
The VLDB Journal (2023) 32:905–936
https://doi.org/10.1007/s00778-022-00776-8

REGULAR PAPER

A survey on deep learning approaches for text-to-SQL

George Katsogiannis-Meimarakis1 · Georgia Koutrika1

Received: 27 May 2022 / Revised: 31 October 2022 / Accepted: 10 December 2022 / Published online: 23 January 2023
© The Author(s) 2023

Abstract
To bridge the gap between users and data, numerous text-to-SQL systems have been developed that allow users to pose natural
language questions over relational databases. Recently, novel text-to-SQL systems are adopting deep learning methods with
very promising results. At the same time, several challenges remain open making this area an active and flourishing field
of research and development. To make real progress in building text-to-SQL systems, we need to de-mystify what has been
done, understand how and when each approach can be used, and, finally, identify the research challenges ahead of us. The
purpose of this survey is to present a detailed taxonomy of neural text-to-SQL systems that will enable a deeper study of all
the parts of such a system. This taxonomy will allow us to make a better comparison between different approaches, as well
as highlight specific challenges in each step of the process, thus enabling researchers to better strategise their quest towards
the “holy grail” of database accessibility.

Keywords Text-to-SQL · Deep learning · Natural language processing · Natural language interface for databases

1 Introduction

In the age of the Digital Revolution, data is now an indis-
pensable commodity that drives almost all human activities,
from business operations to scientific research. Nevertheless,
its explosive volume and increasing complexity make data
querying and exploration challenging even for experts. Exist-
ing data query interfaces are either form-based, which are
easy to use but offer limited query capabilities, or low-level
tools that allow users to synthesise queries in the underlying
database query language (e.g. SQL) but are intended for the
few (e.g. SQL experts). To empower everyone to access, use,
understand, and derive value from data, we need to lift the
technical barriers that impede access to data and eliminate
dependency to IT experts. Expressing queries in natural lan-
guage can open up data access to everyone. In the words of
E. F. Codd: “If we are to satisfy the needs of casual users
of databases we must break the barriers that presently pre-
vent these users from freely employing their native language”
[14].

B George Katsogiannis-Meimarakis
katso@athenarc.gr

Georgia Koutrika
georgia@athenarc.gr

1 Athena Research Center, Athens, Greece

Towards this direction, there has been an increasing
research focus on Natural Language (NL) Interfaces for
Databases (NLIDBs) that allow users to pose queries in nat-
ural language and translate these queries to the underlying
database query language. In particular, text-to-SQL (or NL-
to-SQL) systems translate queries from NL to SQL. As the
text-to-SQL problem is notoriously hard, these systems have
been the holy grail of the database community for several
decades [5]. Early efforts [36,37,60,110] rely primarily on the
database schema and data indexes to build the respective SQL
query from a NL query. A query answer is defined as a graph
where nodes are the relations that contain the query keywords
and edges represent the joins between them. Parsing-based
approaches parse the input question to understand its gram-
matical structure, which is then mapped to the structure of
the desired SQL query [42,53,69,90,98]. Recently, there has
been a growing interest in neural machine translation (NMT)
approaches [33,89,112] that formulate the text-to-SQL prob-
lem as a language translation problem, and train a neural
network on a large amount of {NL query/SQL} pairs. These
approaches have bloomed due to the recent advances in deep
learning and natural language processing (NLP), along with
the creation of two large datasets (WikiSQL [112] and Spider
[107]) for training text-to-SQL systems.

