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Abstract
Real-world data of multi-class classification tasks often show complex data characteristics that lead to a reduced classification
performance. Major analytical challenges are a high degree of multi-class imbalance within data and a heterogeneous feature
space, which increases the number and complexity of class patterns. Existing solutions to classification or data pre-processing
only address one of these two challenges in isolation.We propose a novel classification approach that explicitly addresses both
challenges of multi-class imbalance and heterogeneous feature space together. As main contribution, this approach exploits
domain knowledge in terms of a taxonomy to systematically prepare the training data. Based on an experimental evaluation
on both real-world data and several synthetically generated data sets, we show that our approach outperforms any other
classification technique in terms of accuracy. Furthermore, it entails considerable practical benefits in real-world use cases,
e.g., it reduces rework required in the area of product quality control.

Keywords Classification · Domain knowledge · Multi-class imbalance · Heterogeneous feature space

1 Introduction

Many real-world use cases considermulti-class classification
tasks instead of binary classifications (e.g., see [7,19,25,41,
55]). In multi-class classification, a classifier trained on his-
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torical data must choose one of more than two class labels for
each new observation. The number of possible class labels in
real-world use cases typically ranges from ten to even thou-
sands [7,19,25,41].

The data characteristics in real-world multi-class prob-
lems often impose several analytical challenges for clas-
sification approaches that have a negative effect on the
classification performance. In this paper, we consider the two
challenges of a multi-class imbalance and a heterogeneous
feature space. Multi-class imbalance means that the class
labels occur in an imbalanced way in the data [13,17,42].
Here, many learning algorithms tend to ignore the patterns of
class labels that are underrepresented. The main problem of
a heterogeneous feature space is that each class label may be
associatedwithmultiple class patterns that are represented by
different and overlapping value ranges [17,42]. This makes
it hard to detect clearly distinguishable class patterns.

These two challenges usually occur together in a broad
range of real-world multi-class problems in various appli-
cation domains. This for instance concerns problems across
all stages of an industrial value chain, e.g., manufacturing or
e-commerce [19,25,26,41,45]. Examples are a fault diagno-
sis of complex products or a classification of products into
various product types. Moreover, both a multi-class imbal-
ance and a heterogeneous feature space arise in applications
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of data-driven medical diagnoses. For instance, Chan et al.
summarize corresponding problems from 70 articles related
to data-driven detection of various types of skin cancer [7].
Throughout all these application domains, the two analyti-
cal challenges may be found in different kinds of data, e.g.,
sensor data, text data, and image data.

Various research communities work on the design and
optimization of algorithms for machine learning and data
engineering, e.g. for sampling, feature selection, and classi-
fication. However, most of these algorithms are only suitable
to mitigate the negative effects of one of the two above-
mentioned analytical challenges [19]. In turn, theyworsen the
effects of the respective other challenge. Finally, the applica-
tion of these algorithms that are tailored to single challenges
even reduces prediction performance [19]. Thus, we argue
that a classification approach has to consider both analytical
challenges and their mutual influences.

In this paper, we propose a novel classification approach
that addresses both a multi-class imbalance and a heteroge-
neous feature space. In contrast to most related work, our
approach makes explicit use of available domain knowledge
in terms of a taxonomy to systematically prepare the train-
ing data. The taxonomy allows for segmenting the training
data into several sample subsets. This way, the feature space
within each subset ismuchmore homogeneous. Furthermore,
our approach uses metrics characterizing the class imbalance
to come up with informed decisions how to further partition
the subsets. Thereby, we address multi-class imbalance.

This paper covers comprehensive extensions to an arti-
cle previously published at PVLDB [21]. This prior article
mainly focuses on the application and evaluation of our
approach for a certain use case of a multi-class problem.
This is a data-driven fault diagnosis in End-of-Line (EoL)
testing of complex products [18,19]. Here, the domain tax-
onomy is represented by a product hierarchy that organizes
different product variants into product groups based on the
similarity of the variants. The major outcome of this use-
case-specific evaluation is that our approach outperforms any
baseline solution in terms of classification accuracy [21].

The comprehensive extensions in this paper investigate
our approach in more detail with respect to various aspects
of its generality. In particular, we show the potential of our
approach for other multi-class problems from various appli-
cation domains and for different kinds of data distributions.
To this end, this paper covers the following main contribu-
tions:

– We add descriptions and discussions of algorithms for the
major steps of our approach for preparing training data.
This enhances reproducibility and facilitates the imple-
mentation of thesemajor steps aswell as their application
to data of other use cases.

– We show that the challenges of a multi-class imbal-
ance and a heterogeneous feature space occur in many
other real-world classification problems. This includes
use cases across the whole industrial value chain and
even for data-driven medical diagnoses.

– Furthermore, we discuss the constraints that the available
domain knowledgemust satisfy in order for our approach
to be applicable to the data of these various use cases. This
way, researchers and practitioners of other domains see
under which circumstances they can apply our approach.

– We provide additional measurements with synthetically
generated data sets and different data distributions. This
way, we prove that our approach effectively addresses
the analytical challenges of a multi-class imbalance and
a heterogeneous feature space also for other kinds of
data. In fact, it significantly increases classification per-
formance for any of the synthetic data sets. In addition,
we come up with a more in-depth discussion of these
results. This for instance includes the practical benefits
that our approach entails for real-world use cases and that
it can address ethnic or gender bias in data.

Section 2 provides insights into real-world data character-
istics and the two considered analytical challenges. In Sect. 3,
we discuss related work. Section4 describes our classifica-
tion approach, including the novel algorithms for its major
steps. Section5 discusses the results of our evaluation for the
specific use case of EoL testing. The following two sections
prove that our approach is generally applicable to further use
cases and that it addresses a multi-class imbalance and a het-
erogeneous feature space even for other data distributions.
Section6 provides theoretical discussions regarding the gen-
erality of our approach, i.e., why it may be applied in other
application domains. In Sect. 7, we discuss evaluation results
for newly generated synthetic data sets. We conclude and list
future work in Sect. 8.

2 Analytical challenges in real-world
multi-class classification problems

In this paper, we focus on multi-class classification prob-
lems. Here, each observation is associated with exactly one
ofC > 2 class labels ci ∈ C = {c1, . . . , cC }. We train a clas-
sifier M on a historical data set X with N samples (xt , yt ).
Each xt characterizes an observation as an element of an F-
dimensional feature space F = { f1, . . . , fF }. yt represents
the target class label ci associated with xt . In this section,
we exemplify the two analytical challenges of a multi-class
imbalance and a heterogeneous feature space bymeans of the
real-world use case for fault diagnosis in EoL testing [19].
Nevertheless, these challenges are prevalent in other appli-
cation domains as well (see Sect. 6.1).
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In our use case, we consider powertrain aggregates, e.g.,
engines of motor vehicles. EoL testing constitutes the final
functional check of such products after assembly. Thereby,
product characteristics are tested based on sensor signals
from a test bench. If a product does not pass the test, qual-
ity engineers try to identify the faulty component that causes
the quality issue, e.g., a turbo charger. Operators replace the
assumed faulty component and test the product again.

A data-driven classificationmay help quality engineers by
recommending the most likely faulty components [19]. This
constitutes a multi-class problem as described above. Each
sample in the setX corresponds to a quality issue, while each
class ci represents one of the possibly faulty components
of powertrain aggregates. In our use cases, the sample set
X contains N = 1050 samples with C = 84 classes and
F = 115 features [19]. Most of the features are the sensor
signals of the test bench,while someof them represent certain
product characteristics, e.g., the number of engine cylinders.

Note that it is common in several real industrial multi-
class problems that the data sets include such a comparatively
small number of samples that are labeled correctly and may
thus be used to train classifiers [25,26,41,55].One of themain
reasons is that a correct labeling of samples requires domain
expertise and lots of effort [4,37,41]. In the following, we
discuss how a multi-class imbalance (C1) and a heteroge-
neous feature space (C2) even complicate the classification
problem.

2.1 C1: Multi-class imbalance

In the sample setX of the EoL case, the top 5 classes together
are contained in 29% of all samples, where each individual
class has a comparatively high share of at least 4%.Wedenote
such top classes as majority classes c+

i and their samples
as majority samples X+. Each of the remaining 79 classes
individually has a low share of samples, but all together are
representedby71%of the samples.Wedenote themasminor-
ity classes c−

i that are represented by minority samples X−.
This uneven class distribution poses a multi-class imbal-

ance problem [17]. Most classification algorithms tend to
ignore minority samples X− because they try to maximize
accuracy by predicting everything to be one of the majority
classes c+

i . Hence, the resulting classifiers are biased towards
majority classes [13]. We however require classifiers with a
balanced degree of accuracy for both minority and major-
ity classes. In a worst case, we are otherwise only able to
predict five majority classes c+

i , while 79 minority classes
c−
i and thus 71% of all samples are ignored. Note that this
is also an issue in many other real-world multi-class prob-
lems [7,25,41].

Fig. 1 Product hierarchy and numbers of samples N , classes C , and
features F for the product groups in X

2.2 C2: Heterogeneous feature space

The samples in X describe a variety of product variants
with different technical specifications. The manufacturing
domain groups products with similar technical characteris-
tics into product groups and organizes them in a product
hierarchy [1]. Figure1 shows a typical product hierarchy for
the engines of our use case. The first hierarchy level differen-
tiates engines according to their series, e.g., whether they are
diesel or gasoline engines (DE, GE). Level 2 divides them
into engine types. For instance, groupGE54 comprises four-
cylinder gasoline engines, and GE56 six-cylinder gasolines.
The bottom level describes engine models that further spec-
ify the components of an engine, e.g., which kind of injector
it has. This product variety increases the heterogeneity in the
feature space and leads to the following issues.

(C2.1) Missing features: Some features fk are only mea-
sured for certain product variants. For example, the test
bench delivers one particular feature for each cylinder of an
engine. So, product variants in group GE54 comprise four
features for cylinders, while six-cylinder variants in group
GE56 comprise two additional features. The data structure
of sample set X contains a column for each of the overall
115 features. Hence, a sample has six columns for cylinders,
whereas two of these columns do not contain any value (i.e.,
“NA”) for four-cylinder variants. This issue leads to several
missing feature values in the whole set X . In our use case,
17% of all values in X are “NA” values.

To train a classifier, the missing values must be imputed
or removed. We then either create artificial values for some
features fk that have no technical causality to a particular
product variant, or we remove features that may character-
ize a specific class ci . For group GE54 with four cylinders,
imputing values means that we generate artificial features fk
for the cylinders No. 5 and No. 6 that are however physically
not available. By removing the features for cylinders No. 5
and No. 6, we lose information for group GE56 with six
cylinders.
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Fig. 2 Illustration of analytical challenge sub-concepts (C2.2) with two
classes circle and star. Rectangles define the actual (sub-)concepts, i.
e., the decision rules

(C2.2) Sub-concepts: For different product variants, the
same class ci may be defined by the same features, but
with different value ranges. Hence, classification algorithms
may have to learn multiple concepts for a single class. This
even reduces the number of samples that is covered by each
concept. This challenge is called sub-concepts in literature
[17,42]. Figure2 shows an artificial data set with two exam-
ple features and two classes. For example, the figure shows
concept B for group GE56 and sub-concept B ′ for group
GE54. B and B ′ describe patterns for class star with the
same features f1 and f2. However, B is characterized by low
f1 and medium f2 values, while samples of B ′ have high f1
and low f2 values. Here, sub-concept B ′ is only represented
by three minority samples of class star. This lack of sam-
ples may cause a learning algorithm to neglect sub-concept
B ′. The feature ranges for B ′ are then assigned to the wrong
concepts A or A′ of class circle.

3 Related work

Related work comprises several methods that address class
imbalance (C1). Various reviews show that most methods are
designed for two-class problems and are hence less effective
for multi-class tasks [10,13,16,17,29,42,56]. Most solutions
use class decomposition schemes such as One-vs-All (OvA)
to convert a multi-class problem into several two-class prob-
lems.Afterwards, they apply two-class imbalance techniques
to balance each binary sub-problem [50]. However, such
decomposition schemes may reduce prediction performance
if the data also contains a heterogeneous feature space
(C2) [19]. The few exceptions that deal with multi-class
imbalance are cost-sensitive techniques that consider costs as
penalty of different types of misclassification [10,17,42,50].
One difficulty is that the real costs are often unknown or hard
to calculate for a given problem [16,42]. Furthermore, these
techniques may only address multi-class imbalance, but they
are not able to additionally balance underrepresented sub-
concepts (C2.2).

Other approaches use ensembles that employ random
subspace selection to address the missing feature problem

(C2.1) [33,35]. The idea is to generate multiple base learn-
ers L j that each is trained with a random subset of features
from the feature space F . To classify a new sample xt with
missing features, only those base learnersL j trained with the
features that are available in xt are used. Polikar et al. [35]
show that this approach has two assumptions: First, the set
of features inF is partly redundant, so that the classification
problem is solvable with a real subset of the features. Second,
this redundancy is distributed evenly overF . However, a het-
erogeneous feature space with a multiplicity of sub-concepts
(C2.2) entails that these assumptions do not hold for the given
sample set X . For instance, a previous study shows that only
10 out of the initial 115 features of the sample set of our
EoL test case were rated as redundant by feature selection
techniques [19].

