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Abstract
Entity resolution (ER) is the task of finding records that refer to the same real-world entities. A common scenario, which
we refer to as Clean-Clean ER, is to resolve records across two clean sources (i.e., they are duplicate-free and contain one
record per entity). Matching algorithms for Clean-Clean ER yield bipartite graphs, which are further processed by clustering
algorithms to produce the end result. In this paper, we perform an extensive empirical evaluation of eight bipartite graph
matching algorithms that take as input a bipartite similarity graph and provide as output a set of matched records. We consider
a wide range of matching algorithms, including algorithms that have not previously been applied to ER, or have been evaluated
only in other ER settings. We assess the relative performance of these algorithms with respect to accuracy and time efficiency
over ten established real-world data sets, from which we generated over 700 different similarity graphs. Our results provide
insights into the relative performance of these algorithms and guidelines for choosing the best one, depending on the data
at hand.

Keywords Bipartite graphs · Graph matching · Clustering · Experimental evaluation · Record linkage

1 Introduction

Entity resolution (ER) is a challenging, yet well-studied
problem in data integration [7, 29]. A common scenario is
Clean-Clean ER (CCER) [9], where the two data sets to be
integrated are both clean (i.e., free of duplicate records), or
are cleaned using single-source ER frameworks. Example
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applications include master data management [43], where a
new clean source needs to be integrated into the clean ref-
erence data, and knowledge graph matching and completion
[23, 55], where an existing clean knowledge base needs to
be augmented with an external source.

We focus onmethods that take advantage of a large bodyof
work on blocking andmatching algorithms, which efficiently
compare records across two data sets and provide as output
pairs of records along with a confidence or similarity score
[9, 13]. This output can then be used to decide which pairs
should be matched. The simplest approach is specifying as
duplicates all pairs with a score higher than a given threshold.
Choosing a single threshold fails to address the issue that in
most cases the similarity scores vary significantly depending
on the characteristics of the compared records.

Most importantly, for CCER, this approach does not guar-
antee that each record can be matched with at most one other
record. If we view the output as a bipartite similarity graph,
where nodes are records and edge weights are the similarity
scores calculated between records, what we need is finding a
matching (or independent edge set [36]) so that each record
fromone data set ismatched to atmost one record in the other.

In this paper, we present the results of our thorough eval-
uation of efficient bipartite graph matching algorithms for
CCER. To the best of our knowledge, our study is the first
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to primarily focus on bipartite graph matching algorithms,
where we examine the relative performance of such algo-
rithms on a variety of data sets and methods of creating the
input similarity graph. Our goal is to answer the following
questions:

• Which bipartite graph matching algorithm is the most
accurate one and which offers the best balance between
effectiveness and time efficiency?

• Which algorithm is the most robust with respect to con-
figuration parameters and data characteristics?

• How well do bipartite graph matching algorithms scale
with regard to the size of similarity graphs?

• Which characteristics of the input graphs determine the
absolute and the relative performance of these algo-
rithms?

By answering these questions, we intend to facilitate the
selection of the best algorithm for a given pair of data sets.
In summary, we make the following contributions:

1. In Sect. 3, we present an overview of eight efficient bipar-
tite graph matching algorithms along with an analysis of
their behavior and complexity. Some of the algorithms
are adaptations of efficient graph clustering algorithms
that have not been applied for CCER in prior work.

2. In Sect. 4, we organize the input of bipartite graph parti-
tioning algorithms into a taxonomy that is based on the
learning-free source of similarity scores/edge weights.

3. We perform an extensive experimental analysis that
involves 739 different similarity graphs from ten estab-
lished real-worldCCERdata sets, the sizes ofwhich range
from several thousands to hundreds of millions of edges,
as described in Sect. 5.

4. In Sect. 6, we assess and discuss the relative performance
of the eight matching algorithmswith respect to effective-
ness and time efficiency.

5. We have publicly released the implementations of
all algorithms, our data as well as our experimental
results. See https://github.com/gpapadis/BipartiteGraph
MatchingAlgorithms for details.

2 Preliminaries

We assume that a record is the description of a real-world
entity, provided as a set of attribute-value pairs in some data
set V . The problem of ER is to identify pairs or groups of
records (called matches or duplicates) that correspond to the
sameentity andplace them into a cluster c. In otherwords, the
output of ER, ideally, is a set of clusters C , each containing

all matching records that correspond to a single real-world
entity.

In this paper, we focus on the case of Clean-Clean ER
(CCER), inwhichwewant tomatch records coming from two
clean (i.e., duplicate-free) data sets V1 and V2. This means
that the resulting clusters should contain at most two records,
one from each data set. Singular clusters (also known as
singletons) are also possible, indicating records for which no
corresponding record has been found in the other data set.

To generate this clustering, a typical CCER pipeline [9]
involves the steps of (i) (meta-)blocking, i.e., indexing steps
that generate candidate matching pairs, this way reducing
the otherwise quadratic search space of matches; (ii) match-
ing, assigning a similarity score to each candidate pair; and
(iii) bipartite graphmatching, which receives the scored can-
didate pairs and decides which pairs will be placed together
in a cluster. In this work, we evaluate how different methods
for the last step perform when the previous steps are fixed.

ProblemDefinition.The task of Bipartite Graph Match-
ing receives as input a bipartite similarity graph G =
(V1, V2, E), where V1 and V2 are two clean data sets, and
E ⊆ V1 × V2 is the set of edges with weights in [0,1] which
correspond to the similarity scores between records of the two
data sets. The output of bipartite graph matching comprises
a set of clusters C , each containing one node vi ∈ V1 ∪ V2
or two nodes vi ∈ V1 and v j ∈ V2 that represent the same
entity.

Figure 1a shows an example of a bipartite similarity graph
in which node partitions (data sets) are labeled as A (in
orange) and B (in blue). The edges connect only nodes
from A to B and are associated with a weight that reflects
the similarity (matching score) of the adjacent nodes. Fig-
ure1b–d shows three different outputs of CCER, in which
nodes within the same oval (cluster) correspond to matching
records.

2.1 Related work

There is a rich body of literature on ER [3, 8, 9, 46]. Follow-
ing the seminal Fellegi-Sunter model for record linkage [16],
a major focus of prior work has been on classifying pairs of
input records asmatch, non-match, or potential match.While
even some of the early work on record linkage incorporated
a 1–1 matching constraint [62], the primary focus of most
recent works has been on the effectiveness of the classifi-
cation task, mainly by leveraging machine [28] and deep
learning [5, 35, 40] methods.

Inspired by recent progress and success of prior work on
improving the efficiency of ER with blocking and filtering
[50],we target ER frameworkswhere the output of thematch-
ing step is used to construct a similarity graph that needs to
be partitioned for the final step of ER. Hassanzadeh et al.
[25] also target such a framework and perform an evalua-
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Fig. 1 Example of processing a bipartite similarity graph with a simi-
larity threshold of 0.5 (i.e., edges with a lower score such as A4–B2 are
ignored): a the similarity graph constructed for a pair of clean data sets
(V1 in orange andV2 in blue),b the resulting clusters after applyingCNC,
c the resulting clusters assuming that the approximation algorithms RCA

or BAH retrieved the optimal solution for the maximum weight bipar-
tite matching or the assignment problem, and (d) the resulting clusters
after applying theUMC, BMC, or EXC algorithms—we describe all these
algorithms in Sect. 3 (color figure online)

tion of various graph clustering algorithms for ER. However,
they target a scenario where input data sets are not clean, or
where more than two clean data sets are merged into a dirty
one that contains duplicates in itself. As a result, each cluster
could contain more than two records. We refer to this varia-
tion of ER as Dirty ER [9]. Some of the bipartite matching
algorithms we use in this paper are adaptations of the graph
clustering algorithms used in [25] for Dirty ER.

More recent clustering methods for Dirty ER were pro-
posed in [14]. After estimating the connected components,
Global Edge Consistency Gain iteratively switches the label
of edges so as to maximize the overall consistency, i.e., the
number of triangles with the same label in all edges. Maxi-
mum Clique Clustering ignores edge weights and iteratively
removes the maximum clique along with its vertices until
all nodes have been assigned to an equivalence cluster. This
approach is generalized by Extended Maximum Clique Clus-
tering, which removes maximal cliques from the similarity
graph and enlarges them by adding edges that are incident to
a minimum portion of their nodes.

Gemmel et al. [19] present two algorithms for CCER as
well as more algorithms for different ER settings (such as
one-to-many and many-to-many). Both algorithms are cov-
ered by the clustering algorithms that are included in our
study: theMutualFirstChoice is equivalent to ourExact Clus-
tering, while the Greedy algorithm is equivalent to Unique
Mapping Clustering. Finally, the MaxWeight method [19]
utilizes the exact solution of the maximum weight bipartite
matching, for which an efficient heuristic approach is con-
sidered in our Best Assignment Heuristic Clustering.

FAMER [55] is a framework that supportsmultiplematch-
ing and clustering algorithms forMulti-source ER. Although
it studies some common clustering algorithms with those
explored in this paper (e.g., Connected Components), our
focus on bipartite graphs, which do not support multi-source
settings, makes the direct comparison inapplicable. Note,
though, that adapting FAMER’s top-performing algorithm,

i.e., CLIP Clustering, to work in a CCER setting yields an
algorithm equivalent to Unique Mapping Clustering, which
we describe in the following section.

Wang et al. [58] follow a reinforcement learning approach,
based on a Q-learning [60] algorithm, for which a state is
represented by the pair (|L|, |R|), where L ⊆ V1, R ⊆ V2
are the nodes/records matched from the two input data sets,
and the reward is calculated as the sum of the weights of
the selected matches. We leave this algorithm outside the
scope of this study, because we only consider learning-free
methods. We plan to further explore such methods in the
future.

Kriege et al. [30] present a linear approximation to the
weighted graph matching problem. However, they require
that the edge weights are assigned by a tree metric, i.e., a
similarity measure that satisfies a looser version of the tri-
angle inequality. In this work, we investigate algorithms that
are agnostic to such similarity measure properties, assuming
only that similarities are in [0,1], as is the case with most
matching algorithms.

3 Algorithms

We consider bipartite graph matching algorithms that satisfy
the following selection criteria:

1. They are crafted for bipartite similarity graphs, which
apply exclusively to CCER. Algorithms for the types of
graphs that correspond toDirty andMulti-sourceERhave
been examined elsewhere [14, 25, 55].

2. Their functionality is learning-free in the sense that they
do not learn a pruning model over a set of labeled
instances. We only use the ground-truth of real matches
to optimize their internal parameter configuration.

3. Their time complexity is not worse than the brute-force
approach of ER, O(n2), where n = |V1 ∪ V2| is the
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Algorithm 1: Connected Components (CNC)

1

Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

2 foreach e = (vi , v j , sim) ∈ E do
3 if sim < t then
4 E ← E \ {e}

5 C∗ ← getConnectedComponentsDFS(G)

6 C ← ∅
foreach ci ∈ C∗ do

7 if |ci | = 2 then
8 C ← C ∪ {ci }

9 return C

number of nodes in the bipartite similarity graph G =
(V1, V2, E).

4. Their space complexity is O(n + m), where m = |E | is
the number of edges in the given similarity graph.

Due to the third criterionweexclude the classicHungarian
algorithm, also known as the Kuhn-Munkres algorithm [31],
whose time complexity is cubic, O(n3). For the same reason
we exclude the work of Schwartz et al. [57] on 1–1 bipartite
graph matching with minimum cumulative weights, which
reduces the problem to a minimum cost flow problem and
uses the matching algorithm of Fredman and Tarjan [17] to
provide an approximate solution in O(n2 log n).

Note that most of the considered algorithms depend on the
number of edges m in the similarity graph, which is equal to
n2 in the worst case. In practice, though, the value of m is
determined by the similarity threshold t , which is used by
each algorithm to prune all edges with a lower weight. For
reasonable thresholds, O(n) ≤ m 	 O(n2).

In the following we describe the selected eight algorithms
in detail.
Connected Components (CNC). This is the simplest algo-
rithm. Its functionality is outlined in Algorithm 1. First, it
discards all edges with a weight lower than the given similar-
ity threshold (lines 1 to 3). Then, it computes the connected
components of the pruned similarity graph (line 4). In the
output, it solely retains the connected components (clusters)
that contain two records—one from each input data set (lines
6 to 8).

Using a simple depth-first approach, its time complexity
is O(n + m) ∼ O(m), if m � n [10].
Ricochet Sequential Rippling Clustering (RSR). This algo-
rithm, outlined in Algorithm 2, is an adaptation of the
homonymous method for Dirty ER in [25] such that it exclu-
sively considers clusters with just one record from each input
data set. Initially, RSR sorts all nodes from both input data
sets in descending order of the average weight of their adja-
cent edges (line 7). Whenever a new seed is chosen from the
sorted list, we consider all its adjacent edges with a weight
higher than t (lines 8 to 11). The first adjacent vertex that

Algorithm 2: Ricochet SR Clustering (RSR)
Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 Center ← ∅
3 foreach v ∈ (V1 ∪ V2) do // Initialization
4 simWithCenter(v) ← 0
5 Cluster(v) ← ∅
6 centerO f (v) ← v

7 Q ← G.nodes InDecreasingWeight(v, w(v))

// w(v) =
(∑

e∈ad j(v) e.sim
)

/|ad j(v)|
8 while Q �= ∅ do
9 vi ← Q.pop() // the vertex with highest weight

10 ToReassign ← ∅
11 foreach e = (vi , v j , sim) ∈ E : sim > t do // for vi’s adjacent

edges
12 if v j ∈ Center then
13 continue

14 if e.sim > simWithCenter(v j ) then
15 Cluster(centerO f (v j )).remove(v j ) // remove v j from

its previous cluster
16 Cluster(vi ) ← Cluster(vi ) ∪ {v j }
17 ToReassign ← ToReassign ∪ centerO f (v j ) // it is now

a singleton
18 simWithCenter(v j ) ← e.sim
19 centerO f (v j ) ← vi
20 break

21 if |Cluster(vi )| > 0 then
22 if centerO f (vi ) �= vi then // if vi was previously in

another cluster
23 Cluster(centerO f (vi )).remove(vi )
24 ToReassign ← ToReassign ∪ centerO f (vi )

25 Center ← Center ∪ {vi }
26 Cluster(vi ) ← Cluster(vi )∪{vi } // put vi in its cluster
27 centerO f (vi ) ← vi
28 simWithCenter(vi ) ← 1

29 foreach vk ∈ ToReassign do
30 maxSim ← 0
31 cMax ← vk
32 foreach e = (vk , v�, sim) ∈ E : sim > t do // find singleton

with the highest similarity with vk to reassign
it

33 if e.sim > maxSim and |Cluster(v�)| < 2 then
34 cMax ← v�
35 maxSim ← e.sim

36 if maxSim > 0 then
37 Cluster(vk ) ← ∅
38 Cluster(cMax) ← Cluster(cMax) ∪ {vk }

39 foreach vi ∈ (V1 ∪ V2) do
40 if |Cluster(vi )| = 2 then
41 C ← C ∪ {Cluster(vi )}

42 return C

is currently unassigned or is closer to the new seed than it
is to the seed of its current cluster is re-assigned to the new
cluster (lines 14 to 16). If a cluster is reduced to a singleton
after a re-assignment, either because the chosen vertex (line
17) or the seed (line 24) was previously in it, it is placed in
its nearest single-node cluster (lines 29 to 38). The algorithm
stops when all nodes have been considered.

