
The VLDB Journal (2023) 32:1013–1036
https://doi.org/10.1007/s00778-023-00782-4

REGULAR PAPER

Butterfly counting and bitruss decomposition on uncertain bipartite
graphs

Alexander Zhou1 · Yue Wang2 · Lei Chen1

Received: 29 May 2022 / Accepted: 19 January 2023 / Published online: 17 February 2023
© The Author(s) 2023

Abstract
Uncertain butterflies are one of, if not the, most important graphlet structures on uncertain bipartite networks. In this paper,
we examine the uncertain butterfly structure (in which the existential probability of the graphlet is greater than or equal
to a threshold parameter), as well as the global Uncertain Butterfly Counting Problem (to count the total number of these
instances over an entire network). To solve this task, we propose a non-trivial exact baseline (UBFC), as well as an improved
algorithm (IU BFC) which we show to be faster both theoretically and practically. We also design two sampling frameworks
(UBS and PES) which can sample either a vertex, edge or wedge from the network uniformly and estimate the global count
quickly. Furthermore, a notable butterfly-based community structure which has been examined in the past is the k-bitruss. We
adapt this community structure onto the uncertain bipartite graph setting and introduce the Uncertain Bitruss Decomposition
Problem (which can be used to directly answer any k-bitruss search query for any k). We then propose an exact algorithm
(UBit D) to solve our problem with three variations in deriving the initial uncertain support. Using a range of networks with
different edge existential probability distributions, we validate the efficiency and effectiveness of our solutions.

1 Introduction

Uncertain (or Probabilistic) Networks are graphs aimed
at modelling real-world networks in which connections
between users or entities can only be assumed with differing
levels of uncertainty [3,37]. Recently, these networks have
grown to become a highly interesting area of exploration due
to the real-world applications such as modelling influence on
social networks [46], fact trustworthiness [49] and uncertain
protein-protein interaction [52] to name a few.

Extending on this concept, uncertain bipartite networks
are used to examine uncertain networks in which the nodes
are separated into two disjoint sets where edges only exist
between the two sets. Notable uncertain bipartite network
use cases include predicted edges in biological/biomedical

B Alexander Zhou
atzhou@cse.ust.hk

Yue Wang
yuewang@sics.ac.cn

Lei Chen
leichen@cse.ust.hk

1 Hong Kong University of Science and Technology, Hong
Kong, China

2 Shenzhen Institute of Computing Sciences, Shenzhen, China

networks [9,25,40], modelling the likelihood a patient with
a disease exhibits a symptom based on historical data [17].
On user-item networks, edges may represent confidence in a
recommendation [32] or trust-prediction based on user rat-
ings [16]. Even delivery problems [36,50] can be modelled
as uncertain bipartite networks based on the likelihood the
courier can reach a target within a certain time frame.

Ondeterministic (or certain) bipartite networks, the butter-
fly (sometimes referred to as a ‘rectangle’ in the literature), a
fully connected subgraph containing exactly two nodes from
each partition, is perhaps the most important graphlet struc-
ture [30,42,43]. Butterflies may be used to indicate closely
connected nodes, which are useful in tasks such as commu-
nity search [30], as well as forming the foundation of key
community structures such as the bitruss [44,56] or biclique
[51]. In that respect, butterflies play a very similar role to that
of the triangle on a unipartite graph [2,5,47].

Whilst butterfly counting has been studied on determinis-
tic bipartite networks [30,42,43], they have yet to be extended
to uncertain bipartite networks which limits their current
applicability. This is unlike the triangle (and triangle count-
ing problem) which has already been extended to uncertain
scenarios due to similar reasoning [13,57]. With the struc-
ture holding such importance on bipartite graphs, being able
to determine the number of butterflies in uncertain bipartite

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-023-00782-4&domain=pdf
http://orcid.org/0000-0002-7063-2017

1014 A. Zhou et al.

networks can lead to significant insights into the inherent
structure and properties of the network.

Use Case Scenario [Host-Parasite]: Host-Parasite net-
works track which parasites latch onto which hosts in a
natural environment. In some work, such uncertain networks
have been built which also consider host-parasite combina-
tions which could (but have not been provably shown to)
exist based on attributes about each host and comparing
them to recorded parasite infections of hosts [40]. As hosts
with similar attributes are prone to being ‘targeted’ by the
same parasites, naturally, this builds a butterfly structure on
the uncertain network as the number of hosts and parasites
grows. If the habitat has a high uncertain butterfly count, this
poses a great risk if one of the recorded parasites enters as
cross-host infection (and subsequently an outbreak) becomes
significantly more likely than if the butterfly count is low.
Furthermore, it is possible to make plans of action for when
uncertain edges become certain (i.e. a host-parasite connec-
tion physically appears in the habitat). Additionally, being
able to find the count of subgraphs allows for interesting
future problems such as partitioning the hosts into separated
groups to minimise the total uncertain butterfly count.

Use Case Scenario [Recommendation]:Another use case
example is a recommendation user-item network, where
edges can exist without certainty where the existential prob-
ability is the likelihood a user would enjoy or purchase an
item. These recommendation networks can be formed using
multiple well-established techniques such as Collaborative
Filtering [32]. The uncertain butterflies and their respective
count could be used to recommend items which would result
in the emergence or reinforcement of strong communities
(as we discuss later when describing uncertain bitrusses).
Additionally, general statistics such as a bipartite clustering
coefficient [19] can be gleamed using the uncertain butter-
fly count. Furthermore, by comparing the resulting counts of
two different recommendation strategies, a relatively cheap
method of comparing potential impacts of strategies beyond
simply an increased number of edges becomes viable. This
becomes even faster if an approximation method which is
accurate and fast (like the ones we propose in this work) is
utilised.

Another potential use of uncertain butterflies would be for
a bitruss structure [44,56] on uncertain graphs. The bitruss is
a popular community structure on bipartite networks as they
are able to capture the intrinsic ‘tight’ connections between
the set of edgeswhich form the community. The deterministic
variation of the k-Bitruss, where each edge in the structure
is a part of k butterflies in conjunction with other edges in
the subgraph structure, is a popular option as an intermediary
between bicliques [51] and (α, β)-Cores [20].

Once again, this structure has yet to be transported onto
the uncertain bipartite space. As a natural progression on
the uncertain butterfly counting problem, we introduce the

Fig. 1 A user-item graph where solid black edges represent known
items a user likes and dashed yellow lines represent potential likes with
high probability based on recommendation. There exists no bitruss on
the black edges only but combining the black and yellow edges forms
a 1-bitruss

uncertain k-Bitruss. Being able to search for a distinct com-
munity structure on uncertain bipartite graphs further opens
the level of insights that can be gained from these networks.

Let us first consider theHost-Parasite use case scenario. In
this setting, the potential use of this butterfly-based commu-
nity structure to find a set of host/parasites which are highly
likely to cross-transmit is highly relevant. By finding such
a community, it is possible to separate the hosts (or simply
keep a closer eye on them) to avoid transmission which over-
all makes the habitat a safer space.

Similarly, the Recommendation Network use case sce-
nario can also strongly benefit from the bitruss community
metric. A network operator can observe the effects of any
given recommendation strategy on the potential growth of
communities in their system by gauging the change in com-
munity size pre- andpost-implementation. Furthermore, such
defined communities may make future recommendations
easier (particularly so if the community becomes denser and
thus indicative of even higher levels of similarity between
individuals). The uncertain bitruss with its polynomial time
derivation is practically preferable to a structure like a max-
imal biclique (which is NP-Hard to enumerate).

Let us consider an example of this in Fig. 1, detailing a
small user-item purchasing network where the black solid
lines describe existing known edges with certain probability
and yellow dashed lines describe edges a recommendation
system suggests. If a threshold value is selected such that
each edge (solid or dashed) would be a part of the final output
bitruss we are able to discover a potential community which
could form (that does not exist on only the solid edges) if
the recommendation strategy was adopted. Using existing
bitruss algorithms for certain graphs, in order to find this
community, there would have to be a rigid assumption that
these dashed edges must exist, something that goes against
the spirit of having a probability.

123

Butterfly counting and bitruss decomposition... 1015

Fig. 2 An example uncertain bipartite network with a red and blue
partition. Each edge has a corresponding existential probability, with
the threshold value t = 0.6

1.1 Our contributions

In this paper, we formally define the (global) Uncertain But-
terfly Counting Problem (UBFCP), in which we wish to
determine the number of butterflies that exist on an uncer-
tain bipartite network with existential probability is greater
than or equal to a threshold value t . Figure2 is an example
uncertain bipartite network, where the threshold is set to be
t = 0.6. The butterflies ⧖(A, B, E, F) and ⧖(B,C, F,G)

both have existential probabilities (the product of the existen-
tial probability of their four edges) greater than t (0.72 and
0.63, respectively), whilst the butterfly ⧖(C, D,G, H) does
not (with probability 0.2). Therefore, the uncertain butterfly
count on this network is 2.

Existing butterfly counting techniques on deterministic
graphs cannot realistically be transferred directly to this new
setting as they treat each edge (and wedge) with equal impor-
tance, something that is evidently not true in the uncertain
setting. Additionally, in these methods, it is not possible to
add in a trivial step in which each butterfly is evaluated as
either satisfying or failing the threshold as the deterministic
method aggregates a batch of butterflies at the same time. It is
possible to enumerate all possible worlds, count the number
of certain butterflies in each world and aggregate the result
but such an approach is extremely unrealistic in practice.

In this paper, we propose two exact solutions toUBFCP .
Firstly, we create a baseline solution UBFC which adapts
the current best solution for the Butterfly Counting prob-
lem on deterministic graphs and modifies it as necessary
such that it is satisfactory to our problem. Then, we pro-
pose an improved solution IU BFC which reduces the time
complexity (from O(

∑
e(u,v)∈E min{deg(u)2, deg(v)2}) to

O(
∑

e(u,v)∈E min{deg(u) log(deg(u)), deg(v)

log(deg(v))})) without any change in the memory complex-
ity by improving the manner in which wedges are found and
combined to find uncertain butterflies. We additionally add
heuristics, such as early edge discarding, to further improve
the performance of the algorithm.

We also propose two estimation via sampling solutions
which trade accuracy in return for significantly improved run-

ning time. Minor sacrifices in accuracy in return for major
reductions in cost can be highly attractive when a quick
examination is needed for recommendation strategies as an
example.

Our first algorithm, Uncertain Butterfly Sampling (UBS),
samples vertices/edges without replacement determining the
number of uncertain butterflies each vertex or edge is a part
of. By extrapolating and averaging the solution,we can derive
an estimation of the count with high confidence as the sample
size increases. Our second algorithm, Proportion Estimation
Sampling (PES), estimates the proportion of butterflies with
existential probability ≥ t and then uses a faster determin-
istic sampling technique to quickly estimate the number of
uncertain butterflies.

The above problem and techniques have been proposed
in our preliminary conference version [54], and based on
these, we extend our work by introducing a wedge-based
sampling method as well as defining and examining our new
Bitruss structure on uncertain bipartite graphs. The Uncer-
tain k-Bitruss structure is the one in which each edge in the
structure is part of at least k uncertain butterflies. In order to
facilitate the usage of the k-Bitruss, we propose the Uncer-
tain BitrussDecomposition Problem (UBit DP) and provide
an online in-memory solution. In this problem, any method
would require the initial uncertain support (that being the
local uncertain butterfly count) of each edge to be derived,
something that cannot be directly adapted from existing
methods nor from our global techniques which indiscrim-
inately batch together multiple edges when incriminating
the count. By examining different methods with potential
benefits and drawbacks, we provide three alternative meth-
ods (UBit D-UBFC ,UBit D-IU BFC andUBit D-LS) to
calculating these initial uncertain supports.

Finally, we demonstrate the effectiveness of our exact
solutions by performing experiments on multiple uncertain
bipartite networks.

Our contributions are summarised as following:

– We formally define theUncertainButterfly andUncertain
Butterfly Counting Problem;

– We propose a non-trivial baseline and introduce an
improved algorithm which reduces the time complexity
of the solution at no increased memory cost;

– We propose two fast alternate approximation strategies
via sampling, each with a variation that is vertex, edge or
wedge based;

– We also formally define the Uncertain k-Bitruss as well
as the Uncertain Bitruss Decomposition Problem;

– We propose an in-memory algorithm to exactly solve
UncertainBitrussDecomposition Problemwith three ini-
tial uncertain support derivation strategies;

– We validate our algorithms via extensive experiments;

123

1016 A. Zhou et al.

To outline the remaining paper, we first examine related
works to this topic (Sect. 2) before formally defining the
notation and the two problems of Uncertain Butterfly Count-
ing and Uncertain Bitruss Decomposition (Sect. 3). For the
global uncertain butterfly counting portion of our work, we
introduce a non-trivial baseline exact solution (Sect. 4) and
follow up with key improvements which reduce the time
complexity of the solution in combination with powerful
heuristics (Sect. 5). We also propose two sampling solutions
which provide approximate results (Sect. 6). Afterwards, we
examine algorithms aimed at solving the problem of Uncer-
tain Bitruss Decomposition efficiently (Sect. 7). Following
this, we examine the efficiency and effectiveness of our algo-
rithms (Sect. 8) before concluding the paper (Sect. 9).

2 Related works

Butterflies: The butterfly (sometimes referred to as a rectan-
gle or 4-cycle) [30,42,43] is perhaps the most fundamental
structure that exists on bipartite networks [55]. Similar to
the role that triangles play on unipartite graphs [2,5,47], but-
terflies are utilised in many areas to either quickly gauge
information on the network [30] or help to findmore complex
structures such as the biclique [22,26], k/k∗-Partite Clique
[27,53] and bitruss [44,45,56].