So, numerous statistical techniques exist that address sin-
gle challenges in isolation. However, these techniques imply
other negative effects to classification. Our key statement is
that a classification approach has to consider all challenges
and theirmutual influences. Here, we opt for an approach that
explicitly uses domain knowledge to systematically prepare
the training data.

Related approaches use a pre-defined class taxonomy
for hierarchical classification [39]. The assumption is that
classes belonging to the same concept in the taxonomy have
shared characteristics and relationships. We can then train
a classifier Ml for each level l of the taxonomy. Based on
the prediction ofMl , we apply the next classifierMl+1 one
level lower.We repeat this until we recognize the classes ci on
the leaf nodes. However, this does not solve the problemwith
multiple and unevenly distributed sub-concepts (C2.2). Here,
we require a hierarchy that organizes the individual sub-
concepts instead of the classes. This is for instance offered by
a product hierarchy that organizes individual product groups
and thus also their sub-concepts.

Other methods use domain knowledge for feature engi-
neering. For instance, domain experts may specify known
causal dependencies between features, which are then used
for dimensionality reduction or to increase the informa-
tion content in the feature space [47]. However, it is very
time-consuming or even impossible for domain experts to
acquire and specify all causal dependencies between fea-
tures in real-world application domains. This is mainly due
to the heterogeneity in the feature space (C2). This challenge
often leads to a very large number of complex dependen-
cies between features that cannot be easily distinguished by
domain experts.

Snorkel lets domain experts specify labeling functions
to describe causal dependencies between features and class
labels [4,37]. These functionsmay be used to label individual
samples of existing training data. This may be an appro-
priate approach to binary classification problems, where the
number of class patterns and thus the number of required
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labeling functions is small. However, this approach does not
scale for multi-class problems with hundreds or even more
classes [41]. Here, domain experts would have to specify a
multitude of labeling functions for the high number of classes
(C1) and for an even higher number of (sub-)concepts (C2.2).

Similar to our approach, constraint-based clustering [30,
48] may be used to partition training data prior to applying
classification algorithms. Domain experts specify the con-
straints that for instance describe that two samples belong to
the same or to different clusters. Constraint-based clustering
algorithms then partition the data into clusters and ensure
that all specified constraints are satisfied. These approaches
however share the same drawback as approaches to feature
engineering or to labeling functions. In complex real-world
scenarios with a heterogeneous feature space (C2), domain
experts have to spend a huge effort to specify a multitude of
constraints to reflect all relevant feature dependencies. Often,
domain experts are only able to specify a minor subset of rel-
evant constraints. So, this approach does not scale well for
complex real-world applications that exhibit both analytical
challenges C1 and C2.

Hence, a more scalable approach for complex multi-class
problems may not directly involve domain experts. Instead,
we exploit domain knowledge that already exists in the rel-
evant application domain. For instance, any manufacturing
companypossesses domainknowledge as a documentationof
a company’s product family, e.g., a product hierarchy [1].We
may use the clearly distinguishable product groups and their
hierarchical relationships to partition the sample set into sev-
eral subsets in which the negative effects of both challenges
C1 and C2 are mitigated. In other domains, the necessary
domain knowledgemay be provided by hierarchical relation-
ships of knowledge graphs or semantic nets, e.g., taxonomies
or ontologies [36,40] (see Sect. 6.2).

4 Classification approach

We now introduce our classification approach that addresses
both analytical challenges C1 and C2 together. The core
idea is to exploit available domain knowledge in a training
set preparation phase to partition the whole sample set X
into several subsets (Sect. 4.1). Afterwards, in the predictive
modeling, we train a classifier for each sample subset and
combine the results of the classifiers (Sect. 4.2). In the fol-
lowing, we mainly focus on how to use product hierarchies
from manufacturing as domain knowledge to partition the
data. Nevertheless, we discuss in Sect. 6 that our approach is
also applicable in other domains, e.g., the medical domain.
The approach even works with various kinds of hierarchical
domain models, even if they differ from the product hierar-
chy shown in Fig. 1, e.g., in terms of the number of levels
and the branching factor.

Fig. 3 Major steps of the training set preparation that exploits domain
knowledge from a product hierarchy and reasonable metrics for class
distributions to address the analytical challenges discussed in Sect. 2

4.1 Training set preparation

Figure 3 shows the steps of the training set preparation to par-
tition a sample set X . The main step (a) is the segmentation
according to product hierarchy (SPH). SPH uses this hier-
archy to divide X according to individual product groups.
This way, we obtain sample subsets with technically similar
product variants. So, the features fk in each subset are more
homogeneous, i.e., SPH addresses challenge C2. The next
step (b) is a class partitioning according to imbalance (CPI)
addressing challenge C1. Based on metrics that describe the
class distributions of the sample subsets, CPImakes informed
decisions on whether and how to further divide the subsets
among majority and minority classes. In the last step (c),
we pre-process the resulting sample subsets for the training
phase.

4.1.1 Segmentation according to product hierarchy

The standard design principle is that a classifierM is trained
on the entire sample set X . In our approach, we however
divide X into several subsets according to individual levels
of the domain taxonomy, e.g., the product hierarchy shown
in Fig. 1. For the hierarchy level “T ype” as example, we
generate subsets X(l, j) for each product group from DE34
toGE56, where j indexes the product group on the hierarchy
level l. For reasons of simplification, we use the notation X j

for a group j if its level l is obvious from the context.
By considering only technically similar product variants

in a sample subset X j , we mitigate the missing feature prob-
lem (C2.1). For example, by considering the four-cylinder
product group GE54 on its own, all samples in the relevant
subset X j do not contain features for cylinders No. 5 and 6
anymore. As X j now comprises samples from similar prod-
uct variants, we also reduce the variety in the value ranges of
features fk . This leads to a decreased number of sub-concepts
(C2.2).
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It is critical to select a proper hierarchy level l when per-
forming the segmentation into sample subsets. The deeper
we go into the hierarchy, the more we reduce the heterogene-
ity in the feature space. However, if the chosen level l is too
deep, the number of samples for a particular group j may be
too small to train a classifier. For example, group DE3612
at level “Model” has only twelve samples to characterize
nine classes. Other groups on the same hierarchy level have
enough samples though, e.g., group GE5698 with 309 sam-
ples. To handle these different groups at a specific hierarchy
level l, we introduce primary and surrogate sample subsets.

Primary sets contain samples of product groups that are
located at a deeper level in the hierarchy, where we miti-
gate the effects of challenge C2 to the greatest extent. In
our product hierarchy shown in Fig. 1, this is level “Model”.
We may use the 309 samples of group GE5698 as a primary
set. However, for very small groups, such as the sibling group
DE3612, we introduce surrogate sample sets that are located
at least one hierarchy level higher. For instance, group DE36
at level “T ype” contains 130 samples, which is enough to
train a classifier. We hence use group DE36 as a surrogate
set to represent group DE3612 one level lower. This means
we build a classifier with the samples of group DE36 and
then use this classifier to predict the class for new samples
that belong to group DE3612.

As a result, a surrogate set contains more samples, but is
less specific, i.e., its feature space is a bit more heterogeneous
than that of a primary set. Nevertheless, a surrogate set at a
lower level than the root node is still more homogeneous than
the whole sample set X . So, surrogate sets also help to solve
the problem of a heterogeneous feature space (C2), but not
to the same extent as primary sets. Surrogate sets represent
a kind of trade-off between the entire data set with more
data but a very heterogeneous feature space and individual
primary sets with a largely homogeneous feature space but
less data.

To create primary and surrogate sample sets, we designed
Algorithm 1 that traverses the product hierarchy from the
bottom to the top. In our use case, we start the hierarchy
traversal at the third level “Model”. We denote this bottom
level as maxl = 3. We then intend to create a primary sam-
ple set for each group j at this bottom level. Therefore, we
check each group j at level l = maxl to see whether the pri-
mary sample subset X(l, j) fulfills the requirements to train a
classifier M(l, j) (see call of procedure CHECKS at line 6).

A classification algorithm requires a class to be rep-
resented by a minimum number of samples to learn a
meaningful class pattern. So, we remove all classes and their
samples from subset X(l, j) that are represented by less than
two samples (line 17). The rationale behind this rather low
threshold is that many of our sample subsets, especially the
primary subsets at the bottom level of our taxonomy, may
contain several classes with a low number of samples. Hence,

Algorithm 1 SPH algorithm
Input: X : Sample set, PH : Product hierarchy,

thr I n f oLoss: Threshold for loss of information,
maxl : Maximum level of PH to start traversal

Output: R: Resulting sample subsets
1: procedure SPH(X , thr I n f oLoss, PH , maxl )
2: R ← ∅

// Get number of nodes at bottom level maxl
3: num_nodes ← PH .get_number_nodes(maxl )
4: for j = 1, ..., num_nodes do

// Get subset for group j at level maxl of PH
5: X(maxl , j) ← PH .get_subset(X ,maxl , j)

// Check whether current sample subset
// may be used to train a classifier

6: X(l,k) ←checks(X ,X(maxl , j), thr I n f oLoss, PH )
7: Append Subset X(l,k) to R
8: end for
9: return R
10: end procedure
11:
12: procedure checks(X , X(l, j), thr I n f oLoss, PH )

// Return subset if we are at the root node
13: if l == 0 then
14: return X(l, j)
15: end if
16: n ← |X(l, j)|

// Remove classes with less than two samples
17: X(l, j) ← X(l, j) \ {(x, y) : #Samples(y,X(l, j)) < 2}

// Check if only one class left in X(l, j)

// or if line 17 removed too many samples

18: if #Classes(X(l, j)) = 1 or

19:
n−|X(l, j)|

n > thr I n f oLoss then

// Get index k of parent node and subset X(l−1,k)

20: k ← PH .parent_node( j)
21: X(l−1,k) ← PH .get_subset(X , l − 1, k)
22: return checks(X , X(l−1,k), thr I n f oLoss, PH )
23: else

// All criteria satisfied, return current subset
24: return X(l, j)
25: end if
26: end procedure

we use a likewise low threshold in order to preserve as many
classes as possible and not lose too much information in
the sample subsets. Afterwards, we check two criteria for
a subset X(l, j). The first criterion ensures that X(l, j) con-
tains at least two classes (line 18), so that a classification
algorithm can identify decision boundaries between these
classes. With the second criterion, we assure that the loss of
information due to the previous removal of classes with too
few samples is not higher than a specific threshold parame-
ter (line 19). We check that the removal of classes does not
reduce the number of samples in X(l, j) by more than, e.g.,
25%-points. Note that we discuss in Sect. 5.2.1 how we have
found the value for this threshold parameter yielding the best
classification accuracy. This also holds for the thresholds of
Algorithm 2. In Sect. 7.4, we discuss the effects of optimiz-
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ing these parameters for different kinds of data distributions
of other multi-class problems.

If a subsetX(l, j) meets both criteria, it becomes a primary
set. If it does not meet at least one criterion, we visit the
parent node of group j one level higher (lines 20 to 22).
If the sample set of this parent node meets all criteria, we
consider it as a surrogate sample set for group j . Otherwise,
we further traverse the hierarchy along the path to the root
node. We do so until we are able to represent each group j
by either its primary set at level maxl or by a surrogate set at
a higher level.

Note that already this SPH reduces the class imbalance to
a certain degree (C1). Figure4 shows example distributions
of the most frequent classes ci (error codes A to G) after
the segmentation into groups GE54 (X1) and DE34 (X2).
If we consider both groups together, i.e., without perform-
ing the segmentation, this leads to a significant imbalance.
Then, error code A is the most common class with in total
61 samples. All other classes comprise between 5 and 16
samples only. SPH allows us to consider the groups GE54
and DE34 separately. Therefore, error code A has only 10
samples in DE34 and is thus not a dominant class anymore
for this group. So, the segmentation positively influences the
class imbalance for group DE34.

4.1.2 Class partitioning according to imbalance

In the sample set of group GE54 shown in Fig. 4, however,
error code A remains a majority class c+

i with 51 samples.
This still leads to a distinct class imbalance (C1), where error
codes B, C , and D may be superimposed by code A. We
hence perform a class partitioning to create disjoint majority
subsets X+

j and minority subsets X−
j for each subset X j

with a distinct class imbalance. For group GE54, we create
a majority subset X+

1 with all samples of error code A and
a minority subset X−

1 with all other samples (cf. Figure4).
This way, we reduce the class imbalance in subsets X+

1 and
X−
1 (C1). Thereby, we ensure that learning algorithms can

recognize error codes B, C , and D within X−
1 .

The detector component shown in Fig. 3b uses a statistical
metric to decide whether a subset X j shows a distinct class
imbalance and thus has to be partitioned. Then, the divisor
component partitions X j into majority and minority subsets
X+

j and X−
j . Algorithm 2 formalizes this step CPI of our

approach.
Detector: There is no consensus on proper statistical met-

rics to determine the degree of class imbalance within data
[10]. In our approach, the metric must have a normalized
interval between 0 and 1, where the boundaries represent
a total balance (0) or a total imbalance (1). This allows
us to directly compare the results of the metric between all
subsets X j .
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Algorithm 2 CPI algorithm
Input: R: Sample subsets after SPH,

thr_gini : Threshold for the Gini index,
p: Parameter value for the p-quantile

Output: R: Resulting sample subsets after CPI
1: procedure CPI(R, thr_gini , p)
2: for Xi ∈ R do

// Detector component
3: if Gini(Xi ) > thr_gini then

// Divisor component
4: Qp ← p_quantile(Xi , p)
5: X−

i ← {(x, y) ∈ Xi : #Samples(y,X j ) ≤ Qp}
6: X+

i ← Xi \ X−
i

7: Replace Xi in R with tuple (X−
i ,X+

i )

8: end if
9: end for
10: return R
11: end procedure

One of the most prominent metrics that fulfills this
requirement is the Gini coefficient [9,15]. We calculate this
coefficient on the discrete class distribution of a sample sub-
set based on the sum formula of the Lorenz curve. The Gini
coefficient of the samples in Fig. 4 is about 0.28 for group
DE34 and about 0.48 for group GE54. We use a certain
threshold for this coefficient to decide whether a subset X j

has to be partitioned or not (lines 3 and 4 in Algorithm 2). For
instance, with a threshold value of 0.3, we detect a distinct
class imbalance for group GE54. We divide the subsetX1 in
the next step into the disjoint subsets X+

1 and X−
1 .