In the worst case, the algorithm iterates through n vertices
and each time reassignsm vertices to their most similar adja-
cent vertex, therefore its time complexity is O(n m+n log n)
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Algorithm 3: Row Column Clustering (RCA)
Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C1 ← ∅
2 C2 ← ∅
3 M1 ← ∅ // matched nodes from V1
4 M2 ← ∅ // matched nodes from V2
5 D1 ← 0 // assignment value of C1
6 D2 ← 0 // assignment value of C2
7 foreach vi ∈ V1 do
8 Qi ← V2(sim(vi )) // a priority queue of V2’s nodes in

decreasing sim with vi
9 while Qi �= ∅ do

10 v j ← Qi .pop()
11 if v j /∈ M2 then // if v j is not yet matched
12 C1 ← C1 ∪ {{vi , v j }}
13 M2 ← M2 ∪ {v j }
14 D1 ← D1 + sim(vi , v j )

15 break

16 foreach v j ∈ V2 do
17 Q j ← V1(sim(v j )) // a priority queue of V1’s nodes

in decreasing sim with v j
18 while Q j �= ∅ do
19 vi ← Q j .pop()
20 if vi /∈ M1 then // if vi is not yet matched
21 C2 ← C2 ∪ {{vi , v j }}
22 M1 ← M1 ∪ {vi }
23 D2 ← D2 + sim(vi , v j )

24 break

25 if D1 > D2 then // get maximal assignment
26 C ← C1

27 else
28 C ← C2

29 foreach c = {vi , v j } ∈ C do
30 if sim(vi , v j ) < t then // check similarities
31 C ← C \ {c} // remove clusters/record pairs with

similarity less than t

32 return C

[61]. The latter part stems from the sorting of all nodes in line
7.
Row Column Assignment Clustering (RCA). This approach,
outlined in Algorithm 3, is based on the Row-Column Scan
approximation method in [32] that solves the assignment
problem. It requires two passes of the similarity graph, with
each pass generating a candidate solution.

In the first pass, each record from data set V1 is placed
in a new cluster with its most similar, currently unassigned
record from data set V2 (lines 7 to 15). In the second pass, the
same procedure is applied to the records/nodes of data set V2
(lines 16 to 24). The value of each solution is the sum of the
edge weights (lines 14 and 23) between the nodes assigned
to the same (2-node) cluster (lines 12 and 21). The solution
with the highest value is returned as output, after discarding
the pairs with a similarity less than t (lines 25 to 31).

At each pass the algorithm iterates over all nodes/records
of one of the data sets searching for the node/record with
maximum similarity from the other data set. Therefore, its
time complexity is O(|V1| |V2|).

Algorithm 4: Best Assignment Heuristic (BAH)
Input: Similarity graph G = (V1, V2, E) : |V1| > |V2|, sim. threshold t ,

maximum iterations max I terations
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 i teration ← 0

3 foreach (v1i , v2j ) ∈ (V1 × V2) do

4 d(v1i , v2j ) ← 0 // initialize pair contributions

5 foreach e = (v1i , v2j , sim) ∈ E : sim > t do

6 d(v1i , v2j ) ← sim // initialize pair contributions

7 foreach v1i ∈ V1, v
2
i ∈ V2 : i ≤ |V2| do

8 ci ← {v1i , v2i } // initialize clusters

9 p(v1i ) = v2i

10 while i teration < max I terations do
11 i teration ← i teration + 1
12 i = next Rand(|V1|) // get random i,j in V1
13 j = next Rand(|V1|)
14 while j = i do
15 j = next Rand(|V1|)
16 D ← 0

17 if p(v1i ) �= null then // check swaps

18 D ← d(v1j , p(v
1
i )) − d(v1i , p(v1i ))

19 if p(v1j ) �= null then // check swaps

20 D ← D + d(v1i , p(v1j )) − d(v1j , p(v
1
j ))

21 if D ≥ 0 then // if swaps increase assignment value
22 (p(v1j ), p(v

1
i )) ← (p(v1i ), p(v1j )) // perform swaps

23 foreach vi ∈ V1 do
24 if d(vi , p(vi )) > t then // check similarities
25 C ← C ∪ {ci }

26 return C

Best Assignment Heuristic (BAH). This algorithm applies a
simple swap-based random-search algorithm to heuristically
solve the MaximumWeight Bipartite Matching problem and
uses the resulting solution to create the output clusters. Its
functionality is outlined in Algorithm 4.

Initially, each record from the smaller input data set, V2,
is connected to a record from the larger input data set, V1
(lines 7 to 9). In each iteration of the search process (line
10), two records from V1 are randomly selected (lines 12 to
15) in order to swap their current connections. If the sum of
the edge weights of the new pairs is higher than the previous
pairs (line 16 to 20), the swap is accepted (lines 21 and 22).
The algorithmstopswhen amaximumnumber of search steps
is reached or when a maximum run-time has been exceeded.

The time complexity of random search in lines 10–24 is
determined by the maximum number of iterations, which is
provided as input. Given that this number is a constant, the
time complexity of Algorithm 4 is specified by the initial-
ization in lines 3–9, which considers all pairs of nodes, i.e.,
O(|V1| |V2|).
Best Match Clustering (BMC). This algorithm is inspired
from the Best Match strategy of [38], which solves the Sta-
ble Marriage problem [18], as simplified in BigMat [1]. Its
functionality is outlined in Algorithm 5. For each record of
the source data set Vs , this algorithm creates a new cluster
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Algorithm 5: Best Match Clustering (BMC)
Input: Similarity graph G = (V1, V2, E), sim. threshold t , source data set

selection s ∈ {1, 2}
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 k ← {1, 2} \ s // the subscript of the target data set Vk
3 Mk ← ∅ // matched nodes from Vk
4 foreach vi ∈ Vs do
5 Qi ← vi .edgesDecOrder(t) // edges in desc. sim > t
6 while Qi �= ∅ do
7 (vi , v j , _) ← Qi .pop() // the best match of vi is v j;

their similarity is ignored
8 if v j /∈ Mk then // if v j is not yet matched
9 C ← C ∪ {{vi , v j }} // match vi with v j

10 Mk ← Mk ∪ {e.v j }
11 break

12 return C

(lines 4 to 5), in which the most similar, not-yet-clustered
record from the target data set Vk is also placed—provided
that the corresponding edge weight is higher than t (lines 6
to 12).

Note that the greedy heuristic for BMC introduced in [38]
is the same, in principle, to Unique Mapping Clustering dis-
cussed below. Note also that BMC involves an additional
configuration parameter, apart from the similarity threshold:
the source data set that is used as the source for creating clus-
ters can be set to V1 or V2. In our experiments, we examine
both options and retain the best one.

The algorithm iterates over the nodes of the source data
set and in each turn, it searches for the adjacent vertex with
maximumsimilarity.As a result, its time complexity isO(m).
Exact Clustering (EXC). Inspired from the Exact strategy of
[38], this algorithm places two records in the same cluster
only if they are mutually the best matches, i.e., the most sim-
ilar candidates of each other, and their edge weight exceeds
t . This approach is basically a stricter, symmetric version of
BMC and could also be conceived as a strict version of the
reciprocity filter that was employed in [15].

In more detail, its functionality is outlined in Algorithm 6.
Initially, it creates an empty priority queue for every vertex
(lines 2 to 5). Then, it populates the queue of every vertex
with all its adjacent edges that exceed the given similarity
threshold t , sorting them in decreasing weight (lines 6 to 8).
Subsequently, EXC places two records in the same cluster
(lines 9 to 13) only if they are mutually the best matches, i.e.,
the most similar candidates of each other (line 12).

Its time complexity is O(n m), since the algorithm iterates
over each vertex in V1 searching for its adjacent vertex with
maximum similarity and then performs the same search for
the latter vertex.
Király’s Clustering (KRC). This is an adaptation of the linear
time 3/2 approximation to the Maximum Stable Marriage
problem, called “New Algorithm” in [27]. Its functionality
is outlined in Algorithm 7.

Algorithm 6: Exact Clustering (EXC)
Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 for i ∈ [1, |V1|] do
3 Q1

i ← ∅ // create an empty PQ in desc. sim

4 for j ∈ [1, |V2|] do
5 Q2

j ← ∅ // create an empty PQ in desc. sim

6 foreach e = (v1i , v2j , sim) ∈ E : sim > t do

7 Q1
i .push(e)

8 Q2
j .push(e)

9 foreach v1i ∈ V1 do
10 (v1i , v2j , _) ← Q1

i .pop() // the best match for v1i is v2j

11 (v1k , v2j , _) ← Q2
j .pop() // the best match for v2j is v1k

12 if v1k = v1i then // if the best match for v2j is v1i
13 C ← C ∪ {{v1i , v2j }}

14 return C

Intuitively, the records of the source data set V1 (“men”
[27]), who are initially single (lines 2 and 7), propose to the
records (line 17) from the target data set V2 (“women” [27])
with an edge weight higher than t to form a cluster (“get
engaged” [27]). The records of the target data set accept a
proposal under certain conditions (e.g., if it’s the first pro-
posal they receive—line 18), and the clusters and preferences
are updated accordingly (lines 19, 23 and 25). Records from
the source data set (V1) get a second chance to make pro-
posals (lines 3, 6 and 28 to 31) and the algorithm terminates
when all records of V1 are in a cluster (line 14), or they have
already made their second proposals without success (line
28). Note that for brevity, we omit some of the details (e.g.,
the rare case of “uncertain man”) and refer the reader to [27]
for more information, such as the acceptance criteria for pro-
posals.

Its time complexity is O(n + m log m) [27].
Unique Mapping Clustering (UMC). This algorithm sorts
edges in decreasing weight and iteratively forms a cluster
for the top-weighted edge, as long as none of its nodes has
been already matched. This comes from the unique mapping
constraint of CCER, i.e., the restriction that each record from
one data set matches with at most one record from the other.
Note that the CLIP Clustering algorithm, introduced for the
Multi-source ER problem in [56], is equivalent to UMC in
the CCER case that we study.

In more detail, its functionality is outlined in Algorithm
8. Initially, it iterates over all edges and those with a weight
higher than t are placed in a priority queue that sorts them in
decreasing weight/similarity (lines 5 to 6). Subsequently, it
iteratively forms a cluster (line 10) for the top-weighted pair
(line 8), as long as none of its constituent records has already
been matched to some other (line 9).

Its time complexity is O(m log m), due to the sorting of
all edges (lines 5–6).
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Algorithm 7: Király’s Clustering
Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 singlM ← List() // an empty linked list of single men
3 lastChance ← bool[|V1|] // boolean array storing whether
it’s the last (T) chance or not (F) for each man

4 foreach vi ∈ V1 do // V1 corresponds to men in [27]
5 Q1

i ← ∅ // vi’s edges in desc. sim > t

6 lastChance[i] ← f alse // vi’s 1st out of 2 chances
7 singlM .addLast(vi ) // keeps insertion order

8 foreach v j ∈ V2 do // V2 corresponds to women in [27]
9 Q2

j ← ∅ // v j’s edges in desc. sim > t

10 f iancé[ j] ← null // the man currently engaged to v j

11 foreach e = (vi , v j , sim) ∈ E : sim > t do
12 Q1

i .push(e)

13 Q2
j .push(e)

14 while singlM �= ∅ do
15 vi ← singlM .removeFirst() // in insertion order

16 if Q1
i �= ∅ then

17 v j ← Q1
i .pop() // vi’s preference is v j

18 if f iancé[ j] = null then // v j is single
19 C ← C ∪ {{vi , v j }} // match vi to v j
20 else
21 v′

i ← f iancé[ j] // v j was engaged to v′
i

22 if acceptsProposal(v j , vi ) then // cf. [27]
23 C ← C \ {{v′

i , v j }} // v′
i & v j break up

24 singlM .addLast(v′
i ) // v′

i is now single

25 C ← C ∪ {{vi , v j }} // match vi to v j
26 f iancé[ j] ← vi // v j gets engaged to vi
27

28

29 else
30 if lastChance(vi ) = f alse then
31 lastChance[i] ← true // 2nd chance for vi

32 Q1
i ← recover Ini tialQueue(vi )

33 singlM .addLast(vi )

34

35 return C

Example. Fig. 1 demonstrates an example of applying the
above algorithms to the similarity graph in Fig. 1a. For all
algorithms, we assume a weight threshold of t = 0.5.

CNC completely discards the 4-node connected compo-
nent (A1, B1, A5, B3) and considers exclusively the valid
clusters (A2, B2) and (A3, B4), as demonstrated in Fig. 1b.

Algorithms that aim to maximize the total sum of edge
weights between the matched records, such as RCA and BAH,
will cluster A1 with B1 and A5 with B3, as shown in Fig. 1c,
if theymanage tofind theoptimal solution for the givengraph.
The reason is that this combination of edge weights yields a
sum of 0.6 + 0.6 = 1.2, which is higher than 0.9, i.e., the
sum resulting from clustering A5 with B1 and leaving A1
and B3 as singletons.