There has been a recent boom in the area of butterfly
counting. In particular, a baseline deterministic solution for
counting the number of butterflies on a regular bipartite net-
work [42] with multiple improvements to that algorithm [30]
resulting in the current best solution being a vertex priority
approach [43] has been studied.

In addition, the butterfly counting problem has been tack-
led in different settings with parallel [42] and cache-aware
solutions [43] considered and estimation solutions [30] pro-
posed. Furthermore, butterfly counting in a streaming setting
has also been a recent area of research [31]. To the best of
our knowledge, we are the first to consider the butterfly (and
subsequently the butterfly counting problem) on an uncertain
setting, and thus, we require different solutions to deal with
the increased requirements presented by the new problem.

BipartiteNetworks:Bipartite networks in particular have
recently seen a surge in research popularity due to the
real-world applicability of the network type in modelling
information [9,16,25,32,40]. The problemsbeing studied that
closely relate to ourwork regard in the counting, enumeration
or search of a particular subgraph structure in the network.

Such structures include the well-studied biclique [22,26,
51] in which each node in one partition of the structure must
be connected to every node from the other partition. The
butterfly is effectively a (2 x 2) biclique (that is a bicliquewith
two nodes in each partition). Another structure is the (α, β)-

core [21] which models the popular k-core on the bipartite
setting.

Bitruss: Perhaps the most relevant structure to us is the k-
bitruss, a structure in which each edge in the bitruss is a part
of k butterflies in the subgraph [56]. Due to the requirement
of being able to count butterflies, advancements in butter-
fly counting can often directly result in improvements to
bitruss algorithms. Notable works on bitrusses include an
index structure to reduce the cost associated with the peeling
stage of the standard bitruss decomposition algorithm [44].

The structure itself is heavily inspired by the k-truss [12,
41], which has been extensively studied. Work in this space
recentlymainly focuses on scalability via parallel/distributed
implementations [7,8,14,35]. Additionally, notably for our
work, there exists research on the standard truss structure on
uncertain networks [13,57].

UncertainNetworks: Uncertain (probabilistic) graphs as
a sub-genre have received attention from various problems,
often by taking traditional graph problems and transferring
them into the setting (e.g. k-Nearest Neighbour [28], Core
Decomposition [6], Shortest Path [48]). On uncertain graphs,
a popular choice is to use Possible World Semantics [1],
which breaks the system down into separate instances of the
graph with nonzero existential probability. As many prob-
lems theoretically require the analysis of all possible worlds,
which is expensive, research has been conducted to narrow
the scopebyfinding agood representative possibleworld [24]
or by sampling a set of possible worlds [11,15,18] to estimate
the result. There does exist one notable work on motif count-
ing (including butterflies) on uncertain (unipartite) networks
(LINC) [23]; however, their problem formulation differs
from ours (they wish to output the probability mass func-
tion of counts across all possible worlds) as ours finds all
butterfly instances whose existential probability is above a
specific threshold.

3 Problem definition

In this section, we detail the problem setting, that being
the uncertain bipartite graph, as well as the structures and
concepts that pertain to the Uncertain Butterfly Counting
Problem (UBFCP) then the Uncertain Bitruss Decompo-
sition Problem (UBit DP).

We give most of the key notation used in our paper in
Table 1.

3.1 Uncertain butterfly counting problem

Definition 1 Uncertain Bipartite Network: An uncertain
bipartite network G = (V = L ∪ R, E, P) is a net-
work in which any node u ∈ L may only be connected to
node v given that v ∈ R or vice versa. P : E → (0, 1]

123

Butterfly counting and bitruss decomposition... 1017

Table 1 Key Notation and Definitions

Notation Definition

G = (V , E, P) Uncertain bipartite graph

Pr(.) Existential probability

W Set of all possible worlds

Wi Possible world i

t Threshold value

⧖/⧖t Deterministic/uncertain butterfly
� / � t Deterministic/Uncertain wedge

C /Ct Deterministic/Uncertain butterfly count

Bk /Bk
t Deterministic/Uncertain k-bitruss

supt (e,G) Uncertain support of e in G

φt (e) Uncertain bitruss number of e

p(u) Vertex priority of node u

α = Ct/C Proportion of Uncertain Butterflies

α̂ An estimated value of α

maps an edge eu,v ∈ E to a nonzero existential probability
Pr(eu,v) ∈ (0, 1]. We assume there are no multi-edges in
our network.

On a given uncertain bipartite networkG, a possibleworld
Wi = (V , EWi) is a single possible network outcome after
fairly and randomly determining if each edge e ∈ E exists
in Wi based on Pr(e) [1]. Like existing work on uncertain
networks [1,13,23,57], we assume the existential probability
of each edge is independent of each other. Each possible
world Wi on G exists with existential probability Pr(Wi) =
∏

e∈EWi
Pr(e) · ∏

e∈E\EWi
(1 − Pr(e)).

For any G, there exists 2|E | possible worlds. The set of all
possible worlds is defined as W = {W1, . . . ,W2|E | } and via
the Law of Total Probability Pr(W) = ∑n

i=1 Pr(Wi) = 1.
Additionally, we call the possible world in which all edges
are selected to exist the backbone graph of G, denoted by
Wbackbone. This may also be thought of as the deterministic
variant of the network. Furthermore, it can be trivially proven
that the total sum of existential probabilities for all worlds
a single edge e exists in is equal to Pr(e). That is, given a
randomly sampled world Wi , the probability e ∈ E(Wi) is
equal to Pr(e).

3.2 Butterfly counting

In certain bipartite networks, butterflies are considered as one
of the key fundamental building block graphlet structures due
to the cohesive relationships they represent [30,42,43]. On
certain graphs, we may define the butterfly as following:

Definition 2 Butterfly: Given a bipartite graph G = (V =
L ∪ R, E), a butterfly ⧖ consisting of nodes u1, u2 ∈ L and

Fig. 3 Three uncertain butterflies and their corresponding existential
probabilities

v1, v2 ∈ R exists if and only if there exists edges from u1 to
v1 and v2, as well from u2 to v1 and v2.

We may use the notation ⧖(u1, u2, v1, v2) to denote a but-
terfly containing nodes u1, u2, v1, v2. We extend the idea of
the butterfly to the uncertain bipartite network setting.

Definition 3 Uncertain Butterfly: Given an uncertain bipar-
tite graph G = (V = L ∪ R, E, P) and a probability
threshold 0 < t ≤ 1, an uncertain butterfly ⧖t consisting
of nodes u1, u2 ∈ L and v1, v2 ∈ R exists if and only if there
exists edges from u1 to v1 and v2, as well from u2 to v1 and
v2, and the resulting product of the existential probabilities
of the butterfly is ≥ t (i.e. Pr(⧖t) ≥ t).

The existential probability of a butterfly can be calculated
by Pr(⧖t) = ∏

e∈E⧖t Pr(e).

Definition 4 Certain ButterflyCount:Given a bipartite graph
G = (V , E,), the certain butterfly count C is the number of
butterflies on that network.

Definition 5 Uncertain Butterfly Count: Given an uncertain
bipartite graph G = (V , E, P) and a threshold t , the uncer-
tain butterfly count Ct is the number of uncertain butterflies
on that network.

The local deterministic butterfly count of a node v ∈ V or
edge e ∈ E is denoted asC(v) orC(e) respectively (with the
same convention for uncertain butterfly countsCt (u),Ct (e))

Figure3 illustrates three uncertain butterflies and their
respective existential probabilities. For t = 0.4, ⧖1 and
⧖2 would be counted towards the uncertain butterfly count,
whilst ⧖3 would not result in a final uncertain butterfly count
of 2.

Additionally, we need to introduce the idea of the Wedge
and Uncertain Wedge.

Definition 6 WedgeandUncertainWedge:AWedge � (u, v, w)

is a two-hop path consisting of two different endpoint ver-
tices u, w from the same partition of the uncertain bipartite
network and a middle vertex v from the other partition. An
Uncertain Wedge � t is a Wedge that, on a randomly sampled
world Wi , exists with Pr(� t) ≥ t ∈ [0, 1].

Notably, any butterfly consists of four wedges which
means butterfly counting techniques often use wedges as one

123

1018 A. Zhou et al.

of the building blocks in finding butterflies. If a butterfly ⧖
contains a wedge � , we use the notation � ∈ ⧖ (and the same
for � t ∈ ⧖t).

We note that there can be an alternate definition of the
uncertain butterfly in which each edge in the butterfly must
hold an existential probability greater than some threshold.
However, in this scenario, we may simply prune all edges
which fail to meet this threshold and then perform any cer-
tain/deterministic butterfly counting technique. Additionally,
there could be an alternate problem formulation, in a similar
vein to [23], in which instead of a threshold value, the mean
and variance of the butterfly count over all possible worlds
are derived. Due to the removal of the threshold, the problem
would become #P-Hard, and as a consequence, this hampers
the usability of any exact algorithm in a practical setting.

We formally define the Uncertain Butterfly Counting
Problem as following:

Definition 7 Uncertain Butterfly Counting Problem
(UBFCP): For an undirected, unweighted bipartite graph
G = (V = L ∪ R, E, P) and a threshold value t , the Uncer-
tain Butterfly Counting Problem is to determine the countCt

of all uncertain butterflies ⧖t on G (where Pr(⧖t) ≥ t).

The key technical difference between any existing cer-
tain algorithm [30,43] and one that could handle uncertain
butterflies is that the certain methods do not need to store
previously discovered wedges as it can quickly determine
the number of butterflies at this point via the operation

(n
2

)

where n is the number of wedges with the same start and
end vertices, whereas in the uncertain version, each com-
bination of wedges needs to be examined to check if the
resulting butterfly satisfies the probability requirement. This
key difference motivates the algorithms which we propose.
Furthermore, finding all three-edge paths with satisfactory
existential probability and checking if the final edge to com-
plete the uncertain butterfly exists is an expensive endeavour
due to the high number of three-edge paths in comparison
with edges and wedges.

3.3 Uncertain bitruss decomposition problem

With the foundation of butterfly counting on the uncertain
bipartite graph setting defined, we can now define the bitruss
structure and related problems on the same setting. Once
again, we utilise the same threshold t in order to allow for
the user to have a level of control over what they would deem
to be a satisfactory uncertainty for the network they operate.

Definition 8 k-Bitruss:Given bipartite graph G = (V , E), a
k-Bitruss Bk is a subgraph of a certain graph in which each
edge e ∈ Bk is a member of at least k butterflies in Bk (i.e.
∀e ∈ Bk : C(e) ≥ k).

Definition 9 Uncertain k-Bitruss: Given an uncertain bipar-
tite graph G = (V , E, P) and a threshold 0 < t ≤ 1, an
uncertain k-Bitruss Bk

t is a k-Bitruss in which each edge
e ∈ Bk

t is a member of at least k uncertain butterflies (i.e.
∀e ∈ Bk

t : Ct (e) ≥ k).

The number of local butterflies (uncertain butterflies resp.)
for each edge e in the current subgraph G ′ being considered
is also referred to as the support (uncertain support resp.)
of the edge denoted by sup(e,G ′) (supt (e,G ′) resp.). Thus,
a potential reformulation of the uncertain k-Bitruss Bk

t is
∀e ∈ Bk

t : supt (e, Bk
t) ≥ k.

We once again note that there can be an alternate definition
of the uncertain bitruss (similar to the butterfly) in which
each edge in the bitruss must hold an existential probability
greater than some threshold, as well as the variation in the
mean and variance of the butterfly bitruss is calculated over
all possible worlds. Our reasoning for not pursuing these
variations remains the same as before.

With this framework in place, we now consider the prob-
lem of Uncertain Bitruss Decomposition by first introducing
the critical concept of the uncertain bitruss number.

Definition 10 Uncertain Bitruss Number: For an uncertain
bipartite graph G and a user-defined threshold value t , the
uncertain bitruss number φt (e) for an edge e ∈ E is the
largest number k such that e is still a member of a valid
uncertain k-Bitruss Bk

t on G.

It is important to distinguish the difference between the
uncertain bitruss number of an edge (φt (e)) and the uncer-
tain support of an edge (supt (e,G)). Due to the nature of the
two, it is trivial to see that φt (e) ≤ supt (e,G) as it is pos-
sible for an edge to be a part of butterflies which in turn do
not contribute to an uncertain φt (e)-Bitruss. With that noted,
we now formally define the uncertain bitruss decomposition
problem.

Definition 11 The Uncertain Bitruss Decomposition Prob-
lem (UBit DP): For an undirected, unweighted bipartite
graph G = (V = L ∪ R, E, P) and a threshold value t ,
the Uncertain Bitruss Decomposition Problem is to find the
Uncertain Bitruss Number for each edge e ∈ E .

4 Uncertain butterfly counting exact
algorithms-baseline

In this section, we propose a baseline for exact solutions to
the Uncertain Butterfly Counting Problem.

Given no baseline exists specifically for UBFCP , the
trivial baseline would be to permute all combinations of four
edges and check if it is an Uncertain Butterfly satisfying our
threshold, taking O(E4) time. However, given prior work

123

Butterfly counting and bitruss decomposition... 1019

exists on the deterministic variation of our problem, we will
instead utilise a baseline that finds butterflies on the back-
bone graph and examines if each individually satisfies the
existential probability threshold environment.

Our baseline is a modified version of the Vertex Prior-
ity Butterfly Counting (BFC-V P) algorithm provided by
Wang et al [43] for the deterministic problem, with the criti-
cal difference being how wedges are handled in order to find
uncertain butterflies. We call our baseline UBFC . A core
idea in this algorithm is that of vertex priority.

Definition 12 Vertex Priority [43]: The vertex priority of any
node u ∈ V in comparison with any other node v ∈ V is
defined as p(u) > p(v) if

1. deg(u) > deg(v)

2. id(u) > id(v) if deg(u) = deg(v)

where id(u) is the vertex ID of u.

