated by the part on m in
the space complexity, while the memory usage of our space-
optimized algorithms is also affected by the part on n. This is
also observed for k-ECC computation algorithms in Fig. 19b.
Thirdly, DC-AA always consumes a little bit more memory

than TD-AA and BU-AA, which is due to the log δ(G) factor
on n in the space complexity ofDC-AA. Nevertheless, the gap
is minor given that m dominates O(n log δ(G)) for typical
graphs.

Results on Synthetic Graphs. The processing time and
memory usage of the six algorithms on synthetic graphs are
shown in Fig. 15. The overall trend is similar to that on real
graphs in Fig. 14. That is, our divide-and-conquer algorithms
DC andDC-AA run the fastest, and our space-optimized algo-
rithms consumemuch less memory than the linked list-based
algorithms, e.g., the latter run out-of-memory on PL14which
has 1.6 billion undirected edges. It is interesting to observe
that our space-optimized bottom-up approach BU-AA also
perform quite well on power-law graphs that have small
degeneracy (i.e., at most 25), see Fig. 15a. The results on
power-law graphs by varying m and fixing n are shown in
Fig. 15b, e; note that the degeneracy of these graphs also

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 67

Fig. 16 Comparing BU∗-AA
with DC-AA on real graphs

increases with m. We can see that BU-AA now runs slower
than DC-AA when the degeneracy becomes large, e.g., the
degeneracy of PL7_5 and PL7_6 are 705 and 1, 380, respec-
tively. The processing time and memory usage of the six
ECo-decomposition algorithms on SSCA graphs are, respec-
tively, shown inFig. 15c, f,whichhave similar trends as on the
power-law graphs that varym while fixing n. This is because
SSCA graphs as well as these power-law graphs have large
degeneracy, e.g., the degeneracy of SSCA12 is 202. From
Fig. 15, we can also observe that DC-AA scales almost lin-
early to large graphs for both the processing time and the
memory usage.

7.1.2 Comparing BU∗-AA with DC-AA

In this subsection, we compare the efficiency of our simpler
approach BU∗-AA with the near-optimal approach DC-AA.
The results on real graphs are illustrated in Fig. 16a. We
can see that BU∗-AA consistently runs faster than DC-AA.
For example, the processing time of BU∗-AA on D13 and
D14 is, respectively, 29min and 1.5hrs, while the process-
ing time of DC-AA on D13 and D14 is, respectively, 78min
and 3.3hrs. Recall that BU∗-AA is optimized upon BU-AA by
k-core reduction, and BU-AA runs much slower than DC-AA
(e.g., on D13) as shown in Fig. 14. This demonstrates that
our k-core reduction significantly improves the efficiency of
BU-AA. To get more insights, we also show the size of the
graph that is input to KECC by BU∗-AA and BU-AA, for differ-
ent k values. The results on ca-CondMat and soc-Epinions1
are reported in Fig. 17. We can see that the input graph to
KECC by BU∗-AA is significantly smaller than that by BU-AA,
especially for large k values; note that, for k = 1, they are
the same, as one would expect. This demonstrates the effec-
tiveness of our k-core reduction in BU∗-AA.

The memory usage of BU∗-AA and DC-AA on real graphs
is shown in Fig. 16b. We can see that BU∗-AA uses slightly
less memory than DC-AA, though the improvement is not
significant; this conforms with out theoretical analysis that
the space complexity of BU∗-AA is 2m + O(n), while the
space complexity of DC-AA is 2m + O(n log n).

Fig. 17 The size of the input graph to KECC by BU∗-AA and BU-AA

The processing time and memory usage of BU∗-AA and
DC-AA on synthetic graphs are reported in Fig. 18. The results
are similar to that in Fig. 16 for real graphs. That is, BU∗-AA
runs faster and uses less memory than DC-AA.