As neural text-to-SQL systems are popping up “likemush-
rooms after a rain” with promising results, an exciting, but,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00776-8&domain=pdf


906 G. Katsogiannis-Meimarakis, G. Koutrika

at the same time, highly competitive and fast-paced research
field is opening up. While a growing interest on the sub-
ject is shown by various tutorials [44,45,54] and literature
reviews [1,2,5,17,40,47,55,72] presented at top conferences
and journals, an in-depth, systematic study and taxonomy
of neural approaches for text-to-SQL is missing. We believe
that in order to make real progress in building text-to-SQL
systems, we need to de-mystify what has been done, under-
stand how and when each model and approach can be used,
and recognise the research challenges ahead of us. Two ear-
lier works [2,55] study rule-based approaches that originated
from the database community; ourwork has a different scope,
focusing entirely on deep learning systems.Additionally, two
studies consider both rule-based and neural text-to-SQL sys-
tems: [47] provides a taxonomy of both types of systems and
an experimental evaluation based on a new accuracy metric
proposed by the authors, while [72] provides a large-scale
overview of rule-based, neural and conversational NLIDBs.
The biggest difference with these works is that we present
an in-depth taxonomy tailored to neural systems and their
peculiarities (while also covering more and newer efforts).
Finally, three studies focus on neural text-to-SQL systems:
[1] provides an overview of the neural text-to-SQL land-
scape, but in a more bare-bones manner compared to our
work, and [17,40], which are the closest to our work, since
they both attempt to organise the existing neural text-to-SQL
approaches. However, our work goes in greater depth than
these works, both by presenting a taxonomy with additional
dimensions, but also by using this taxonomy to analyse and
compare different systems and design choices. We also point
the interested reader to recent surveys on semantic pars-
ing [43] and context-dependent semantic parsing [56], two
broader domains that the text-to-SQL problem is a part of.

In a nutshell, this survey aims at catching up with recent
advances in deep learning text-to-SQL systems and sys-
tematically organising all the different techniques that have
been proposed for each step of the translation process. Our
objective is to (a) put different neural text-to-SQL works
in perspective, (b) create a fine-grained taxonomy that cov-
ers each step of the neural text-to-SQL pipeline, (c) explain
and organise all the techniques used for each dimension of
the taxonomy, (d) use the taxonomy to compare and high-
light the strengths and weaknesses of different systems and
techniques, and (e) highlight open challenges and research
opportunities for the database and the machine learning
communities. Our study is also relevant to other areas,
including the broader area of data exploration (e.g. natural
language explanations, recommendations), entity resolution,
and query optimisation, where the methods presented here
may be transferred to or inspire the development of new
methods.

In particular, our contributions are the following:

– We present the current state of the deep learning text-
to-SQL landscape, the particularities of the problem, the
benchmarks and evaluation methods that are most com-
monly used, and a wide spectrum of the most recent
efforts that leverage the latest andmost sophisticateddeep
learning approaches

– We provide a taxonomy that not only enables a side-
by-side comparison of the systems but also allows
decomposing the text-to-SQL problem in a number
of sub-problems and categorising existing techniques
accordingly

– We provide a detailed discussion of methods used in
these systems, taking advantage of our taxonomy to high-
light the advantages and shortcomings of different design
choices

– We discuss in detail open challenges that are highlighted
from our study and provide directions for critical future
research

The rest of this paper is organised as follows: Sect. 2
provides a definition and explanation of the text-to-SQL
problem, including an analysis of the challenges that make
the problemsohard. InSect. 3,wepresent the datasets that are
currently fuelling the creation of deep learning systems. We
also touch on the problem of evaluating system performance
based on these benchmarks. Section 4 presents a fine-grained
taxonomy for deep learning text-to-SQL systems, analysing
the most important steps followed by all systems and pre-
senting current work, open problems and hints for future
research for each step. Section 5 gives an overview of the
main neural building blocks used for text-to-SQL systems,
as well as their most common usage. Having established
a concrete set of axes for comparing and classifying text-
to-SQL systems, in Sect. 6, a multitude of neural systems
are presented and compared based on the aforementioned
taxonomy, allowing the reader to grasp the progress that
has been made in this domain and the differences between
key approaches. In Sect. 7, we take advantage of the taxon-
omy, to compare different design choices and provide useful
insights for researchers and practitioners that are interested
in implementing a novel text-to-SQL system. Finally, Sect. 8
aims at inspiring practitioners and researchers in the fields
of database systems, natural language processing and deep
learning, by shedding light on open problems that need to
be addressed, as well as closely related areas that could both
give and receive benefit from research done in the text-to-
SQL problem.