Vertex priority is effectively a method that allows for a
structured ranking of all nodes in G to avoid the same but-
terfly being counted multiple times. Additionally, as shown
in [43], the usage of a vertex priority approach reduces the
running cost of the algorithm.

Algorithm 1: UBFC
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
Output: Ct : Uncertain Butterfly Count

1 W1 ← Extract Backbone Graph;
2 Sort N (u) of each u ∈ VW1 by vertex priority;
3 Ct ← 0;
4 foreach u ∈ VW1 do
5 Create H(w) for each Node w in same partition as u;
6 foreach v ∈ N (u) : p(v) < p(u) do
7 foreach w ∈ N (v) : p(w) < p(u) do
8 H(w).append(v);
9 foreach Node w : |H(w)| > 1 do

10 foreach Nodes v1, v2 ∈ H(w), v1 �= v2 do
11 if Pr(⧖(u, w, v1, v2)) > t then
12 Ct ← Ct + 1;

Algorithm1 details the baseline solution.We use the back-
bone graphW1 (Line 1) in order to extract vertices and edges
to find butterflies before checking whether they satisfy the
uncertainty threshold. For each node, we sort its neighbours
by (increasing) vertex priority (Line 2).

Then, for each node u ∈ VW1 , we perform the base-
line uncertain counting algorithm. Firstly, we initialise a
Hashmap H which will be used to store all wedges con-
taining u. For each node w, which is a two-hop neighbour
of u (thus forming at least one wedge with u), we initialise
a list in H which will refer to as H(w) (Line 5). Then, for

Fig. 4 An example of wedges and their uncertainty

each nodes v ∈ N (u) : p(v) < p(u), we find its neighbours
N (v). For each node w ∈ N (v) : p(w) < p(u), we add v

to H(w) since there exists a wedge � (u, v, w) (Lines 6-8).
The vertex priority constraints ensure no redundancy in our
algorithm, that is no wedge will be ever added to any list
twice.

As touched upon in Section 3.2, at this point, the certain
method quickly calculates the number of butterflies via the
operation

(n
2

)
where n is the number of wedges with the same

start and end vertices, whereas in the uncertain version, each
combination of wedges needs to be examined to check if the
resulting butterfly satisfies the probability requirement. As
a result, the deterministic method does not maintain a list
but instead a simple number representing the total number
of wedges for each u, w combination. However, given that
we need to consider existential probabilities and need to thus
know the wedges we keep, our method instead maintains
the list H(w). For each combination of two nodes v1, v2 ∈
H(w), v1 �= v2, we check if the butterfly ⧖(u, w, v1, v2) is
an uncertain butterfly ⧖t . If it is, we increaseCt (Lines 9-12).
Thismanagement and combining ofwedges sets our baseline
algorithm for the uncertain butterfly counting problem apart
from the deterministic variant.

Figure4 demonstrates the principle of uncertain wedges
that share the same start and end vertex. If u has the high-
est vertex priority on this subgraph, it would form three
wedgeswith v passing through nodes a, b and c, respectively,
each with the shown existential probability. This forms three
butterflies in the list, which are found by checking all combi-
nations. If t = 0.5, then the uncertain butterfly count would
increase by 2.

4.1 Algorithm complexity

We now examine both the time and space complexity of the
baseline algorithm.

Theorem 1 The time complexity of U BFC is O(
∑

e(u,v)∈E
min{deg(u)2, deg(v)2}).
Proof Wang et. Al proved in their work that for the
certain variation of this problem, the algorithm runs in
O(

∑
e(u,v)∈E min{deg(u), deg(v)}) time [43].Notably, their

123

1020 A. Zhou et al.

proof examines the cost of wedge discovery (Algorithm 1
Lines 5-10) which makes up the dominating part of their
algorithms time complexity.

In the deterministic variant, the remaining cost of the
algorithm is done in O(1) time which is different from our
uncertain version. In our uncertain version, we further have
to determine the existential probabilities of the subsequent
butterflies given the wedges (Algorithm 1 Lines 9-12).

Due to the Vertex Priority approach, we know that the
start vertex of any wedge we discover must have a degree of
size greater than or equal to the degree of the mid and end
vertex. As a result, the total number of wedges that can be
uncovered by our algorithm containing a start vertex u and an
end vertex w is deg(w), which means the total combination
of two wedges containing u and w is deg(w)2. As a result,
the cost of determining all wedge combinations of node u
and w is O(deg(w)2). Thus, the time complexity ofUBFC
is O(

∑
e(u,v)∈E min{deg(u)2, deg(v)2}). �

Theorem 2 The memory complexity of U BFC is
O(

∑
e(u,v)∈E min{deg(u), deg(v)}).

Proof As noted in the proof for Theorem 1, the maximum
number of wedges discovered for a start vertex u is deg(u).

�

5 Uncertain butterfly counting exact
algorithms-improvements

In this section, we examine methods of improving the exact
solution, ultimately reducing the running time, as well as
proposing heuristic techniques to speed up the algorithm in
practice.

5.1 Early edge/wedge discarding

One notable area of wasted operations is when examining or
considering wedges that are unlikely to, or simply cannot, be
a part of any uncertain butterfly for a given t .

Lemma 1 If there exists an edge e with existential probability
Pr(e) < t , e cannot be a part of any uncertain butterfly.

Proof Given that all probabilities must be ≤ 1, this can be
proven trivially. �

Lemma 1 means that we can simply ignore any edge that
exists with probability < t . Additionally, this same logic can
be applied to any graphlet structure (specifically a wedge)
with existential probability < t that can be found within
a butterfly. Therefore, a simple pruning heuristic we adopt
is that if at any point an edge or wedge has an existential
probability lower than the threshold, we ignore it for future
considerations.

In the case where no edge e ∈ E exists with Pr(e) =
1, we may adjust the pruning threshold to be higher
(t/maxe∈E {Pr(e)}) to account for the higher required exis-
tential probabilities to compensate.

5.2 Improved list management

Another area of improvement over the baseline is in how
the list l containing found wedges is handled, noting that
currently finding all uncertain butterflies from l is done in
O(|l|2) time, which in turn is a major increase to the runtime
of the baseline algorithm acting as one bottleneck.

Lemma 2 To determine if an uncertain butterfly exists, con-
taining nodes (u1, u2, v1, v2), the only information we need
is the existential probability of any two unique wedges shar-
ing the same end points (either u1 and u2 or v1 and v2) and
t.

Proof Firstly, recall that two wedges � 1, � 2 with the same
end points that are found in the same butterfly ⧖ contain
all the edges in the butterfly, two from each wedge totalling
four unique edges. This is a fundamental truth which serves
as the foundation of nearly all butterfly counting techniques
[30,42].

The same extends to the existential probabilities ofwedges
and butterflies. That is, Pr(⧖) = Pr(� 1) ∗ Pr(� 2). With
this information and t , we can easily check if an uncertain
butterfly exists from these nodes. Given that we are not enu-
merating, we don’t actually need to store any nodes given that
the shared end points are assured and wedge probabilities are
stored instead. �

Lemma 2 allows us to modify the content of our lists and
ourwedge combination algorithm. Firstly, instead of l storing
the middle node of the wedge, we instead have it store the
existential probability of the wedge. Secondly, we keep the
list sorted upon the insertion of a new wedges information.

Before we fully explain the new Uncertain Butterfly
Counting algorithm for the sorted list l, we need to note some
properties of the list.

Lemma 3 If two wedges � 1, � 2 : Pr(� 1) > Pr(� 2) form an
Uncertain Butterfly, then all wedges before � 1 in l forms an
Uncertain Butterfly with all wedges before � 2 in l.

Lemma 4 If two wedges � 1, � 2 : Pr(� 1) > Pr(� 2) do not
form an Uncertain Butterfly, then all wedges after � 1 in l do
not form an Uncertain Butterfly with all wedges after � 2 in
l.

Proof As l is a sorted list by existential probability, both
Lemma 3 and 4 can trivially be shown with basic probability
theory. �

123

Butterfly counting and bitruss decomposition... 1021

Both Lemma 3 and 4 allow us to quickly validate the
existence of Uncertain Butterflies using l without having to
actually calculate their existential probabilities. These ideas
form the foundation of our improved algorithm for extracting
an Uncertain Butterfly count from l.

Algorithm 2: ImprovedListCount
Input : l: Sorted List of Existential Probabilities

t : Uncertainty Threshold
Output: Ct : Uncertain Butterfly Count

1 Ct ← 0, i ← 0, j ← 1, F ← f alse;
2 while j < |l| do
3 if l[i] ∗ l[j] < t then
4 F ← true;
5 target ← t/l[j];
6 i ← GT BinarySearch(l, 0, i − 1, target);
7 if i < 0 then
8 Break;
9 Ct ← Ct + i + 1;

10 j ← j + 1;
11 if F = f alse then
12 i ← i + 1;

Algorithm 2 details our improved technique for determin-
ing the number of Uncertain Butterflies from the wedges in
l. Given that l is a sorted list of existential probabilities, we
initialise i = 0 and j = 1 to be two indexes on the list.
The algorithm continues until j == |l| or another break
condition is reached.

If l[i] ∗ l[j] ≥ t , this implies that the current wedges
being represented form an uncertain butterfly, which means
determining values for i and j are the key in reducing the
runtime of the algorithm. As the algorithm begins, as long
as l[i] ∗ l[j] ≥ t , we increment the count by i + 1 (due to
Lemma 3) and then increment by i and j by 1 (Lines 9-12).

However, after the first time l[i] ∗ l[j] < t , we no longer
need to continue to increment i due to Lemma 4. This is
reflected in our algorithm by a Boolean flag F (Lines 1, 4,
11-12). When i and j fail to form an uncertain butterfly, we
need to find the value of i which can form an uncertain but-
terfly algorithmwith j done by finding a minimum uncertain
probability value target = t/l[j] (Line 5). We then give i
the largest index (smallest existential probability) in which
l[i] > target , done via a variation of Binary Search called
GT BinarySearch(list, le f t I ndex, right I ndex, target)

on the existential probabilities in index 0 to i − 1 (Line
6). If no such value of i exists, we terminate our algorithm
as no further wedges can be found (Line 7-8).

In Fig. 5, we go through an example of our improved tech-
nique. Noting that t = 0.4, we have our sorted list with six
wedges represented inside.We start our pointers at i = 0 and
j = 1 and calculate that the resulting product of wedge prob-
abilities is 0.72 which is greater than our threshold. As such,
we increase the count by 1 and move both pointers down

Fig. 5 An example of the operation of our improved list counting
method when t = 0.4

one. The next butterfly (represented by wedges at i = 1 and
j = 2) also passes the existential probability check and the
count is increased by 2 (i + 1). This continues until i = 3
and j = 4 in which the represented butterfly has existential
probability of 0.3. Thus, i is moved upwards to l[1] which is
the lowest probability which still passes the threshold check
when multiplied with l[j = 4]. This is found using our GT
Binary Search method. With the count incremented, we only
move j down and the resulting wedge cannot form an uncer-
tain butterflywith anywedge in the list and thus the algorithm
terminates with a count of 8.

Theorem 3 Algorithm 2 produces the correct uncertain but-
terfly count.

Proof Our algorithm can be thought of as iterating through
all values of 0 < j < |l| andfinding the largest value of i < j
which forms an uncertain butterfly. Then, using Lemma 3,
we know that there exist i +1 uncertain butterflies in l which
satisfy the i < j condition for j . This is done for all j
which will result in the exact uncertain butterfly count with
no redundancy. Furthermore, whenever l[i] ∗ l[j] < t , we
know that no future value of i can be greater than the current
value of i as j increases due to Lemma 4. �
Theorem 4 Algorithm2 takes O((|l|)+log(|l|!/

⌈ |l|
2

⌉
)) time.

Proof We iterate j from 1 to |l| − 1 assuming no early ter-
mination which accounts for the O(|l|) portion of the time
complexity. If we were to performGT BinarySearch |l|−1
times on the entire list l, then our time complexity would be
O((|l| − 1) log(|l|). However, since the segment of |l| in
which GT BinarySearch (GT BS) must operate is capped
the first time the function is called and future calls search on
an even smaller space due to Lemma 4.

If GT BS is called when j = |l| − 1, then the total cost
of all GT BS calls is O(log(|l| − 1)). If GT BS is called
when j = |l| − 2, the total possible cost of all GT BS
must be O(log(|l| − 2) + log(|l| − 3)). The most number

of GT BS calls is capped at when j =
⌈ |l|

2

⌉
with a total pos-

sible cost of O(log(
⌈ |l|

2

⌉
)+ log(

⌈ |l|
2

⌉
−1)+· · ·+ log(1)) =

O(log(
⌈ |l|

2

⌉
!)). The total possibleGT BS cost of any smaller

value of j must be smaller than this value.

123

1022 A. Zhou et al.

Given this, the total possible cost of GT BS for list l is

O(max{ j=
⌈ |l|

2

⌉
,...,|l|−1}

{
log(((

∏|l|− j
k=1 (j − k))!)

}
) <

O(log(|l|!/
⌈ |l|

2

⌉
!)) time. �

Despite Theorem 4 appearing expensive due to the facto-
rial, it is still distinctly smaller than O((|l| − 1) log(|l|) =
O((|l| − 1) + log(|l|(|l|−1))) time which in turn is obviously
smaller than the baseline of O(|l|2). In most realistic sce-
narios with the early termination clause and the size of the
GT BS search space potentially reducing bymuchmore than
a single item, the realistic cost of Algorithm 2 can be sig-
nificantly smaller than the worst case that is Theorem 4. All
operations in Algorithm 2 can be done in O(|l|) space, which
can be verified trivially.

5.3 Improved algorithm

Adopting all mentioned improvements, we now present our
Improved Uncertain Butterfly Counting Algorithm
(IU BFC).