UMC starts from the top-weighted edges, matching A5
with B1, A2 with B2 and A3 with B4; A1 and B3 are left
as singletons, as shown in Fig. 1d, because their candidates
have already beenmatched to other records. The same output
is produced by EXC, as the records in each cluster consider
each other as their most similar candidate. For this reason,

Algorithm 8: Unique Mapping Clustering
Input: Similarity graph G = (V1, V2, E), sim. threshold t
Output: A set of clusters C = {c1, c2, . . . , cn }

1 C ← ∅
2 M1 ← ∅ // matched nodes from V1
3 M2 ← ∅ // matched nodes from V2
4 Q ← ∅
5 foreach e = (vi , v j , sim) ∈ E : sim > t do
6 Q.push(e) // a PQ of edges in desc. sim > t

7 while Q �= ∅ do
8 (vi , v j , _) ← Q.pop() // the most similar pair

9 if vi /∈ M1 and v j /∈ M2 then // vi, v j not matched
10 C ← C ∪ {{vi , v j }}
11 M1 ← M1 ∪ {vi }
12 M2 ← M2 ∪ {v j }

13 return C

BMC also yields the same results assuming that V2 (blue) is
used as the source data set.

The clusters generated by RSR and KRL depend on the
sequence of adjacent vertices and proposals, respectively.
Given, though, that higher similarities are generally more
preferred than increasing total sum by both of these algo-
rithms, the outcome in Fig. 1d is the most likely one for these
algorithms, too.
Configuration Parameters. The input of Algorithms 1 to 8
comprises the similarity graph and the similarity threshold t ,
with the latter constituting the sole configuration parameter
in most cases. The only exceptions are BMC, which requires
the specification of the source and the target data set, as well
asBAH, which receives themaximumnumber of search steps.
Note that for BAH, we set an additional parameter to restrict
the maximum run-time per search step.

4 Similarity graphs

Two types of methods can be used for the generation of
the similarity graphs that constitute the input to the above
eight algorithms [7]:

1. Learning-free methods, which produce similarity scores
in an unsupervised manner based on the content of the
input records, and

2. Learning-based methods, which produce probabilistic
similarities based on a training set.

In this work we exclude the latter, focusing exclusively
on learning-free methods. Thus, we make the most of the
selected data sets without sacrificing valuable parts for the
construction of the training (and perhaps the validation) set.
We also avoid fine-tuning numerous configuration param-
eters, which is especially required in the case of deep
learning-based methods [59]. Besides, our goal is not to opti-
mize the performance of theCCERprocess, but to investigate
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Fig. 2 Taxonomy of the similarity functions we used to weigh the similarity graphs. We use n ∈ {2, 3, 4} for character- and n ∈ {1, 2, 3} for token
n-grams for both vector and graph models, as in [44]. The graph similarities are defined in [20]

how the selected graph matching algorithms perform under
a large variety of real settings. For this reason, we produce
a large number of similarity graphs per data set, rather than
relying on synthetic data.

In this context, we do not apply any blocking method
when producing these inputs. Instead, we consider all pairs
of records from different data sets with a similarity larger
than 0. This allows for experimenting with a large variety of
similarity graph sizes, which range from several thousand to
hundreds of millions of edges. Besides, the role of blocking,
i.e., the pruning of the record pairs with very low similar-
ity scores, is performed by the similarity threshold t that is
employed by all algorithms.

The resulting similarity graphs differ in the number of
edges and the corresponding weights, which were produced
using different similarity functions. Each similarity function
consists of two parts:

1. the representation model, and
2. the similarity measure.

For each part, we consider several established approaches
from the literature, which are summarized in Fig. 2. We elab-
orate on them in the following.

4.1 Representationmodels

A representation model transforms a textual value into a
model that is suitable for applying the selected similarity
measure. Depending on the scope of these representations,
we distinguish them into:

1. Schema-agnostic, which consider all attribute values in a
record, and

2. Schema-based, which consider only the value of a specific
attribute.

Depending on their form, we also distinguish the representa-
tions into:

1. Syntactic,whichoperate on the original text of the records,
and

2. Semantic,whichoperate onvector transformations (embed-
dings) of the original text. The aim of such representations
is to capture its actual connotation, leveraging external
information that has been extracted from large and generic
corpora through unsupervised learning.

The schema-based syntactic representations process
each value as a sequence of characters or words and apply
to mostly short textual values. For example, the attribute
value “Joe Biden” can be represented as the set of tokens
{‘Joe’, ‘Biden’}, or the set of character 3-grams {‘Joe’, ‘oe_’,
‘e_B’, ‘_Bi’, ‘Bid’, ‘ide’, ‘den’}, where underscores repre-
sent whitespace characters.

The schema-agnostic syntactic representations process
the set of all individual attribute values. We use two types of
models that have been widely applied to document classifi-
cation tasks [44]:

1. an n-gram vector [37], whose dimensions correspond to
character or token n-grams and are weighted according
to their frequency (TF or TF-IDF score). This approach
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does not consider the order of n-gram appearances in
each value.

2. an n-gram graph [20], which transforms each value into a
graph,where the nodes correspond to character or token n-
grams, the edges connect those co-occurring in a window
of size n and the edge weights denote the n-gram’s co-
occurrence frequency. Thus, the order of n-grams in a
value is preserved.

Following the previous example, the character 3-gram
vector of “Joe Biden” would be a sparse vector with as many
dimensions as all the 3-grams appearing in the data set and
with zeros in all other places except the ones corresponding
to the seven character 3-grams of “Joe Biden” listed above.
For the places corresponding to those seven 3-grams, the
value would be the TF or TF-IDF of each 3-gram. Similarly,
a token 2-gram vector of “Joe Biden” would be all zeros,
for each token 2-gram appearing in all the values, except for
the place corresponding to the 2-gram ‘Joe Biden’, where its
value would be 1.

Generally, a record ri can be modeled as an n-gram vector
with one dimension for every distinct (character or token)
n-gram in a data set D: V M(ri ) = (wi1, . . . , wim), wherem
stands for the dimensionality of D (i.e., the number of distinct
n-grams in it), while wi j is the weight of the j th dimension
that quantifies the importance of the corresponding n-gram
for ri .

The most common weighting schemes are:

1. Term Frequency (TF) sets weights in proportion to the
number of times the corresponding n-grams appear in the
values of record ri . More formally, T F(t j , ri )= f j/Nri ,
where f j stands for the frequency of n-gram t j in ri , while
Nri is the number of n-grams in ri , normalizing TF so as
to mitigate the effect of different lengths on the weights.

2. Term Frequency-Inverse Document Frequency (TF-IDF)
discounts the TF weight for the most common tokens
in the entire data set D, as they typically correspond
to noise (i.e., stop words). Formally, T F-I DF(t j , ri ) =
T F(t j , ri ) · I DF(t j ), where I DF(t j ) is the inverse doc-
ument frequency of the n-gram t j , i.e., I DF(t j ) =
log |D|/(|{rk ∈ D : t j ∈ rk}| + 1). In thisway, highweights
are given to n-grams with high frequency in ri , but low
frequency in D.

To construct the vector model for a specific record,
we aggregate the vectors corresponding to each one of
its attribute values. The end result is a weighted vector
(ai (w1), ...., a(wm)), where ai (w j ) is the sum of weights,
i.e., ai (w j ) = ∑

ak∈Ai
wi j , where ak stands for an individ-

ual attribute value in the set of values Ai of record ri .
Regarding the n-gram graphs, continuing our previous

example, the character 3-gram graph corresponding to “Joe

Fig. 3 The 3-gram graph corresponding to the string value “Joe Biden”

Biden” would be a graph with seven nodes, one for each 3-
gram listed above. To capture the contextual knowledge, an
edge of weight 1 connects the node ‘Joe’ to the nodes ‘oe_’
and ‘e_B’. Similarly, ‘oe_’ is connected to ‘e_B’ and ‘_Bi’
and so on, as shown in Fig. 3.

To construct the n-gram graph model that represents all
attribute values in a record, we merge the individual graph
of each value into a larger “record graph” through the update
operator, as described in [20, 21]. The resulting graph is basi-
cally the union of the individual n-gramgraphswith averaged
weights.

For both the n-gram vectors and the n-gram graphs, we
consider n ∈ {2, 3, 4} for character- and n ∈ {1, 2, 3} for
token n-grams in our experiments in Sects. 5 and 6.

The semantic representations treat every text as a
sequence of items (words or character n-grams) of arbitrary
length and convert it into a dense numeric vector based on
learned external patterns. The closer the connotation of two
texts is, the more similar their vectors are. These represen-
tations come in two main forms, which apply uniformly to
schema-agnostic and schema-based settings:

1. The pre-trained embeddings of word or character level.
Due to the highly specialized content of ER tasks (e.g.,
arbitrary alphanumerics in product names), the former,
which include word2vec [39] andGloVe [51], suffer from
a high portion of out-of-vocabulary tokens—these are
words that cannot be transformed into a meaningful vec-
tor, because they are not included in the training corpora
[40]. This drawback is addressed by the character-level
embeddings: fastText vectorizes a token by summing the
embeddings of all its character n-grams [4]. For this
reason, we exclusively consider the 300-dimensional fast-
Text in the following.

2. Transformer-based language models [12] go beyond the
shallow, context-agnostic pre-trained embeddings by vec-
torizing an item based on its context. In this way, they
assign different vectors to homonyms, which share the
same form, but different meaning (e.g., “bank” as a finan-
cial institution or as the border of a river). They also
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assign similar vectors to synonyms, which have differ-
ent form, but almost the same meaning (e.g., “enormous”
and “vast”). Several BERT-based language models have
been applied to ER in [5, 35]. Among them, we exclu-
sively consider the 768-dimensional S-T5 [52], which is
trained over hundreds of gigabytes of web documents in
English, the Colossal Clean Crawled Corpus, thus being
one of the best performing SentenceBERT models.

4.2 Similarity measures

Every similarity measure receives as input two representa-
tion models and produces a score that is proportional to the
likelihood that the respective records correspond to the same
real world entity: the higher the score, the more similar are
the input models and their textual values and the higher is
the matching likelihood.

For each type of representation models, we considered a
large variety of established similarity measures, as described
below.
Schema-based syntactic representations. We distinguish the
similarity measures for this type of representation models
into:

1. character-level, which are applied to two strings s1 and s2
by treating them as character sequences, and

2. word-level, which are applied to two strings a and b by
treating them as sets or multisets (bags) of words.

The former category includes the measures below:
Levenshtein distance. Counts the (minimum) number of

insert, delete and substitute operations required to transform
one string into the other.

Damerau-Levenshtein distance. The Damerau-
Levenshtein distance only differs from the Levenshtein dis-
tance by including transpositions among the operations
allowed.

Jaro similarity. The Jaro similarity of two strings s1 and
s2 is defined as:

sim(s1, s2) =
{
0 , if m = 0
1
3

(
m
|s1| + m

|s2| + m−t
m

)
, else,

wherem is the number of common characters and t the num-
ber of transpositions.

Needleman-Wunch. This similarity measure is the result
of applying an algorithm that assigns three scores (seen as
parameters) to two strings s1 and s2, depending on whether
the aligned characters are a match, a mismatch, or a gap. A
match occurs when the two aligned characters are the same,
a mismatch when they are not the same, and a gap when an
insert or delete operation is required for the alignment. The

match, mismatch and gap scores used in this study are 0, -1
and -2, respectively, as in Simmetrics [6].

Q-grams distance. It applies Block distance (see below)
to the 3-gram representation of s1 and s2.

Longest Common Substring similarity. It normalizes the
size of the longest common substring (lcsstr ) between two
input strings by the size of the longest one: sim(s1, s2) =
|lcsstr (s1, s2)|/max(|s1|, |s2|).

Longest Common Subsequence similarity. The difference
between this measure and the previous is that the common
subsequence does not need to consist of consecutive charac-
ters.

We also consider the following word-level measures:
Cosine similarity. The similarity is defined as the Cosine

of the angle between the multisets (bags) of words a and
b, which are expressed as sparse vectors: sim(a, b) = a ·
b/(||a|| ||b||).

Euclidean distance. Compares the frequency of occur-
rence of each word w in two strings a and b: dist(a, b) =
||a − b|| = √∑

w ( f req A(w) − f reqB(w))2.
Block distance. It is also known as L1 distance,City Block

distance andManhattan distance. Given twomultisets (bags)
of words a and b, it amounts to the sum of the absolute
differences of the frequency of each word in a versus in b:
dist(a, b) = ||a − b||1.

Overlap coefficient. It is estimated as the size of the inter-
section divided by the smaller size of the two given sets of
words: sim(a, b) = |a ∩ b|/min(|a|, |b|).

Dice similarity. It is defined as twice the shared informa-
tion (intersection) divided by sum of cardinalities of the two
sets of words: sim(a, b) = 2|a ∩ b|/(|a| + |b|).

Simon White similarity.1 This similarity is the same as
Dice similarity, with the only difference being that it consid-
ers a and b as multisets (bags) of words.

Jaccard similarity. It calculates the size of the intersection
divided by the size of the union for the two given sets of
words: sim(a, b) = |a ∩ b|/|a ∪ b|.

Generalized Jaccard similarity. It is the same as the Jac-
card similarity, except that it considers multisets (bags) of
words instead of sets.

Monge-Elkan similarity. This similarity is the average
similarity of the most similar words between two sets of
wordsa andb: sim(a, b) = 1

|a|
∑

wi∈a maxw j∈b
(
sim(wi , w j )

)
,

where sim is the optimized Smith-Waterman algorithm [22]
that operates as the secondary character-level similarity to
compute the similarity of individual words.
Schema-agnostic syntactic representations. As described
above, this type of representation models comes in the form
of n-gram vectors or n-gram graphs.

1 http://www.catalysoft.com/articles/StrikeAMatch.html.
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To compare two vector models V M(ri ) and V M(r j ),
we consider the following similarity measures2:

ARCS similarity [47]. It sums the inverse Document
Frequency (DF) of the common n-grams in two bag mod-
els. The rarer the common n-grams are, the higher gets
the overall similarity. Formally: sim(V M(ri ), V M(r j )) =∑

tk∈V M(ri )∩V M(r j ) log 2/ log(DF1(tk) · DF2(tk)),where tk ∈
V M(ri )∩V M(r j ) indicates the set of common n-grams.