2 The text-to-SQL problem

The text-to-SQL problem can be described as follows:

123



A survey on deep learning approaches for text-to-SQL 907

Fig. 1 The text-to-SQL problem

Given a natural language query (NLQ) on a Relational
Database (RDB) with a specific schema, produce a SQL
query equivalent in meaning, which is valid for the said RDB
and that when executed will return results that match the
user’s intent.

A NLQ may be expressed as a complete and fluent
utterance (e.g. “What movies has Spielberg directed since
2012?”) or it may be just a few keywords (e.g. “Italian
Restaurants in Vienna”). A text-to-SQL example can be seen
in Fig. 1. Translating a NLQ to SQL hides challenges related
to the understanding of the input NL query as well as related
to building the correct (syntactically and semantically) SQL
query based on the underlying database schema.

2.1 NL challenges

Ambiguity Natural language is inherently ambiguous, which
means that it allows the formulation of expressions that are
open to more than one interpretation. There are several types
of ambiguity [3,66]. We describe the most common ones
below.

Lexical ambiguity (or polysemy) refers to a single word
having multiple meanings. For example, “Paris” can be a
city or a person.

Syntactic ambiguity refers to a sentence having multiple
interpretations based on its syntactic structure. For exam-
ple, the question “Find all German movie directors” can be
parsed into “directors that have directed German movies”
or “directors from Germany that have directed a movie”.

Semantic ambiguity refers to a sentence with multi-
ple semantic interpretations. For instance, “Are Brad and
Angelinamarried?”maymean they aremarried to each other
or separately.

Context-dependent ambiguity refers to a term having dif-
ferent meanings depending on the query context, the data
domain, and the user goals. Themost common example terms
are “top” and “best”. Based on the query context, for the
query “Who was the best runner of the marathon?”, the
one who completed the race faster (min operation) should
be returned, but when asking “Which was the best nation
of the 2004 Olympics?” the one with the most medals (max
operation) is expected. Based on the domain, for the query
“Return the top movie” on a movie database, “top” may

mean based on the number of ratings collected. On the other
hand, for the query “Return the top scorer” on a football
database, “top” refers to the number of goals scored. Based
on the user, for a business analyst, the query “Return the top
product” should return themost profitable products, whereas
for a consumer it should return the top-rated products.

Paraphrasing In natural language, two sentences can have
the exact same meaning but be expressed in two completely
different ways. For instance, “How many people live in
Texas?” and “What is the population of Texas?”. Both trans-
late to the same SQL query, but the second one may actually
be easier for a system because it is likely that a “popula-
tion” attribute exists in the database schema, and thus, the
user intent can be inferred with high confidence. Paraphras-
ing includes synonymy where multiple words have the same
meaning (e.g. “movies” and “films”).

InferenceA query may not contain all information needed
for a system to fully understand it. The system has to infer
the missing information based on the given context. We dis-
tinguish two main types of inference:

Elliptical queries are sentences from which one or more
words are omitted but can still be understood in the context of
the sentence.1 An example is “Who was the president before
Obama”. The fact that the query refers toUSpresidents needs
to be inferred.

Follow-upquestions are common in conversations between
humans. We ask a question, receive an answer, and then ask
a follow-up question assuming that the context of the first
question is known. For example, “Q: Which is the capital
of Germany?”, “A: Berlin”, “Q: What about France?”. In
the absence of the first question, the second one does not
make sense, but given the query context, it is obvious that it
is asking about the capital city of France.

User mistakes Spelling errors as well as syntactical or
grammatical errors make the translation problem even more
challenging.

2.2 SQL challenges

SQL syntax SQL has a strict syntax, which leads to limited
expressivity compared to natural language. There are queries
that are easy to express in natural language, but the respective
SQL querymay be complex. For example, the query “Return
the movie with the best rating”maps to a nested SQL query.

Furthermore, while a sentence in natural language may
contain some mistakes, and still be understood by a human,
SQL is not that forgiving. An SQL query translated from a
NL query needs to be syntactically and semantically correct
in order to be executable over the underlying data.