Divisor: We also use a metric that acts as a threshold
to determine the point of intersection to partition a set X j .
Classes with more samples than the threshold are placed in
the majority set X+

j , and the other ones in the minority set

X−
j . Typical examples of metrics are the arithmetic mean or

standard deviation. For our approach, we have chosen the
p-quantile Q(p). The major reason is that, from the many
metrics, Q(p) is the only one that allows for a parameteriza-
tionwith p to tune it for an improved prediction performance.
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The calculation of Q(p) is based on the empirical cumula-
tive distribution function F(x) = p. Thereby, x is a number
of samples and p is the share of classes in a subsetX j that are
represented by x or less samples. Q(p) is calculated using the
inverse function of F(x), i.e., Q(p) = F−1(x). This means
that those classes in X j that are represented by Q(p) or less
samples cover a share of p of the class distribution ofX j . The
idea is that we set a value for p and calculate Q(p) for each
subset X j with a distinct class imbalance (line 5). Then, we
place all classes with Q(p) or less samples in the minority
subset X−

j and the remaining classes in the majority subset

X+
j (lines 6+7). This way, all minority subsets X−

j cover a
share of close to p of all classes in the original subsets X j .
This again motivates our choice for Q(p), as we may influ-
ence the relative portions of majority and minority classes
via p.

As indicated in Fig. 4, the 0.8-quantile (p = 0.8) for group
GE54 is about 28. Statistically speaking, all classes ci having
28 or less samples represent 80% of the class distribution
of group GE54. We consider Q(0.8) = 28 as a threshold.
So, error code A, which has more than 28 samples, is the
only majority class c+

i and its samples are majority samples
X+
1 . Error codes B, C , and D are minority classes c−

i and
their samples are minority samplesX−

1 . Finally, all resulting
subsets X+

1 and X−
1 are much more balanced. CPI reduces

the Gini coefficient from 0.48 for the subset X1 to a value of
0.19 for X+

1 and to 0.11 for X−
1 .

In the rest of the paper, we denote the different subsets we
have for product group j asX±

j . Thus,X±
j includes either the

subset X j in case no class partitioning has been performed
or X+

j and X−
j in the other case.

4.1.3 Pre-processing of sample subsets

All subsetsX±
j must satisfy technical criteria, so that we can

apply learning algorithms to them. We distinguish two tasks
here, which are depicted in Fig. 3c.

Feature normalization and encoding:We remove sparse,
zero- and near-zero-variance features, normalize continuous
values, and perform one-hot encoding for categorical fea-
tures.

Binarization for single majority classes: Standard clas-
sification algorithms require at least two classes to train a
classifier. However, a few majority subsets, e.g., X+

1 shown
in Fig. 4, contain only one class.We treat such cases using the
OvA binarization technique [10,12]. We first add the minor-
ity subset X−

j to its majority subset X+
j again. Then, we

re-label all samples of minority classes c−
i to one combined

“negative” class, and the single majority class c+
i to a “posi-

tive” class. We then use standard algorithms to train a binary
classifier for this combined, re-labeled sample subset.
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Fig. 5 Major steps of predictive modeling to train a classifier for each
sample subset and to combine the results of the classifiers into a ranked
list of predictions

4.2 Predictive modeling

Figure 5 shows the major steps of the predictive modeling
that are applied on the sample subsets X±

j resulting from
the previous training set preparation. We first discuss how to
train classifiers M j for individual subsets X±

j (Sect. 4.2.1).
We then describe how to classify new observations, i.e., new
samples xt (Sect. 4.2.2), and show how to obtain a final rec-
ommendation listR (Sect. 4.2.3).

4.2.1 Create ensembles Ej

We train an individual classifier M j for each subset X±
j .

Thereby, we are widely free in the choice of multi-class clas-
sification algorithms. One restriction is that an algorithm
must be able to train probabilistic classifiers M j . Proba-
bilistic means that M j predicts a list of classes that may
be ranked according to associated confidence values how
sure the classifier is with its predictions. We recommend
ensemble procedures, as the sample subsets X±

j often con-
tain many class labels, but a rather small number of samples.
For instance, Random Forest is useful for such data charac-
teristics because its integrated sampling method reduces the
risk of overfitting [19].

When training a classifier M j for a subset X±
j , we have

to distinguish between two cases: (1) a subset that has been
partitioned into majority and minority subsets X+

j and X−
j ,

as well as (2) a subset X j that has not been partitioned. In
the first case, we train separate classifiers, i.e., base learners,
for each of the two subsets X+

j and X−
j . We denote L+

j
as a majority base learner, which is trained on a majority
subset X+

j . Accordingly, we denote L−
j as a minority base

learner being trained onX−
j . By training separate classifiers

for majority and minority classes, we ensure that learning
algorithms do not ignore underrepresented minority classes.

For group GE54 shown in Fig. 4, we train a majority base
learner L+

1 on subset X+
1 , i.e., L+

1 is tailored to predict error
code A. Furthermore, we use X−

1 to train a minority base
learner L−

1 , which is able to predict error codes B to D. The
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resulting classifier system has to be able to predict all classes
from A to D. Hence, we combine each pair of base learners
L+

j /L−
j to an ensemble E j . We store this ensemble E j in a

model repository [51] and tag it with the number j of its
product group. Furthermore, we tag E j with the hierarchy
level l of the sample subsets X±

(l, j). This way, we indicate
whether E j is a primary ensemble (l = maxl ) or a surrogate
ensemble (l = maxl − u, with u ≥ 1).

In the second case, i.e., for sample sets X j that have not
been partitioned into majority or minority subsets, we train
a base learner L j on the whole set X j . We also store this L j

as an ensemble E j in our model repository.

4.2.2 Classify new samples xt

Given a new observation xt , we first determine the group j
at the lowest hierarchy level maxl to which this observation
belongs. If SPH has built a primary subset for group j , we
fetch the corresponding primary ensemble that is taggedwith
level l = maxl in themodel repository. Otherwise, we search
for the surrogate ensemble of group j at higher levels of the
hierarchy. We pass the sample xt to the base learner(s) of the
fetched ensemble E j to obtain a prediction in the form of a list
Y j . This list contains the most likely classes and ranks them
according to their confidence values. In case E j is composed
of a majority and a minority base learner L+

j and L−
j , we get

two lists Y+
j and Y−

j . In case E j has exactly one base learner
L j , we obtain one list Y j .

Figure 6 shows the application phase of our classification
approach, i.e., the steps (e) and (f) in Fig. 5 for an example of
a new failedEoL test xt . The underlying product is a DE3612
model at level maxl = 3 of our hierarchy. Since no primary
ensemble is available for DE3612 in the model repository at
level 3, we fetch the surrogate ensemble for DE34 at level
2. We pass the new sample xt to both base learners L+

1 and
L−
1 . For L+

1 , we obtain the list Y+
1 with one majority error

code A and a confidence value of 54.0%. The list Y−
1 is the

prediction of L−
1 with minority codes C , B, and D, whose

confidence values are between 13.8 and 55.0%.

4.2.3 Obtain ranked listRe

In case of an ensemble that separately treats majority and
minority classes, we need to combine both lists Y+

j and

Y−
j into one list R. Several reviews discuss approaches to

combine votes from different base learners [12,34,38,54].
All related approaches assume that the base learners predict
completely or partly the same set of classes. In our approach,
the two involved base learners however predict disjoint sets
of majority classes c+

i and minority classes c−
i . Thus, the

approaches from literature are not applicable to our ensem-
bles. For this reason, we opt for a first approach that is easy
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Fig. 6 Computation of a recommendation listR for a new sample xt of
group DE3612. Base learners L+

1 and L−
1 issue lists Y+

1 and Y−
1 that

are merged together and ranked according to the confidence values to
get R

to implement. In most cases, the final recommendation listR
is a union of Y+

j and Y−
j with unchanged confidence values.

Nevertheless, we consider some special cases wherewe scale
confidence values for certain classes. In some cases, a minor-
ity class c−

i in Y−
j has only a marginally higher confidence

value than a majority class c+
i in Y+

j . Figure6 shows such
an example for the error codes A and B. However, majority
classes occur much more often in the original sample set X .
Thus, we place the majority class above the minority class in
the final list R. So, we upscale the confidence value of the
majority class and downscale the value of the minority class.

We consider only those cases where the difference in the
confidence values of relevant classes is less than 1.5%-points.
We use this low threshold, because we want to adjust the
original confidence values as little as possible. This ensures
that we do not distort the essential probabilistic statements
of the base learners. In Fig. 6, this only applies to error codes
A and B. For A, we increase the confidence value of 54.0%
by the threshold value of 1.5%, i.e., by a factor of 1.015.
So, we get a scaled confidence value of about 54.8%. For B,
we reduce the confidence value by the same factor of 1.015,
and get an adjusted value of about 54.2%. As a result, the
adjusted confidence value of error code A is greater than the
one of B. Finally, we rank the classes in descending order
regarding the scaled confidence values to generate the final
recommendation listR.

5 Evaluation with real data of EoL testing

We have carried out an extensive evaluation of our classi-
fication approach based on its application to the real-world
data of the EoL testing use case. In the following, we dis-
cuss its potential to mitigate the negative effects of analytical
challenges C1 and C2 (Sect. 5.1). Afterwards, we report the
results of our experimental evaluation (Sect. 5.2). Then, we
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Table 1 Effect of SPH and CPI on analytical challenges: ++ positive;
+ partly positive; 0 not significant

Meets analytical challenge

C1 C2.1 C2.2

(a) SPH + ++ ++

(b) CPI + 0 0

illustrate the real business impact of our approach and how
it improves EoL testing (Sect. 5.3).

5.1 Effects on analytical challenges

Table 1 summarizes how the two essential steps of our classi-
fication approach affect the analytical challenges. It depicts
these effects separately for (a) SPH and (b) the subsequent
CPI. To underpin these discussions, Table 2 reports statistical
metrics that exemplify the effects on the challenges. We have
collected these metrics by applying SPH and CPI to the data
of our use case.

SPH splits the sample setX into 26 subsetsX j . These are
21 primary subsets on level 3 of the product hierarchy andfive
surrogate subsets one level higher. Each subset X j contains
on average 54 samples and eleven classes. This reduces the
mean number of samples per class from about 12 samples
in X to now about 5 in each subset X j . This reduction of
the number of samples per class in each subset may increase
the risk of overfitting [17,28]. As discussed in Sect. 4.2.1,
this may be addressed by applying ensemble techniques that
are able to deal with smaller data sets, e.g., Random Forest
[6,19]. However, only little is known how to tackle especially
the combined effects of challenges C1 andC2. Therefore, our
approach admits smaller sizes of sample subsets to mitigate
the effects of C1 and C2.

SPH reduces the Gini coefficient from 55% in the sample
set X to an average of 28% among all sample subsets X j .
This already constitutes a significant reductionof class imbal-
ance. A detailed analysis reveals that SPH primarily reduces
the class imbalance of the 21 primary subsets to this signifi-
cant degree. The five surrogate subsets have Gini coefficients
between 30 and 50%. This still represents a remarkable class

imbalance for these five surrogate subsets. Hence, we rate
the influence of SPH on challenge C1 as partly positive.

The main advantage of SPH is apparent in its effect on
challenge C2. Firstly, we reduce the number of features fk
from 115 in the sample setX to an average of about 82 in the
subsetsX j . Thereby, we remove those features from a subset
X j that are not measured for the product variants of group j .
For example, reconsider the four-cylinder variants in group
GE54. SPH removes the features for the two cylinders No.
5 and 6 that are not part of these four-cylinder variants. This
significantly reduces the number ofmissing feature values. In
our use case, about 17% of the values in the original sample
setX were missing values. SPH reduces this to an average of
about 5% in the subsets X j . Thus, we rate the effect of SPH
on challenge C2.1 as positive.

Furthermore, we reduce the variety in value ranges of fea-
tures within a subset X j (C2.2). This reduces the number
of concepts each classifier M j has to learn. For example,
reconsider the concepts shown for groups GE54 and GE56
inFig. 2.Originally, a classifier being applicable to both prod-
uct groups had to learn all four concepts A, B, A′, and B ′.
Particularly sub-concept B ′ was only represented by three
minority samples of all 60 samples. Learning algorithms
would usually neglect these three minority samples and thus
the whole sub-concept B ′. After SPH, we train two separate
classifiers on separate sample subsets for groups GE54 and
GE56. The subset for GE54 only contains 13 samples to
characterize sub-concepts A′ and B ′. So, the relative share
of the three samples for B ′ increases in this subset. Thus,
it is more likely that learning algorithms do not neglect the
three minority samples and are thus able to learn a pattern for
sub-concept B ′. So, we rate the effect of SPH on challenge
C2.2 as positive.