Cosine similarity. It measures the cosine of the angle
between the weighted input vectors. Formally, it is equal to
their dot product similarity, normalizedby theproduct of their
magnitudes: sim(V M(ri ), V M(r j )) = ∑m

k=1 wikw jk/

||V M(ri )||/||VM(r j )||, where m is the dimensionality of
the vector models, i.e., m = |V M(ri )| = |V M(r j )|, while
wlk denotes the kth dimension in the vector model V M(rl).

Jaccard similarity. It defines as similarity the ratio
between the sizes of set intersection and union: sim(V M(ri ),

V M(r j ))=|V M(ri )∩V M(r j )|/|V M(ri )∪V M(r j )|.
Generalized Jaccard similarity. It extends the above mea-

sure so that it takes into account the weights associated with

every n-gram: sim(V M(ri ), V M(r j ))=
∑m

k=1 min(wik ,w jk )∑m
k=1 max(wik ,w jk )

.

BothCS andGJS apply seamlessly to both TF andTF-IDF
weights.

To compare two graph models, we consider the follow-
ing graph similarity measures [20]:

Containment similarity (CoS). It estimates the number of
edges shared by two graph models, Gi and G j , regardless
of the corresponding weights (i.e., it merely estimates the
portion of common n-grams in the original texts). Formally:
CoS(Gi ,G j ) = ∑

e∈Gi
μ(e,G j )/min(|Gi |, |G j |), where

|G| is the size of graph G, and μ(e,G) = 1 if e ∈ G, or 0
otherwise.

Value similarity (VS). It extends CoS by considering the
weights of common edges. Formally, usingwk

e for the weight

of edge e inGk : V S(Gi ,G j ) = ∑
e∈(Gi∩G j )

min(wi
e,w

j
e )

max(wi
e,w

j
e )·max(|Gi |,|G j |)

.

Normalized Value similarity (NS). It extends VS by miti-
gating the impact of imbalanced graphs, i.e., the cases where
the comparison between a large graph with a much smaller
one yields similarities close to 0. Formally: NS(Gi ,G j )=∑

e∈(Gi∩G j )
min(wi

e, w
j
e )/max(wi

e, w
j
e )/min(|Gi |, |G j |).

Overall similarity (OS). It constitutes the average of the
above graph similarity measures, which are all defined [0, 1].
Formally: OS(Gi ,G j )=(CoS(Gi ,G j ) + V S(Gi ,G j ) +
NS(Gi ,G j ))/3.
Semantic representations. Both the schema-agnostic and the
schema-based representations of this type are associatedwith
the three similarity functions. They all receive as input two
dense multi-dimensional numeric vectors, vi and vj, which

2 For the measures that treat the vector models as sets, we assume that
dimensions with weights higher than 0 indicate the presence of the
corresponding n-gram. Ta
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are the embedding representations of records ri and r j , and
produce as output a score in [0, 1] that is proportional to the
matching likelihoodof ri and r j (i.e., 0 corresponds to dissim-
ilarity and 1 to identical representations). More specifically,
we consider the following similarity functions:

1. Cosine similarity, which is the dot product between vi
and v j normalized by the product of their magnitudes:
sim(vi, vj) = vi · vj/(||vi|| · ||vj||).

2. Euclidean similarity, which is defined as sim(vi, vj) =
1/(1 + euDist(vi, vj)), where euDist(vi, vj)) is the
Euclidean distance between the embedding vectors, i.e.,

euDist(vi, vj) =
√∑|vi |

k=1(v
k
i − vkj )

2.
3. Earthmover’s similarity,which is defined as sim(vi, vj) =

1/(1 + emDist(vi, vj)), where emDist stands for the
Earth mover’s distance, also known as Wasserstein dis-
tance [54]. In essence, it estimates the minimum distance
that the n-grams describing ri need to “travel” in the
semantic space in order to reach the n-grams in r j [33].

5 Experimental setup

All experiments were carried out on a server running Ubuntu
18.04.5 LTS with a 32-core Intel Xeon CPU E5-4603 v2
(2.20GHz) and 128 GB of RAM. All time experiments were
executed on a single core. For the implementation of the
schema-based syntactic similarity functions, we used the
Simmetrics Java package.3 For the schema-agnostic syntac-
tic similarity functions,we used the implementation provided
by the JedAI toolkit [48] (the implementation of n-gram
graphs and the corresponding graph similarities is based on
the JIinsect toolkit4). For the semantic representation mod-
els,we employed thePython sister package,5 which offers the
fastText pre-trained embeddings, and Hugging Face,6 which
implements the S-T5 pre-trained embeddings. For the com-
putation of the semantic similarities, we used the Python
scipy package.7

Data Sets. In our experiments, we use ten real-world, estab-
lished data sets for ER. Their characteristics are shown in
Table 1, where |Vx | stands for the number of input records,
|NV Px | for the total number of name-value pairs, |Ax | for
the number of attributes and | p̄x | for the average number of
name-value pairs per record inDatasetx , |D(V1∩V2)|denotes
the number of duplicates in the ground-truth, and |V1|× |V2|
the number of pairwise comparisons executed by the brute-

3 https://github.com/Simmetrics/simmetrics.
4 https://github.com/ggianna/JInsect.
5 https://pypi.org/project/sister.
6 https://huggingface.co.
7 https://www.scipy.org.

force approach. DRE , which was introduced in OAEI 2010,8

contains data about restaurants. DAB matches products from
the online retailers Abt.com and Buy.com [29]. DAG inter-
links products from Amazon and the Google Base data API
(Google Pr.) [29]. DDA contains data about publications from
DBLP and ACM [29]. DIM , DIT and DMT contain data
about television shows from TheTVDB.com (TVDB) and
movies from IMDb and themoviedb.org (TMDb) [42]. DW A

contains data about products fromWalmart andAmazon [40].
DDS contains data about scientific publications from DBLP
and Google Scholar [29]. DI D matches movies from IMDb
and DBpedia [48] (note that DI D contains a different snap-
shot of IMDbmovies than DIM and DIT ). All these data sets
are publicly available through the JedAI data repository.9

Note that for the schema-based settings (both the syntactic
and semantic ones), we used only the attributes that combine
high coverage with high distinctiveness. That is, they appear
in the majority of records, while conveying a rich diversity of
values, thus yielding high effectiveness. These attributes are
“name” and “phone” for DRE , “name” for DAB , “title” for
DAG , “title” and “authors” for DDA, “modelno” and “title”
for DIM , “title” and “authors” for DIT , “name” and “title”
for DMT , “title” and “name” for DW A, “title” and “abstract”
for DDS , and “title” for DI D .
Evaluation Measures. In order to assess the relative perfor-
mance of the above graph matching algorithms, we evaluate
their effectiveness, their time efficiency and their scalability.
Wemeasure their effectiveness, with respect to a ground truth
of known matches, in terms of three measures:

• Precision (Pr ) measures the portion of output clusters
with two nodes from every partition that are indeed dupli-
cates, i.e., Pr = |{ci ∈ C |(vl ∈ ci ∩ V1) ∧ (vk ∈
ci ∩ V2) ∧ (vl ≡ vk) ∧ (|ci | = 2)}|/|{ci ∈ C ||ci ∩ V1| =
1 ∧ |ci ∩ V2| = 1}.

• Recall (Re) measures the portion of matching nodes that
co-occur in at least one cluster of the output: Re = |{ci ∈
C |(vl ∈ ci ∩ V1) ∧ (vk ∈ ci ∩ V2) ∧ (vl ≡ vk) ∧ (|ci | =
2)}|/|{(vl , vk) ∈ V1 × V2|vl ≡ vk}|.

• F-Measure (F1) is the harmonic mean of precision and
recall: F1 = 2 · Pr · Re/(Pr + Re).

All measures are defined in [0, 1]. Higher values show
higher effectiveness.

For time efficiency, wemeasure the average run-time of an
algorithm for each setting, i.e., the time an algorithm requires
from receiving the weighted similarity graph as input until it
returns the generated partitions as output, over 10 repeated
executions.

8 http://oaei.ontologymatching.org/2010/im.
9 https://github.com/scify/JedAIToolkit/tree/master/data.
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Table 2 The number of similarity graphs |G|, their size in terms of the average number of edges |Ē |, and their average normalized size (|Ē |/|V1|×
|V2|), per data set

Syntactic weights Semantic weights

Schema-based Schema-agnostic Schema-based Schema-agnostic

|G| ¯|E | ·106 |Ē |
|V1|×|V2| |G| |Ē | ·106 |Ē |

|V1|×|V2| |G| |Ē | ·106 |Ē |
|V1|×|V2| |G| |Ē | ·106 |Ē |

|V1|×|V2|

DRE 20 0.16 21.2% 46 0.72 93.5% 9 0.22 29.3% 4 0.76 100.0%

DAB 12 1.05 90.5% 47 0.64 55.1% 4 1.16 100.0% 4 1.16 100.0%

DAG 14 2.89 70.5% 53 2.65 64.5% 4 4.11 100.0% 4 4.11 100.0%

DDA 27 4.49 74.8% 24 3.84 64.0% 12 6.00 99.9% 4 6.00 100.0%

DIM 24 5.81 18.7% 48 11.92 38.5% 12 8.29 26.8% 4 30.81 99.4%

DIT 25 8.39 21.0% 45 10.99 27.5% 12 12.40 31.0% 4 39.89 99.8%

DMT 26 2.80 05.9% 42 12.21 25.8% 12 3.71 07.8% 6 47.07 99.35%

DWA 26 28.10 49.8% 47 37.31 66.2% 6 43.93 77.9% 2 56.38 100.0%

DDS 20 119.18 77.2% 46 77.56 50.2% 8 154.36 100.0% 4 154.36 100.0%

DID 13 250.73 39.2% 43 317.17 49.5% 4 378.56 59.1% 2 640.10 99.99%

Σ 207 – – 441 – – 83 – – 38 – –

Generation Process.Togenerate a large variety of input sim-
ilarity graphs, we apply every similarity function described
in Sect. 4 to all data sets in Table 1. We apply all combina-
tions of representation models and similarity measures, thus
yielding 60 schema-agnostic syntactic similarity graphs per
data set, 16 schema-based similarity graphs per attribute in
each data set, and 12 semantic similarity graphs per data set.
Note thatwe did not apply any fine-tuning toALBERT, as our
goal is not optimize ER performance, but rather to produce
diverse inputs.

To evaluate the performance of all algorithms, we first
apply min-max normalization to the edge weights of all
similarity graphs, regardless of the similarity function that
produced them, to ensure that they are restricted to [0, 1].
Next, we apply every algorithm to every input similarity
graph by varying its similarity threshold from 0.05 to 1.0
with a step of 0.05.10 The largest threshold that achieves the
highest F1 is selected as the optimal one, determining the
performance of the algorithm for the particular input. Note
that for BAH we set the maximum number of search steps to
10,000, and the maximum run-time per input to 2min, given
that all other algorithms process any similarity graph within
seconds.

Next,we took special care to clean the experimental results
from noise. We removed all similarity graphs where all
matching records had a zero edge weight. We also removed

10 Preliminary experiments showed that there is no significant differ-
ence in the experimental results when using a smaller step size like 0.01.
Thus, we set it to 0.05 to reduce the effort for the experiments, due to
the large number of algorithms, similarity functions and data sets they
involve.

all noisy graphs, where all algorithms achieve an F1 lower
than 0.25. Finally, we cleaned our data from duplicate inputs.
These are similarity graphs that emanate from the same data
set but from different similarity functions and have the same
number of edges, while at least two different algorithms
achieve their best performance with the same similarity
threshold, exhibiting almost identical effectiveness. As such,
we consider the cases where the difference in F1 and pre-
cision or recall is less than 0.002 (i.e., 0.2%). Note that we
did not set the difference to 0, so as to accommodate slight
differences in the performance of stochastic algorithms like
RCA and BAH.

The characteristics of the retained similarity graphs are
shown in Table 2. Overall, there are 769 different similarity
graphs, most of which rely on syntactic similarity functions
and the schema-agnostic settings, in particular. The reason is
that much fewer similarity functions are associated with the
schema-based settings, especially the semantic ones. Every
data set is represented by at least 62 similarity graphs, with
every type of weights including at least two graphs. The aver-
age number of edges in these graphs ranges from 160K to
379M. This large set of real-world similarity graphs allows
for a rigorous testing of the graphmatching algorithms under
diverse conditions.

6 Experimental analysis

We now discuss our experimental evaluation of bipartite
matching algorithms for CCER with regard to a variety of
dimensions.
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Fig. 4 Precision, recall and F1 of all algorithms over all similarity graphs

Fig. 5 Nemenyi diagrams based on precision, recall and F1 (from left to right)

6.1 Effectiveness measures

The most important performance aspect of clustering algo-
rithms is their ability to effectively distinguish the matching
from the non-matching pairs. This section examines this
aspect, addressing the following questions:

QE(1): What is the trade-off between precision and recall
that is achieved by each algorithm?

QE(2): Which algorithm is the most/least effective?
QE(3): How does the type of input affect the effectiveness

of the evaluated algorithms?
QE(4): Which other factors affect their effectiveness?

To answer QE(1) and QE(2), we consider the distribution
of all effectiveness measures per algorithm across all input
similarity graphs, as reported in Fig. 4. We observe that all
algorithms emphasize precision at the cost of lower recall.
Based on the average values, the most balanced algorithm
is UMC, as it yields the smallest difference between the two
measures (just 0.015). In contrast, CNC constitutes the most
imbalanced algorithm, as its precision is almost double its
recall. The former achieves the best F1, followed in close
distance by KRC, while the latter achieves the second worst
F1, surpassing only BAH. Judging from the range of the box
plots, BAH is the least robust with respect to all measures,
due to its stochastic functionality, while CNC, UMC, KRC and
RSR are the most robust with respect to precision, recall and
F1, respectively. Among the other algorithms, EXC and BMC
are closer to UMC and KRC, with the former achieving the
third highest F1. In contrast, RSR and RCA lie closer to CNC,
with RSR exhibiting the third lowest F1.