Database structure The user’s conceptual model of the
data, i.e. the entities, their attributes and relationships that are

1 https://en.wikipedia.org/wiki/Ellipsis_(linguistics).

123

https://en.wikipedia.org/wiki/Ellipsis_(linguistics)


908 G. Katsogiannis-Meimarakis, G. Koutrika

described in the data, may not match the database schema,
and that poses several challenges.

The vocabulary gap refers to the differences between the
vocabulary used by the database and the one used by the
user. For example, in the query “Who was the best actress in
2011?”, “actress” should map to the Actor.name attribute in
the database).

Schema ambiguity is when a part of the query may map
to more than one database element. For example, “model”
could refer to car.model or engine.model.

Implicit join operations occur when parts of a query are
translated into joins across multiple relations. For example,
“Find the director of the movie “A Beautiful Mind”” entails
joins due to database normalisation.

Entity modelling is the problemwhere a set of entitiesmay
be modelled differently, e.g. as different tables or as rows
(or values) in a single table. For example, in a university
database, every person is either a Student or a Faculty mem-
ber, so these two relations suffice. On the other hand, movies
have several genres that cannot be stored as different tables.
They are stored in a Genre relation and are connected with
movies through a many-to-many relationship. As a result,
similar queries, such as “Find comedies released in 2018”
and “Find students enrolled in 2018” need in fact to be han-
dled differently. The system maps “comedies” to a value in
the Genre table and joins it with the Movie table whereas it
maps “students” to the Student relation.

3 Datasets and evaluation

To build a neural text-to-SQL system, it is necessary to con-
sider the available datasets for training and evaluation, as
well as the evaluation methodology for testing and compar-
ing its performance to other systems. A text-to-SQL dataset
(or benchmark) refers to a set of NL/SQL query pairs defined
over one or more databases.

Early system evaluations did not rely on common datasets,
they rather employed a variety of datasets that combined
different databases and query sets of varying size and com-
plexity. In general, the query sets were small and designed in
an ad-hocway by the systemdevelopers, and as a result it was
hard to reach meaningful conclusions about the translation
capabilities of a system. Often, the query sets were propri-
etary and hence not available to reproduce the experiments.
The lack of a common dataset to be used by different system
evaluations and the poor cross-system evaluations impeded
a fair system comparison and a clear view of the text-to-SQL
landscape. In addition to these shortcomings, training deep
learning text-to-SQL systems requires a substantial query set.
As a result, for a long time, the lack of appropriate datasets
delayed the adoption of deep learning techniques for the text-
to-SQL problem.

Table 1 A comparison of the two most popular text-to-SQL bench-
marks: WikiSQL and Spider

WikiSQL Spider

Crowd-sourced Created by experts

25K Wikipedia tables 200 databases, 138 domains

80K NL questions 10K NL questions

Single-table, simple queries Complex queries

Contains errors Higher quality

No query categorisation 4 hardness categories

Table 2 An overview of text-to-SQL benchmarks and their size in
queries and databases

Year Dataset Queries Databases

1994 ATIS [15,71] 275 1

1996 GeoQuery [109] 525 1

2003 Restaurants [70,84] 39 1

2014 Academic [53] 179 1

2017 IMDb [98] 111 1

Yelp [98] 68 1

Scholar [42] 396 1

WikiSQL [112] 80,654 24,241

2018 Advising [27] 281 1

Spider [107] 10,181 200

2020 MIMICSQL [92] 10,000 1

SQUALL [80] 11,276 1679

FIBEN [77] 300 1

2021 Spider-Syn [28] 8034 160

Spider-DK [29] 535 10

KaggleDBQA [51] 272 8

SEDE [34] 12,023 1

This situation drastically changes with the emergence
of WikiSQL [112] and Spider [107], in 2017 and 2018,
respectively. These are the first large-scale, multi-domain
benchmarks that made it possible to train and evaluate neural
text-to-SQL systems and provided a common tool to com-
pare different systems easily. While other benchmarks have
followed, these two remain the most popular ones. Table 1
summarises and compares the two benchmarks.