7.2 Results for k-ECC computation

In this subsection, we evaluate our space-optimized algo-
rithm KECC-AA for k-ECC computation. We first compare
KECC-AA with the linked list-based counterpart KECC that
is proposed in [11]. The results on real graphs for k = 8
are shown in Fig. 19. We can observe that KECC-AA sig-
nificantly reduces the memory usage compared with KECC.
For example, KECC consumes 78 GB and 119 GB memory,
respectively, for processing D13 and D14, while KECC-AA
only consumes 11 GB and 17 GB memory for these two
graphs. It is also interesting to see that KECC-AA is slightly

123

68 L. Chang, Z. Wang

Fig. 18 Comparing BU∗-AA with DC-AA on synthetic graphs

Fig. 19 Results of k-ECC on real graphs

faster than KECC. This is because KECC-AA benefits from
increased cache hit rate by using adjacency array-based graph
representation.

We also compare KECC-AA with the k-ECC computation
algorithm in NetworkX, a popular Python module for graph

analytics. The results on the two smallest real graphs D1 and
D2 for k = 8 are shown in Table 2; we do not test Net-
workX on larger graphs as it is too slow. We can see that
KECC-AA significantly outperforms NetworkX for k-ECC
computation, e.g., on D2, KECC-AA is more than 60, 000
times faster and consumes 32 times less memory than Net-
workX. Although there are factors of programming language
difference (i.e., C++ vs. Python), it is clear that KECC-AA
has significant advantages over the implementation in Net-
workX. It will be an interesting future work to implement
KECC-AA in NetworkX.

7.3 Applications

In this subsection, we illustrate applying our ECo-
decomposition algorithms in applications. Firstly, our algo-
rithms directly speed up the index construction for steiner
component search studied in [7, 25], which use the hier-
archy tree as an index structure for efficiently processing
online queries. Secondly, our algorithms can facilitate matrix
completability analysis, where matrix completion is typi-
cally used for recommendation [14]. Specifically, a matrix
can be represented as a bipartite graph G = (U ∪ L, E)

with U ∩ L = ∅ and E ⊆ U × L . Each row of the matrix
corresponds to a vertex of U , each column corresponds to a
vertex of L , and each non-zero entry at position (i, j) cor-
responds to an undirected edge between i ∈ U and j ∈ L .
The problem of matrix completion is to predicate values for
the entries of the matrix that currently have value 0 (i.e., with
value missing). It has been shown in [14] that the higher

123

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 69

Table 2 Compare KECC-AA with NetworkX (k = 8)

Dataset NetworkX KECC-AA

Time (s) Memory (MB) Time (s) Memory

D1 768.89 164.66 0.021 5.73

D2 1412.99 772.74 0.022 23.16

Fig. 20 Matrix completability analysis

the edge connectivity of the corresponding bipartite graph,
the more accurate the low-rank matrix completion. Thus,
the higher the value of k such that i and j are contained
in the same k-ECC, the more accurate the predicated value
of the (i, j)th entry of the matrix. The hierarchy tree con-
structed by our algorithms can be used to efficiently obtain
the largest k such that i and j are contained in the same
k-ECC and thus to estimate the accuracy of the matrix com-
pletion for the (i, j)th entry. Also, the hierarchy tree can
be used to efficiently retrieve the submatrices, whose cor-
responding bipartite graphs are k-edge connected, to run
the matrix completion algorithm and can be used to pro-
vide a guide on choosing the appropriate k. For example,
Fig. 20a, b shows the total size of the submatrices whose
corresponding bipartite graphs are k-edge connected, for
datasets Netflix andAmazon_reviews; here, the size of a sub-
matrix is #rows×#columns. Netflix 10 has |U | = 480,189,
|L| = 17,770, |E | = 100,480,507, kmax = 1, 076, and
Amazon_reviews 11 has |U | = 6,643,669, |L| = 2,441,053,
|E | = 29,928,296, kmax = 140. We can see that Netflix is
much denser than Amazon_reviews and can be completed
more accurately than Amazon_reviews. In particular, the
total size of the submatrices whose corresponding bipartite
graphs are 200-edge connected ismore than 10%of the entire
matrix size for Netflix, while there is no such submatrix for
Amazon_reviews.