12 of the 26 sample subsetsX j resulting after SPH have a
Gini coefficient higher than 30%. The subsequent CPI hence
partitions these 12 subsets into majority subsets X+

j and

minority subsets X−
j . Thereby, CPI further reduces the aver-

age Gini coefficient for all resulting subsets X±
j to about

21%. This additional reduction demonstrates a positive effect
on challenge C1 of a class imbalance. Nevertheless, the
reduction from 28% after SPH to now 21% is rather moder-
ate, since CPI only partitions 12 of the 26 subsetsX j . So, we

Table 2 Numbers of samples xt , classes ci , features fk , portion of missing values (“NA”), and the Gini coefficient for the original sample set X ,
as well as for the subsets X j and X±

j after SPH and after subsequent CPI

Number of sample subsets Average number across all subsets

Samples xt Classes ci Features fk “NA” in fk (%) Gini coeff (%)

Sample set X 1050 84 115 17 55

After SPH: 26 X j , thereof 5 surrogates 54 11 82 5 28

After CPI: 14 X j ∧ 12 X±
j 37 7 82 5 21
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rate this effect on C1 as partly positive. Note that CPI does
not affect the number and nature of features fk . Hence, there
is no effect on challenges C2.1 and C2.2.

5.2 Experimental evaluation

Now, we report the evaluation results. We describe the
experimental set-up (Sect. 5.2.1), discuss how SPH and CPI
increase classification accuracy (Sect. 5.2.2) and reduce the
number of rework attempts in EoL testing (Sect. 5.2.3).

5.2.1 Experimental set-up

For details about the hardware and software set-up, we refer
to a previous study [19]. Now, we focus on a description of
methodological aspects of the evaluation.

Training and test set: We split the sample set X into a
training set with 750 samples and a test set with 300 sam-
ples. We made sure that both sets contain all 84 classes and
resemble the class distribution of all 1050 samples.We apply
the training set preparation (Fig. 3) on the 750 samples of the
training set to get the sample subsets X±

j . Afterwards, we
apply the training phase (step d in Fig. 5) for each subset
X±

j to create the respective ensembles E j . Here, we used a

fivefold cross validation on each subset X±
j of the training

data to find the best hyper-parameter settings for the learn-
ing algorithms [19]. We then carry out the application phase
(steps e and f ) for each of the 300 samples in the separate
test data set to evaluate the ensembles.

Parameterization: We have carried out a grid search to
find the parameterization of SPH and CPI yielding the best
accuracy. SPHhas one threshold parameter to limit the loss of
information due the removal of classes with only one sample
in a subset X j . Here, we examined values in {0.1, . . . , 0.4}
with a step size of 0.05 to finally get the best result with
25%. For CPI, we tested seven threshold values for the Gini
coefficient from 0.1 to 0.7.Moreover, we started with a value
of 0.6 for p of the p-quantile and increased this parameter up
to 0.9. We used a step size of 0.1 for both parameters. CPI’s
best parameterization for our use case data was 30% for the
Gini coefficient and p = 0.8.

Evaluation: We report two performance scores that are
measured by applying the classifiersM j on the 300 samples
of the test data set. The first score represents accuracies for
several recommendation lists Re of different lengths e. A
correct classification means that the real class label yt of a
test sample is contained at any of the first e positions of the
associated list Re. Accuracy at e (A@e) then measures the
relative portion of such correct classifications among all test
samples. In our use case of EoL testing, operators may work
through the list Re, i.e., they try to repair the faulty com-
ponents in the order as they are listed in Re. Hence, A@e

measures how likely it is that an operator can solve a qual-
ity issue by solely using the list Re, i.e., without consulting
the quality engineer. Note that a large list Re would usually
overwhelm operators. Hence, we limit the listRe to ten error
codes, i.e., e ∈ {1, . . . , 10}.

The second score represents the number of rework
attempts (RA) that operators need on average to solve a qual-
ity issue by working through the list Re. To calculate this
score, we individually consider the number of correct predic-
tions for each position in the listRe. A hit at the first position
means that the operator is able to solve the quality issue after
one rework attempt. A hit at the second position means that
s/he needs two attempts and so on. So, we respectively multi-
ply the number of hits at a position with the ranking number.
We then sum up the products and divide it by the number of
all hits inRe to get the score RA@e.

Baseline:Wecompare the results of our approachwith the
best baseline from our previous study [19]. This best baseline
is applying Random Forest in combination with the feature
selection techniqueBoruta [28] (RF+B). In addition,we eval-
uated a baseline from the area of sequential data analysis.
Here, we opt for an ensemble of several neural networks [2].
For a new observation, the ensemble averages the prediction
scores of individual neural networks to obtain the final class
prediction. We refer to this baseline as averaged Neural Net-
work (avNN). Figure7 compares the results of our approach
with those of the baselines RF+B and avNN.

5.2.2 Increased accuracy

In this subsection, we discuss the score A@e on the left y-
axis of Fig. 7. A comparison of the two baselines shows that
RF+B has a higher A@e than avNN for all lengths of the
list Re. The major reason is that neural networks are usu-
ally tailored to deal with high-dimensional data, e.g., high
resolution geometric data or time series data. However, our
sample set X contains only one aggregated value for each
feature, i.e., the features are aggregated over time. In addi-
tion, deep learning algorithms require plenty of data samples
to train accurate neural networks. With the small number
of samples in our data set, these approaches tend to overfit
strongly. Here, we see that ensemble techniques such as Ran-
dom Forrest may better handle these data characteristics and
finally yield higher accuracies [19]. Hence, we compare our
approach only with RF+B.

Our approach with SPH and CPI dominates the baseline
RF+B for all A@e scores. This means that the listRe of our
approach contains the correct faulty component more fre-
quently compared to the list of RF+B. Thus, operators are
able to solve a quality issue more often without a quality
engineer by solely working through the list Re. The per-
formance gains of our approach vary for individual lengths
of Re. The lowest absolute gain is 1%-point for R6. Our
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Fig. 7 Evaluation results: A@1 to A@10 and RA@1 to RA@10 for
lists Re with different lengths e

approach especially outperforms the baseline for shorter lists,
e.g., the highest performance gain is about 13%-points for
R3. The average gain in accuracy among all lists is about
6.3%-points.

We have also evaluated both steps SPH and CPI in
isolation. This means we divided our sample set X once
only by SPH and once only by CPI and then trained sep-
arate classifiers for each step. We found that SPH has a
higher contribution to increasing A@e. The ten A@e scores
for applying only SPH exceed RF+B by an average of
2.9%-points. However, the scores for CPI are on average
2.7%-points below that baseline. Nevertheless, applying CPI
after SPH even adds 3.4%-points to the 2.9%-points accuracy
gain of SPH. This fact that CPI in isolation reduces accuracy,
but increases it even further when applied after SPH supports
our key statement: An approach focusing on either challenge
C1 or C2 in isolation is not sufficient. Instead, it is much
more beneficial to address both challenges at once, i.e., by
applying SPH and CPI in a combined way.

5.2.3 Reduced number of rework attempts

Now, the goal is to reduce the scores RA@e, i.e., the average
number of rework attempts operators need to solve a quality
issue. As shown on the right y-axis in Fig. 7, our approach
SPH+CPI leads to a high reduction of the RA@e scores for
the listsR5 andR6. Here, operators need on average 0.4 less
rework attempts compared to the baseline RF+B. The reason
is the significant higher A@e scores for lower lengths e,
e.g., the performance gain of 13%-points for A@3. A high
score A@e on the first positions entails that the correct class
is contained more often at these first positions. Hence, it is
more likely that operators solve a quality issue with a smaller
number of rework attempts.

For the lists with two, three, and eight elements, the
RA@2, RA@3, RA@8 scores of our approach are how-
ever about 0.1 higher than those of the baseline RF+B. Note
again that our approach outperforms the baseline RF+B with
a gain in A@e between 9%-points and 13%-points with these
three lists R2, R3, and R8. This higher A@e scores mean

that operators are much more likely to solve a quality issue
without consulting a quality engineer. Quality engineers usu-
ally get a much higher salary than operators. Hence, the 0.1
additional rework attempts of the operator are a rather neg-
ligible price to pay, compared to the higher cost savings we
achieve by consulting the quality engineer more seldom.

Note that the RA@e scoremeasures the number of rework
attempts only for those cases, where the corresponding rec-
ommendation listRe contains the correct faulty component.
For all remaining cases, we assume that the operator con-
sults a quality engineer to solve the quality issue. However,
we cannot make a valid statement about how many addi-
tional attempts the quality engineer may then need to identify
the correct faulty component. Nevertheless, we expect it to
be less than four attempts. This is because the quality engi-
neer needs on average four attempts without any data-driven
approach [19] and because s/he may already exclude the
false components that have been part of the list Re. Fur-
thermore note that we compare our approach SPH+CPI with
another data-driven baseline RF+B. In fact, the quality engi-
neer needs roughly the same number of additional rework
attempts if the list generated by SPH+CPI or the list of RF+B
do not contain the correct component. Hence, it is valid to
compare these two data-driven approaches SPH+CPI and
RF+B with the RA@e score.

5.3 Business impact to EoL testing

The results reported for A@e in Fig. 7 with up to 85%
are still less than typical results presented by the research
community [43,49,50]. This is mainly because the data
sets employed in scientific literature often do not show all
characteristics of real-world data. In fact, real-world data
characteristics make it hard to achieve similar levels of accu-
racy. We already show this in our previous study, where we
tested a diverse set of methods [19]. The best combination
of these methods with an accuracy of up to 78% is Random
Forest with Boruta, i.e., the baseline RF+B in this paper.

We also show in the previous study that even this baseline
with its accuracy of up to 78% has a positive impact on the
real business of EoL testing [19]. In particular, it reduces the
overall costs for reworking on defective engines. More pre-
cisely, the personal costs for a quality engineer are usually
60% higher than for an operator. These quality engineers are
now only involved in cases when the correct faulty compo-
nent is not part of the listRe, i.e., in 1 − A@e of all cases.

Compared to the baseline RF+B, our approach with SPH
and CPI even further reduces costs for reworking on defec-
tive engines. This is mainly because it yields higher A@e
scores for any listRe. The average gain in accuracy of 6.3%-
points means that operators can solve a quality issue without
expensive quality engineers in 6.3%-points more cases. Fur-
thermore, most of the lists Re have lower RA@e scores, so
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Table 3 Summary of the discussion regarding the generality of chal-
lenges C1 and C2. The table reports (1) the most important use cases
we have investigated to confirm the generality of the challenges, (2) the

main formats of data sources used in these use cases, and (3+4) the
major domain-specific causes for challenges C1 and C2

Industrial value chain Medical diagnoses

(1) Example use cases Fault diagnosis, product quality prediction,
predictive maintenance, root cause analysis,
classification of products into product types

Diagnosis of rare, but dangerous or lethal diseases,
e.g., different types of skin cancer

(2) Main data sources Sensor data, text data, semi-structured JSON
documents

Image data, electronic medical records, genomics
databases, text data, sensor data

(3) Major cause for C1 Many error types of products or many product types
that are underrepresented in data

Rare, but lethal diseases, e.g., melanoma cancers, are
underrepresented in data

(4) Major cause for C2 Increasing product variety and diversity of class
patterns for different product variants

Ethnic and gender bias: Symptoms and patterns for
patients with darker skin color or for women are
underrepresented in data

that our approach reduces the number of rework attempts.
Altogether, the annual cost savings for a company may accu-
mulate to a magnitude of up to a few millions of EURO.

6 Discussion of generality

The previous section discusses evaluation results for the par-
ticular use cases of EoL testing and its domain-specific data.
In this section, we show that our the approach is generally
applicable to further use cases and data. We start by first
showing that the considered analytical challenges C1 and C2
are also relevant in various real-world application domains
other than EoL testing (Sect. 6.1). Afterwards, we discuss
the potential of applying the major steps SPH and CPI of our
approach in these different application domains (Sects. 6.2
and 6.3).

6.1 Generality of challenges C1 and C2

To confirm the generality of challenges C1 and C2, we have
carried out a literature review for real-world use cases of
multi-class problems. Table 3 summarizes the major results.
The most important finding is that challenges C1 and C2
arise in many real-world problems of various application
domains. This concerns several stages of an industrial value
chain, e.g., manufacturing, marketing, or sales (Sect. 6.1.1).
Moreover, both challenges arise in entirely different applica-
tion domains, such as medical diagnoses (Sect. 6.1.2). These
real-world problems involve various kinds of data, e.g., sen-
sor data, text data, semi-structured documents, and image
data.

6.1.1 Challenges in the industrial value chain

The challenges of multi-class imbalance (C1) and heteroge-
neous feature space (C2) are common in the manufacturing

domain. This statement is confirmed by several review
articles that examine literature describing various applica-
tions of machine learning to real-world manufacturing use
cases [8,27,53,55]. We have additionally examined several
real-world use cases for multi-class problems that are not
covered by the mentioned reviews. Gerling et al. [14] dis-
cuss how to use machine learning to predict product quality
based on sensor data of individual steps in an assembly line.
Thalmann et al. [45] investigate three related use cases for
fault detection, fault diagnosis, and predictive maintenance.
Kassner et al. [25] use text analytics to identify root causes
of product quality problems related to customer warranty
claims. Kiefer et al.[26] extract information from text data to
suggest causes and corrective actions of machine failures in
a production line.