This section provides an overview of various text-to-SQL
datasets (summarised in Table 2), covering either a single or
multiple domains, as well as the evaluation methodologies
for comparing the system predictions to the ground truth.

3.1 Domain-specific text-to-SQL datasets

Domain-specific text-to-SQL datasets focus on one domain
and typically include a single database, such as: movies and
television series (IMDb [98]), restaurant and shop reviews

123



A survey on deep learning approaches for text-to-SQL 909

(Yelp [98] and Restaurants [70,84]), academic research
(Scholar [42] and Academic [53]), financial data (Advising
[27] and FIBEN [77]), medical data (MIMICSQL [92]), and
questions and answers from Stack Exchange (SEDE [34]).

Interestingly, these datasets have not seen the same
widespread use as WikiSQL or Spider for a number of rea-
sons. Since they focus on a single domain, it is not possible
to argue that a proposed system can be considered a “univer-
sal solution” even if it performs well on a specific domain.
Second, their size is relatively small compared to Spider
and WikiSQL, usually not surpassing a thousand examples.
Third, most of these datasets do not have a pre-defined
train/dev/test split so that systems trained and evaluated on
them would be compared fairly to one another.

Even though the generalisation capability of a text-to-
SQL model is an important challenge, a realistic application
would most likely require a text-to-SQL system to work with
a single database of a specific domain, or with a few related
databases. In such a scenario, a high performance on a sin-
gle domain may be evenmore important than a cross-domain
generalisation capability, and achieving it is very challenging
[34].

Furthermore, datasets such asSEDE [34], aremade specif-
ically to reflect that SQL queries in real-life scenarios can be
very complex and long; havingnumerical computations, vari-
able declarations, datemanipulations, andother elements that
are not present in the Spider and WikiSQL datasets. SEDE’s
authors demonstrate that the state-of-the-art systems which
achieve high scores on Spider, do not perform as well on
SEDE, proving the necessity for new and more advanced
benchmarks.

3.2 Cross-domain text-to-SQL datasets

WikiSQLWikiSQL [112] is a large crowd-sourced dataset
for developing natural language interfaces for relational
databases, released along with the Seq2SQL text-to-SQL
system. It contains over 25,000 Wikipedia tables and over
80,000 natural language and SQL question pairs created by
crowd-sourcing. Each entry in the dataset consists of a table
with its columns, a Natural Language Question (NLQ) and a
SQL query. Figure 2 shows an example from the dataset.

The complexity of the SQL queries found in WikiSQL
is low because each query is directed to a single table and
not to a relational database and they are do not use any
complex SQL clause such as JOIN, GROUP BY, ORDER
BY, UNION, and INTERSECTION. Additionally, WikiSQL
does not allow the selection of multiple columns in a single
query or the use of the asterisk (*) operator. Consequently,
the proposed task is much simpler than the ultimate goal of
creating a natural language interface for relational databases.

We must also note that WikiSQL contains multiple errors
and ambiguities, which might hinder the performance of a

model trained on it. Figure 3 demonstrates an example of
a table incorrectly copied from Wikipedia that was never-
theless used to generate a pair of a NLQ and a SQL query
that, ultimately, make no sense. Research even suggests that
the state-of-the-art systems have reached the upper barrier
of accuracy on the task [39]. This is also demonstrated by
evaluating human performance on a small proportion of the
dataset.

Spider Spider [107] is a large-scale complex and cross-
domain semantic parsing and text-to-SQL dataset annotated
by 11 Yale students. It contains 200 relational databases
from 138 different domains along with over 10,000 natural
language questions and over 5000 SQL queries. Its queries
range from simple to hard, using all the common SQL ele-
ments, including nesting. These characteristics of the dataset
along with its high quality, since it was hand-crafted and re-
checked, have led researchers to widely rely on it for building
systems that can generate quite complex SQL queries.

Other cross-domaindatasetsRecent cross-domaindatasets
focus on particular aspects of the text-to-SQL problem.