To assess the statistical significance of these patterns, we
perform an analysis [26] based on their effectiveness mea-

sures over the 769 paired samples. In more detail, for each
measure, we first perform the non-parametric Friedman test
[11] and reject the null hypothesis (with α = 0.05) that the
differences between the evaluated methods are statistically
insignificant. Then, we perform a post-hoc Nemenyi test [41]
to identify the critical distance (CD = 0.379) between the
methods. The resulting Nemenyi diagrams appear in Fig. 5.
We observe that for precision and recall, only the difference
between RSR and BMC is statistically insignificant. In every
diagram, themethods are listed in descending order of perfor-
mance, with the best performing method appearing in the top
left position and the worst one in the bottom right position.
Hence, the best algorithm in terms of precision is CNC, fol-
lowed by EXC,KRC andUMC, while the best recall is achieved
by UMC, with KRC in the second place. These results verify
the patterns in Figs. 4 and 6, highlighting the excellent bal-
ance between precision and recall that is achieved by UMC
and KRC. Regarding F1, there are no statistically significant
differences among themethods with the lowest performance,
namely CNC, RCA, RSR, and BAH. All other differences are
significant, with KRC, UMC, EXC, and BMC, ranking first (in
that order) for both evaluation methods.

Another interesting observation drawn from these patterns
is that EXC typically achieves higher precision and lower
recall than BMC. This should be expected, given that EXC
requires an additional reciprocity check before declaring that
two records match. We notice, however, that the gain in pre-
cision is greater than the loss in recall and, thus, EXC yields
a higher F1 than BMC, on average. Note also that in the
vast majority of cases, BMC works best when choosing the
smallest data set as the basis for creating clusters.

Overall, the top performing algorithms, on average, with
respect to all effectiveness measures are KRC,UMC, BMC and
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Fig. 6 Precision, recall and F1 of all algorithms over all similarity graphs of each type of edge weights

EXC. Their relative performance depends on the type of edge
weights, as explained below.

To answer QE(3), Fig. 6 presents the distribution of all
effectiveness measures per algorithm across the four types
of similarity graphs’ origin. For the schema-based syntactic
weights, we observe in Fig. 6a that the average precision of
all algorithms is much higher than the corresponding preci-
sion in Fig. 4—from 3.6% (CNC) to 13% (BAH). For CNC and
RSR, this is accompanied by an increase in average recall (by
5.1% and 2.7%, respectively), while for all other algorithms,

the average recall drops between 6% (EXC) and 9.2% (KRC).
This means that the schema-based syntactic similarities rein-
force the imbalance between precision and recall in Fig. 4 in
favor of the former, for all algorithms except CNC and RSR.
The average F1 drops only for KRC (by 1%). UMC is the best
algorithm with respect to both measures, outperforming the
second best, KRC, by ∼1.5%. Similarly, BMC exceeds EXC
in terms of average F1 by ∼0.6% in both cases, because
the increase in its mean precision is much higher than the
decrease in its mean recall, while the opposite is true for
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EXC. Finally, it is worth noting that this type of similari-
ties increases significantly the robustness of all algorithms,
as the standard deviation of both F1 drop by ≥13% for all
algorithms—the only exception is BAH, due to its stochastic
nature.

The opposite patterns are observed for schema-agnostic
syntacticweights in Fig. 6b: the imbalance between precision
and recall is reduced, as on average, the former drops from
2.2% (EXC) to 7.3% (BAH), while the latter raises from 3.2%
(EXC) to 5.6% (RCA). The imbalance is actually reversed for
BMC and UMC, whose average recall (0.613 and 0.664, resp.)
exceeds the average precision (0.606 and 0.622, resp.). The
only exception is CNC, which remains practically stable with
respect to both measures, while the same applies to the recall
of RSR. Overall, compared to Fig. 4, there are minor changes
in the mean F1 of most algorithms (	1% in absolute terms),
with KRC and EXC exhibiting almost identical values for both
measures with UMC and BMC, respectively.

The schema-based semantic similarity weights in Fig. 6c
exhibit similar patterns with their syntactic counterparts,
favoring precision over recall for all algorithms. In more
detail, most algorithms raise their precision to aminor extent,
from 2.2% (EXC) to 6.8% (BAH), on average. The only excep-
tions are RCA, which practically remains stable, and CNC,
whose precision drops by 8.5%. At the same time, all algo-
rithms reduce recall to a significant extent, by 5.2%, on
average. The combination of these patterns leads to minor
differences (	 1%) in the average F1 of most algorithms.
Changes up to 2% are observed only for CNC, whose perfor-
mance deteriorates with respect to all measures, EXC, where
the increase in precision is higher than the drop in recall, and
vice versa for UMC and RCA. In these settings, KRC and EXC
outperform UMC and BMC by 2–3% with respect to F1.

Finally, the schema-agnostic semantic similarity weights
in Fig. 6d give rise to patterns similar to their syntactic coun-
terparts in the sense that the deviation between precision
and recall is reduced for practically all algorithms. In fact,
UMC reverses the imbalance in favor of recall, while EXC
balances both measures. This stems from the deterioration
of all evaluation measures. Compared to Fig. 4, the average
precision drops by at least 2.6%, with an average of 8.2%
across all algorithms. Average recall drops to a lesser extent
for most algorithms, with KRC, RCA and UMC actually rais-
ing it by 1.3%, 2.7% and 3.5%, respectively. The average
F1 decreases for all algorithms, by 6.7% and 8.8%, respec-
tively, except for RCA, where it remains practically stable.
UMC takes a minor lead over KRC, being the overall top per-
former, but BMC clearly underperforms EXC.

To answer QE(4), we distinguish the similarity graphs
into three categories according to the portion of duplicates
in their ground truth with respect to the size of the input data
sets, |V1| and |V2|:

1. Balanced (BLC) are the data sets where the vast majority
of records in Vi are matched with a record in Vj (i = 1 ∧ j
= 2

∨
i = 2 ∧ j = 1). This category includes all similarity

graphs generated from DAB , DDA and DI D .
2. One-sided (OSD) are the data sets where only the vast

majority of records in V1 are matched with a record from
V2, or vice versa. OSD includes all graphs stemming from
DAG and DDS .

3. Scarce (SCR) are the data sets where a small portion of
records in Vi are matched with a record in Vj (i = 1 ∧ j
= 2

∨
i = 2 ∧ j = 1). This category includes all graphs

generated from DRE and DIM -DW A.

We apply this categorization to the four main types of
edge weights defined in Sect. 4, and for each subcategory we
consider three new effectiveness measures:

1. #Top1 denotes the number of times an algorithm achieves
the maximum F1 for a particular category of similarity
graphs,

2. Δ (%) stands for the average difference (expressed as a
percentage) between the highest and the second highest
F1 across all similarity graphs of the same category, and

3. #Top2 denotes the number of times an algorithm scores
the second highest F1 for a particular category of simi-
larity graphs.

Note that in the case of ties, we increment #Top1 and
#Top2 for all involved algorithms. Note also that these three
effectiveness measures also allow for answering QE(2) in
more detail.

The results for these measures are reported in Table 3. For
schema-based syntacticweights, there is a strong competition
between KRC and UMC for the highest effectiveness. Both
algorithms achieve the maximum F1 for the same number
of similarity graphs in the case of balanced data sets. Yet,
UMC exhibits consistently higher performance, because it
ranks second whenever it is not the top performer, unlike
KRC, which comes second in 1/3 of these cases. Additionally,
UMC achieves significantly higherΔ than KRC. For one-sided
data sets, KRC takes a minor lead over UMC with respect to
#Top1. Even though its Δ is slightly lower, it comes second
twice more often than UMC. For scarce data sets, KRC takes
a clear lead over UMC, outperforming it with respect to both
#Top1 and #Top2 to a large extent. UMC excels only with
respect to Δ.

Among the remaining algorithms, CNC, RSR, BMC and
EXC seem suitable only for scarce data sets. RSR actually
achieves almost the highestΔ, while EXC achieves the second
highest #Top1 and #Top2, outperforming UMC. Regarding
BAH, we observe that it is more suitable for balanced data
sets, where it outperforms all algorithms for 15% of the sim-
ilarity graphs, comes second for an equal number of inputs
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Table 3 The number of times each algorithm achieves the highest and
second highest F1 for a particular similarity graph, #Top1 and #Top2,
respectively, as well as the average difference Δ (%) with the sec-
ond highest F1 across all types of edge weights for balanced (BLC),
one-sided (OSD) and scarce (SCR) data sets OVL stands for the over-
all sums or averages across all similarity graphs per category. Note

that there are ties for both #Top1 and #Top2: 47 and 72, resp., over
schema-based syntacticweights, 45 and 30, resp., over schema-agnostic
syntactic weights, 9 and 13, resp., over schema-based semantic weights,
as well as 1 and 2, resp., over schema-agnostic syntactic weights. Note
also that– indicates that a method was never among the top performing
ones for a particular category

Syntactic weights Semantic weights

Schema-based Schema-agnostic Schema-based Schema-agnostic

BLC OSD SCR OVL BLC OSD SCR OVL BLC OSD SCR OVL BLC OSD SCR OVL

CNC #Top1 – – 21 21 – – 48 48 – – 3 3 – – 2 2

Δ (%) – – 0.52 0.52 – – 7.57 7.57 – – 0.27 0.26 – – 2.65 2.65

#Top2 – – 13 13 – – 13 13 – 1 4 5 – – 1 1

RSR #Top1 – – 4 4 – – 1 1 – – – – – – – –

Δ (%) – – 1.91 1.91 – – 0.46 0.46 – – – – – – – –

#Top2 – – 13 13 – – 6 6 – – 1 1 – – 1 1

RCA #Top1 – – – – – – – – – – – – – – – –

Δ (%) – – – – – – – – – – – – – – – –

#Top2 – – – – – – 1 1 – – – – 2 – – 2

BAH #Top1 8 – 1 9 41 – 3 44 4 – 3 7 4 – 1 5

Δ (%) 3.67 – 1.93 3.47 5.53 – 0.65 5.20 9.81 – 0.85 5.97 9.48 – 0.52 7.69

#Top2 8 – 3 11 6 6 5 17 – – 2 2 – – – –

BMC #Top1 – – 12 12 – – 10 10 – – 4 4 – – – –

Δ (%) – – 0.54 0.54 – – 1.82 1.82 – – 0.16 0.16 – – – –

#Top2 5 2 32 39 15 6 19 40 – – 5 5 – – 1 1

EXC #Top1 – 5 41 46 – 13 80 93 – 3 19 22 – – 7 7

Δ (%) – 0.78 0.81 0.80 – 0.40 2.10 1.87 – 0.86 1.75 2.39 – – 2.39 2.39

#Top2 – 10 36 46 – 20 80 100 – 4 19 23 – 4 5 9

KRC #Top1 23 17 48 88 18 52 84 154 15 9 25 49 3 8 9 20

Δ (%) 1.47 1.89 0.46 1.00 4.61 2.61 4.12 3.66 1.85 1.38 2.96 2.33 3.69 5.48 4.52 4.78

#Top2 11 15 61 87 39 36 89 164 1 3 18 22 1 – 6 7

UMC #Top1 23 15 36 74 58 43 35 136 1 2 4 7 3 – 2 5

Δ (%) 4.94 2.14 1.15 2.53 4.88 3.39 2.28 3.74 0.37 3.08 0.45 1.19 0.65 – 0.62 0.64

#Top2 29 7 34 70 56 34 40 130 19 5 14 38 7 6 6 19

Bold value indicates the best performance per column

and achieves the second highest Δ. This is in contrast to the
poor average performance reported in Fig. 4, but is explained
by its stochastic nature, which gives rise to an unstable per-
formance, as indicated by the higher range than all other
algorithms for all effectiveness measures.

In the case of schema-agnostic syntactic edge weights,
UMC outperforms KRC in the case of balanced data sets with
respect to all measures. KRC is also outperformed by BAH,
which is the top performer for 36% of the graphs of this
type, while exhibiting the highest Δ among all algorithms.
For one-sided data sets, KRC excels with respect to #Top1
and #Top2, but UMC achieves significantly higher Δ, while
EXC constitutes the third best algorithm overall, as for the
schema-based syntactic edge weights. In the case of scarce
data sets, the two competing algorithms are KRC and EXC,
with the former taking aminor lead. It exhibits slightly higher

#Top1 and #Top2, while its Δ is almost double than that of
EXC. Surprisingly, CNC ranks third in terms of #Top1 while
achieving the highest Δ by far, among all algorithms. As a
result, UMC is left at the fourth place, followed by BMC.

For the semantic edge weights, we observe the following
patterns: KRC consistently exhibits the highest #Top1 across
all dataset and weight types. There is a single exception,
namely the balanced graphs with schema-agnostic weights,
where BAH is the top performer. Similarly, UMC exhibits
the highest #Top2 in all cases, but the scarce schema-based
weights, where it ranks third, behind EXC and KRC. For bal-
anced datasets, BAH achieves by far the highestΔ, regardless
of the schema settings. The same applies toKRC for the scarce
ones, while for the one-sided ones, the bestΔ depends on the
origin of weights: the schema-based settings favor UMC and
the schema-agnostic ones KRC.
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Fig. 7 The distribution of run-time (in ms) per algorithm and type
of edge weights across the five smallest data sets. Every row cor-
responds to a different data set. Note the log-scale of the vertical

axes. SBSY: schema-based syntactic weights, SASY: schema-agnostic
syntactic weights, SBSE: schema-based semantic weights, SASE:
schema-agnostic semantic weights

Overall, we can conclude that on average, the dominant
algorithm for the balanced datasets is UMC, with its overall
#Top1 amounting to 85 out of 196 graphs, leaving KRC in the
second place, with an overall #Top1 equal to 59. Their rela-
tive performance is reversed only for schema-based semantic
weights. BAH performs exceptionally well regardless of the
weight type, with an overall #Top1 equal to 57. No other
algorithm excels in this type of datasets, except for BMC and
RCA, which rank second in very few cases. For the one-side
datasets, which comprise 153 graphs in total, KRC takes the
lead, leaving UMC and EXC in the second and third places,
respectively. Their overall #Top1 amounts to 86, 60 and

21, respectively. Among the rest of the algorithms, BMC,
BAH and CNC rank second in very few cases. For the scarce
datasets (420 graphs in total), KRC retains its clear lead (over-
all #Top1 = 166), especially in the case of semantic weights.
EXC follows in close distance, outperforming UMC to a large
extent: the overall #Top1 of the former is almost double
that of the latter (147 vs. 77). High performance over these
datasets is also achieved by CNC and BMC and (less fre-
quently) by RSR and BAH. All algorithms rank second at
least once for this type of graphs.