10 https://www.kaggle.com/netflix-inc/netflix-prize-data.
11 http://snap.stanford.edu/data/web-Amazon-links.html.

8 Related work

Besides the existing works on ECo-decomposition as dis-
cussed in Sects. 1 and 3, we categorize other related works
as follows.
k-ECC

Computation. In the literature, there are three approaches
for computing all k-ECCs of a graph for a given k: cut-
based approach [31, 40, 43], decomposition-based approach
[11], and randomized approach [3]. In this paper, we
adopted the decomposition-based approach [11] for k-ECC
computation—which is the state of the art—and further opti-
mized its memory usage.

EdgeConnectivityComputation.Computing the edge con-
nectivity between two vertices has been studied in graph
theory [21], which is achieved by maximum flow techniques
[17]. The state-of-the-art algorithms compute the maximum
flow exactly in O(n × m) time [30] and approximately in
almost linear time [26, 35]. Index structures have also been
developed to efficiently process vertex-to-vertex edge con-
nectivity queries [1, 23]. However, steiner connectivity as
computed in this paper, which measures the connectivity in a
subgraph, is different from edge connectivity as computed in
[1, 23], which measures the connectivity in the input graph.
Thus, these techniques cannot be applied. Moreover, it is
worth mentioning that none of our algorithms involve maxi-
mum flow computation.

Cohesive Subgraph Computation. Extracting cohesive
subgraphs from a large graph has also been extensively stud-
ied in the literature (see [9] for a recent survey). Here, the
cohesiveness of a subgraph usually is measured by the min-
imum degree (aka, k-core) [34], the average degree (aka,
edge density) [8, 12, 22], the minimum number of trian-
gles each edge participates in (aka, k-truss) [16, 32], and
the vertex connectivity [38]. For some of the measures,
the cohesive subgraphs for different cohesiveness values
also form hierarchical structures and efficient algorithms
have been proposed to construct these hierarchical struc-
tures, e.g., core decomposition [15], truss decomposition
and its higher-order variants [33], and density-friendly graph
decomposition [18, 37]. However, due to inherently different
problem natures, these techniques are inapplicable to com-
puting ECo-decomposition of a graph.

Community Search. The problem of community search,
which aims to find a densely connected subgraph contain-
ing user-given query vertices, has received a lot of attention
recently. Edge connectivity is used as one of the density mea-
sures [7, 24, 25]; the techniques proposed in this paper can
be used to speed up their index construction. Other density
measures include minimum degree, average degree, mini-
mum number of triangles each edge participates in, etc. A

123

https://www.kaggle.com/netflix-inc/netflix-prize-data
http://snap.stanford.edu/data/web-Amazon-links.html

70 L. Chang, Z. Wang

comprehensive survey of community search with respect to
the different density measures can be found in [19].

Modularity, the classic densitymeasure thatwas originally
designed for partitioning a graph into communities (referred
to as the community detection problem in the literature) was
recently extended to the community search problem [27].
Efficient techniques have been proposed in [41] for find-
ing a good community whose number of vertices falls in a
user-given range. With the success of deep learning in many
domains, graph neural networks have also been recently used
for solving the community search problem [13].

9 Conclusion

In this paper, we proposed a near-optimal algorithm DC-AA
for constructing the hierarchy tree of k-ECCs for all possi-
ble k values. DC-AA has both a lower time complexity and
a lower space complexity compared with the state-of-the-art
approaches TD and BU. Extensive experimental results on
large graphs demonstrate that DC-AA outperforms TD and
BU by up to 28 times in terms of running time and by up to 8
times regarding memory usage. As a result, DC-AA makes it
possible to process billion-scale graphs in the main memory
of a commodity machine. As a by-product, we also sig-
nificantly reduced the memory usage of the state-of-the-art
k-ECC computation algorithm. Moreover, we also proposed
a simpler algorithm BU∗-AA that is much easier to implement
and runs faster than DC-AA in practice.