All these authors support our argumentation regarding
analytical challenges that arise from the data characteris-
tics in manufacturing. They all mention that products and
production processes may be affected by a large number
of diverse error types. These error types often correspond
to the classes in classification tasks. So, this usually leads
to a multiplicity of imbalanced class labels (C1). Further-
more, the authors coincide thatmachine learning suffers from
the fact that underlying data often represent diverse prod-
uct variants. These product variants have different technical
specifications, leading to a heterogeneous feature space and
a multiplicity of overlapping class patterns (C2).

These challenges are however not only relevant in manu-
facturing processes. In fact, they occur in use cases across all
stages of a typical industrial value chain. This is particularly
the case when products with a certain technical complexity
and high product variety are involved, which is common in
today’s industries [22,32].

Sun et al. [41] discuss such a challenging use case in
the marketing and sales stage of an industrial value chain.
Their goal is to classify tens of millions of products based on
their textual descriptions and other product attributes stored
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in JSON documents. The classes correspond to different
product types, e.g., laptop computers, laptop bags, or din-
ing chairs. They consider a multi-class problem, where each
product has to be classified into exactly one of more than
5000 product types.

This use case shares our challenges in other manifesta-
tions. The authors report that existing solutions to machine
learning suffer from a high multi-class imbalance in textual
product data (C1) [41]. Some product types are significantly
underrepresented, which may cause learning algorithms to
ignore them. In the product segment ”Home & Garden” for
instance, thousands of products belong to the majority types
”area rugs” or ”stools”. However, many minority product
types exist that occur in very few data samples, e.g., ”oil
lamps”.

Moreover, each product type may be divided into several
sub-types. This increases the diversity of the product port-
folio and the heterogeneity in the feature space (C2). Sun et
al. report that data samples of individual sub-types do not
contain all features (C2.1) [41]. In addition, the concepts and
patterns for a certain class may differ among these product
sub-types (C2.2).

6.1.2 Challenges for data-driven medical diagnoses

Another domain where both challenges C1 and C2 occur
together comprises data-driven medical diagnoses. Chan
et al. [7] review 70 articles discussing various use cases
for machine learning in dermatology. Most of them apply
learning algorithms to image data of patients to detect and
diagnose different types of skin cancer. A few make use
of electronic medical records, genomics databases, textual
data from insurance claims, or personalized sensor data of
mobile devices. Examples of skin cancer types are various
melanoma cancers or different kinds of non-melanoma can-
cers, e.g., basal cell carcinoma or actinic keratoses. So, this
reflects multi-class problems, where the classes correspond
to different cancer types. According to Chan et al., most of
the articles report on complex data characteristics that make
machine learning a hard problem [7].

In general, less than 10% of patients have a variant of
melanoma skin cancer. So, these types of cancer are usually
underrepresented in available image data compared to the
different non-melanoma cancers. This leads to a high degree
of multi-class imbalance (C1). Here, learning algorithms
and resulting classifiers are often biased towards the fre-
quent kinds of non-melanoma skin cancers. So, they usually
provide a low accuracy for the rare melanoma cancers [7].
However, these melanoma cancers are malignant and may
form metastases. They are thus more lethal than other types
of cancer and therefore have to be treated more fairly by
classifiers.

In addition, Chan et al. found that classification per-
formance is highly affected by the patients’ ethnicity, in
particular by the skin color [7]. This corresponds to the chal-
lenge of a heterogeneous feature space (C2). More precisely,
the features and class patterns for certain cancer types depend
strongly on the color of the cancerous skin areas in the image
data. However, the color and contrast of a particular skin
cancer may vary significantly between different colors of the
surrounding healthy skin [7]. Even for a single cancer type,
learning algorithms need to differentiate various class pat-
terns and sub-concepts for different skin colors.

Moreover, almost all 70 articles reviewed by Chan et al.
focus on image data of light-skinnedCaucasian patients from
Europe or Northern America [7]. In fact, very few image
data are available for patients with darker skin from Africa
or the Americas. So, the class patterns and sub-concepts are
extremely underrepresented in image data especially for peo-
ple with darker skin. This means that a data-driven classifier
is often not able to correctly predict the type of skin cancer
for patients of this ethnicity, i.e., it leads to an ethnic bias.

Note that such multi-class problems with complex data
characteristics are not only relevant for skin cancer diagno-
sis. Multi-class imbalance (C1) is a common challenge for
medical diagnoses, as several dangerous or even lethal dis-
eases exist that affect only fewpatients. For instance, diseases
such as cystic fibrosis only have an incidence of about one in
15000 humans [23]. So, very few diagnostic data is available
for patients suffering from such rare diseases. In a data-driven
classification, rare diseases represent seldom classes that are
underrepresented in available training data related to more
common, but comparatively harmless diseases.

A further cause of a heterogeneous feature space (C2)may
be gender bias in data [44]. An issue discussed in medical
research is that symptoms for certain lethal diseases differ
significantly between men and women. According to Baggio
et al. [5], this holds for various problems related to cardio-
vascular diseases, oncology, liver diseases, and osteoporosis.
For instance, common symptoms of a heart attack for men
are severe chest pain, while women are more likely to experi-
ence fatigue, dizziness, or stomach pain [52]. In a data-driven
approach, algorithms may use patients’ diagnostic data to
learn patterns for typical symptoms of heart attacks. Here,
the patterns to detect a heart attack hence differ significantly
between women and men. As diagnostic data for women are
less available than for men [52], algorithms usually mainly
learn the patterns for men, but consider those for women less
important.

6.2 Generality of SPH

In this section, we discuss constraints the domain knowledge
must fulfill so that SPH is applicable to the data of other
use cases (Sect. 6.2.1). Furthermore, we discuss whether
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Fig. 8 Abstract hierarchical domain model illustrating the constraints
SPH requires for such domain models

these constraints are met for domain knowledge that is avail-
able in different use cases of the industrial value chain and
of data-driven medical diagnoses (Sect. 6.2.2). The major
contribution of this discussion is that researchers and practi-
tioners of other domains see under which circumstances they
can apply SPH to their data.

6.2.1 Constraints for domain knowledge

SPH requires domain knowledge to be represented as a hier-
archical model that is organized as a tree structure. Figure8
illustrates the major constraints of SPH based on an abstract
hierarchy:

1. The single root node at the top level l = 0 encompasses
the entire sample set X .

2. Each child node (l, j) on a level l ≥ 1 below the root node
contains a subset of the data of its parent node (l − 1, j ′)
one level above, i.e., X(l, j) ⊆ X(l−1, j ′).

3. All leaf nodes are located at the same bottom level l =
maxl .

4. For SPH to increase classification accuracy, the hierarchi-
cal domain model has to allow for segmenting a sample
set X into subsets that show a more homogeneous fea-
ture space. More precisely, the effects of challenge C2
have to be less severe in the subset X(l, j) of a child node
than in the subset X(l−1, j ′) of its parent node. This also
means that these challenges are least severe in all leaf
nodes at level maxl , for which SPH generates primary
sample subsets.

The hierarchy of the EoL test case shown in Fig. 1 meets
all four constraints. For other use cases, the first three con-
straints may be easily verified by checking the hierarchical
structure of the domain model and the subset relationships
between child and parent nodes. Verifying the fourth con-
straint requires ways to quantify the effects of the individual

challenges C2.1 and C2.2 in the sample subsets X(l, j) across
different levels l. The effect of challenge C2.1 may be quan-
tified by calculating the shares of missing feature values in
subsetsX(l, j). So,wemay checkwhether this share decreases
along the path from the root node to the leaf nodes. How-
ever, literature does not comprise any metrics to quantify the
effects of challenge C2.2. At first glance, C2.2might be char-
acterized by the number and diversity of concepts that exist
in a subset X(l, j). However, we usually do not know a pri-
ori any concept that exists in the sample subsets. This calls
for further research to identify indicators that may at least
estimate the effects of challenge C2.2 in real-world data sets.

6.2.2 Domain knowledge in different domains

Usual ways to model domain-specific concepts and their
relationships are knowledge graphs and semantic nets, e.g.,
taxonomies or ontologies [36,40]. Such models commonly
organize the entities of a domain, amongst others, via
hierarchical relationships of superordinate and subordinate
concepts. These hierarchical relationships typically fulfill the
constraints introduced in the previous section. In particular,
subordinate concepts, i.e., child nodes in the hierarchy, are
more specific than their associated superordinate concepts,
i.e., the parent nodes [40]. This also means that domain-
specific data of any subordinate child concept usually shows
a more homogeneous feature space than the data of its super-
ordinate parent concept. So, the effects of challenge C2
decreases along the hierarchy path from a root concept to
the leaf concepts. Hence, knowledge graphs or semantic nets
usually offer adequate domain knowledge to partition the
data via SPH.

As mentioned in Sect. 3, any manufacturing company has
a documentation of its product family [1]. This documenta-
tion is often structured as a kind of hierarchical semantic net,
e.g., as a product taxonomy or thesaurus that is suitable for
SPH. In particular, it explicitly describes and structures the
involved variety and diversity of products. This way, it sig-
nificantly helps to address these major causes of challenge
C2 in use cases across the industrial value chain. So, SPH
may be applied to many industrial multi-class problems.

For instance, Sun et al. [41] discuss a product taxonomy1

that is suitable for SPH. This taxonomy organizes products
and their data into three hierarchical levels: (1) product cate-
gories, (2) product sub-categories, and (3) product sub-types.
As discussed in Sect. 6.1.1, product sub-types at the bot-
tom level of the taxonomy show the least degree of product
variety. So, SPH may partition a sample set X into several
primary subsets according to these product sub-types. This
way, it decreases the number and diversity of class patterns

1 WalmartLabs: Taxonomy API: https://developer.walmartlabs.com/
docs/read/Taxonomy_API
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Fig. 9 Flat hierarchy categorizing skin colors based on the Fitzpatrick
scale [11]

in the resulting subsets and thus reduces the negative effects
of challenge C2. Only if a subset for a product sub-type con-
tains too few samples, SPH moves up the product taxonomy
to generate surrogate subsets at higher levels of product sub-
categories or product categories.

In the medical use case of diagnosing cancer types (see
Sect. 6.1.2), the major cause for challenge C2 is that peo-
ple with specific skin colors are underrepresented in data.
Chan et al. interpret this ethnic bias as an algorithm bias [7].
Their statement is that machine learning algorithms have to
be adapted tomake them inclusive of ethnicity and skin color.
However, we argue that the actual cause of this ethnic bias
is the problematic characteristics of available training data.
In these data, the class patterns of patients with darker skin
color are superimposed by patterns of Cacausian patients.
So, this ethnic bias rather corresponds to an aggregation or
representation bias in data [31,44]. This likewise holds for
the gender bias present in other problems of medical diag-
noses [5,52]. To address these kinds of bias, we need to select
and prepare the training data appropriately. Here, step SPH
of our approach comes into play to partition training data and
learn specific classifiers according to different skin colors or
gender. This offers the potential to reduce bias in data and
thus to increase fairness in machine learning.

Domain knowledge that SPH may use has to categorize
different kinds of skin color. Jablonski discusses various cat-
egorization schemes for human skin color [24]. The most
prominent one is the Fitzpatrick scale [11], which is still
widely accepted in the dermatology domain [24]. It orga-
nizes skin colors in six different types based on the response
of the skin to ultraviolet light.

Figure 9 shows a hierarchical taxonomy organizing types
of skin color according to the Fitzpatrick scale. This taxon-
omy fulfills all constraints introduced in the previous section.
Level 0 comprises one root node containing data of all skin
colors. Level 1 partitions all data into one subset for each of
the Fitzpatrick types I to VI [11]. Finally, the data in each
subset at level 1 is more homogeneous regarding the feature
space, i.e., the effects of challenge C2 are less severe than in
the whole sample set X . The reason is that class patterns for
certain cancers are better distinguishable if we consider only
training data for a specific type of skin color [7].

This example shows that SPH is also applicable if the
domain knowledge is represented by a flat hierarchy with

only one level below the root node. SPH then generates pri-
mary sample subsets for this bottom level 1. The difference
to a non-flat hierarchy is that SPH uses the whole sample
set X in case it decides to use a surrogate set for a specific
color type. This may be addressed by adding an intermedi-
ate level to the taxonomy. Nodes at this new level may for
instance build groups for light-skinned Caucasian patients or
for patients with darker skin from Africa or the Americas.

6.3 Generality of CPI

The next stepCPI of our approach requiresmetrics to identify
and quantify distinct imbalances between classes in sam-
ple subsets X j . Here, we apply the Gini coefficient and
the p-quantile. These two metrics are generic enough to
be applicable to almost any kind of discrete or continuous
class distribution. So, we may employ CPI to any multi-class
classification problem regardless of the given use case or its
domain.

Nevertheless, CPI requires a proper parameterization to
increase classification accuracy. The first parameter of CPI
is the threshold of the Gini coefficient to identify a distinct
class imbalance in a subsetX j . CPI’s secondparameter is p of
the p-quantile to differentiate minority and majority classes.
Both parameters of CPI have to be optimized together with
the parameter of SPH. This parameter of SPH is the threshold
to limit the loss of information due to the removal of classes
with only one sample in a subset X j . For the EoL test case,
we have tuned these three parameters and the resulting accu-
racy via a grid search. However, an exhaustive grid search is
obviously too time-consuming when applying our approach
to further use cases.