Spider-DK [28] extends Spider to explore system capa-
bilities at cross-domain generalisation (i.e. robustness to
domain-specific vocabulary across different domains), while
Spider-Syn [28] focuses on robustness to synonyms and dif-
ferent vocabulary. Both datasets highlight very interesting
and important requirements for a text-to-SQL system, and
can be used as supplementary benchmarks.

SQUALL [80] is based on a previous dataset namedWik-
iTableQuestions [67], consisting of NL Questions posed on
Wikipedia tables alongwith the expected answers. In contrast
toWikiSQL, there are no structured queries in theWikiTable-
Questions dataset. The authors of SQUALL have created the
corresponding SQL queries for most of the examples in the
WikiTableQuestions dataset, while also providing an align-
ment between words in the NLQ and the parts of the SQL
query that they refer to. This additional feature could steer
more thorough research on the schema linking and schema
ambiguity problems (briefly mentioned in Sect. 2 and more
thoroughly examined in Sect. 4).

Finally,KaggleDBQA[51] is another cross-domaindataset,
although of much smaller size, that has been extracted from
Kaggle and features real-world databases taken from the
Web, having all the peculiarities of a DB that are missing
from Spider, whose DBs were created specifically for bench-
marking text-to-SQL systems. KaggleDBQA also includes
documentation and metadata for its DBs, posing an inter-
esting research question of how this additional information
could be used to improve the system performance.

3.3 Evaluationmetrics

Having a ground truth SQL query for each NLQ enables us
to train and evaluate a deep learning text-to-SQL system on

123



910 G. Katsogiannis-Meimarakis, G. Koutrika

Fig. 2 An example from the WikiSQL dataset

Fig. 3 An incoherent example from the WikiSQL dataset

it. In this section, we will present metrics used to evaluate a
text-to-SQL system’s predictions.

String matching (introduced as Logical Form Accuracy
[112]) is the simplest accuracy metric for text-to-SQL. It
considers the ground truth and predicted queries as simple
strings and checks whether they are identical. A match is
only found when the predicted query is written exactly as the
ground truth, without taking into account that many parts of
a SQL query can be written in a different order or even in a
different but still equivalent way.

Execution accuracy [107,112] (or Query Accuracy [11])
is another simple approach for comparing SQL queries. For
eachNLQ, both the ground truth and the predicted queries are
executed against the corresponding database (or table) and
their results are compared. If the results are the same, then
the prediction is considered correct. False positives can occur
when both queries return the same results, but are different
on a semantic level (e.g. when they return empty results or
when an aggregation function is applied to different columns
that happen to return the same result).

Component matching [107] is proposed in order to obtain
a better understanding of which parts of the SQL query
are predicted correctly. For example, we might consider the
SELECT column accuracy, i.e. the percentage of the pre-
dicted queries that have the same columns in the SELECT
clause as the corresponding ground truth queries. For some
parts, a more sophisticated approach might be necessary to
avoid incorrect classifications. For instance, when compar-
ing the conditions of the WHERE clause, their order should
not be taken into account.

Exact set matching [107] (or QueryMatch Accuracy [96])
considers all the possible component matches and classifies

a prediction as correct if all component matches are cor-
rect (e.g. aggregation function, condition operators, SELECT
columns, etc.).

Exact set match without values is a category in the Spider
[107] dataset, that works in the same way as exact set match-
ing, but does not take into account if the values that appear
in the predicted query are the same as the ones that appear
in the gold query. The reason for this simplification is that
predicting the correct values can be very challenging, espe-
cially when these values appear in the NLQ differently to the
way they are stored in the DB (e.g. the word “Greek” might
imply a condition such as country=“Greece”). Although this
metric might be considered as common practice in the Spi-
der benchmark, as research shows [27], disregarding values
during evaluation removes an important challenge of the text-
to-SQL problem.