Algorithm 3: IU BFC
Input : G: Input Uncertain Bipartite Network t : Uncertainty

Threshold
Output: Ct : Uncertain Butterfly Count

1 W1 ← Extract Backbone Graph;
2 RemoveUnusableEdges(W1, t);
3 Sort N (u) of each u ∈ VW1 by vertex priority;
4 Ct ← 0;
5 foreach u ∈ VW1 do
6 Create H(w) for each Node w in same partition as u;
7 foreach v ∈ N (u) : p(v) < p(u) do
8 foreach w ∈ N (v) : p(w) < p(u) do
9 if Pr(� (u, v, w)) ≥ t then

10 H(w).sorted Insert(Pr(� (u, v, w)));
11 foreach w : |H(w)| > 1 do
12 Ct ← Ct + ImprovedListCount(H(w), t);

Algorithm 3 details our improved algorithm, adopting
the previously mentioned improvements. The first deviation
from the baseline solution is an additional step after extract-
ing the backbone graph where all edges with Pr(e) < t are
removed from W1 for the purposes of wedge (and butterfly)
discovery as per Lemma 1 (Line 2).

We sort by vertex priority (Line 3) and then continue using
a similar wedge discovery approach as the baseline using
the new priority (Lines 5-8). One notable difference from
the baseline is the wedge lists store the wedge existential
probability value instead of the actual nodes. When a wedge
� (u, v, w) is discovered, it is inserted (if Pr(� (u, v, w)) ≥ t
(Lemma 1)) such that the list at H(w) remains sorted (Lines
9-10).

Finally, our alternate listmanagement strategy allows us to
utilise the improved list count strategy detailed in Algorithm
2 (Lines 11-12).

We now examine the changes to space and time complex-
ity of the algorithm compared to our baseline.

Theorem 5 The time complexity of IU BFC is O(
∑

e(u,v)∈E
min{deg(u) log(deg(u)), deg(v) log(deg(v))}).
Proof Our proof utilises the observation from Theorem 1
(and thus from the certain algorithm proof by Wang [43])
in which the total number of wedges containing an edge
e(u, v) is min deg(u), deg(v), which in turn is the maxi-
mum size of a given wedge list l. In turn, the cost of keeping
a list sorted via existential probability is O(|l| log(|l|)). As
shown in Theorem 4, the time complexity of our improved
list combination algorithm (Algorithm 2) is a value which
is less than the cost of keeping the list sorted. Thus, via
dominant terms in big O notation, the final cost of our
algorithm for each wedge list is O(|l| log(|l|)) where l =
min deg(u), deg(v). The cost of deriving the wedge list for
each edge is O(min deg(u), deg(v)) (as per [43]) which is
again dominated.Thus, the cost of finding eachwedge list and
keeping it sorted is O(

∑
e(u,v)∈E min{deg(u) log(deg(u)),

deg(v) log(deg(v))}). �
The memory complexity of IU BFC is unchanged from

UBFC (Theorem 2).

5.4 Sorting by vertex priority versus existential
probability

Vertex Priority is an important tool in the deterministic vari-
ation of this problem as it ensures, in total, each edge is only
examined one time for eachwedge it is a part of. This not only
minimises the cost of the algorithm but also reduces redun-
dancy. However, this idea was formed under the assumption
that all butterflies (and wedges) are required in the final solu-
tion which is evidently not true in our uncertain variant.

Currently, in our improved solution, nodes are sorted by
increasing vertex priority (Algorithm 3 Line 3) and a check is
made for eachwedge to determine if it satisfies the existential
probability constraints (Algorithm 3 Lines 7-10). Of course,
since the nodes are sorted by priority, we can terminate the
iteration through the neighbour list after the first node which
fails the priority check in Lines 7 and 8, which serves as an
important part of both the baseline and our improved solution
in terms of suppressing the cost in this step.

However, we may consider an approach which comes at
this problem from an alternate viewpoint. Instead of sorting
by (increasing) vertex priority, we instead sort by (decreas-
ing) edge existential probability. We can leverage the fact if
edges e1 and e2 do not form a wedge with existential proba-
bility ≥ t , no edges with existential probability smaller than

123

Butterfly counting and bitruss decomposition... 1023

Pr(e2) forms a satisfactory wedge with e1 and vice versa
using the same logic as Lemma 4. The same is true for wedge
combinations with higher existential probability (following
Lemma 3). We will refer to the method in which nodes are
sorted by vertex priority as V P and the method in which
nodes are sorted by edge probability as EP .

Algorithm 4: Sort ByEdgeProb
1 foreach u ∈ VW1 do
2 foreach v ∈ N (u) do
3 foreach w ∈ N (v) do
4 if Pr(� (u, v, w)) ≥ t then
5 if p(v) < p(u) && p(w) < p(v) then
6 H(w).sorted Insert(Pr(� (u, v, w)));
7 else
8 break;

Algorithm 4 shows the modified method for wedge
discovery assuming sorted EP . For an edge e(u, v), we
examine nodes w ∈ N (v) and determine if Pr(e(u, v)) ∗
Pr(e(v,w)) ≥ t (Line 4). If this probability constrain sat-
isfied, we add the wedge if the priority constraint is also
satisfied (Line 5-6). If the probability constraint is not sat-
isfied, we know that there are no more satisfactory wedges
containing e(u, v) and we move on in our search (Line 7-8).

Using V P , nodes A, B and C are checked in that order
with only node A satisfying the existential probability check.
Since node D fails the vertex priority requirement, the wedge
discovery process is terminated.When using EP on the other
hand, nodes E and A are checked in that order with only node
A satisfying the vertex priority check. Since node C results in
a wedge with lower existential probability than t , the wedge
discovery process is terminated.

Both V P and EP ensure that each wedge is only added
to a list once during the entire algorithm so the final result
will remain the same. What the methods do control is the
number of times an edge reaches the alternate check (wedge
probability for V P and vertex priority for EP) step. In V P ,
each edge reaches the alternate check step once for each
wedge it is a part of. Alternatively, in EP , each edge reaches
the alternate check step twice for each wedge with existential
probability ≥ t and zero times otherwise.

Theorem 6 The time complexity of E P is O(
∑

e(u,v)∈E
min{deg(u) log(deg(u)), deg(v) log(deg(v))}+�(e))where
�(e) is the number of wedges � containing e where Pr(�) ≥
t .

Proof The numbers of wedges that will be passed into a list,
as well as the size of each list, are unchanged from Theorem
5. The only change is that for each edge e ∈ E , it will be
checked an additional time for each uncertain wedge it is
contained in. �

The memory complexity of EP is unchanged compared
to V P .

Of course the better method to use between V P and EP is
highly graph and threshold value dependant. The break-point
in which EP is the superior method is when less than 50%
of the wedges in W1 post-pruning have an existential prob-
ability ≥ t . Furthermore, the larger the percentage favours
in one direction indicates the corresponding method is more
efficient by that margin. When the percentage skews towards
100%, V P is significantly better, and when it skews towards
0%, EP is significantly better. Furthermore, it is possible
for EP to become more expensive than even the baseline
if there is minimal or no pruning and a large percentage of
the wedges have an existential probability ≥ t due to the
nature of reaching the check step twice as opposed to once
for each wedges onG than an edge is apart of in the baseline.
Thus, it is recommended for low t values relative to the edge
probability distributions to select V P .

6 Uncertain butterfly counting sampling
algorithms

Whilst exact algorithms are indeed important for determining
the exact uncertain butterfly count on a network, approximate
solutionsmay also provide significant insights at a fraction of
the time cost. As an example, on a giant user-item network,
the operatormay be interested in seeing if their recommenda-
tion strategy broadly increases the uncertain butterfly count
by running an approximation strategy for a few minutes as
opposed to waiting hours or days for an exact strategy to
provide the specific counts.

In this section, we introduce two local sampling tech-
niques aimed at solving the Uncertain Butterfly Counting
problem. The first technique Uncertain Butterfly Sampling
(UBS) operates by local sampling the number of uncertain
butterflies each vertex is a part of. The second technique Pro-
portion Estimation Sampling (PES) uses a local sampling
approach which determines the number of certain butterflies
and estimates the proportion of butterflies on G which are
uncertain.

6.1 Uncertain butterfly sampling (UBS)

For the first approximate solution, we utilise a local sampling
approach to determine the number of uncertain butterflies
containing a sampled vertex or edge. We then propagate that
number outwards accordingly to the entire network and as the
number of samples grows, the average value converges to the
true result. This approach is adapted from a local sampling
deterministic solution proposed by Sanei-Mehri [30] with
the added task of needing to monitor and check existential
probabilities to ensure each uncertain butterfly is valid.

123

1024 A. Zhou et al.

Algorithm 5: vUBLS
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
u: Selected Vertex

Output: Ce
t (u): Extrapolated Uncertain Butterfly Count of u

1 Ce
t (u) = 0;

2 Create H(w) for each Node w in same partition as u;
3 foreach v ∈ N (u) do
4 foreach w ∈ N (v) do
5 if Pr(� (u, v, w)) ≥ t then
6 H(w).sorted Insert(Pr(� (u, v, w)));
7 foreach Node w : |H(w)| > 1 do
8 Ct (u) ← Ct (u) + ImprovedListCount(H(w), t);

9 Ce
t (u) ← Ct (u)|V |

4 ;

Algorithm 5 illustrates a local sampling algorithm for the
number of uncertain butterflies containing a selected vertex
u. Our algorithm follows the deterministic variation [30]with
the key changing being the usage of our ImprovedListCount
technique introduced by us in Algorithm 3 (Lines 1-8), in the
sameway our baseline exact algorithmUBFC wasmodified
from the exact deterministic algorithm.

Theorem 7 The time complexity of Algorithm 5 is O(d2 log
(d)) where d = maxv∈V {deg(v)}
Proof As the idea of vertex priority does not apply in
local search, the maximum number of wedges for a shared
start and end point is the maximum degree of any vertex
(d = maxv∈V {deg(v)}) on G. As proven in Theorem 5,
the Improved List Management technique takes O(d log(d))

time thus our final time complexity is O(d2 log(d)) as any
start node can only have ≤ d end nodes. �
Theorem 8 The memory complexity of Algorithm 5 is O(d2)
where d = maxv∈V {deg(v)}
Proof The total number of wedges that any given vertex in
G can be a part of is d2. �

With the knownnumber of uncertain butterflies containing
u, Ct (u), we extrapolate that number to the entire network
Ce
t (u) (Line 9). We can do this as in there deterministic

sampling approach, it is shown that E[Ce(u)] = C and
Var(Ce(u)) ≤ |V |

4 (C + pv) where C is the certain butterfly
count and pv is the number of pairs of butterflies in G that
share at least a single node [30]. Extending on their proof and
excluding butterflies which do not satisfy t , we can trivially
show that E[Ce

t (u)] = Ct (i.e. the estimator is unbiased) and
Var(Ce

t (u)) ≤ |V |
4 (Ct + pv

t)where p
v
t is the number of pairs

of uncertain butterflies in G that share at least a single node.
We thus implement this in our algorithm.

Algorithm 6 details our vertex-centric Uncertain Butter-
fly Sampling (vUBS) method. For a graph G, threshold t
and a number of samples sampNum, our method estimates

Algorithm 6: vUBS
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
sampNum: Number of Samples

Output: C̃t : Estimated Uncertain Butterfly Count
1 C̃t ← 0;
2 for i = 0; i < n; i + + do
3 u ← Unsampled Vertex from G;
4 Ce

t (u) ← vUBLS(G, t, u);

5 C̃t ← i C̃t+Ce
t (u)

i+1 ;

Fig. 6 A Probability Mass Function (PMF) of the existential probabil-
ities of butterflies in a network, split by the threshold value t . α is the
proportion of butterflies to the right of t

the uncertain butterfly count C̃t . We sample a node u without
replacement and determineCe

t (u) using vUBLS (Algorithm
5) (Line 4-5).We then adjust C̃t accordingly (Lines 6-7). Fur-
thermore, as extended from the deterministic version, if the
algorithm is run for O

(|V |
Ct

(1 + pv
t

Ct
)
)
iterations, it provides

an (ε, δ)-estimator [30].
Whilst we have only detailed the vertex-centric algorithm,

a similar algorithmwhich is edge-centric is also implemented
for the purposes of experimentation. This method holds the
same properties and utilises the same algorithm as the vertex-
centric approach except with references of vertices replaced
with edges.

6.2 Proportion estimation sampling (PES)

Our second sampling approach utilises a different problem
formulation as its basis. One notable difference between
local certain and uncertain butterfly counting techniques for
a selected vertex or edge is that the certain solution is theoret-
ically less expensive in both time and space requirements. As
we are interested in a sampling, and thus approximate, solu-
tion perhaps an approach in which we leverage the speed
of certain sampling and correctly adapt those values to our
problem is of interest.

To accomplish this, let us think of another way of formu-
lating the Uncertain Butterfly Counting problem. Suppose
we have the deterministic butterfly count on the Backbone
Graph C . Then, the uncertain butterfly count can be formu-
lated asCt = αC whereα is the proportion of butterflieswith
existential probability≥ t . Figure6 illustrates this idea in the

123

Butterfly counting and bitruss decomposition... 1025

form of the Probability Density Function (PDF) of butterfly
existential probabilities on a network.

Using this logic, if we can find α, we can use determin-
istic local sampling approaches to quickly estimate C and
thus estimate Ct . Essentially, we can think of each butterfly
as a Bernoulli trial Ber(α) in regards to succeeding if the
existential probability satisfies the threshold t .

Of course determining α exactly is extremely costly and
unfeasible as it requires the discovery of all butterflies, which
in itself already contains the solution to our problem. Instead,
if we can find a way to estimate α, we can utilise the deter-
ministic sampling solution to quickly approach the uncertain
butterfly count. Our estimation method relies on the follow-
ing observation.