In a nutshell, UMC and KRC are among the most effective
algorithms regardless of the type of edge weights and the type
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Fig. 8 The distribution of run-time (in ms) per algorithm and type
of edge weights across the five largest data sets. Every row cor-
responds to a different data set. Note the log-scale of the vertical

axes. SBSY: schema-based syntactic weights, SASY: schema-agnostic
syntactic weights, SBSE: schema-based semantic weights, SASE:
schema-agnostic semantic weights

of similarity graphs. BAH is also quite effective for balanced
and (more rarely) for one-sided graphs and EXC for the one-
sided and scarce ones, while CNC and BMC yield competitive
effectiveness over scarce graphs.

Note that we looked for similar patterns with respect to
additional characteristics of the data sets, such as the distribu-
tion of positive and negative weights (i.e., between matching
and non-matching records, respectively) and the domain (e-
commerce for DAB , DAG and DW A, bibliographic data for
DDA and DDS as well as movies for DIM -DW A and DI D).
Yet, no clear patterns emerged in these cases.

6.2 Time efficiency

The (relative) run-timeof the evaluated algorithms is a crucial
aspect for the task of ER, due to the very large similar-
ity graphs, which comprise thousands of records/nodes and
(hundreds of) millions of edges/record pairs, as reported in
Table 2. Below,we study this aspect alongwith the scalability
of the considered algorithms over the 769 different similarity
graphs. More specifically, we examine the following ques-
tions:

QT(1): Which algorithm is the fastest one?
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QT(2): Which factors affect the run-time of the algorithms?
QT(3): How scalable are the algorithms to large input sizes?

Regarding QT(1), Figs. 7 and 8 show the average run-
times over 10 executions of the evaluated algorithms per data
set and type of edge weights. To accommodate the much
larger scale of the slowest algorithms, all diagrams use log-
arithmic scale in their vertical axis.

We observe that all algorithms are quite fast, as they are all
able to process even the largest similarity graphs (i.e., those
of DDS and DI D) within few seconds—the vast majority of
runs is below 104 milliseconds. Note also that the maximum
scale in the last two rows of Fig. 8, which stem from the two
largest datasets, corresponds to 106 msec ≈ 17min. CNC is
the fastest one, on average, in practically all data sets, due to
the simplicity of its approach. It is followed in close distance
by BMC and EXC, with the former consistently outperforming
the latter, due to the additional reciprocity check of EXC.
On the other extreme lies BAH, which constitutes by far the
slowest method, yielding in many cases two or even three
orders of magnitude longer run-times. The reason is the large
number of search stepswe allow per data set (10,000). For the
largest data sets, its maximum run-time actually equals the
run-time limit of 2min. Regarding the remaining algorithms,
KRC is usually the second slowest one, on average, while RCA
exhibits significantly lower run-times. UMC is usually faster
than both of these algorithms, but outperforms RSR only in
the case of schema-based syntactic weights. Among themost
effective algorithms, EXC is significantly faster thanUMC and
KRC.

These patterns are verified by Fig. 9, which summarizes
the ranking positions per algorithm with respect to run-time
across the four types of similarity scores. We observe that
CNC consistently ranks first in themajority of graphs, regard-
less of the type of edge weight. As a result, it achieves the
lowest mean ranking position, as denoted by the last column.

There is a strong competition between BMC and EXC
for the second fastest approach. For schema-based syntac-
tic weights, EXC ranks first more often than BMC, despite
its additional, time-consuming reciprocity check, due to its
higher similarity threshold.As a result, itsmean ranking posi-

tion is slightly higher than BMC. This is reversed in all other
types of similarity scores, even in the case of the semantic
ones, where EXC still ranks first more often that BMC. The
reason is that it also appears more often in the lowest ranking
positions, unlike BMC, which is more robust, rarely dropping
below the fourth place.

On the other extreme lie BAH and KRC. The former ranks
last in practically all cases, while the latter dominates the
sixth and seventh ranking positions, regardless of the weight
type. None of them ranks first in any case.

The relative time efficiency of the remaining algorithms
depends largely on the type of similarity scores.UMC is quite
fast for schema-based syntactic weights, followed by RSR,
while RCA is on par with the second slowest approach, KRC.
For the schema-agnostic syntacticweights,RSR takes aminor
lead over UMC, while RCA remains slower, but increases
its distance from KRC. These patterns are reinforced in the
case of schema-based semantic weights. For their schema-
agnostic counterparts, RSR remains the fastest among the
three algorithms, with RCA outperforming UMC.

Overall, the fastest algorithm typically is CNC, followed
in close distance by BMC and EXC.

Regarding QT(2), there are two main factors that affect
the reported run-times: (i) the time complexity of the algo-
rithms, and (ii) the similarity threshold used for pruning the
search space. Regarding the first factor, we observe that the
run-times in Figs. 7 and 8 generally verify the time com-
plexities described in Sect. 3. With O(m), CNC and BMC
are the fastest ones, followed by EXC with O(n m), RSR
with O(n m + n log n), RCA with O(|V1| |V2|), UMC with
O(m log m) and KRCwith O(n+m log m). BAH’s run-time
is determined by the number of search steps and the run-time
limit, as we discussed in Sect. 5.

Equally important is the effect of the similarity thresholds:
the higher their optimal value (i.e., the one maximizing F1),
the fewer the edges retained in the similarity graph, reduc-
ing the run-time. The optimal similarity threshold depends
mostly on the type of the edge weights and the similar-
ity graph at hand, as we explain in the threshold analysis
in Sect. 6.4. This means that the relative time efficiency of
algorithms with the same theoretical complexity should be

Fig. 9 Heatmaps summarizing the ranking positions per algorithm for each type of edge weights. Lower is better, i.e., the 1st ranking position
corresponds to the fastest algorithm
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Fig. 10 Scalability analysis of all algorithms over all similarity
graphs with (i) schema-based syntactic, (ii) schema-agnostic syntactic,
(iii) schema-based semantic and (iv) schema-agnostic semantic edge

weights. The horizontal axis corresponds to the number of edges in the
similarity graphs and the vertical one to the run-time in milliseconds
(maximum value = 16.7 min)

attributed to their different similarity threshold. For exam-
ple, the average optimal thresholds for CNC and BMC over all
schema-based syntactic weights are 0.755 and 0.669, respec-

tively, while over schema-agnostic syntactic weights they
are 0.409 and 0.327, respectively. These large differences
account for the significantly lower run-time of CNC in almost
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all data sets for both cases. The larger the difference in the
similarity threshold, the larger is the difference in the run-
times.

Note that the similarity threshold also accounts for the
relative run-times between the same algorithm over differ-
ent types of edge weights. For example, EXC is 5.5 times
slower over the schema-agnostic syntactic weights of DI D

than their schema-based counterparts (4 vs. 22 s, on average),
even though the former involve just 25% more edges than
the latter, as reported in Table 2. This significant difference
should be attributed to the large deviation in the mean opti-
mal thresholds: 0.153 for the former weights and 0.535 for
the latter ones. The same applies toUMC, whose average run-
time increases by 6 times when comparing the schema-based
with the schema-agnostic syntactic weights (4 vs. 25 s, on
average), because its average optimal threshold drops from
0.481 to 0.110.

Overall, the (relative) time efficiency of the algorithms is
determined by their time complexity and the similarity thresh-
old they use in every input graph.

To answer QT(3), we examine two aspects of scalability:

1. Edge scalability, where the size of the input graphs (i.e.,
the number of their edges) increases by orders of mag-
nitude, while the portion of matching edges remains
practically stable, and

2. Node scalability, where the order of input graphs (i.e., the
number of their nodes) increases by orders of magnitude,
while the portion of matching nodes remains practically
stable.

We delve into each aspect of scalability below.

6.2.1 Edge scalability

To examine the edge scalability, we use the similarity graphs
of Table 2, which stem from the datasets in Table 1. Their size
increases by four orders ofmagnitude, from 104 to 108, while
the number of matching edges remains practically stable to
103 acrossmost datasets. Theonly exceptions are the smallest
dataset, DRE, where the matching edges drop to 103, and the
largest one, DID, where they raise to 104.

Figure 10 presents the edge scalability analysis of every
algorithm over these similarity graphs for each type of edge
weights. In each diagram, every point corresponds to the run-
time of a different similarity graph. We observe that for all
algorithms, the run-time increases linearlywith the size of the
similarity graphs: as the number of edges increases by four
orders ofmagnitude, the run-times increase to a similar extent
in most cases. For all algorithms, though, there are outlier
points that deviate from the “central” curve. The larger the
number of outliers is, the less robust is the time efficiency of
the corresponding algorithm, due to its sensitivity to the size

of the graph and the similarity threshold. In this respect, the
least robust algorithms are RSR, EXC and UMC over schema-
agnostic syntactic weights. These patterns seem to apply to
the semantic weights, too, despite the limited number of the
similarity graphs, especially in the case of schema-agnostic
settings.

Note that there are two exceptions to these patterns,
namely RCA and BAH. The diagrams of the former algorithm
seem to involve a much lower number of points, as its time
complexity depends exclusively on the number of records
in the input data sets, i.e., O(|V1| |V2|). As a result, differ-
ent similarity graphs from the same data set yield similar
run-times that coincide in the diagrams of Fig. 10. Regarding
BAH, it exhibits a step-resembling scalability graph, because
its processing terminates after a pre-defined timeout or a fixed
number of iterations (whichever comes first), independently
of the size of the similarity graph.

On the whole, these experiments suggest that with the
exception of BAH, all algorithms typically scale sublinearly
as the size of similarity graphs increases by orders of mag-
nitude.

6.2.2 Node scalability

The goal of this analysis is to examine how the run-time of all
algorithms evolves as the order of similarity graphs increases
from a few thousand to a few million records. To this end,
we employ a large Clean-Clean ER dataset with a com-
plete ground truth, i.e., where the relations between all pairs
of records are known: the DBpedia dataset, which matches
records from two versions of English DBpedia Infoboxes,11

namely DBpedia 3.0rc, which dates back to October 2007
and contains 1.2million records, andDBpedia 3.4,whichwas
published in October 2009 and contains 2.2 million records.
This dataset has been extensively used in the prior work [45,
48, 49].

Applying all similarity functions of Fig. 2 to the DBpe-
dia dataset is quite challenging, given the time and space
requirements for computing and storing the weight for the
2.6 trillion edges of the complete similarity graph. For this
reason, we first converted every record into a pre-trained,
schema-agnostic fastText embedding vector (we did not use
S-T5, because it is an order of magnitude slower). Then, we
indexed all record vectors of the largest constituent dataset,
i.e., DBpedia 3.4, using FAISS, one of the fastest algorithms
for approximate nearest neighbor search [2]. Next, every
record of the smallest dataset, i.e., DBpedia 3.0rc, was used
as a query to FAISS, retrieving the 10 record vectors from
DBpedia 3.4 that have the highest cosine similarity with the
query vector. This was repeated 10 times with an increas-
ing number of queries in order to create 10 subsets with

11 https://www.dbpedia.org.
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Table 4 The similarity graphs
used in the node scalability
analysis, with |V1| (resp. |V2|)
denoting the number of entities
from DBPedia 3.0rc (resp.
DBpedia 3.4)

|V1| |V2| Total |E | Matching
nodes edges

S1 58,194 32,903 91,097 77,273 4071

S2 178,468 97,032 275,500 310,581 16,545

S3 315,437 176,300 491,737 702,075 37,059

S4 451,794 265,351 717,145 1,244,226 66,376

S5 581,217 362,282 943,499 1,941,693 103,418

S6 706,526 463,321 1,169,847 2,789,577 149,200

S7 828,989 569,933 1,398,922 3,779,819 203,076

S8 949,013 679,773 1,628,786 4,942,050 265,784

S9 1,068,543 792,680 1,861,223 6,257,856 335,710

S10 1,190,733 1,401,747 2,592,480 11,907,330 640,076

increasing number of nodes, but the sameportion ofmatching
records. The technical characteristics of the resulting subsets
appear in Table 4.

We observe that in every subset, ∼5.3% of all edges
connect matching records, while the total number of nodes
increases by ∼220,000 from subset to subset. The only
exception is the final subset, S10, which contains ∼730,000
more records/nodes than S9, because its new query records
from DBpedia 3.0rc share very few nearest neighbors from
DBpedia 3.4 with the rest of the queries. The overlap of near-
est neighbors between the existing and the new queries in
every subset also accounts for the increase in the number of
edges per subset, which consistently diminishes: from 4×
between S2 and S1 to 1.9× between S10 and S9.

Given that it is quite challenging to optimize the sim-
ilarity threshold of every algorithm on every subset, we
performed the node scalability experiments as follows: First,
we fine-tuned every algorithm on the smallest subset, S1. The
similarity threshold that maximizes F1 is 0.85 for RCA and
KRC, 0.90 for EXC and UMC and 0.95 for CNC, RSR, BAH
and BMC. Using these thresholds, we applied each algorithm
on all subsets 10 times and took the average run-time. We
also measured effectiveness in terms of precision, recall and
F-measure. The results are reported in Fig. 11. Note the log-
arithmic scale in the vertical axis of the leftmost diagram.

Regarding run-time, we observe that RCA is consistently
the slowest algorithm by far, requiring ∼3 and ∼21h for

S1 and S9, respectively (we terminated its execution on S10,
because it took more than 24h). This poor time efficiency
should be expected, as it is the only algorithm, whose time
complexity is determined by the Cartesian product of the
number of nodes in each partition, as explained above, in
response toQT(2). Nevertheless, RCA scales sublinearlywith
respect to both the size and the order of the input graphs: the
number of nodes (resp. edges) increases by 20 (resp. 81)
times from S1 and S9, but RCA’s run-time raises by less than
7 times.