Acknowledgements This work was supported by the Australian
Research Council Funding of FT180100256 and DP220103731.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Aggarwal, C.C., Xie, Y., Philip, S.Y.: Gconnect: a connectivity
index for massive disk-resident graphs. PVLDB 2(1), 862–873
(2009)

2. Agrawal, R., Rajagopalan, S., Srikant, R., Xu, Y.: Mining news-
groups using networks arising from social behavior. In: Proceed-
ings of WWW’03, pp. 529–535 (2003)

3. Akiba, T., Iwata, Y., Yoshida, Y.: Linear-time enumeration of max-
imal k-edge-connected subgraphs in large networks by random
contraction. In: Proceedings of CIKM’13, pp. 909–918 (2013)

4. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decom-
position of networks. CoRR arXiv:cs.DS/0310049 (2003)

5. Benczúr, A.A., Karger, D.R.: Randomized approximation
schemes for cuts and flows in capacitated graphs. CoRR
arXiv:cs.DS/0207078 (2002)

6. Carmi, S., Havlin, S., Kirkpatrick, S., Shavitt, Y., Shir, E.: A model
of internet topology using k-shell decomposition. Proc. Natl. Acad.
Sci. USA 104(27), 11150–11154 (2007)

7. Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-based opti-
mal algorithms for computing Steiner components with maximum
connectivity. In: Proceedings of SIGMOD’15 (2015)

8. Chang, L., Qiao, M.: Deconstruct densest subgraphs. In: Proceed-
ings of WWW’20, pp. 2747–2753 (2020)

9. Chang, L., Qin, L.: Cohesive Subgraph Computation over Large
Sparse Graphs. Springer Series in the Data Sciences (2018)

10. Chang, L., Wang, Z.: A near-optimal approach to edge
connectivity-based hierarchical graph decomposition. Proc. VLDB
Endow. 15(6), 1146–1158 (2022)

11. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently
computing k-edge connected components via graph decomposi-
tion. In: Proceedings of SIGMOD’13, pp. 205–216 (2013)

12. Charikar, M.,: Greedy approximation algorithms for finding dense
components in a graph. In: Proceedings of APPROX’00, pp. 84–95
(2000)

13. Chen, J., Gao, J., Cui, B.: Ics-gnn+: lightweight interactive com-
munity search via graph neural network. VLDB J. 32(2), 447–467
(2023)

14. Cheng, D., Ruchansky, N., Liu, Y.: Matrix completability analysis
via graph k-connectivity. In: Proceedings ofAISTATS’18, pp. 395–
403 (2018)

15. Cheng, J., Ke,Y., Chu, S., Özsu,M.T.: Efficient core decomposition
inmassive networks. In: Proceedings of ICDE’11, pp. 51–62 (2011)

16. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis.
National Security Agency Technical Report, p. 16 (2008)

17. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction
to Algorithms. McGraw-Hill Higher Education, New York (2001)

18. Danisch, M., Hubert Chan, T.-H., Sozio, M.: Large scale density-
friendly graph decomposition via convex programming. In: Pro-
ceedings of WWW’17, pp. 233–242 (2017)

19. Fang, Y., Xin Huang, L., Qin, Y.Z., Zhang, W., Cheng, R., Lin, X.:
A survey of community search over big graphs. VLDB J. 29(1),
353–392 (2020)

20. Fung,W.S., Hariharan, R., Harvey, N.J.A., Panigrahi, D.: A general
framework for graph sparsification. In: Proceedings of STOC’11,
pp. 71–80 (2011)

21. Gibbons, A.: Algorithmic Graph Theory. Cambridge University
Press, Cambridge (1985)

22. Goldberg, A.V.: Finding a maximum density subgraph. Technical
report, Berkeley, CA, USA (1984)

23. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. Soc. Ind.
Appl. Math. 9(4), 551–570 (1961)

24. Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: Querying minimal
Steiner maximum-connected subgraphs in large graphs. In: Pro-
ceedings of CIKM’16, pp. 1241–1250 (2016)

25. Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: On minimal Steiner
maximum-connected subgraph queries. IEEE Trans. Knowl. Data
Eng. 29(11), 2455–2469 (2017)