Finding the best parameter setting for both SPH and CPI
is however a complex multi-criteria optimization problem.
In fact, the parameters highly influence each other, so that it
is hard to find parameter combinations that are close to the
optimum. In many real-world use cases, it is even a multi-
objective optimization problem. For instance, data-driven
classification in EoL testing, has three major objectives.
Besides increasing accuracy (A@e) and reducing the num-
ber of rework attempts (RA@e), the most important goal is
to reduce monetary costs of EoL testing (Sect. 5.3). These
objectives often compete with each other. For instance, a
recent study shows that increasing accuracy does not neces-
sarily reduce monetary costs [20]. In scenarios of medical
diagnoses, sensitivity and specificity of data-driven classi-
fication must be weighted against the consequences of a
particular diagnosis and accompanying medical treatment
for the patient [7]. Altogether, these multi-criteria and multi-
objective properties make optimization a very hard problem.
In Sect. 7.4, we shed more light on this problem by analyzing
various parameterizations for different kinds of data distri-
butions.
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7 Evaluation with synthetic data

Now, we discuss the results of evaluating our approach with
synthetically generated data. We report how we generated
these synthetic sample sets (Sect. 7.1). Next, we discuss the
effects SPH and CPI have on statistics of these sample sets
that reflect challenges C1 and C2 (Sect. 7.2). Subsequently,
we discuss the major experimental results, e.g., in terms of
accuracy (Sect. 7.3). We then detail on the effects of optimiz-
ing the parameters of SPH and CPI (Sect. 7.4). Thereupon,
we focus on a more in-depth analysis, e.g., with respect to
the improvements of SPH and CPI for individual groups in
our hierarchical domain model (Sect. 7.5). This is followed
by a discussion of the runtime efficiency and scalability of
our approach with respect to bigger data sizes (Sect. 7.6).
Finally, we summarize the most important findings of this
evaluation (Sect. 7.7).

7.1 Synthetic data generation

As discussed in Sect. 6.1, challenges C1 and C2 are preva-
lent in the data of numerous real-worldmulti-class problems.
However, we cannot use these data to evaluate our approach,
especially since they are not publicly available. Data of use
cases across the industrial value chain constitute intellec-
tual property of the respective companies. These companies
are therefore generally unwilling to share their data. Use
cases related to medical diagnoses consider sensitive data of
patients, which must not be disclosed due to privacy reasons.

We also examined the data sets of publicly available
repositories, i.e., openML,2 KEEL [3], Kaggle,3 and the
UCI ML Repository.4 Remind that the data of the EoL test
case is a multi-class data set with 1050 samples, 84 classes,
115 features, 17% missing feature values, and a multi-class
imbalance with a Gini coefficient of 55%. However, none
of the around 3500 data sets in the above-mentioned repos-
itories comes even close to sharing these characteristics and
thus both challenges C1 and C2. All repositories together
only offer 40 data sets with more than 10 classes and with
at least a moderate multi-class imbalance, i.e., a Gini coef-
ficient greater than 30% (C1). Moreover, none of these data
sets consider a heterogeneous feature space (C2) to an extent
as found in the real-world use cases discussed in Sect. 6.1.
This can be seen, for instance, in the share of missing feature
values, which is less than 10% for all the above-mentioned
40 multi-class data sets.

As conclusion, the only way to get additional data sets for
our evaluation is to generate synthetic data. We have made
our data generator [46], the data we used for our evaluation,

2 openML: https://www.openml.org/
3 Kaggle data sets: https://www.kaggle.com/datasets
4 UCI ML Repository: https://archive.ics.uci.edu/ml

Table 4 Major data characteristics that differ among the five syntheti-
cally generated sample sets

Sample set Avg. # of classes with single
samples in a group

Gini coefficient (%)

Very bal 2.41 32

Balanced 2.79 42

Medium 4.55 51

Imbalanced 4.79 54

Very imbal 5.31 57

and the implementation of our approach publicly available on
GitHub.5 For the process of data generation, we first defined
a hierarchy model that is similar to the one shown in Fig. 1
in terms of the number of levels and the number and distri-
bution of groups on each level. Then, we used this hierarchy
model to generate five synthetic sample sets that differ in
specific data characteristics. Here, we followed a bottom-up
procedure:We first manually defined the number of samples,
features, and classes for each group at the bottom-level of the
hierarchy. Thereby, we followed a similar distribution as for
the EoL data. Afterwards, we used an existing data generator
from sklearn6 to generate the feature values with their corre-
sponding class labels and with varying class distributions.

For the differences among the five synthetic sample sets,
we focused on a minimal set of data characteristics that have
the greatest impact on the extent to which SPH and CPI
influence the final classification accuracy. Varying too many,
possibly interdependent data characteristics, could lead to
many unexpected side effects when applying SPH and CPI.
Then, we would risk that the effects on, e.g., the accuracy
could no longer be explained. Each of the five sample sets
has 1050 samples, 84 classes, and 100 features with 24%
missing feature values. The main difference among them is
thatwe adapted the class distribution in each individual group
in the hierarchy model to be either more balanced or more
imbalanced. We hence denote the sample sets as very bal-
anced, balanced,medium, imbalanced, and very imbalanced.
Table 4 summarizes basic characteristics that vary among the
sample sets. These specific differences in data characteristics
allow us to examine themajor influencing factors of SPH and
CPI as follows:

– SPH: The more imbalanced sample sets contain more
classes that have only one sample in individual groups
at the bottom level of the hierarchy. Table 4 reports the
average number of such classes across all groups. SPH

5 Prototypical Implementation: https://github.com/IPVS-AS/
SPHandCPI
6 Sklearn data generator: https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_classification
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first removes these classes with single samples from the
primary subsets X j . So, SPH also removes more classes
from these primary subsets themore imbalanced the over-
all sample set X . Then, SPH also decides more often to
choose surrogate subsets at higher levels of the hierar-
chy. This way, we can evaluate our approachwith varying
numbers of chosen surrogate subsets. As surrogate sub-
sets are less specific, the expectation is that the higher
their number, the lower the gain in accuracy of SPH.

– CPI: Another important factor for the resulting accu-
racy is the number of sample subsets X j that CPI splits
intominority andmajority subsetsX±

j . Thereby, the Gini
coefficient indicates the probability how many sample
subsets X j are split by CPI. We hence examine sample
sets, where the Gini coefficients differ between 32% and
57% (seeTable 4). This value range of theGini coefficient
is common for those data sets in the above-mentioned
repositories, e.g., openML, which have a comparable
number of samples and a multi-class imbalance.

Note that, for our evaluation, we deliberately generated
sample sets with a rather low size of only 1050 sam-
ples, but with comparably high numbers of features and
classes. The major reason is that such data characteristics
are common in many real-world industrial multi-class prob-
lems [25,26,41,55]. A small sample size may increase the
risk of overfitting [17,28]. Nevertheless, as discussed in
Sects. 4.2.1 and 5.1, we address this issue by applying the
ensemble techniqueRandomForest [6] as classification algo-
rithm in our evaluation. Ensemble techniques are able to
reduce the risk of overfitting in case of smaller data sets [19].
In addition, Hirsch et al. show [19] that a small sample size
usually amplifies the negative effects of a multi-class imbal-
ance (C1) and a heterogeneous feature space (C2) on the
classification accuracy. This motivates to use this small sam-
ple size in order to assess whether SPH and CPI are then still
able to address challenges C1 and C2.

7.2 Effects of SPH and CPI on challenges C1 and C2

Weuse a similar experimental setup as described inSect. 5.2.1,
e.g., we use the same train and test split and performance
scores. We carried out a grid search to find the best param-
eterization of SPH and CPI for each of the five sample sets
individually. For each parameter, we defined a reasonable
grid on the basis of the best parameter values for the EoL test
case. For the maximum information loss of SPH, we exam-
ined values in {0.1, . . . , 0.4}. Regarding CPI, we examined
values in {0.2, . . . , 0.4} for the threshold of the Gini coeffi-
cient and values in {0.7, . . . 0.9} for the p-quantile.We used a
step size of 0.05 for each parameter. In the following sections,
we focus on the respectively best parameterization found by
this grid search. We first discuss detailed statistics that high-

light the effects of SPH and CPI on challenges C1 and C2 in
the synthetic sample sets.

Table 5 shows these statistics for the five sample sets. In
its second column, the table shows in (a) how many sample
subsets SPH generates and how many of them correspond
to surrogate subsets. Furthermore, this column indicates in
(b) how many of SPH’s subsets the next step CPI does not
split (X j ), and how many it splits into minority and majority
subsets X±

j . The next columns show average numbers of
samples xt , classes ci , and features fk , the shares of missing
feature values “NA”, as well as Gini coefficients among all
sample subsets after applying (a) SPH and (b) SPH+CPI.

The statistics prove the tendency discussed in the previous
section that themore imbalanced the data, themore surrogate
sets SPH generates. Note that it generates between 8 and 18
surrogate sets for our synthetic sample sets, while it is 5 for
the EoL test case. The reason is that the bottom groups of the
hierarchy of all synthetic sample sets contain more classes
with only one sample than in case of the EoL data. So, we can
evaluate whether this higher number of surrogate sets has a
negative effect on the final classification accuracy.

Since SPH generates more surrogate sets, the mean num-
bers of samples xt and classes ci in each subset X j are also
higher for the synthetic data than for theEoLdata (cf. Tables 5
and 2). The mean number of samples after SPH (cf. lines (a)
in Table 5) is now between 78 and 138 per subset, while the
number of classes is between 16 and 22. Nevertheless, the
number of samples per class is about 5 to 6 in each subset
X j , which in turn is similar to the EoL data. Moreover, SPH
has a positive effect on challenge C1 of a multi-class imbal-
ance. It reduces the Gini coefficients of all five sample sets.
As shown in Table 4, the original Gini coefficients of these
sample sets are between 32 and 57%. SPH reduces these to
values between 17 and 42% (see Table 5).

Again, the major advantage of SPH is its positive effect
on challenge C2 of a heterogeneous feature space. SPH for
instance reduces the number of features for the five gener-
ated sample sets from 100 to a mean number of about 82 to
84 in the subsets X j . Thereby, it removes most of the fea-
tures that contain missing values in the sample sets. This
leads to a significant reduction of the share of missing values
(“NA”) from originally 24% to at most 9% for the resulting
subsets X j .

We have also investigated to which extent primary sets
and surrogate sets individually contribute to addressing the
problem of a heterogeneous feature space. For instance, the
14 primary sets SPH generates for the medium sample set
contain on average 80 features with a share of missing val-
ues of only 5.2%. This leads to a significantly positive effect
on challenge C2. The remaining 12 surrogate sets contain on
average 86 features with about 11.7% of missing values. So,
they aremore heterogeneous than the primary sets. Neverthe-
less, the 12 surrogates are still muchmore homogeneous than
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the whole sample set and thus also contribute to addressing
challenge C2. In fact, the 11,7%ofmissing values constitutes
a reduction by half of the 24% of the original medium sample
set.While the 14 primary sets contain on average 27 samples,
the surrogates comprise about 228 and thus many more sam-
ples. Altogether, this confirms our statement in Sect. 4.1.1
that surrogates represent an appropriate trade-off between
the entire sample set with 1050 samples but a very heteroge-
neous feature space and individual primary setswith a largely
homogeneous feature space but fewer samples.

CPI splits more sample subsets X j into minority and
majority subsets X±

j the more imbalanced the class distri-
butions of the five sample sets are. As the number of splits
for the balanced and very balanced sample sets is only 3 and
4, CPI only moderately reduces the Gini coefficients for each
of them by 3%-points. For the other sample sets, CPI splits
much more of SPH’s X j , which leads to a likewise higher
reduction of the Gini coefficients. Especially for the very
imbalanced sample set, CPI splits 19 subsets and reduces the
Gini coefficient to the highest degree, i.e., from 42% after
SPH to 22% after CPI. This confirms our main intuition that
the positive effect of CPI is stronger the more imbalanced
the class distribution of the original sample set.

7.3 Classifier accuracy for varying class distributions

Now, we discuss the results of evaluating our approach with
the five synthetic sample sets w. r. t. the classification accu-
racy. Here, we focus on the baseline RF+B, as it clearly
outperforms avNN. This is due to the same reasons as
discussed in Sect. 5.2.2: Our sample sets do not contain high-
resolution geometric data or time series data and their size
is too small, so that neural networks tend to overfit very
strongly. In the following, we discuss the A@e scores with
e ∈ {1, . . . , 10} for the baseline RF+B and for applying both
SPH and CPI. We also present the Avg A@e score, i.e., the
average of the single A@e scores among all e ∈ {1, . . . , 10}.

Medium sample set:We start with the discussion for the
medium sample set (cf. Fig. 10) because the A@e scores
of our approach SPH+CPI and of the baseline RF+B show
a similar behavior for this sample set as those reported in
Fig. 7 for the EoL test case. In particular, SPH+CPI again
dominates RF+B, i.e., our approach achieves better results
for all lengths e of the recommendation list Re. On average
among all e ∈ {1, . . . , 10}, SPH+CPI achieves 73.1% accu-
racy, while RF+B only yields 65,4%. Hence, our approach
leads to an average performance gain of 7,7%-points. This is
comparable to the gain achieved for the EoL test case.