Lemma 5 The PDF of Butterfly Existential Probabilities (B-
PDF) can be thought of as a “random” sample of the PDF
of the product of existential probabilities in G for all permu-
tations of four edges (E4-PDF).

Proof Of course, since a butterfly is a structure which con-
tains exactly four edges, the set of all butterflies is located
inside the set of all permutations of four non-identical edges.
Noting that edge probabilities are independent, we can think
of B-PDF as a sample of size C from E4-PDF . Notably,
E4-PFD can be ‘known’ in that all relevant information can
be computed in O(E4) time. That is, no assumptions need
to be made about the model distribution. �

Given Lemma 5, using the Margin of Error (in percent-
age points) statistic for a set of Bernoulli trials [4], we can
determine how much the proportion from B-PDF can devi-
ate from the proportion from E4-PDF with a set confidence
(i.e. a confidence interval). TheMargin of Error (M) equation
is as follows:

M = z

√
α(1 − α)

n
(1)

where z is the z-table confidence interval value (e.g. 2.576
for 99% confidence) and n is the size of the sample set (i.e.
C). This essentially means the estimated value of α is within
the range (α −M, α +M) 99% (or other chosen confidence)
of the time for a sample of size n.

With this we can calculate, with a confidence interval,
the likelihood of a sample set of size C being with a certain
Margin of Error using the proportion α̂ of the E4−PDF . Of
course we cannot know C with certainty but we can estimate
it C̃ via a deterministic sampling technique. A quirk of the
Margin of Error equation is that small changes in the sample
size provide negligible results. It is also known that as the
sample size increases, the relative change in the reduction M
decreases.

We determine C̃ using a vertex-centric deterministic but-
terfly count and extrapolation sampling technique (vBFC ,

Algorithm7) devisedbySanei-Mehri et. al [30]. In this count-
ing technique, the hashmap holds only a single integer for
each end-node, and once wedges are discovered, the but-
terfly counting step can be done in O(1) time. In the same
work, it is also shown that E[Ce(u)] = C (i.e. unbiased),
Var(eC(u)) ≤ V

4 (C + pv) where pv is the pairs of butter-
flies that share one vertex.

Algorithm 7: vBFC
Input : G: Input Uncertain Bipartite Network

u: Selected Vertex
Output: Ce(u): Extrapolated Deterministic Butterfly Count of

u
1 C(u) ← 0;
2 Create H(w) ← 0 for each Node w in same partition as u;
3 foreach v ∈ N (u) do
4 foreach w ∈ N (v) do
5 H(w) ← H(w) + 1;
6 foreach Node w : |H(w)| > 1 do
7 C(u) ← C(u) + (H(w)

2

)
;

8 Ce(u) ← C(u)|V |
4 ;

From this, we can estimate the uncertain butterfly count
as C̃t = α̂C̃ . However, the trivial method of calculating α̂ is
impractical as it checks all combinations of four edges in E .
As such, we determine a more reasonable method.

6.2.1 Further proportion estimation sampling

The gains have been made using vPES compared to vUBS
in regards to the cost of each sample allowing for vPES to
sample more nodes in a shorter timeframe, the trade-off of
a O(|E |4) proportion estimation step is too much in reality
without a dedicated system which stores the E4-PDF . In
that regard, if we can further estimate α, we can adopt the
cheaper sampling process with less associated overhead.

We instead estimate the proportion by sampling from the
E4-PDF , which results in a trade-off of an increased mar-
gin of error for a set confidence in return for a potentially
significant decrease in the cost of the process.

To estimate α̂, given user-defined MS and z values, it is
possible to determine the number of samples required n to
have a given confidence (based on the z value). Since the
population size is known (|E |4), this equation is n = SS

1+ SS+1
|E |4

where SS = 0.25z2

MS
2 . Given the population size of most graphs

is a massive number, for a given MS and z, the sample size is
essentially the same for all graphs. Each sample of the E4-
PDF trivially takes O(1) time and space, thus the time cost
of estimating α̂ is O(n).

Our vertex-centric Proportion Estimation Sampling
(vPES) algorithm is detailed in Algorithm 8. We first calcu-

123

1026 A. Zhou et al.

Algorithm 8: vPES
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
sampNum: Number of Samples

Output: C̃t : Estimated Uncertain Butterfly Count
1 m ← CalcSampleSi ze();
2 α̂ ← E4PropCalculation(E,m);

3 C̃t , C̃ ← 0;
4 for i = 0; i < n; i + + do
5 u ← Unsampled Vertex from G;
6 Ce(u) ← vBFC(G, u);

7 C̃ ← i C̃+Ce(U)
i+1 ;

8 C̃t ← α̂C̃ ;

late the number of samples of the E4-PDF that should be
conducted via themethod discussed above (Line 1). Then, for
each E4-PDF sample required, four random edges in E are
sampled and the resulting existential probability is compared
to t , which derives α̂ (Line 2). We sample vertices without
replacement (a total of sampNum times) and estimate the
deterministic butterfly count C̃ (Lines 4-7). Finally,weoutput
our estimateduncertain butterfly count C̃t = α̂C̃ (Line 8).We
can then calculate theMargin of Error α̂ usingα = α̂, n = C̃ ,
with a given confidence value (Eq.1) then extrapolating this
to confidence interval to C̃t . Following other Monte-Carlo
sampling approaches, this method is unbiased.

Once again, a similar edge-centric algorithm exists with
minimal adjustment to Algorithms 7 and 8 whose details we
have opted to exclude in interest of space.

With the MS and also the Margin of Error estimated from
the B-PDF as described previously (now denoted as MB).
The Margin of Error of our final result can be calculated as
M =

√
MS

2 + MB
2 assuming the same confidence value

was selected for both MS and MB . It should be noted that via
the Law of Large Numbers, the number of samples required
is not linear to the number of edges in the graph.

6.3 Wedge-based sampling

Aside from sampling a single vertex or single edge (effec-
tively sampling two vertices), the use of sampling an entire
wedge is a known method to estimate the butterfly count
[30]. That being said, whilst sampling vertices and edges
uniformly is a straightforward process (as a list of all edges
are often given as the format of inputting a graph), it is much
less trivial to uniformly sample a wedge from a graph with-
out additional pre-processing and/or memory requirements.
However, assuming we have a uniform wedge sampling
method, it becomes trivial to extend both UBS and PES
into a wedge sampling approach.

In order to use a uniformwedge-based samplingmethod, a
simplemethodwould be to enumerate and subsequently store
all wedges in the graph, which takes O(

∑
v∈V deg(v)) =

O(|E |) time but more importantly O(|� |) space. Whilst this
is fine for smaller networks, for larger graphs, this is a restric-
tive requirement. Previous works, particularly in the triangle
counting space [33], have worked from multiple directions
to address this whilst swallowing the additional memory cost
and the cost of scalability. The most common of these meth-
ods being a weighted sample of pivot vertices based on the
number of wedges pivoting at that node, then the uniform
sampling of two neighbours of the pivot node [30].

A known method is utilising Walker’s Alias Sampling
Method [38] which achieves O(1) sampling time with a
O(

∑
v∈V deg(v)) = O(|E |) pre-processing step, as well

as O(|V |) memory cost [39]. Additionally, given the large
or incredibly small numbers that are required for multipli-
cation and particularly division in the pre-processing step,
modern machines running standard programming languages
may struggle to accurately perform operations on very large
graphs.

The method we have chosen to implement for near-
uniform wedge sampling is a Monte-Carlo Markov Chain
method, or more specifically the Metropolis Hastings algo-
rithm, used in the triangle counting space which requires no
additional memory cost but each sample takes O(degmax)

time [29]. This method becomes more accurate as the sam-
ple size increases which means that is less suited for a single
sample use case, in which case utilising a node or edge sam-
pling method is our recommendation.

7 Uncertain bitruss decomposition
algorithms

In this section, we propose an algorithm designed to perform
Uncertain Bitruss Decomposition. Additionally, we delve
into the three different algorithms able to compute the support
of each edge of the graph, a critical step in bitruss decom-
position. These methods aim at dealing with the potential
trade-off of theoretical time complexity associated with the
algorithm and the hidden constant costs required to imple-
ment the algorithms in reality.

Our decomposition algorithm is based off of the certain
variation of theBitrussDecomposition algorithm [44], which
in turn was adapted from the foundational framework set
via multiple works on Truss Decomposition on unipartite
graphs [12,41,57]. The key difference between the two is in
counting the initial uncertain support of each edge (i.e. the
local uncertain butterfly count), a task that largely affects
the overall runtime of the algorithm if implemented poorly.
As can be inferred from the algorithms, we designed to
tackle UBFCP , with the exception of baseline UBFC and
edge-based UBS, the methods will batch together multiple
edges together when increasing the global count in a way
that makes it impossible to update the local support of each

123

Butterfly counting and bitruss decomposition... 1027

edge. Additionally, whilst porting UBFC directly is possi-
ble, the method is theoretically and practically much slower
than other possible solutions which we will discuss.

Algorithm 9: UBit D
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
Output: Dt : The Uncertain Bitruss Decomposition of G for t

1 foreach e ∈ E do
2 Derive supt (e);
3 for e with the lowest supt (e,G) do
4 φt (e) ← supt (e,G) Dt .insert({e, φt (e)});
5 foreach ⧖t ∈ ⧖t (e) do
6 foreach e′ ∈ ⧖t , e �= e′ do
7 if supt (e,G) < supt (e′,G) then
8 supt (e′,G) = supt (e′,G) − 1;
9 G = G.remove(e);

Ourmethod for uncertain bitruss decomposition is detailed
in Algorithm 9, adapted to our setting from [44]. The first
and arguably most critical step is to determine the uncer-
tain support of each edge in the network (Lines 1-2). More
details regarding how this is accomplished is discussed later.
Then, for the current edge e with the lowest uncertain sup-
port supt (e,G), that value is reported as the uncertain bitruss
number φt (e) = supt (e,G) (Lines 3-4). Then, all other
edges e′ �= e which share an uncertain butterfly with e have
their uncertain supports reduced by one and e is then removed
fromG (Lines 5-9). This process continues until no edges are
left in G implying all edges have been assigned an uncertain
bitruss number.

In order to get the edge e with the current lowest
supt (e,G), this process requires an efficient method. It is not
enough to simply sort the list of edges initially and leave the
ordering the same afterwards as the uncertain supports of cer-
tain edges drop, whilst others remain stable as the algorithm
runs. On small graphs or machines with sufficient memory,
a common method used in the unipartite variation is a Bin
Sort implementation [41]. An implementation of this would
require an additional O(|E |+maxsupt) memory cost where
maxsupt is themaximumuncertain support of any edge inG.
This method however is inexpensive to build, taking O(|E |)
time, and makes selecting the edge with the lowest uncertain
support easy and updating the uncertain support of edges
after edge removal trivial.

In the case where Bin Sort is not viable due to the memory
costs associated with the implementation, it is possible to
instead use a Fibonacci Heap [34] to upkeep the uncertain
supports of all edges without an uncertain bitruss number.
Whilst the Fibonacci Heap takes only O(|E |) memory, less
than or equal to Bin Sort, the other associated costs such as
the extract-min operation (what would be used to retrieve the
edge with the lowest uncertain support) having an amortised

cost of O(log(|E |)) per operation [10] make it unappealing
if it can be avoided (that is if the memory cost of Bin Sort
can be absorbed by the machine being run).

7.1 Deriving initial uncertain supports

Deriving the initial uncertain supports of G is critical to
ensuring the entire algorithm for solving the UBit DP to
run smoothly. However, it should be noted that finding these
uncertain supports cannot be done in the samemanner as find-
ing the global uncertain butterfly count using IU BFC . The
reason for this is IU BFC batches together butterflies before
updating the global count by that size of the batch. However,
as no two butterflies share the exact same four edges in our
problem setting, we cannot batch in such a manner.

We will examine various different methods which may be
used to derive the uncertain support of all edges in a graph, as
well as provide analysis and theoretical comparisons between
the methods. Firstly, we discuss the two key factors which
we must consider when designing and comparing such algo-
rithms.

The first factor is the Big O algorithm time complexity of
the method in question, which obviously will largely play a
large part in projecting the real running time of the algorithms
comparatively.

The second factor we need to consider is more of a cost
which is oftenhidden inBigOnotation, that being thenumber
of times an edge has its uncertain support value updated in the
process of calculating all uncertain support. As a hashtable is
the most obvious structure to use when updating the running
uncertain support of all edges during the execution of the
method, any time cost of the uncertain support update at
any given time is O(1) regardless of how much the count
increases by. As a result, especially for large graphs where
the uncertain support can be in the thousands or higher, the
aim should be tominimise the number of times eachuncertain
support is updated despite the fact the time complexity may
not be noticeably affected.

7.1.1 UBFC-based

Of our existing algorithms, one of themost simple extensions
which may be used to answer the initial uncertain support
derivation is a trivial extension upon the UBFC algorithm
(Algorithm1, Section 4).Given that thismethod compares all
combinations of two wedges to see if the resulting butterfly
is an uncertain butterfly, a simple additional step would be to
increment the current uncertain support for each edge in the
found uncertain butterfly at the time of discovery. As each
uncertain butterfly is discovered once and only once during
the operation of UBFC , the correctness of the algorithm is
guaranteed. We will henceforth refer to this algorithms as
Uncertain Support Calculation-UBFC (USC-UBFC).