Sub-tree elements matching (or Partial Component Match
F1—PCMF1) [34] is a metric proposed to avoid a score of
zero by the exact set match metric, when some parts of the
predicted query are correct. It considers parts of the query
such as the SELECT, WHERE and FROM clauses and it
calculates the F1 score of each clause based on the precision
and recall of the predicted attributes in the clause. The final
PCMF1 score of a predicted query is the average F1 score of
all the considered query parts. For example, in large queries,
the system might predict a large part of the query correctly
andmake some errors in theWHERE clause.While the exact
match metric would assign a score of zero even for a small
mistake, the PCMF1 metric would assign a score relatively
close to one, thus providing a better assessment of the system
performance.

123



A survey on deep learning approaches for text-to-SQL 911

A more thorough methodology for evaluating the seman-
tic equivalence of two SQL queries has been proposed by
[47], but has yet to be adopted by any deep learning systems.
This approach starts by comparing the execution result of the
two queries, as well as their results on additional generated
data, in case the original database contains a small amount
of data. Furthermore, a prover is used to provide a proof
of equivalence between the queries or a counter example in
the case of non-equivalence. If the prover cannot work for
the given queries, then a query re-writer is applied on both
queries and the re-written queries’ parse trees are compared.
If the re-written parse trees are structurally identical then the
queries are semantically equivalent, otherwise the queries are
manually evaluated by an expert. While this approach could
detect matches even if queries are expressed in fundamen-
tally different ways, the requirement ofmanual labour aswell
as the extra processing requirements it presents, are some of
the reasons why it has not seen widespread use yet.

What metric each system is using greatly depends on the
dataset that each system is created for and aims at entering
its leaderboard.2,3 Specifically, systems that are built for the
WikiSQL dataset, use Logical FormAccuracy and Execution
Accuracy,while systemsbuilt for theSpider dataset useExact
Set Matching without Values and Execution Accuracy. This
strongly indicates the influence that benchmark creators have
on the evaluation strategy of text-to-SQL systems. It also
highlights the responsibility of the next benchmark creators
to address the problems of current metrics and include more
thorough evaluation metrics.

4 Taxonomy

Despite the fact that deep learning approaches have only
recently become popular for the text-to-SQL problem,
numerous systems have already been proposed, that bring
a wide variety of novelties and employ different approaches.
Nevertheless, there are key parts that serve common purposes
across almost all systems, which allow us to build a general
model that can help us better understand them. Hence, the
goal of this section is to present an overview of the most
important parts of neural text-to-SQL systems as well as a
taxonomy of the possible choices in each part.

Figure 4 shows an overview of a neural text-to-SQL sys-
tem. The main input of a text-to-SQL system is a NL query
(NLQ) and the database (DB) that the NLQ is posed on. The
first step, whenever employed, is schema linking, which aims
at the discovery of possible mentions of database elements
(tables, columns and values) in the NLQ. These discovered

2 https://yale-lily.github.io/spider.
3 https://github.com/salesforce/WikiSQL.

schema links, along with the rest of the inputs, will be fed
into the neural network that is responsible for the translation.

The core of this neural network consists of two main
parts: the encoder and the decoder. The encoder takes one
or more inputs of variable shapes and transforms them into
one or more internal representations with fixed shapes that
are consumed by the decoder. Additionally, the encoder usu-
ally infuses the representation of each input with information
from the rest of the inputs, so as to create a more informed
representation that better captures the instance of the prob-
lem at hand. The decoder uses the representations calculated
by the encoder and makes predictions on the most probable
SQL query (or parts of it).

Given that the inputs (NLQ, DB, schema links) are mainly
textual, natural language representation is responsible for
creating an efficient numerical representation that can be
accepted by the encoder. Input encoding is the process of
further structuring the inputs in a format that can be accepted
by the encoder, as well as the choice of an appropriate
encoder network for processing them and producing an inter-
nal hidden representation. Finally, output decoding consists
of designing the structure of the predictions that the network
will make, as well as choosing the appropriate network for
making such predictions (e.g. a SQL query can be viewed
as a simple string, or as a structured program which follows
a certain grammar). While some systems perform the NL
representation and encoding steps separately (e.g. a repre-
sentation based on word embeddings which is then encoded
by a LSTM), in some cases, they can be almost indistin-
guishable (e.g. when using BERT [19]). It is even possible
for all three steps to be merged into one (e.g. when using
the T5 encoder–decoder pre-trained language model [74]).
Finally, the neural training refers to the procedure followed
for training the neural network.