Moreover, SPH+CPI again outperforms the baseline for
shorter lists Re, e.g., the highest gain in accuracy is about
11%-points forR2. These performance gains for shorter lists
are important for many real-world applications. In the EoL
test case, for instance, they increase the probability that oper-
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Fig. 10 Evaluation results for the medium sample set. The accuracy is
shown as A@1 to A@10 for recommendation lists Re with different
lengths e ∈ {1, . . . , 10}

Table 6 RA@10 scores for RF+B and SPH+CPI

Sample set RA@10

RF+B SPH+CPI

Very balanced 5.35 4.10

Balanced 3.50 3.22

Medium 2.96 2.43

Imbalanced 2.75 2.50

Very imbalanced 2.12 1.80

Bold values are the respectively best results

ators may solve a quality issue with fewer rework attempts
(see Sect. 5.2.3). To illustrate this, Table 6 shows the RA@10
scores yielded by RF+B and SPH+CPI for all five sample
sets. This RA@10 score represents the average number of
rework attempts that operators need when working through
the whole list R10 with 10 elements. Note again that the
RA@10 score is lower the higher the hit rate on the first
positions in a listRe (see Sect. 5.2).

For the medium sample set, our approach reduces the
RA@10 score by 0.53 points. This leads to significant cost
reductions for reworking on defective engines. As discussed
in Sect. 5.3, a company using our approach may save costs
in a magnitude of several millions of EURO per year. The
significant reduction of the RA@10 score also entails prac-
tical benefits for use cases of data-driven medical diagnoses
(see Sect. 6.1.2). Here, the idea is that a physician likewise
works through the recommendations of the listRe. However,
given that each recommendation list delivers only amoderate
accuracy, the physician performs further diagnostics for each
prediction of the list to verify or falsify it. Nevertheless, any
further diagnosticsmay be associatedwith inconveniences or
even adverse effects for the patient. Here, a lower RA@10
score leads to a reduction of the average number of such
inconvenient further diagnostics. For instance, reducing the
RA@10 score by 0.53 for the medium sample set entails that

we need to carry out one fewer diagnostics for every second
patient.

We have again evaluated to which extent SPH and CPI
contribute to the overall performance gain. On average, the
accuracy of applying SPH in isolation is 72.7%.which is only
about 0.4%-points less than for applying SPH+CPI together.
So, the performance gain of CPI is smaller compared to the
EoL test case, where CPI adds 3.4%-points to the gain in
accuracy of SPH. Nevertheless, we discuss in Sect. 7.5 in
more detail that CPI still increases the A@e score for the
samples of specific groups of our hierarchical domainmodel.

Finally, we assess to which extend SPH and CPI increase
the accuracy for majority and minority classes separately.
Thereby, we treat a class as majority class if it is represented
by more than the median number of samples per class, while
minority classes are represented by less than this median.
This way, wemay investigate whether our approach is indeed
able to address multi-class imbalance. The goal is to increase
the accuracy of especially the underrepresented minority
classes, while not reducing that ofmajority classes. The base-
line RF+B yields an Avg A@e score of 76.0% for majority
classes and 28.5% for minority classes. SPH increases accu-
racy for majority classes to 79.8%, i.e., by 3.8%-points. For
minority classes, the gain is even much higher with 18.3%-
points, i.e., SPH here yields 46.8% accuracy. CPI does not
change the accuracy of majority classes, but even adds addi-
tional 1.8%-points to that of minority classes, so that the
final Avg A@e score for them is 48.6%. So, our approach
SPH+CPI reaches its goal to especially and significantly
increase accuracy for minority classes.

Imbalanced and very imbalanced sample sets: For the
more imbalanced sample sets, the accuracies at lower posi-
tions, e.g., A@1, increase for both the baseline RF+B and
for our approach (see Fig. 11). The reason is that the more
imbalanced sample sets contain more samples of majority
classes. It is hence more likely that especially these majority
classes are predicted correctly. Majority classes are usually
predicted on the first positions in a list Re. So, this also
increases the accuracy at these first positions. Yet, for longer
lists (e > 2), most of the A@e scores are even less compared
to the sample set of the medium class distribution. Here, we
see the opposite effect forminority classes.More imbalanced
sample sets contain less samples of minority classes that are
then usually predicted less accurately at higher positions of
a recommendation list.

Overall, SPH+CPI again increases accuracy compared to
the baseline RF+B for any length of the list Re. The aver-
age performance gain for the imbalanced sample set is about
4.6%-points, while it is about 6.8%-points for the very imbal-
anced set. Note that again primarily SPH contributes to this
increase in accuracy to a similar extent as for the medium
sample set. Likewise, our approach is able to address multi-
class imbalance, i.e., SPH+CPI especially increases accuracy

123



Exploiting domain knowledge to address class imbalance and a heterogeneous feature space in… 1057

(a) Imbalanced Sample set

(b) Very Imbalanced Sample set

Fig. 11 Evaluation results for imbalanced sample sets

for minority classes, while not reducing that of majority
classes. For the imbalanced sample set, the Avg A@e score
of majority classes increases by 3.9%-points from 77.0% of
RF+B to 80.9% of SPH+CPI. Again, the gain in accuracy is
much higher for minority classes with 9.5%-points, i.e., from
27.8 to 37.3%. The gain in accuracy for the very imbalanced
sample set are 2.8%-points for majority and 11.5%-points
for minority classes.

Yet, the increase in average accuracy achieved by both
SPH and CPI is less than for the medium sample set. The
reason is that we built more surrogate subsets and thus less
primary subsets for the more imbalanced sample sets (cf.
Table 5). A classifier trained on a primary subset is more spe-
cialized to the samples of the relevant group than a classifier
trained on a surrogate. Hence, the accuracy for the surrogates
is less than for the primary subsets. This confirms our expec-
tation stated in Sect. 7.1 that SPH yields a gain in accuracy,
but that this gain is lower if it chooses more surrogates.

Similar to the increase in the accuracy, the RA@10 scores
decrease by 0.25 or 0.32 points, respectively. This again
entails practical benefits for real-world use cases. It for
instance reduces the number of rework attempts in EoL tests
or the number of inconvenient further diagnostics of patients
in medical use cases.

(a) Very Balanced Sample set

(b) Balanced Sample set

Fig. 12 Evaluation results for balanced sample sets

Balanced and very balanced sample sets: For the more
balanced sample sets, we have the contrary effect that the
A@e scores for both RF+B and SPH+CPI are lower com-
pared to the medium sample set (cf. Fig. 12). The reason is
that the majority classes are now represented less frequently
in the sample sets. As a result, the classifiers predict majority
classes with a lower accuracy. This especially decreases the
accuracy scores for lower positions of a recommendation list.

Nevertheless, SPH+CPI still outperforms the baseline
RF+B with average accuracy gains of 12.9%-points for the
very balanced and 10.5%-points for the balanced sample set.
These are even higher accuracy gains than for the medium
and especially for the imbalanced sample sets. The reason for
this is that SPH generates fewer surrogate subsets for the bal-
anced sample sets (cf. Table 5). This means that we observe
the opposite effect, i.e., the higher number of primary subsets
leads to a higher gain in accuracy.

In particular for cases where the baseline RF+B achieves
such small accuracy scores, the significant accuracy gains of
SPH+CPI are to be considered very important. For the very
balanced sample set as example, SPH+CPI increases A@e
scores by a factor between 2.6 and 1.9 for the first three
positions of the recommendation lists (e ∈ {1, . . . , 3}). This
way, SPH+CPI decreases the RA@10 score especially for
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Table 7 Average accuracy A@e and RA@10 scores for the five syn-
thetic sample sets with two different parameterizations of SPH and
CPI. Optimized parameters result from an individually performed grid

parameter search,while default parameters correspond to those yielding
the best accuracy scores for the data of the EoL test case

Sample set Max. information loss Gini p value AvgA@e (%) RA@10

Optimized Default Optimized Default Optimized Default Optimized Default Optimized Default

Very balanced 0.35 0.25 0.30 0.30 0.70 0.80 39.2 39.0 4.10 4.24

Balanced 0.30 0.25 0.35 0.30 0.80 0.80 54.2 53.9 3.22 3.30

Medium 0.35 0.25 0.40 0.30 0.90 0.80 73.1 71.1 2.43 2.67

Imbalanced 0.35 0.25 0.40 0.30 0.85 0.80 70.4 69.4 2.50 2.50

Very imbalanced 0.30 0.25 0.40 0.30 0.80 0.80 72.7 71.6 1.80 1.90

The bold values indicate the best scores obtained for each sample set

the very balanced sample set by the largest amount, i.e., by
1.25 points.

For the balanced sample set, SPH again contributes most
to the accuracy gain with 9.9 of the overall 10.5%-points.
However, we make a different observation for the very bal-
anced sample set. Here, the gain of 12.9%-points is achieved
by SPH alone, i.e., CPI neither increases nor reduces accu-
racy. Note that the intended purpose of CPI is to further
increase accuracy especially for sample subsets with a high
class imbalance, i.e., a highGini coefficient. The subsets SPH
generates for the very balanced sample set, however, show a
small average Gini coefficient of 17% (see Table 5). So, it is
evident that CPI does not further increase accuracy for these
subsets of the very balanced sample set.

In a similar way, the gain in accuracy is roughly the same
for majority and minority classes, i.e., our approach does
not significantly favor any of these classes in case of these
balanced sample sets with low Gini coefficients. For the bal-
anced sample set, SPH+CPI increases the Avg A@e score of
majority classes by 9.9%-points and that of minority classes
by 10.9%-points. The gain in accuracy for the very balanced
sample set are 12%-points and 14.3%-points, respectively.

7.4 Optimization of SPH and CPI parameters for
varying class distributions

In this section, we analyze the influence of the parameters of
SPH and CPI for the five synthetic sample sets. Thereby, we
verify if themulti-criteria parameter optimization is worth its
computational effort (see Sect. 6.3). Table 7 summarizes how
the results differ for the five sample sets between two param-
eterizations of SPH and CPI. First, the optimized parameters
in Table 7 report the parameter values yielding the best accu-
racy scores via our grid search. The optimization goal was
to maximize the average accuracy among all positions e of
a list Re. Table 7 shows this as the AvgA@e scores, while
it also presents the RA@10 scores. The second parameteri-
zation is the one that obtained the best result for the original
sample set of the EoL test case (see Sect. 5.2.1). Table 7

denotes them as the default parameters. Note that, for any of
the five sample sets, the results for AvgA@e and RA@10
yielded by these default parameters are still better then the
results of the baseline RF+B. Our goal is to examine whether
the parameters for the EoL data provide a generally applica-
ble heuristic for other sample sets, so that we may avoid the
multi-criteria optimization.

For the more balanced sample sets, the differences in
AvgA@e between the optimized and default parameters are
only marginally, i.e., 0.2%-points for the very balanced and
0.3%-points for the balanced sample set. The RA@10 scores
differ only with 0.14 and 0.08 points. These improvements
can be seen as negligible for most real-world use cases.
Hence, the effort of optimizing the parameters of SPH and
CPI is usually not rewarding for sample sets with more bal-
anced class distributions.

At first glance, the optimization seems to be more reward-
ing the more imbalanced the data is. For the two more
imbalanced sample sets, the improvements in accuracy are
1.0 and 1.1%-points. However, the gains in the RA@10 score
are only 0.1 points for the very imbalanced and even 0.0 for
the imbalanced sample set. The reason is that gains in the
RA@10 score are mainly achieved with higher hit rates at
first positions in a recommendation list Re (see Sect. 5.2).
Yet, the accuracy gains for the two imbalanced sample sets
are mainly achieved in the upper positions of a listRe. Alto-
gether, the gains for such imbalanced sample sets are usually
negligible as well, so that a parameter optimization does not
pay off its computational effort.

For the medium sample set, however, the optimiza-
tion increases the AvgA@e score by 2.0%-points and the
RA@10 score by 0.24 points. This may be beneficial for a
limited set of use cases, where such comparatively low gains
in both scores are crucial. For instance, this holds for data-
driven medical diagnoses, where it results in a comparatively
less number of further diagnostics and thus in fewer adverse
effects for the patients.

In summary, the default parameters we found for the EoL
data already achieve good results for many different sample
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Table 8 Accuracy A@1,
average A@e (Avg A@e), and
RA@10 score differentiated
between groups containing less
than or equal to the median
number of samples per group
and those containing more than
this median

Groups with. . . A@1 (%) Avg A@e (%) RA@10

RF+B SPH SPH+CPI RF+B SPH SPH+CPI RF+B SPH SPH+CPI

≤ 22 samples 21.3 36.2 36.2 46.8 69.3 68.7 3.67 2.66 2.69

≥ 22 samples 34.8 36.8 41.1 69.8 73.4 74.0 2.61 2.15 2.09

Bold values are the respectively best results

sets. So, we can usually avoid the overhead for optimizing
the parameters of SPH and CPI. Only in rare cases, a sophis-
ticated parameter optimization may be worthwhile. This is
for instance the case if the data shows similar characteristics
as our medium sample set.