123

1028 A. Zhou et al.

Theorem 9 The time complexity of U SC-U BFC is O
(
∑

e(u,v)∈E min{deg(u)2, deg(v)2})
Proof As the cost of increasing the current uncertain support
of an edge is O(1), the rest of the proof extends off of the
proof for Theorem 1. �
Theorem 10 The total number of times an uncertain support
value is modified in U SC-U BFC is

∑
e∈E supt (e,G) =

4Ct

Proof When an uncertain butterfly is discovered in this algo-
rithm, the uncertain support of each edge contained in the
butterfly increases by 1 (i.e. four modifications of uncertain
supports). As the algorithm finds each uncertain butterfly
once and only once, it is evident the total number of uncer-
tain support edges is four times the global uncertain butterfly
count. �

7.1.2 IUBFC-based

Whilst not all downsides of UBFC compared to IU BFC
applies in the initial uncertain support computation varia-
tion of the problem (notably not needing to actually visit
every pair of twowedgeswhich forms an uncertain butterfly),
some areas of improvement do carry over. The most notable
area in which improvement can occur is the elimination of
useless wedge comparisons, an important motivation behind
IU BFC in the global butterfly counting problem. Whilst it
is impossible to not at least visit every pair of wedges which
form an uncertain butterfly, it is not necessary to validate that
the product of the two probabilities is less than t if the sorted
property of the Improved List method is observed (Sect. 5.2).
Furthermore, the ability to skip wedge pairs which are ruled
out using the same properties are still observed in the uncer-
tain support version of our method.

We will first discuss a method of adapting our Improved
List Count method (Algorithm 2) in order to account for
our problem needing to update uncertain support counts as
opposed to just a simple global count. Assume this step exe-
cuted instead of Line 9 of Algorithm 2. A small modification
of the list is that it stores both edges of the wedge in addi-
tion to the wedges existential probability. The trivial method
would be that once an uncertain butterfly has been identified
with pointer i and j pointing, the algorithm reverse iterates
through i to 0 (utilising Lemma 3) in order to identify each
butterfly and thus update each edge by 1 at that time. As an
example assume i = 4 and j = 5 are identified as forming an
uncertain butterfly. Then, the butterfly formed by wedge l[4]
and l[5] means we increment the uncertain support of each
participating edge by 1. Afterwards, the butterfly formed by
wedge l[3] and l[5] increments each edges uncertain support
by 1 and so on and so forth until l[0] and l[5] has their edge
uncertain support incremented.

Algorithm 10: USCImprovedListCount
Input : l: Sorted List of Existential Probabilities

i, j : Current Pointers
1 � 1 ← l[j];
2 foreach e ∈ � 1 do
3 UpdateSupport(e, i + 1);
4 while i ≥ 0 do
5 � 2 ← l[i];
6 foreach e ∈ � 2 do
7 UpdateSupport(e, 1);
8 i ← i − 1;

Algorithm 10 details an alternative uncertain support
updating method for our Improved List Count techniques
which further reduces the number of accesses to memory. At
Line 9 of Algorithm 2, where i and j have been confirmed to
contain an uncertain butterfly, this new algorithm executes.
The improved method notices that the wedge at l[j] makes a
butterfly with each wedge at l[0] through to l[i] and thus can
update the uncertain supports of both edgesmaking upwedge
l[j] in the same way the global count algorithm updated the
count all at once (Lines 1-3). Unfortunately, as there is no
better way to reduce the number of further uncertain support
updates without increasing the complexity of the algorithm,
the algorithm then iterates through each wedge between l[0]
and l[i] and increments the uncertain support of each edge
as it appears (Lines 4-8).

USC-IU BFC refers to our new algorithm for deriving
the initial uncertain supports adapting IU BFC with our new
list counting method.

Theorem 11 The time complexity of U SC-IU BFC is
O(

∑
e(u,v)∈E min{deg(u)2, deg(v)2})

Proof Unlike IU BFC (Algorithm 3), USC-IU BFC may
have to access every possible combination ofwedges for each
list making the time complexity resemble USC-UBFC . �

Whilst USC-IU BFC does not have the same reduction
in time complexity that occurs when comparing IU BFC
to UBFC in the global counting variation, the method still
derives significant benefit from ignoring useless wedge com-
parisons as well as not needing to verify that every butterfly
has an existential probability greater than or equal to t as that
information can be inferred via Lemma 3 and Lemma 4.

Theorem 12 The total number of times an uncertain support
is modified in U SC-IU BFC is 2Ct + 2

∑
(u,v)∈E I where

I = 1 if u and v start and end a wedge (which follows ver-
tex priority ordering [Definition 12]) which is a part of an
uncertain butterfly and I = 0 otherwise.

Proof For each butterfly, two of the edges are incremented
by 1 immediately which accounts for 2Ct . As a result, we
only need to figure out the number of times the algorithm

123

Butterfly counting and bitruss decomposition... 1029

further updates edge uncertain supports (i.e. when a wedge
represented by a j pointer is updated). We can find this num-
ber by considering that for each pair of nodes u and v which
form at least one wedge (following vertex priority) that fur-
ther forms an uncertain butterfly with the rest of the wedges
starting and ending at u and v. Therefore, the two edges of
that wedge have their uncertain support updated once (this is
a j pointer wedge). �

There is a very rare possibility that no twowedge start/end
points u/v are part of more than one uncertain butterfly in
which case the total number of uncertain support modifica-
tions is once again exactly 4Ct . However, this is exceedingly
unlikely particularly for large real bipartite networks. In gen-
eral, the total number of uncertain support modifications of
USC-IU BFC is in the range of (2Ct , 4Ct]which can never
be worse than the 4Ct accesses of USC-UBFC .

7.1.3 Systematic local search

Bothmethodsmentioned above follow the logic used tomoti-
vate global uncertain butterfly counting in that they aim to
find each uncertain butterfly only once and then uses the algo-
rithm structure to try and reduce the number of uncertain
support modifications. That is, the minimisation of theoret-
ical time complexity is prioritised over minimisation of the
amount of uncertain supportmodification.Our alternate solu-
tion reverses this and aims to prioritise the minimisation of
the uncertain support modification.

The absoluteminimumnumber of times the uncertain sup-
port of a single edge can be modified is once. That is, the
uncertain support of that edge is found and the value is mod-
ified from 0 to be its correct value. This means, the minimum
possible number of uncertain support modifications over the
entire runtime of an algorithmmust be |E | exactly (assuming
each edge has nonzero uncertain support).

Algorithm 11: eU BLS
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
e(u, v): Selected Edge

Output: supt (e,G): Uncertain Support of e
1 supt (e,G) = 0;
2 if deg(u) > deg(v) then
3 Swap u and v;
4 Create H(w) for each Node w in same partition as u;
5 foreach w ∈ N (v) do
6 if Pr(� (u, v, w)) ≥ t then
7 H(w).sorted Insert(Pr(� (u, v, w)));
8 foreach Node w : |H(w)| > 1 do
9 supt (e,G) ←

supt (e,G) + ImprovedListCount(H(w), t);

As mentioned in Sect. 6.1, we use a local uncertain but-
terfly counting method which can find the uncertain butterfly
count for a given edge (i.e. the uncertain support). Algo-
rithm 11 provides the details of this method, with largely the
same methodology as the vertex-centric version (Algorithm
5). The time complexity of this local count method is also
O(d2 log(d)) where d = maxv∈V {deg(v)}.

Algorithm 12: USC-LS
Input : G: Input Uncertain Bipartite Network

t : Uncertainty Threshold
Output: St : Initial Uncertain Supports of G

1 foreach e ∈ E do
2 supt (e,G) ← eU BLS(G, t, e);
3 St ← (e, supt (e,G));

Algorithm 12, henceforth referred to as USC-LS, details
the straightforward local search-driven initial uncertain sup-
port derivation algorithm. The method is straightforward
where for each edge on the graph, local search is conducted in
order tofind the exact number of uncertain butterflies contain-
ing said edge. Then, the uncertain support value is updated
all at once in order to minimise accesses to memory.

Theorem 13 The time complexity of U SC-LS is O(|E |d2
log(d)) where d = maxv∈C {deg(v)}
Proof Given that the time complexity of local search for any
given edge e ∈ G is O(d2 log(d)), the remaining proof is
trivial. �

To compare the time complexity of USC-LS with USC-
UBFC and USC-IU BFC , the latter two may have their
time complexity generalised as O(|E |d2). As a result, it is
clear that theoreticallyUSC-LS is more expensive by a fac-
tor of O(log(d)).

Theorem 14 The total number of times an uncertain support
value is modified is |Et | number of times where Et is the set
of edges which have nonzero uncertain support

Proof The value for an edge is derived then the update occurs
all at once. This happens for each edge in the entire system.

�
It is fairly obvious that USC-LS has the least possible

amount of uncertain support updates for a system in which
the uncertain support of each edge is stored in its own unique
location.

7.2 Complexity analysis

In this section, we examine the complexity analysis of our
uncertain bitruss decompositionmethod. For our analysis,we

123

1030 A. Zhou et al.

Table 2 Dataset Information (* indicates variable number)

AvgDeg
Dataset Edge Prob |L| |R| |E | C C/|E |4 L R V

YT Uniform 94,238 30,087 293,360 1.3×107 1.8×10−15 10.22 9.75 4.72

TM N(0.8, 0.2) 901,166 34,461 1,366,466 1.1×107 3.2×10−18 1.51 38.83 2.92

IMDB N(0.6, 0.3) 303,617 896,302 3,782,463 2.3×107 1.1×10−19 12.46 4.22 6.23

FL Uniform 395,979 103,631 8,545,307 3.5×1010 6.6×10−18 21.58 82.46 34.21

DBLP N(0.7, 0.1) 1,953,085 5,624,219 12,282,059 3.2×107 1.4×10−21 6.29 2.18 3.24

LJ N(0.5, 0.2) 3,201,203 7,489,073 112,307,385 3.3×1012 2.1×10−20 35.08 15.00 21.01

OR N(0.5, 0.25) 2,783,196 8,730,857 327,037,487 2.2×1013 1.9×10−21 117.50 37.46 56.81

CD CF 21,019 71,633 1,625,481* 1.5×109* 2.1×10−16* 77.33* 22.69* 35.09*

BC CF 77,802 185,955 433,653* 1.6×106* 4.5×10−17* 5.57* 2.33* 3.23*

assume that we are using the Bin Sort method. We refer to
the general algorithm framework asUBit D with each varia-
tion being referred to as UBit D-UBFC , UBit D-IU BFC
or UBit D-LS depending on the selected initial uncertain
support derivation method.

Theorem 15 The time complexity of our Uncertain Bitruss
Decomposition method is O(S + ∑

e(u,v)∈E
∑

w∈N (v) max
{deg(u), deg(w)}) where S is the time complexity of the
selected initial uncertain support calculation method

Proof Theuncertain bitruss decomposition algorithmUBit D
is broken up into two components, the initial uncertain sup-
port calculation (Part 1) and the peeling process to determine
uncertain bitruss numbers (Part 2). Part 1 depends on the
initial uncertain support derivation algorithm selected, with
the analysis in the relevant areas in Sect. 7.1. As for Part 2,
the peeling component has been utilised in various different
bitruss decomposition implementations with the proof being
verified by Wang [44]. �

In general, Part 1 will dominate Part 2 in terms of both the-
oretical and (as we will show in the experiments) practical
time cost. It should also be noted that whilst Part 2 is largely
the same regardless ofwhich of the three initial uncertain sup-
port calculation methods are chosen, the UBit D − UBFC
andUBit D− IU BFC variants will require the extra step of
needing to re-sort the neighbour lists of eachvertex back to ID
ordering as opposed to Vertex Priority ordering. Ultimately,
this cost can be avoided by storing two neighbour lists in both
ordering types but from experimentation, the extra memory
cost is largely not worth the relatively minor increase in time
cost (< 1% for most large graphs with reasonable t values).

8 Experimentation

In this section, we examine the efficiency and effectiveness
of our proposed algorithms on a diverse range of graphs with

different edge probability distributions and threshold values.
When appropriate, we will preface an algorithmwith v if it is
vertex-centric, e if it is edge-centric orw if it is wedge-centric
(e.g. vUBS is vertex-centric UBS).

8.1 Experiment settings

The datasets used in our experiments are Youtube (YT),
Teams (TM), IMDB, Flickr (FL), DBLP, LiveJournal (LJ),
Orkut (OR), CiaoDvd (CD) and BookCrossing (BC). Table
2 holds the details of all datasets used in this section. In the
Edge Prob. column, if the value is a distribution, this means
we assigned a synthetic weight from that distribution to each
edge based on the popular Normal (N) and Uniform (U) dis-
tributions. Alternatively, for values that say “Collaborative
Filtering”, we utilised existing ratings on the network to esti-
mate the likelihood a user would like another item using a
Collaborative Filtering Item Recommender [32]. On these
networks, we append a number of edges whose probability
was estimated to the end for each experiment. For example,
if for the CD dataset, our experiment added a million extra
edges, we would label the dataset ‘CD1M’. The table also
contains the certain butterfly count C as well as the butterfly
density (C/|E |4) and average degree of the nodes in each
partition as well as combined.

All raw datasets can be found from the Konect project. 1

Our code is written in standard C++11 and compiled using
g++. Our experimental environment is an Intel Xeon Gold
6240R CPU @ 2.40GHz with 1007GB of memory.

We first briefly touch upon the maximum memory con-
sumption of our methods (denoted by the columns UBFC
and IU BFC Memory in Table 3), noting that there is func-
tionally no difference as this is the size of storing the graph
in memory. The size of IU BFC drops after pruning edges
with probability less than t .

1 http://konect.cc/.

123

http://konect.cc/

Butterfly counting and bitruss decomposition... 1031

Table 3 Memory usage

Dataset UBFC memory IU BFC memory

YT 46MB 46MB

TM 186MB 186MB

IMDB 358MB 358MB

FL 700MB 700MB

DBLP 1.45GB 1.45GB

LJ 7.1GB 7.1GB

OR 18.4 GB 18.4GB

Fig. 7 Runtime Comparison of exact algorithms on multiple datasets
(t = 0.8)

We now examine the Efficiency (Sect. 8.2) and Effective-
ness (Sect. 8.3) of ourUBFCP algorithms before examining
the Efficiency of our UBit DP methods (Sect. 8.4)

8.2 Efficiency of exact UBFCP algorithms

In this section, we examine the efficiency of both variants of
IU BFC (IU BFC-V P and IU BFC-EP in Sect. 5) and
compare their runtimes with our proposed baseline UBFC
(Sect. 4). Since they are exact solutions, the effectiveness
need not be compared. If an algorithm did not conclude after
100h of being run, we terminated it. All instances of this will
be noted as required.