The second slowest algorithm over the largest subsets is
RSR. The reason is that in graphs of large order, its time
complexity is dominated by the sorting of nodes in decreasing
weight (see line 7 in Algorithm 2). Note that the cost of this
operation is negligible for the graphs in Table 2, where the
number of edges ismuch higher than the number of nodes. Its
run-time increases in proportion to (|V1| + |V2|)|E |, which
is in line with its theoretical time complexity (see Sect. 3).

BAH exhibits the same run-time across all subsets, which
is equal to time limit of 2min. Even though this time is
much higher than all other algorithms across all subsets, BAH
exhibits very low effectiveness, as demonstrated by its pre-
cision, which consistently remains lower than 0.12, and its
poor recall, which fluctuates around 0.01. Inevitably, its F1
is close to zero in all cases.

The next slowest algorithm is KRC, whose time complex-
ity is dominated by the iteration over all nodes and the sorting

Fig. 11 Node scalability of all algorithms over the subsets in Table 4 with respect to run-time, precision, recall and F-Measure
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of all edges, as explained in Sect. 3. This means that its exe-
cution time is determined both by the size and the order of
the input similarity graphs, |V1|+ |V2| and |E |, respectively.
Given that KRC’s run-time increases by 60 times from S1
to S10, it scales superlinearly with respect to |V1| + |V2|,
which increases by 28 times, and sublinearly with respect
to |E |, which increases by 154 times. These patterns should
be attributed to the similarity threshold used by KRC, which
prunes most of the edges, but does not affect the processed
nodes (i.e., KRC goes through all of them).

The rest of the algorithms exhibit sublinear node scala-
bility, processing even the largest subset within 12s. More
specifically, the run-time of CNC, BMC, EXC and UMC raise
by just 5.5, 4, 11 and 3 times, respectively, from S1 to S10.
The fastest algorithm is consistently BMC, followed closely
by CNC. Both use a higher similarity threshold than EXC and
UMC (0.95 vs. 0.90), while having a linear time complexity
with respect to |E | (and |V1| + |V2| for CNC). EXC and UMC
exhibit practically identical run-times in all cases, despite
their slightly different time complexities, because they pro-
cess very few edges, after pruning the similarity graph with
their high threshold.

Regarding effectiveness, we observe that precision raises
significantly as the size and order of the input similarity
graphs increases. Comparing S1 with S10, precision actually
increases by 2× (CNC) to 5× (KRC), except for BAH, where
it raises by 2/3. As expected, the highest precision corre-
sponds to CNC, with EXC and BMC ranking second and third
respectively—except for the three largest subsets, where KRC
ranks third. The distance between CNC and EXC is fairly high
for the smallest datasets, but decreases substantially (to just
5%) over the smallest one.

In terms of recall, most algorithms exhibit quite stable per-
formance. The difference between the highest and the lowest
recall across all subsets is less than 13% for all algorithms
(just 2% for UMC). The only exceptions are CNC and RCA,
whose recall gradually decreases from S1 to S10 by 37% and
20%, respectively. The highest recall is consistently achieved
by KRC, with UMC in the second place; both remain consis-
tently above 0.9 across all subsets.

The combined patterns of recall and precision suggest that
all algorithms detect a relatively stable and high portion of
the matching edges across all subsets, while the portion of
false positives diminishes as the size and order of the sim-
ilarity graphs increase. In other words, the accuracy of all
algorithms increases as more connections between the input
records are taken into account. As a result, the F1 of all algo-
rithms increases substantially, when comparing the smallest
with the largest subsets. For CNC, the increase is just 7.5%,
but raises to 57.8%and 74.4% for RSR and BMC, respectively,
and to ∼2.5× for the rest of the algorithms. The highest F1
across all algorithms is achieved byCNC over the three small-

est subsets, EXC over the next four subsets (S4–S7), and KRC
of the three largest ones.

Overall, only RSR, RCA and BAH exhibit poor time effi-
ciency and/or poor effectiveness in the node scalability
settings. The rest of the algorithms scale quite well, with EXC
and UMC offering the best balance between F1 and run-time
in most cases.

6.3 Trade-off between F1 and run-time

Wenowexamine the best trade-off that is achievedon average
by all combinations of algorithms and types of edge weights
across all data sets. To this end, Fig. 12 contains one dia-
gramper data set, excluding the combinations includingBAH,
as their average performance consistently underperforms
with respect to F1 and/or run-time. Note that every type
corresponds to a different shape: circle stands for the schema-
agnostic syntactic weights, triangle for the schema-based
syntactic ones, rhombus for the schema-agnostic semantic
ones and rectangle for the schema-based semantic ones.

Startingwith DRE , we observe that the schema-based syn-
tactic similarity graphs dominate the other types of input,
as they exhibit very high F1 in combination with the low-
est run-times. The high effectiveness should be attributed
to the relatively clean values of names and phones for the
duplicate records and the high time efficiency to the lack of
attribute values for most non-matching records. As a result,
the average size of these graphs is significantly lower than the
other types of graphs, especially the schema-agnostic ones, as
shown in Table 2. Among the schema-based syntactic inputs,
the differences in F1 are lower than 4%, with UMC achiev-
ing the best trade-off between the two measures (average F1
= 0.781 for an average run-time of 4 ms). This combination
practically dominates all others. Only CNC is significantly
faster (run-time of 3 ms), but its F1 (0.756) is significantly
lower.

In DAB, we observe that the best performance clearly
corresponds to the combination of UMC with schema-
agnostic syntactic weights, which achieves the highest
macro-averaged F1 (0.738). The next best combinations
involve KRC or UMC with other types of edge weights, but
reduce the average F1 by 10% for a similar run-time. The
high performance of UMC (and KRC) should be attributed to
the balanced nature of DAB, as there is a 1–1 match between
the records of its constituent datasets. The high performance
of the schema-agnostic syntactic similarities stems from the
long textual values of DAB, which abound in terminologies
(e.g., product names), thus hampering the performance of the
semantic similarities. Note that BAH exhibits high effective-
ness, too, but its run-time is ∼15 times higher than UMC.

In DAG, the best F1 is achieved by the schema-based
weights, as the title suffices for identifying the matching
products. The semantic weights achieve significantly higher
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Fig. 12 Scatter plots of the average F1 (on the horizontal axis) and the
average run-time (on the vertical axis) per algorithm and type of edge
weights across all data sets. Every algorithm corresponds to a different
color, as explained in the legend, and every type of input to a different
shape: circle stands for the schema-agnostic syntactic weights, triangle

for the schema-based syntactic ones, rhombus for the schema-agnostic
semantic ones and rectangle for the schema-based semantic ones. Note
the logarithmic scale in the vertical axis of all diagrams and that DI D
reports seconds instead of milliseconds, unlike all other cases (color
figure online)
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F1 than the syntactic ones, at the cost of much higher run-
time. This applies to almost all algorithms, except for CNC
and RSR, where the two weight types exhibit practically
equivalent F1. The reason is that the semantic similarity
functions assign high or just non-zero scores to most pairs
of records, as suggested by the large average size of the
resulting graphs in Table 2. Hence, they suffer from poor dis-
criminativeness, requiring low similarity thresholds, i.e., they
process many more edges, in order to achieve high effective-
ness. In contrast, the syntactic similarity functions sacrifice
somematching records, at the cost of lower effectiveness, but
excel in time efficiency, due to the lower graph sizes. Despite
being an one-sided dataset, the best F1 overall is achieved by
KRC and UMC in combination with schema-based seman-
tic weights. Yet, UMC with schema-based syntactic weights
has lower F1 by 6.1%, while reducing the run-time by 22×
and 49×, respectively. BMC and EXC further reduce the run-
time almost by 50%, though at the cost of another significant
decrease in F1 by <10%.

DDA is dominated by the schema-agnostic inputs, due to
the noise in the form of misplaced attribute values (e.g., the
author of a publication is added in its title). This type of
error cannot be addressed by schema-based weights, thus
reducing their effectiveness significantly. In contrast, the
schema-agnostic weights tackle this noise inherently, as they
take into account the entire textual information per record.
Given that DDA is a balanced dataset, it is no surprise that
UMC and KRC exhibit the highest average F1 (0.98), though
at the cost of high run-time, due to the low similarity thresh-
olds they employ, which result in large similarity graphs.
Both algorithms are combined with schema-agnostic syntac-
ticweights.UMC, though, achieves equally high performance
with schema-agnostic semantic weights, too. Despite the
higher threshold, though, these weights double the run-time,
because they yield much larger similarity graphs. As shown
in Table 2, they actually connect every pair of records with
positiveweights, unlike their syntactic counterparts. The best
trade-off is achieved by BMC, which significantly reduces the
run-time by at least 2/3 (due to its higher similarity threshold)
for a negligible reduction to F1 (1%). BMC also dominates
EXC, which is slightly slower for slightly lower F1.

DIM constitutes a highly noisy data set, with many miss-
ing values in all attributes. As a result, all schema-based
weights exhibit low effectiveness. Yet, the schema-agnostic
ones consider all attribute values per record, with the seman-
tic weights leveraging the contextual knowledge offered by
fastText and SentenceBERT pre-trained embeddings. As a
result, the schema-agnostic semantic weights achieve the
highest F1, outperforming their syntactic counterparts by at
least 17% across all algorithms. KRC is actually the top per-
forming one in terms of effectiveness (F1=0.74), but UMC
and EXC offer a better trade-off: F1 drops to∼0.72, while the
run-time is reduced by ∼5 times. The high time efficiency of

the latter algorithms stems from the higher similarity thresh-
old they use. For this reason, UMC is also the only algorithm
that is faster with the semantic than the syntactic schema-
agnostic weights.

The data sets DIT and DMT share similar levels and forms
of noise with DIM. However, the performance of schema-
agnosticweights, especially the semantic ones, ismuch lower
in both cases, due to the TVDB records that are included in
both data sets, but not in DIM. As a result, in DIT the schema-
based syntactic weights dominate all others, with the F1 of
all algorithms (except RCA) confined in 0.51 and 0.52. The
best trade-off is thus achieved by the fastest ones, namely
CNC (F1 = 0.51, run-time of 52 ms) and EXC (F1 = 0.52,
run-time of 58 ms). Note that the very low run-time should
be attributed to the very small graph sizes (see Table 2) and
the very high similarity thresholds.

Similarly, in DMT, the schema-based syntactic weights
achieve relatively high F1 (∼0.6) for very low run-time
(	100 msec), due to very small input graphs and the
relatively high similarity thresholds. The schema-agnostic
syntactic weights offer slightly higher F1 (∼0.62) for sig-
nificantly higher run-time (∼100ms), due to the significantly
larger graphs and the smaller similarity thresholds. Among
their combinations, the optimal choice isEXC,which achieves
the highest macro-average F1 (F1 = 0.623) for a reasonable
run-time (112ms).KRC exhibits the same F1, but its run-time
is almost 6 times higher.

DW A constitutes a highly noisy data set, which restricts
the F1 of all combinations below 0.5. The two types of syn-
tactic weights are competing for the best performance with
the schema-agnostic semantic types. Being a scarce dataset,
the top performing algorithms are BMC, EXC, KRC and UMC.
For these algorithms, the schema-based syntactic weights
trade slightly lower effectiveness than both types of schema-
agnostic weights for significantly lower run-times. For each
type of weights, the best balance is offered by EXC: with the
schema-based syntactic weights it achieves F1 = 0.474 and
run-time of 182 ms, dominating the schema-agnostic seman-
tic ones (almost the same F1, for double run-time), while the
schema-agnostic syntactic ones achieve F1 = 0.492with run-
time of 443ms. The final choice depends on the requirements
of the application at hand.

DDS is another bibliographic data set with noise in the
form of misplaced values, similar to DDA. As a result, the
best performance is achieved by schema-agnostic syntactic
weights, which consistently outperform the schema-based
ones. In most cases, the schema-agnostic semantic weights
outperform their schema-based counterparts, too, but lag
behind the corresponding syntacticweights, due to the author
names and the terminology that abounds in the publication
titles. The combination of BMC with schema-agnostic syn-
tactic weights dominates all other combinations, as its F1 is
1.5% lower than the maximum one (0.894 vs. 0.909 for KRC
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Fig. 13 The distribution of similarity thresholds per type of weights. White circles indicate the mean threshold in each case

with the same weights), while achieving the second lowest
run-time (627 vs. 611 msec for CNC with the same weights).
This is because the schema-agnostic syntactic graphs are by
far the smallest ones for this data set (see Table 2), while
BMC uses the highest average similarity threshold among all
top-performing algorithms.

Finally, DID constitutes a rather noisy data set with one
of the highest portion of missing values. F1 remains below
0.65 in all cases, with the top performance corresponding to
KRC and UMC, because of the relatively balanced number
of matching records in V1 and V2. Both algorithms perform
better in combination with schema-based semantic weights,
because the contextual information they provide is crucial
for going beyond the mere syntactic similarity, allowing for
distinguishing between the matching and the non-matching
pairs of records. Among the two algorithms, KRC clearly out-
performsUMC in all respects: its F1 is higher by 2.4%, while
being faster by 3.6 times.

Overall, the best combination of bipartite graph match-
ing algorithms and type of edge weights depends on the data
sets at hand and the type of noise it incorporates. On aver-
age, though, UMC in combination with syntactic similarities
(mostly schema-agnostic ones) is consistently close to the
best trade-off between F1 and run-time, if not the best one.

6.4 Similarity threshold analysis

As explained above, in the response to QT(2), the similar-
ity threshold constitutes the most important configuration
parameter for the effectiveness and time efficiency of all
bipartite graph matching algorithms. It is crucial, therefore,
to understand how easily this parameter can be fine-tuned
a-priori, examining the main factors that determine its opti-
mal value. To this end, Fig. 13 presents the distribution of
similarity threshold per algorithm and type of edge weights.