7.5 Detailed analysis of SPH and CPI improvements

Now, we discuss the improvements obtained with SPH and
SPH+CPI compared to the baseline RF+B in more detail. To
this end,we separate and compare the results for two different
sets of the 26 groups at the bottom level of our hierarchy
model. We distinguish between groups (1) containing less
than or equal to the median number of samples per group
and (2) those containingmore than thismedian. The rationale
behind this is that our approach, in particular SPH, aims at
improving the accuracy especially for the first set of groups
that are underrepresented in the whole sample set X . This
way, SPH may for instance address the increasing product
variety in use cases across the industrial value chain, as well
as the ethnic or gender bias present in use cases of data-driven
medical diagnoses (see Sect. 6.1). For the sake of clarity, we
focus on the medium sample set in this section. Here, the
median number of samples per group is 22. Table 8 shows
the results of A@1, AvgA@e, and RA@10 for groups with
≤ 22 samples and groups with > 22 samples. Note that the
results for the other sample sets show similar trends.

SPH especially increases the accuracy for smaller groups
with ≤ 22 samples in comparison to the baseline RF+B. It
increases the A@1value by 14.9%-points, while the increase
in the AvgA@e score is even higher with 22.5%-points.
This also leads to a reduction of the RA@10 score by 1.01
points, which corresponds to one fewer rework attempt for
each underrepresented group. So, SPH achieves remarkably
better results for smaller groups with less than 22 samples.
This shows that SPH is especially beneficial for groups that
are underrepresented in data. For groups with> 22 samples,
SPH also increases the AvgA@e score by 3.6%-points, and
it reduces the RA@10 score by 0.46. So, this step of our
approach also entails benefits for such bigger groups.

The subsequent step CPI changes the scores A@1,
AvgA@e, and RA@10 only negligibly for the smaller
groups. The strengths ofCPI come apparent for bigger groups
with more than 22 samples. Here, it further increases the
accuracy scores of SPH by 0.6%-points for AvgA@e and

even by 4.3%-points for A@1. The improvement occurs
mainly due to one single group that contains 309 samples
and thus by far the most samples. Five classes of this group
have more than the median number of 22 samples. Table 9
shows a detailed view on the results of the A@1 score for
these five classes after applying only SPH and SPH+CPI.
The table also indicates how CPI partitions these classes into
majority classes X+

j and minority classes X−
j .

Class A, which occurs most often with 95 samples, is pre-
dicted very accurately after only applying SPHwith an A@1
score of 97.4%. The other four frequent classes with 33 to
47 samples are however predicted very inaccurately. Also
applying CPI to the subset of this group yields a slightly
smaller accuracy for class A, but it significantly increases
the accuracy of the other classes. The reason is that CPI gen-
erates a separate sample subset for the most frequent class A.
Then, it applies the OvA binarization strategy as described
in Sect. 4.1.3. The resulting subset thus has one positive class
with 95 samples for the single majority class A and one nega-
tive classwith the remaining 214 samples of thewhole subset.
So, this negative class occurs more often than the positive
class, so that the original majority class A becomes a minor-
ity class in this new subset.

In addition, CPI generates aminority subset for all remain-
ing classes, i.e., also for classesB toE. In thisminority subset,
these four classes are no longer underrepresented by class A.
Hence, there is a significant increase in accuracy for classes
B to E. This even leads to an increase of the A@1 score for
the whole group by 11%-points, i.e., to 55% in comparison
to 44% of SPH. Altogether, CPI is especially worthwhile
for groups with a large number of samples, where a single
majority class accounts for a big share of all samples.

7.6 Runtime efficiency and scalability

With SPH and CPI, our approach introduces additional steps
to a data preparation and model training pipeline. Further-
more, it changes the model training phase, as we train several
classifiers M j for individual sample subsets X j resulting
from SPH and CPI. We now discuss the effects of these
changes on the runtime efficiency. This also includes a dis-
cussion of the trade-off between a possible runtime overhead
and the gain in accuracy of SPH and CPI compared to the
baseline RF. Furthermore, we investigate the scalability of
our approach by evaluating both the runtime efficiency and
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Table 9 Accuracy results for the fivemost frequent classes of the group
containing in total 309 and thus the most samples. We also show how
CPI partitions the classes into majority X+

j and minority classes X−
j

CPI partition Class Occurrence A@1

SPH SPH+CPI

X+
j A 95 97.4 86.8

X−
j B 47 31.3 68.8

C 45 7.1 50.0

D 35 0.0 8.0

E 33 7.7 23.1

.. .. .. ..

A@1 for the whole group: 44.0 55.0

Bold values are the respectively best

the classification performance with bigger data sets of up to
one million samples. The intention is to asses an important
aspect of the generality of our approach, i.e., whether it is
still efficient in use cases with higher data sizes.

Table 10 reports the results regarding runtime efficiency
and scalability of our approach. Here, we used the medium
sample set with its 1050 samples and employed our data
generator [46] to generate sample sets with the same data
distribution, but with sizes of 10000, 100000, 500000, and
1000000 samples. The results for the data distributions of the
other four synthetic sample sets again show similar trends.
We have carried out all measurements on a virtual machine
with Ubuntu 22.04 as operating system, 32 GBRAM, and 16
virtual CPU cores. We parameterized SPH and CPI using the
default parameters as reported in Table 7, i.e., 0.25% for the
maximum information loss of SPH, 0.3% for the Gini thresh-
old of CPI and 0.8 as p value. Similar to the discussion in
Sect. 7.4, the evaluation outcomes and trends do not signifi-
cantly differ with another parameterization that is optimized
towards accuracy.

For each of the sample sets with different data sizes, we
used the same split ratio to divide it into a training set and
a test set as explained in Sect. 5.2.1. The third column in
Table 10 shows the respective numbers of samples used as
training set for the RF baseline. For instance, we used 750
training samples for the data set with a total number of 1050
samples and 7142 training samples for the data set with
10000 samples. The remaining 300 or 2858 samples con-
stitute the test set. For our approach SPH+CPI, we used the
same train/test split and number of training samples. How-
ever, SPH+CPI further splits the training set into 26 subsets
X j and then applies the further data preprocessing andmodel
training on each subset individually. Hence, the fourth col-
umn of the table indicates for SPH+CPI the average number
of samples in these subsets X j , e.g., 65 or 145 samples for
the data sets with in total 1050 or 10000 samples. Columns
5 to 7 show the results for the performance scores AvgA@e, Ta
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A@1 and RA@10 of the baseline RF and of our approach
SPH+SPI. The eighth column shows the overall runtime, i.e.,
the sum for both data preprocessing—including SPHandCPI
in our approach—and for training the classifiersM j .We also
separately report the runtime of model training in column 9
to investigate how our approach especially affects this model
training.

The results reported in Table 10 show that our approach
SPH+CPI outperforms the baseline RF for all sample sets.
For all data sizes from 1050 to 1000000 samples, we achieve
similar gains in the performance scores as reported in the
subsections above. For instance, the gain in AvgA@e even
increases from the data set with 10000 samples to that with
1000000 samples in a range from 3.7 to 7.2%-points. A
similar trend may be observed for the other scores A@1 and
RA@10.

For the smaller data setwith 1050 samples, both the overall
runtime and that of model training are higher for SPH+CPI
than for the baseline RF. Nevertheless, the overall runtime
overhead is only about two seconds,which canbe seen as neg-
ligible. In fact, such a small runtime overhead is acceptable
in exchange for the significant improvements in the perfor-
mance scores, e.g., an increase of 7.7%-points in AvgA@e.

While our approach SPH+CPI indeed introduces an addi-
tional overhead to data preprocessing, it significantly reduces
the runtime of model training for all bigger sample sets with
10000 or more samples. In most cases, this even leads to a
reduction of the overall runtime. The runtime of model train-
ing is mainly determined by the computational complexity
of the Random Forest algorithm. The lower bound of this
complexity is in O(n ∗ log(n) ∗ f ∗ v), where n is the num-
ber of training samples, f is the number of features in the
training data set,O(n ∗ log(n)∗ f ) is the lower bound of the
complexity to build one decision tree, and v is the number of
decision trees Random Forest builds [6]. So, the runtime of
model training grows faster than linearly with the input data
size n. The baseline RF applies the Random Forest algorithm
to the whole training data set, e.g., the input data size n is
714285 samples in case of the biggest data set with in total
1000000 samples. This leads to a high runtime for model
training, which even accounts for by far the largest share of
the overall runtime of the baseline RF.

In contrast, our approach SPH+CPI subdivides the whole
training data set into several sample subsets X j . It then
applies the Random Forest algorithm on each of these much
smaller subsets. On the one hand, our approach hence applies
the Random Forest algorithm more often than the baseline,
e.g., 26 times for each of the 26 sample subsets X j of our
data sets. On the other hand, SPH+CPI significantly reduces
the number of training samples to which the Random Forest
algorithm is applied each time. In case of the biggest data set,
e.g., it is on average applied to only 14285 samples of each
X j , which constitutes a reduction of the average input data

size n by a factor of about 50. As the runtime grows faster
than linearly with the input size n, i.e., in O(n ∗ log(n)),
this significant reduction of the average input size n leads to
likewise significant reduction of the runtime of model train-
ing and finally also of the overall runtime. Altogether, this
again proves the generality of our approach, as it leads to an
increase in classification performance and at the same time
reduces the runtime in use cases with bigger data sets.

Note that we used an implementation of our approach that
carries out CPI, the data preprocessing and model training
sequentially for each sample subset X j that SPH delivers.
Actually, we could even further reduce the runtime of our
approach SPH+CPI, as it allows for an easy parallelization
of all steps after SPH for the individual sample subsets. How-
ever, we deliberately chose the sequential implementation to
assume a worst case scenario for SPH+CPI.

7.7 Evaluation summary

In summary, our extensive evaluation yields the following
major findings:

– SPH and CPI are suitable to mitigate the negative effects
of both challenges C1 and C2 in sample sets with differ-
ent data and class distributions (see Sect. 7.2). SPH for
instance significantly reduces the heterogeneity in the
feature space, e.g, the share of missing feature values in
all our synthetically generated sample sets (see Table 5).
The benefit of CPI is apparent especially for sample sets
with a higher multi-class imbalance. Here, it is able to
further reduce the Gini coefficient by up to 20%-points.

– Our approach applying both SPH and CPI together
outperforms the baseline RF+B for any of the class dis-
tributions of the five synthetic sample sets (see Sect. 7.3).
It increases the average classification accuracy by values
between 4.6 and 12.9%-points.

– In addition, our approach reduces the RA@e scores by
up to 1.25. This entails considerable practical benefits for
real-world use cases. It for instance reduces the number
of ineffective rework attempts in EoL testing or the num-
ber of further medical diagnostics that may have adverse
effects for a patient.

– With our grid search, we verify that the multi-criteria
optimization of the parameters of both steps SPH andCPI
is usually not worth its computational effort (Sect. 7.4).
In fact, the parameter values that yielded the best result
for the EoL data already offer a good heuristic for the
synthetic sample sets.

– Our detailed analysis in Sect. 7.5 reveals that SPH serves
its intended purpose: It achieves significantly better clas-
sification accuracies and RA@10 scores especially for
smaller groups that are underrepresented in the sample
sets. So, it helps to reduce representation bias in data [31],
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e.g., ethnic or gender bias in data-driven medical diag-
noses.

– The next step CPI has its strength for bigger groups in
imbalanced data. This especially holds for groups where
a single majority class accounts for a big share of the
samples. Here, CPI significantly increases accuracy for
all other classes that have previously been superimposed
by the single majority class.

– Our evaluation results with bigger data sets (Sect. 7.6)
reinforce thegenerality of our approach. In fact, SPH+CPI
significantly increase classification performance and at
the same time reduce the runtime of a data preparation
and model training pipeline even for use cases with very
high data sizes.

8 Conclusion

The main contribution of this paper is an approach that
exploits domain knowledge to systematically prepare train-
ing data formulti-class classification. Thedomain knowledge
may be provided by hierarchical relationships in seman-
tic nets, e.g., in taxonomies or ontologies. Thereby, our
approach partitions the training data into several sample sub-
sets in order to address two of the most important analytical
challenges in real-world classification problems: multi-class
imbalance and heterogeneous feature space.

This is confirmed by our evaluation, wherewe first applied
our approach on real-world manufacturing data and used a
product hierarchy as domain knowledge. To prove the gener-
ality of our approach,we conducted additionalmeasurements
with several synthetically generated data sets that repre-
sent different data distributions found in other application
domains. In any of these evaluations, our approach domi-
nates the baseline solutions and achieves significant increases
in classification accuracy. Moreover, it entails considerable
practical benefits in real-world use cases. For instance, it
reduces the number of rework attempts in EoL testing or the
number of further inconvenient diagnostics in medical use
cases.

Our approach requires a hierarchical taxonomy structure
to build homogeneous sample subsets. For use cases where
such a taxonomy is not yet defined,weare going to investigate
how to build adequate sample subsets based on clustering
techniques, especially hierarchical or constraint-based clus-
tering. In addition, we discussed our results for the Random
Forest algorithm, as this ensemble technique yielded the best
baseline resultswith our data characteristics. In future,we are
going to evaluate our approach and its two steps SPH andCPI
for other learning algorithms and data characteristics, e.g.,
for neural networks dealing with high-resolution time series
data and bigger sample sets. Finally, our approach focuses on
multi-class classifications and thus presumes to have labeled

data. Future work may hence investigate whether a data par-
titioning based on domain knowledge may help to prepare
unlabeled data, e.g., for unsupervised data analytics.
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