The runtime of each algorithm for a set of datasets is vis-
ible in Fig. 7 (where t = 0.8). Clearly both our improved
algorithms are faster than the baseline (UBFC for LJ and
OK both did not finish after 100h) due to our improvements.
Our exact algorithms can take considerable time on the larger
datasets, indicating a need for our approximate methods as
an alternative if a strictly exact solution is not needed.

Figure8 illustrates that as t approaches 1, the runtime of
both IU BFC-V P and IU BFC-EP becomes significantly
smaller than the baseline. Notably, the runtime of IU BFC-
EP starts higher but drops in a much sharper manner and
ultimately becomes faster than IU BFC-V P , as the number
of uncertain wedges rapidly diminishes reducing the added
costs on IU BFC-EP that do not exist on IU BFC-V P

Fig. 8 The change in runtime as the threshold value t changes

Fig. 9 The change in runtime as the threshold value t changes for
various distributions

whilst maintaining the benefits (see Sect. 5.4). We observe
that the runtime of IU BFC-V P is never slower thanUBFC
even when t is effectively equal to 0.

We further examine the effect that the distribution of edge
probabilities has on the runtime for varying t values. For the
YouTube dataset, we examine the Normal (μ = 0.5, σ =
0.2), Uniform, Exponential andReverse Exponential (λ = 2)
distributions on Fig. 9.

Figure10 examines the runtime per edge of our two
improved algorithms compared to the butterfly density
(C/|E |4) as well as the average degree. We note that there
does not appear to be a correlation between runtime and but-
terfly density, but there is one between runtime and average
degree (whichmakes sense based on our time costs (Theorem
5).

Figure11 examines the change in runtime as the num-
ber of edges (and subsequently average degree) changes on
our Collaborative Filtering datasets. It is evident that both

123

1032 A. Zhou et al.

Fig. 10 The runtime of IU BFC-V P and IU BFC-EP per Edge com-
pared to Butterfly Density and Average Degree (for t = 0.8)

Fig. 11 The change in runtime against the number of edges

Fig. 12 The average percentage error after 100 samples as t increases.
Corresponding α values are also included

IU BFC-V P and IU BFC-EP are both much more scal-
able than the baseline.

8.3 Effectiveness of sampling UBFCP algorithms

Weexamine the effectiveness of our two sampling algorithms
UBS (Sect. 6.1) and PES (Sect. 6.2) using the Further
Proportion Estimation method (Sect. 6.2.1). For all PES
experiments, we set the desired Margin of Error MS for Fur-
ther Proportion Estimation Sampling at 0.01 and z value at
2.56. This experiment takes the mean after 100 samples 500
times.

Figure12 details the change in percentage error as the
value of t increases (and subsequently the proportion α

decreases). It can be seen that all variants ofUBS are highly
effective, whilst variants of PES at lower t values are also
efficient. Whilst there is no noticeable difference in the three

PES variations, it should be noted that wedge-based UBS
is less stable which can be attributed to the 100 sample size.
Given the use of MCMC to sample wedges ‘uniformly’, an
increased sample size would lead to an error more in-line
with the other UBS methods.

One noticeable effect is that as t increases and α grows
smaller, the error of PES ultimately increases. This is due
to the Further Proportion Estimation technique having a set
Margin ofError (MS) on α̂, which in our experimentationwas
set to 0.01. This of course means that our sampled proportion
is allowed to deviate from the true proportion by up to that
much, which is not an issue for most α values. However, for
small α values, this can allow for a large relative difference
in acceptable α̂ values. For example if the true α value is
0.02, an α̂ value between 0.01 and 0.03 is within our allowed
range despite being able to create up to a 50% change in the
estimated uncertain butterfly count. As a result,UBS should
be favoured when the α value becomes extremely small. It
should be noted that a very high α value will not effect the
Error % of the final count in the same way. Both algorithms
are similarly effective for larger α values (smaller t values).

8.4 Efficiency of sampling UBFCP algorithms

We now investigate the efficiency of our sampling algorithm
and consider situations in which one may be preferred over
the other.

The average running cost of single sample of each algo-
rithm on a variety of different datasets and t values is visible
onFig. 13. In general, the cost of a single sample (as evaluated
in Theorem 7) scales with the average degree of the network
and not the total number of vertices or edges. Therefore, on
networks where the majority of edges have a reasonably low
degree the algorithm can scale effectively. Even on networks
with a high average degree because of ‘hub’ nodes raising the
average still means our algorithm scales reasonable (espe-
cially when using edge-/wedge-based sampling which can
search for uncertain butterflies on the side of the edge/wedge
which is not a hub).

Using conventional wisdom, we would expect wedge-
based sampling to more efficient than vertex and edge-based
sampling as fixing three nodes can significantly reduce the
search space compared to fixing only two or even one of the
nodes. Whilst this is certainly true on large datasets with a
high amount of edges, as well as average degree like ‘LJ’
and ‘OR’, it is noticeably not true for other datasets. This is
of course due to the added cost associated utilising the ver-
tex MCMC method to uniformly sampled wedges from our
graph, which will take more time on sparser graphs as the
algorithm tries to even find a wedge. It is also noticeable that
PES sometimes is outperformed by UBS, which is a result
that we further explore below.

123

Butterfly counting and bitruss decomposition... 1033

Fig. 13 Average running time
of a single sample for a dataset
with the input threshold in
square brackets

Fig. 14 The change in runtime per sample as the threshold value t
changes

Figure14 illustrates the effect that an increasing t value
(by increments of 0.1) has on the runtime of our sampling
algorithms. All PES algorithms have a stable runtime for
all t values which is unsurprising given how both methods
look at all butterflies regardless of existential probabilities.
However, as t → 1, vertex and edge-basedUBS become the
faster options due to our improved list management method
as well as not adding in any useless edges into any lists. This
indicates a strong preference towards UBS algorithms for
high t values in the case of vertex and edge-centric methods.
On the other hand, wedge-based sampling shows a slightly
different story. In general, wedge-based UBS and PES are
seen to be stable in runtime as t increases. This suggests that
the significant decrease in search space already accounts for
most of the savings found by the vertex and edge-centric
approach.

One interesting point is that vertex and edge-based
approaches can be faster than wedge-based ones (most
notable on the IMDB dataset). The reasoning for this is the
overhead associatedwith the VertexMCMCwhichwe utilise
to near-uniformly sample wedges from the network. When
vertex and edge-based sampling approaches are naturally
fast on a given graph/threshold combination, this overhead

becomes apparent in the sampling time of wedges in com-
parison.

Additionally, wUBS is faster than wPES for all t val-
ues (this is also true for CD8M though the scale hides the
effect) though this can be attributed to the cost of deriving
α̂, a cost which was not significant in vertex and edge-based
approaches but becomes noticeable here.

From our sampling experiments, we can infer that on
larger t values,UBS should be favoured due to its improved
list management and edge/wedge discarding techniques
resulting in a faster runtime than PES. On the other hand,
PES may be favoured for lower t values (with an appro-
priate subsequent α value) as the runtime is stable for all
values of t and can be cheaper than UBS as deterministic
butterfly counting is less expensive than uncertain butter-
fly counting even after factoring in the cost associated with
Further Proportion Estimation. Additionally, for lower t val-
ues, PES does not encounter the problems associated with
a very small α value which means the subsequent estimated
Uncertain Butterfly Count is similar in accuracy to UBS.
Wedge-based methods can be significantly faster than vertex
and edge-based techniques, though on sparser graphs, it may
perform worse. Ultimately, given the cost of a sample is so
minimal, a practical solution in implementation would be to
sample eachmethod once and select the onewith the smallest
runtime to use for a given graph/threshold combination.

8.5 Bitruss effectiveness

In this subsection, we briefly empirically show that our
model is able to capture the growth in a community with
recommended edges against the existing communities on a
recommendation edge-less graph.

Table 4 shows the difference in size of the bitrusses
at various k values compared to the bitruss size on the
default CiaoDvd and BookCrossing graphs. As baseline BC
is sparse, the growth at k = 1 is especially noticeable. In
comparison, CD is a much denser dataset yet the growth is
still noticeable. In general, we are able to capture this growth

123

1034 A. Zhou et al.

Table 4 Increase in bitruss size
compared to default graph

k CD4M BC4M

1 1.67× 5.76×
5 1.41× 1.78×
10 1.30× 1.54×
15 1.24× 1.51×

Fig. 15 Runtime Comparison of uncertain bitruss decomposition algo-
rithms on multiple datasets (t = 0.8)

using the uncertain bitruss structure in a way that the normal
bitruss cannot without making rigid assumptions regarding
the existence of an edge with probability < 1.

8.6 Efficiency of UBitDP algorithms

In this section, we examine the efficiency of our uncer-
tain bitruss decomposition techniques. Like when examining
exactUBFCP algorithms, we do not need to examine effec-
tiveness as these algorithms are also exact and deterministic.
The algorithms we examine are UBit D-UBFC , UBit D-
IU BFC and UBit D-LS (Sect. 7).

The runtime of the three uncertain bitruss decomposition
algorithms on amultitude of different datasets is examined in
Fig. 15. We can observe that in general that for the given t =
0.8 parameter, these datasets indicate thatUBit D-UBFC is
significantly outperformed by both other algorithms which
is in-line with our theoretical expectations. The difference
in cost between UBit D-IU BFC and UBit D-LS is less
pronounced but there exist datasets in which either method
outperforms the other which we will further explore later.

In order to understand the costs associated with the two
parts of uncertain bitruss decomposition, Fig. 16 details the
percentage of the runtime that is taken up by the peeling
process (Part 2 of the uncertain bitruss decomposition algo-
rithm). This is the universal algorithm that is run once the
uncertain supports are derived. It is evident that, observed in
conjunction with Fig. 15, the relative cost of peeling is less
than the uncertain support derivation. The percentage is cer-

Fig. 16 The relative percentage of the runtime that is taken up by the
peeling portion (Part 2) of the uncertain bitruss decomposition algo-
rithm. ‘LJ’ and ‘OR’ forUBit D-UBFC are omitted as the algorithms
did not terminate after 100h

Fig. 17 The change in runtime of uncertain bitruss decomposition algo-
rithms as t increases

tainly higher for sparser graphs like ‘DBLP’ which makes
sense intuitively given our cost analysis.

Figure17 details the change in runtime of the uncertain
bitruss decomposition algorithms as the value of t increases.
Unlike global uncertain butterfly counting, the baseline in
UBit D-UBFC is not static for all t values as a lower t value
will result in a more expensive peeling procedure. The two
figures do show that as t increases,UBit D-LS outperforms
UBit D-IU BFC though when t is smaller, the former is
outperformed by UBit D-UBFC , whilst the latter always
outperforms that baseline.

From our experiments, we can give the recommenda-
tion that for graphs with unknown properties, the recom-
mended uncertain bitruss decomposition algorithm would
be UBit D-IU BFC as it will never be outperformed by the
baseline. On the other hand, for a graph that is understood
by the user as well as an accommodating t value, UBit D-
LS could certainly be the most efficient method of the three
produced.

9 Conclusion

In this paper, we have examined the Uncertain Butterfly
Counting Problem as well as Uncertain Bitruss Decompo-

123

Butterfly counting and bitruss decomposition... 1035

sition Problem on uncertain bipartite networks. We formally
defined both the uncertain butterfly and uncertain wedge as
well as proposed a non-trivial baseline for the exact global
counting problem based on the state-of-the-art solution for
the deterministic variant of the problem. We then proposed
two improved algorithms which can drastically reduce the
runtime of the algorithm. Additionally, when an efficiency
for effectiveness trade-off is desired, we propose two alter-
nate sampling solutions which quickly converge near the
true value. For uncertain bitruss decomposition, we propose
a framework with three different initial uncertain support
derivation methods, two of which may be preferable in dif-
ferent scenarios. Our experiments examine all our algorithms
andwe also detail in which scenarios one of themethodsmay
be preferred to the other.

In this extension, we explored a practical community
leveraging the uncertain butterfly, though further innovation
of subgraph structures utilising this building block graphlet
is a point of interest. Additionally, given that the runtime
of uncertain bitruss decomposition is dominated by the cost
of initial uncertain support derivation, a more efficient algo-
rithm to that end could significantly increase the scalability
of that method.