We observe different patterns for each type of edge
weights.More specifically, the schema-based syntactic inputs
yield relatively high thresholds: the average values fluctuate
between 0.61 and 0.67 for all algorithms—except for CNC
and RSR, whosemean thresholds amount to 0.76. Themedian
thresholds are slightly higher, between 0.65 and 0.8. Yet, the
variance is also high, as the standard deviation is consistently
higher than 0.16. The reason is that the similarity thresh-

olds of all algorithms cover the entire space in [0.05, 0.95],
as suggested by the minimum and maximum values. For
most algorithms, though, the first and third quartiles signifi-
cantly restrict the optimal values to the range 0.4/0.5−0.8 or
0.65−0.90.

Regarding the schema-agnostic syntactic weights, we
observe that the variance is higher than their schema-based
counterparts, even though the average and median values are
much lower, even by 50%. The reason is that the similarity
thresholds still cover the entire space in [0.05, 0.95], with
the interquartile range increasing from 0.25 or 0.3 to 0.4
for practically all algorithms. This means that this type of
weights yields a larger diversity of graphs, which hinders the
configuration of the similarity thresholds.

Among the semantic inputs, the schema-based weights
share similar patterns with their syntactic counterparts. The
average thresholds are quite high for all algorithms, fluc-
tuating between 0.65 and 0.77, while the median ones are
consistently higher, ranging from 0.70 to 87. The variance is
slightly higher than the respective syntactic weights, while
the interquartile range is significantly higher, fluctuating
between 0.4 and 0.5; the reason is that the first quartile is
lower, while the third one is higher. These patterns suggest
that fine-tuning any algorithm on the schema-based semantic
weights is more challenging than the syntactic weights (of
any type).

Finally, the schema-agnostic semantic graphs exhibit pat-
terns that bear little resemblance to those arising from their
syntactic counterparts. The average thresholds are much
higher for all algorithms, but lower than the schema-based
weights of any type, fluctuating between 0.57 and 0.70. The
same applies to the first and third quartiles, which fluctu-
ate in [0.30, 0.51] and [0.80, 0.85], respectively. The only
common characteristics with the respective syntactic weights
are the interquartile range, which ranges from 0.35 to 0.45
for most algorithms, and the standard deviation, which is
around ∼0.22 in both cases. Overall, the configuration of
these weights is easier than the schema-based semantic ones,
but harder than the schema-based syntactic ones.

Note that the relative order of the algorithms with respect
to the average thresholds remains the same in both types of
syntactic weights: CNC and RSR exhibit the highest thresh-
olds, with KRC lying at the other extreme, followed in close
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Fig. 14 Pearson correlation between the similarity thresholds of every algorithm as well as between the similarity thresholds and the descriptive
statistics of the edge weights distribution

Fig. 15 The deviation in F1 between the fine-tuned threshold and the automatically configured one, i.e., Mean + SD, across all algorithms and
types of edge weights

distance by EXC and UMC. In the case of semantic inputs,
there are no clear patterns, except for RSR and BAH, which
consistently yield the highest and the lowest average thresh-
old, respectively. The difference between the rest of the
algorithms is much lower than 0.05 in most cases.

On the whole, these experiments suggest that the optimal
similarity threshold per algorithmdependsmostly on the type

of edge weights as well as on the distribution of edge weights
in the given similarity graph.

6.4.1 Automatic threshold configuration

The goal of this section is to examine how easy it is to fine-
tune the threshold of these algorithms in practice. To this
end, Fig. 14 presents the Pearson correlations for each pair of
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algorithms across the four types of edge weights.We observe
that this correlation is highly positive, taking values well
above 0.8 in the vast majority of cases, especially for the
syntactic weights. There are few exceptions in the case of
semantic weights: BAH’s correlations fluctuate between 0.7
and 0.8, whileCNC typically requiresmuch higher thresholds
than the rest of the algorithms. Consequently, its Pearson
correlation remains positive, but significantly lower, in the
range [0.2, 0.7].

These patterns mean that knowing the optimal threshold
for a particular algorithm over a specific data set provides
strong indications for fine-tuning the rest of the algorithms
over the same data set. In other words, the optimal threshold
of each algorithm typically depends on the similarity graph
at hand and the distribution of its edge weights.

To verify this statement, Fig. 14 also presents the Pearson
correlation between the optimal threshold per algorithm and
the descriptive statistics of the edge weight distribution in
the similarity graphs: the main quartiles, i.e., the first, second
(i.e., median) and third one, the mean edge weight as well
as the mean plus the standard deviation (Mean + SD). We
observe highly positive correlations between these statistics
and the similarity thresholds in all cases.

In more detail, the lowest correlation scores, on average,
correspond to the schema-based syntactic weights, where
they fluctuate between 0.35 and 0.44 for all algorithms,
but BAH, which restricts them to [0.29, 0.33]. For schema-
agnostic syntactic weights, they range from 0.47 to 0.59.
For the semantic weights, the correlations are much higher,
at least 0.59 (0.72) for the schema-based (schema-agnostic)
ones. This applies to all algorithms, but: (i) BAH, whose
stochastic nature restricts the correlations to [0.40, 0.47], and
(ii) CNC, which consistently requires much higher thresholds
than all algorithms, because the semantic similarity func-
tions yield larger graphs, on average, associating almost all
record/node pairs with positive edge weights. As a result,
the correlations are slightly negative, in [−0.20,−0.15], for
CNC over the schema-based semantic weights, while for
the schema-agnostic ones, they are confined in [0.50, 0.55],
which is quite high, but significantly lower than the rest of
the algorithms.

Among the five descriptive statistics, Mean + SD yields
the highest correlation, albeit to aminor extent, formost com-
binations of algorithm and type of edge weights. This should
be expected, as the first quartile, the median and the mean
similarity scores are usually much lower than the optimal
threshold, while the third quartile is much higher. Instead,
Mean + SD exhibits the lowest deviation from the absolute
value of fine-tuned similarity thresholds. Hence, Mean + SD
seems a natural choice for automatically configuring each
algorithm in any given similarity graph.

We tested the performance ofMean + SD in all 769 graphs
that are considered in our experimental analysis. The out-

comes are presented in Fig. 15 with respect to F1 deviation,
which is defined as 1 − F1auto/F1max, where F1auto is the
F-measure achieved when usingMean + SD as the similarity
threshold, and F1max is the F-measure corresponding to the
fine-tuned similarity threshold.

Based on the distribution of F1 deviation across the four
types of edge weights, we can distinguish the eight algo-
rithms into three groups. The first one includes CNC and
RSR, both of which are quite sensitive to the similarity thresh-
old, exhibiting extremely poor performancewhen configured
with Mean + SD. The reason is that both algorithms ignore
clusters that include more than two nodes/records. Hence,
retaining few false positive edges leads to a drastic reduction
in precision, which also affects F1 to a significant extent.
More specifically, the transitive closure of CNC amplifies
the error introduced by a few false positive edges, yield-
ing an output that is dominated by clusters with multiple
entities. All these clusters are ignored, minimizing precision
and recall and, thus, f-measure. The same applies to RSR. Of
course, there are similarity graphs where the performance of
both algorithms remains intact (i.e., F1 deviation is close to
zero), but in the vast majority of graphs, the reduction in F1
exceeds 80%.

The second group of algorithms includes EXC and KRC,
which are quite robustwith respect to the similarity threshold.
Their median, mean and third quartile F1 deviation are well
below 0.1 in every type of edge weights. This means that
replacing their optimal similarity threshold with Mean + SD
reduces the F1 to a minor extent, which is less than 10% in
the vast majority of cases. This should be attributed to the
fact that both algorithms rely heavily on the reciprocity of
edges with the highest weight per node. As a result, a false
positive edge merely reduces precision, by adding to the end
result matches that are discarded by the fine-tuned similarity
threshold.

The third group includes the rest of the algorithms, namely
RCA, BAH, BMC and UMC, whose performance fluctuates
between the two extremes of the other two groups. The best
performance among them is achieved by UMC, as its median
F1 deviation remains below 0.75 across all edge types. How-
ever, its third quartile exceeds 0.20 in all cases, while its
mean F1 deviation fluctuates between 0.11 and 0.19 for the
schema-based and the schema-agnostic semantic weights,
respectively. These patterns can be explained by the type of
similarity graph: in balanced graphs, UMC is quite robust
to the similarity threshold, because it operates similarly to
EXC, associating every node with its most similar one from
the other partition; in scarce and one-side graphs, though, a
fine-tuned threshold is necessary, otherwise UMC provides
matches for most nodes, even the non-matching ones—in
contrast, EXC leaves unmatched the nodes that are not recip-
rocally most similar.
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Table 5 Comparison to state-of-the-art unsupervised matching meth-
ods with respect to F-measure

ZeroER UMC

DAB 0.52 0.95 (character bi-grams, t = 0.35)

DAG 0.48 0.60 (token bi-grams, t = 0.05)

DDA 0.96 0.99 (token uni-grams, t = 0.40)

DDS 0.86 0.94 (character four-grams, t = 0.35)

UMC is exclusively combined with schema-agnostic TF-IDF weights
and cosine similarity

The remaining algorithms exhibit higher sensitivity to the
configuration of the similarity threshold, as their mean F1
deviation exceeds 0.2 in practically all cases. The highest
interquartile range in F1 deviation typically corresponds to
BAH, due to its stochastic nature, which yields an unstable
performance. BMC typically performs better than BAH, but
worse than RCA, which is very close to UMC. Similar to
UMC, BMC needs a fine-tuned similarity threshold in order
to avoid associating records in scarce and one-sided graphs
with false positives. RCA, on the other hand, needs a fine-
tuned threshold in order to clean its output from clusters with
very low similarity (see lines 29–31 in Algorithm 3).

On the whole, we can conclude that EXC and KRC are
quite robust to the threshold that prunes the input similarity
graph, due to the reciprocity they require for their matching
records.UMC is also robust in the case of balanced similarity
graphs, but quite sensitive in scarce and one-sided cases.

6.5 Comparison with the best matchingmethods

We now compare the performance achieved by bipartite
graphmatching algorithmswith the top performingmatching
method that leverages unsupervised learning: ZeroER [63].
We consider the four common data sets: DAB , DAG , DDA

and DDS (DRE is a larger and noisier version of FZ in [34,
63], and thus not directly comparable). Table 5 reports the
relative performance in terms of maximum F1 for ZeroER
from [63].

Bipartite matching is represented by UMC in combination
with Cosine similarity over schema-agnostic vector models
with TF-IDF weights; the best representation model and the
corresponding similarity threshold depend on the data set.
These settings do not necessarily correspond to the highest
F1 across all algorithms and edge weights we have con-
sidered, but demonstrate the capabilities of bipartite graph
matching when varying just two configuration parameters.
The results are shown in Table 5.

We observe that UMC consistently achieves higher perfor-
mance than ZeroER: its F1 is higher by 3%, 9%, 25%, and
83% over DDA, DDS , DAG and DAB , respectively. We can
conclude, therefore, that bipartite graph matching is capable

of outperforming the most effective unsupervised matching
algorithm in the literature.

7 Conclusions

We draw the following important conclusions from our
experiments:

1. The most effective algorithm for a particular similarity
graph mainly depends on the type of edge weights and
the portion of duplicates with respect to the total number
of nodes/records.

2. CNC constitutes the fastest algorithm, due to its simplicity
and the high similarity thresholds it employs, achieving
the highest precision at the cost of low recall. It frequently
outperforms all other algorithms with respect to F1 in the
case of scarce data sets with syntactic weights, especially
the schema-agnostic ones.

3. RSR is a fast algorithm that rarely achieves high effective-
ness in the case of scarce data sets.

4. RCA is an efficient method that never excels in effective-
ness.

5. BAH constitutes a slow, stochastic approach that is capable
of the best and the worst. It frequently achieves, by far,
the highest F1 over balanced data sets (and rarely over
scarce ones), but in most cases, it yields the lowest scores
with respect to all effectiveness measures.

6. BMC is the second fastest algorithm that tries to balance
precision and recall, being particularly effective in the
case of scarce data sets, especially in combination with
syntactic weights.

7. EXC improves BMC by boosting precision at the cost of
lower recall and higher run-time. It consistently achieves
(close to) the highest F1 over scarce and one-sided data
sets, losing only to KRC and (rarely) to UMC. Given,
though, that it outperforms both algorithms to a signifi-
cant extent with respect to run-time, it constitutes the best
choice for applications requiring both high effectiveness
and efficiency/scalability.

8. KRC achieves very high or the highest effectiveness in
most cases, especially over one-sided and scarce data sets.
This comes, though, at the cost of higher (yet stable) run-
times than its top-performing counterparts.

9. UMC is the best choice for balanced data sets, especially
when coupled with syntactic weights, exhibiting a much
more robust performance than BAH. It achieves very high
(and frequently the highest) effectiveness in the rest of
the cases, too. Its run-time, though, is rather unstable,
depending largely on the optimal similarity threshold.

10. Regarding the balance between effectiveness and time
efficiency, the best combination of graph matching algo-
rithm and type of edge weights is data set-specific. Yet,
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coupling UMC with schema-agnostic syntactic similar-
ities usually approximates (or even achieves) the best
possible trade-off between F1 and run-time.

11. For all algorithms, the fine-tuning of their similarity
threshold does not depend on their functionality, but on
the type of edgeweights and their distribution. As a result,
for each similarity graph, similar thresholds are used by
all algorithms. Relatively high thresholds are used inmost
cases, except for schema-agnostic syntacticweights.Most
importantly, EXC and KRC can be automatically fine-tuned
by setting as their similarity threshold the average edge
weight plus its standard deviation. The same applies to
UMC in similarity graphs with 1–1 matching between the
nodes of the two partitions.

12. With proper configuration, the top-performing bipartite
graph matching algorithms are competitive to the state-
of-the-artmatching algorithm that leverages unsupervised
learning.

Our focus in this work has been on ER in an unsupervised
setting where large enough training data is not available. Fol-
lowing the approach in [53], an interesting avenue for future
work is a supervised learning system incorporating a variety
of bipartite graph matching algorithms in a unified frame-
work and effectively learning the right parameters for a given
data set. We will also explore adaptive solutions that decide
on the best algorithm based on the analysis of initial results.
Finally, we will use F∗ [24] as an additional effectiveness
measure in order to identify more interesting patterns in the
relative performance of the considered algorithms.
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