26. Kelner, J.A., Lee, Y.T., Orecchia, L., Sidford, A.: An almost-linear-
time algorithm for approximate max flow in undirected graphs, and

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/cs.DS/0310049
http://arxiv.org/abs/cs.DS/0207078

A near-optimal approach to edge connectivity-based hierarchical graph decomposition 71

its multicommodity generalizations. In: Proceedings of SODA’13
(2013)

27. Kim, J., Luo, S., Cong, G., Yu, W.: DMCS: Density modularity
based community search. In: Proceedings of SIGMOD’22, pp.
889–903 (2022)

28. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering
and graph coloring algorithms. J. ACM 30(3), 417–427 (1983)

29. Nguyen, A., Hong, S.-H.: k-core based multi-level graph visual-
ization for scale-free networks. In: Proceedings of PacificVis’17,
pp. 21–25 (2017)

30. Orlin, J.B.: Max flows in o(nm) time, or better. In: Proceedings of
STOC’13, pp. 765–774 (2013)

31. Papadopoulos, A.N., Lyritsis, A., Manolopoulos, Y.: Skygraph: an
algorithm for important subgraph discovery in relational graphs.
Data Min. Knowl. Discov., 17(1), August 2008

32. Saito, K., Yamada, T.: Extracting communities from complex net-
works by the k-dense method. In: Proceedings of ICDMw’06, pp.
300–304 (2006)

33. Sariyüce, A.E., Pinar, A.: Fast hierarchy construction for dense
subgraphs. PVLDB 10(3), 97–108 (2016)

34. Seidman, S.B.: Network structure and minimum degree. Social
Networks 5(3), 269–287 (1983)

35. Sherman, J.: Nearly maximum flows in nearly linear time. In: Pro-
ceedings of FOCS’13 (2013)

36. Sorge, M., et al.: The graph parameter hierarchy (2013)
37. Sun, B., Danisch, M., Hubert Chan, T.-H., Sozio, M.: Kclist++: a

simple algorithm for finding k-clique densest subgraphs in large
graphs. Proc. VLDB Endow. 13(10), 1628–1640 (2020)

38. Wen, D., Qin, L., Zhang, Y., Chang, L., Chen, L.: Enumerating
k-vertex connected components in large graphs. In: Proceedings of
ICDE’19, pp. 52–63 (2019)

39. White, D.R., Harary, F.: The cohesiveness of blocks in social
networks: node connectivity and conditional density. Sociol.
Methodol. 31, 305–359 (2001)

40. Yan, X., Jasmine Zhou, X., Han, J.:Mining closed relational graphs
with connectivity constraints. In: Proceedings of KDD’05 (2005)

41. Yao, K., Chang, L.: Efficient size-bounded community search over
large networks. Proc. VLDB Endow. 14(8), 1441–1453 (2021)

42. Yuan, L., Qin, L., Lin, X., Chang, L., Zhang, W.: I/O efficient ECC
graph decomposition via graph reduction. VLDB J. 26(2), 275–300
(2017)

43. Zhou, R., Liu, C., Yu, J.X., Liang, W., Chen, B., Li, J.: Finding
maximal k-edge-connected subgraphs from a large graph. In: Pro-
ceedings of EDBT’12 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A near-optimal approach to edge connectivity-based hierarchical graph decomposition
	Abstract
	1 Introduction
	2 Preliminaries
	3 Existing solutions
	4 A near-optimal approach
	4.1 Computing Steiner connectivities
	4.2 Constructing the hierarchy tree

	5 Optimizing the space usage
	5.1 Doubly linked list-based implementation
	5.2 Adjacency array-based implementations

	6 A practically efficient approach
	7 Experiments
	7.1 Results for ECo-decomposition
	7.1.1 Comparing DC-AA with existing algorithms
	7.1.2 Comparing BU*-AA with DC-AA

	7.2 Results for k-ECC computation
	7.3 Applications

	8 Related work
	9 Conclusion
	Acknowledgements
	References