Acknowledgements Yue Wang is partially supported by China NSFC
No. 62002235 and Guangdong Basic and Applied Basic Research
Foundation No. 2019A1515110473. Lei Chen’s work is partially sup-
ported by National Key Research and Development Program of China
Grant No. 2018AAA0101100, the Hong Kong RGC GRF Project
16202218, CRF Project C6030-18G, C1031-18G, C5026-18G, RIF
Project R6020-19, AOE Project AoE/E-603/18, Theme-based project
TRS T41-603/20R, China NSFC No. 61729201, Guangdong Basic and
Applied Basic Research Foundation 2019B151530001, Hong Kong
ITC ITF grants ITS/044/18FX and ITS/470/18FX, Microsoft Research
Asia Collaborative Research Grant, HKUST-NAVER/LINE AI Lab,
HKUST-Webank joint research laboratory grants.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abiteboul, S., Kanellakis, P., Grahne, G.: On the representation and
querying of sets of possible worlds. SIGMOD pp. 34–48 (1987).
https://doi.org/10.1145/38713.38724

2. Al Hasan, M., Dave, V.S.: Triangle counting in large networks:
a review. WIREs DMKD 8(2), e1226 (2018). https://doi.org/10.
1002/widm.1226

3. Asthana, S., King, O.D., Gibbons, F.D., Roth, F.P.: Predicting pro-
tein complex membership using probabilistic network reliability.
Genome Res. 14(6), 1170–1175 (2004)

4. Bartlett, J.E., Kortlik, J.W., Higgins, C.C.: Organizational research:
determining appropriate sample size in survey research. ITLPJ
19(1), 43–50 (2001)

5. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-
streaming algorithms for local triangle counting in massive graphs.
In: SIGKDD, pp. 16–24 (2008)

6. Bonchi, F., Gullo, F., Kaltenbrunner, A., Volkovich, Y.: Core
decomposition of uncertain graphs. In: SIGKDD, pp. 1316–1325
(2014)

7. Che, Y., Lai, Z., Sun, S., Wang, Y., Luo, Q.: Accelerating
truss decomposition on heterogeneous processors. PVLDB 13(10),
1751–1764 (2020). https://doi.org/10.14778/3401960.3401971

8. Chen, P.L., Chou, C.K., Chen, M.S.: Distributed algorithms for
k-truss decomposition. Big Data, pp. 471–480 (2014). https://doi.
org/10.1109/BigData.2014.7004264

9. Dallas, T., Park, A.W., Drake, J.M.: Predicting cryptic links in host-
parasite networks. PLoS Comput. Biol. 13, 1–15 (2017)

10. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM 34(3), 596–
615 (1987)

11. Han, K., Gui, F., Xiao, X., Tang, J., He, Y., Cao, Z., Huang, H.:
Efficient and effective algorithms for clustering uncertain graphs.
PVLDB 12(6), 667–680 (2019)

12. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-
truss community in large and dynamic graphs. In: SIGMOD, pp.
1311–1322 (2014)

13. Huang,X., Lu,W., Lakshmanan, L.: Truss decomposition of proba-
bilistic graphs: Semantics and algorithms. In: SIGMOD, pp. 77–90
(2016). https://doi.org/10.1145/2882903.2882913

14. Kabir, H., Madduri, K.: Shared-memory graph truss decomposi-
tion. In: HiPC, pp. 13–22 (2017). https://doi.org/10.1109/HiPC.
2017.00012

15. Khan, A., Chen, L.: On uncertain graphs modelling and queries.
PVLDB 8(12), 2042–2043 (2015)

16. Korovaiko, N., Thomo, A.: Trust prediction from user-item ratings.
Soc. Netw. Anal. Min. 3, 749–759 (2013)

17. Larsen, J.R., Martin, M.R., Martin, J.D., Hicks, J.B., Kuhn, P.:
Modeling the onset of symptoms of covid-19: effects of sars-cov-2
variant. PLOS Comput. Biol. 17(12), 89 (2021)

18. Li, R.H., Yu, J.X., Mao, R., Jin, T.: Efficient and accurate query
evaluation on uncertain graphs via recursive stratified sampling. In:
ICDE, pp. 892–903 (2014)

19. Lind, P., Gonzalez, M.C., Herrmann, H.: Cycles and clustering in
bipartite networks. Phys. Rev. E. (2005). https://doi.org/10.1103/
PhysRevE.72.056127

20. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang,W., Zhou, J.: Efficient (α,
β)-core computation in bipartite graphs. VLDBJ 29(5), 1075–1099
(2020)

21. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient
(α, β)-core computation in bipartite graphs. VLDBJ 29, 1075–
1099 (2020)

22. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., Zhou, J.: Maximum
biclique search at billion scale. PVLDB 13(9), 1359–1372 (2020)

23. Ma, C., Cheng, R., Lakshamanan, L.V.S., Grubernmannm, T.,
Fang, Y., Li, X.: Linc: a motif counting algorithm for uncertain
graphs. PVLDB 13(2), 155–168 (2019)

24. Parchas, P.,Gullo, F., Papadias,D.,Bonchi, F.: The pursuit of a good
possible world: Extracting representative instances of uncertain
graphs. In: SIGMOD, pp. 967–978 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/38713.38724
https://doi.org/10.1002/widm.1226
https://doi.org/10.1002/widm.1226
https://doi.org/10.14778/3401960.3401971
https://doi.org/10.1109/BigData.2014.7004264
https://doi.org/10.1109/BigData.2014.7004264
https://doi.org/10.1145/2882903.2882913
https://doi.org/10.1109/HiPC.2017.00012
https://doi.org/10.1109/HiPC.2017.00012
https://doi.org/10.1103/PhysRevE.72.056127
https://doi.org/10.1103/PhysRevE.72.056127

1036 A. Zhou et al.

25. Pavlopoulos, G.A., Kontou, P.I., Pavlopoulou, A., Bouyioukos, C.,
Markou, E., Bagos, P.G.: Bipartite graphs in systems biology and
medicine: a survey of methods and applications. GigaScience 7(4),
87 (2018)

26. Peeters, R.: The maximum edge biclique problem is np-complete.
Discret. Appl. Math. 131(3), 651–654 (2003). https://doi.org/10.
1016/s0166-218x(03)00333-0

27. Phillips, C., Wang, K., Baker, E., Bubier, J., Chesler, E., Langston,
M.: On finding and enumerating maximal and maximum k-partite
cliques in k-partite graphs. Algorithms 12(1), 23 (2019). https://
doi.org/10.3390/a12010023

28. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neigh-
bors in uncertain graphs. PVLDB 3(1), 997–1008 (2010)

29. Rahman, M., Al Hasan, M.: Sampling triples from restricted net-
works using mcmc strategy. In: CIKM, pp. 1519–1528 (2014).
https://doi.org/10.1145/2661829.2662075

30. Sanei-Mehri, S.V., Sariyuce, A.E., Tirthapura, S.: Butterfly count-
ing in bipartite networks. SIGKDD 24, 2150–2160 (2018)

31. Sanei-Mehri, S.V., Zhang, Y., Sariyüce, A.E., Tirthapura, S.: Fleet:
Butterfly estimation from a bipartite graph stream. In: CIKM, pp.
1201–1210 (2019). https://doi.org/10.1145/3357384.3357983

32. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collab-
orative filtering recommendation algorithms. WWW pp. 285–295
(2010)

33. Schank, T., Wagner, D.: Approximating clustering-coefficient and
transitivity. J. Gr. Algorithms Appl. 9(2), 265–275 (2005)

34. Shi, J., Shun, J.: Parallel algorithms for butterfly computations. In:
APoCS, pp. 16–30 (2020)

35. Smith, S., Liu, X., Ahmed, N.K., Tom, A.S., Petrini, F., Karypis,
G.: Truss decomposition on shared-memory parallel systems. In:
HPEC, pp. 1–6 (2017)

36. Sungur, I., Ren, Y., Ordóñez, F., Dessouky,M., Zhong, H.: Amodel
and algorithm for the courier delivery problem with uncertainty.
Transp. Sci. 44(2), 193–205 (2010)

37. Suthram, S., Shlomi, T., Ruppin, E., Sharan, R., Ideker, T.: A direct
comparison of protein interaction confidence assignment schemes.
BMC Bioinf. 7, 360–370 (2006)

38. Vose,M.: A linear algorithm for generating random numbers with a
given distribution. IEEETrans. Softw. Eng. 17(9), 972–975 (1991).
https://doi.org/10.1109/32.92917

39. Walker,A.J.: New fastmethod for generating discrete randomnum-
bers with arbitrary frequency distributions. Electron. Lett. 10(8),
127–128 (1974)

40. Walker, J.G., Plein, M., Morgan, E.R., Vesk, P.A.: Uncertain links
in host-parasite networks: lessons for parasite transmission in a
multi-host system. Philos. Trans. R. Soc. B 372, 86 (2017)

41. Wang, J., Cheng, J.: Truss decomposition in massive networks.
PVLDB 5(9), 812–823 (2012)

42. Wang, J., Fu, A.W., Cheng, J.: Rectangle counting in large bipar-
tite graphs. In: BigData, pp. 17–24 (2014). https://doi.org/10.1109/
BigData.Congress.2014.13

43. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Vertex
priority based butterfly counting for large-scale bipartite net-
works. PVLDB 12(10), 1139–1152 (2019). https://doi.org/10.
14778/3339490.3339497

44. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss
decomposition for large-scale bipartite graphs. In: ICDE, pp. 661–
672 (2020). https://doi.org/10.1109/ICDE48307.2020.00063

45. Wang, Y., Xu, R., Jian, X., Zhou, A., Chen, L.: Towards distributed
bitruss decomposition on bipartite graphs. PVLDB 15(9), 1889–
1901 (2022)

46. Wilder, B., Yadav, A., Immorlica, N., Rice, E., Tambe, M.:
Uncharted but not uninfluenced: influence maximization with an
uncertain network. AAMAS 16, 1305–1313 (2017)

47. Wolf, M.M., Deveci, M., Berry, J.W., Hammond, S.D., Raja-
manickam, S.: Fast linear algebra-based triangle counting with
kokkoskernels. In: HPEC, pp. 1–7 (2017). https://doi.org/10.1109/
HPEC.2017.8091043

48. Yuan, Y., Chen, L., Wang, G.: Efficiently answering probability
threshold-based shortest path queries over uncertain graphs. In:
DASFAA, pp. 155–170 (2010)

49. Yuan, Y., Wang, G., Chen, L., Wang, H.: Efficient keyword search
on uncertain graph data. TKDE 25(12), 2767–2779 (2013). https://
doi.org/10.1109/TKDE.2012.222

50. Zeng, Y., Tong, Y., Chen, L.: Last-mile delivery made practical:
an efficient route planning framework with theoretical guarantees.
PVLDB 13(3), 320–333 (2020)

51. Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J.,
Langston, M.A.: On finding bicliques in bipartite graphs: a novel
algorithm and its application to the integration of diverse biological
data types. BMC Bioinform. 15(1), 110 (2014). https://doi.org/10.
1186/1471-2105-15-110

52. Zhao, B., Wang, J., Li, M., Wu, F., Pan, Y.: Detecting protein
complexes based on uncertain graph model. IEEE/ACM Trans.
Comput. Biol. Bioinform. 11(3), 486–497 (2014). https://doi.org/
10.1109/TCBB.2013.2297915

53. Zhou, A., Wang, Y., Chen, L.: Finding large diverse communities
on networks: the edgemaximum k*-partite clique. PVLDB 13(12),
2576–2589 (2020). https://doi.org/10.14778/3407790.3407846

54. Zhou, A., Wang, Y., Chen, L.: Butterfly counting on uncertain
bipartite graphs. PVLDB 15(2), 211–223 (2021). https://doi.org/
10.14778/3489496.3489502

55. Zhou, T., Ren, J., Medo, M.C.V., Zhang, Y.C.: Bipartite network
projection and personal recommendation. Phys. Rev. E 76, 046115
(2007). https://doi.org/10.1103/PhysRevE.76.046115

56. Zou, Z.: Bitruss decomposition of bipartite graphs. In: DASFAA,
pp. 218–233 (2016)

57. Zou, Z., Zhu, R.: Truss decomposition of uncertain graphs. Knowl.
Inf. Syst. 50(1), 197–230 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/s0166-218x(03)00333-0
https://doi.org/10.1016/s0166-218x(03)00333-0
https://doi.org/10.3390/a12010023
https://doi.org/10.3390/a12010023
https://doi.org/10.1145/2661829.2662075
https://doi.org/10.1145/3357384.3357983
https://doi.org/10.1109/32.92917
https://doi.org/10.1109/BigData.Congress.2014.13
https://doi.org/10.1109/BigData.Congress.2014.13
https://doi.org/10.14778/3339490.3339497
https://doi.org/10.14778/3339490.3339497
https://doi.org/10.1109/ICDE48307.2020.00063
https://doi.org/10.1109/HPEC.2017.8091043
https://doi.org/10.1109/HPEC.2017.8091043
https://doi.org/10.1109/TKDE.2012.222
https://doi.org/10.1109/TKDE.2012.222
https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.1109/TCBB.2013.2297915
https://doi.org/10.1109/TCBB.2013.2297915
https://doi.org/10.14778/3407790.3407846
https://doi.org/10.14778/3489496.3489502
https://doi.org/10.14778/3489496.3489502
https://doi.org/10.1103/PhysRevE.76.046115

	Butterfly counting and bitruss decomposition on uncertain bipartite graphs
	Abstract
	1 Introduction
	1.1 Our contributions

	2 Related works
	3 Problem definition
	3.1 Uncertain butterfly counting problem
	3.2 Butterfly counting
	3.3 Uncertain bitruss decomposition problem

	4 Uncertain butterfly counting exact algorithms-baseline
	4.1 Algorithm complexity

	5 Uncertain butterfly counting exact algorithms-improvements
	5.1 Early edge/wedge discarding
	5.2 Improved list management
	5.3 Improved algorithm
	5.4 Sorting by vertex priority versus existential probability

	6 Uncertain butterfly counting sampling algorithms
	6.1 Uncertain butterfly sampling (UBS)
	6.2 Proportion estimation sampling (PES)
	6.2.1 Further proportion estimation sampling

	6.3 Wedge-based sampling

	7 Uncertain bitruss decomposition algorithms
	7.1 Deriving initial uncertain supports
	7.1.1 UBFC-based
	7.1.2 IUBFC-based
	7.1.3 Systematic local search

	7.2 Complexity analysis

	8 Experimentation
	8.1 Experiment settings
	8.2 Efficiency of exact UBFCP algorithms
	8.3 Effectiveness of sampling UBFCP algorithms
	8.4 Efficiency of sampling UBFCP algorithms
	8.5 Bitruss effectiveness
	8.6 Efficiency of UBitDP algorithms

	9 Conclusion
	Acknowledgements
	References