The last dimension of the taxonomy is the output refine-
ment, which can be applied during the decoding phase in
order to reduce the possibility of errors and to achieve
better results. Note that even though output refinement is
closely related to output decoding and even interacts with
the decoder, it is not a part of the neural network. As such, in
most cases, it is possible to add or remove an output refine-
ment technique once the system has been created and trained.

4.1 Schema linking

To better grasp the concept of schema linking, let us think
of how a human, asked to write a SQL query from a NLQ,
would start by looking at the underlying database and by
trying to identify how the entities mentioned in the NL are
stored in the database. In other words, they would attempt
to link parts of the NLQ to the database elements they are
referring to. Intuitively, a text-to-SQL system could benefit
by doing the same when translating a NLQ.

123

https://yale-lily.github.io/spider
https://github.com/salesforce/WikiSQL


912 G. Katsogiannis-Meimarakis, G. Koutrika

Fig. 4 Overview of a neural text-to-SQL system, based on the proposed
taxonomy

More formally, schema linking is the process of discover-
ing which parts of the NLQ refer to which database elements.
TheNLQparts that could possibly refer to a database element
are called query candidates, while the database elements
that could occur in the NLQ are called database candi-
dates. Query candidates can be words or phrases, while
database candidates can be tables, columns, and values in
the database. A connection between a query candidate and a
database candidate is called a schema link, which can be fur-
ther categorised as a table link or column link, when the query
candidatemaps to a table name or columnname, respectively,
and value link, when it matches a value of a column.

Schema linking is very challenging for a variety of rea-
sons. Query and database candidates may not use the same
vocabulary nor appear in the exact same phrasing. For exam-
ple, the phrase “sang by” in the NLQ might refer to the
database column “singer” (same word stem, phrased differ-
ently) or “artist” (vocabulary mismatch). This problem is
even more challenging when the NLQ expresses a condition
(i.e. a reference to a DB value) in a different way than how
the value is stored in the DB. This is an issue because in
contrast to the table and column names of the DB, the sheer
volume of data stored in a DB prohibits using all DB val-
ues as inputs to the system, making it very challenging for
the system to build the correct SQL condition. For exam-
ple, the word “female” might imply a condition such as

“gender=F”. In this case, besides a schema link between
“female” and the column “gender”, the systemmust also be
given the value as it is stored in the DB (“F”) as part of the
input, in order to use it when constructing the SQL predic-
tion. Otherwise, it will most likely produce a condition like
“gender=female”, which would return no rows. Due to the
volume of a DB, finding value links is not only hard but can
be very computation-expensive.

The schema linking process has two parts. Candidate dis-
covery is the process of extracting query candidates from the
NLQ and database candidates from the underlying database.
Candidate matching is the process of comparing a set of
query candidates and a set of database candidates and estab-
lishing the links.

Schema linking enhances the input, and a system can
operate without it. Hence, performing no schema linking is
possible too. In fact, while most recent systems incorporate
some form of schema linking in their workflow, earlier ones
(e.g. Seq2SQL [112], SQLNet [96]) and even some recent
ones (e.g.HydraNet [62], T5+PICARD [76], SeaD [97]) sim-
ply rely on their neural components to make predictions.

4.1.1 Query candidate discovery

We first walk through the techniques used for discovering
query candidates.

Single tokens A simple approach for finding query candi-
dates is to consider all the single words of the NLQ as query
candidates. This is obviously prone to errors as it is likely
that a query candidate spans over multiple tokens (e.g. “New
York”, “Iggy Pop and the Stooges”).

Multi-word candidates To find all possible query can-
didates, even multi-word ones, it is necessary to consider
n-grams of varying length. For example, IRNet [33] uses all
n-grams of length from 1 to 6 in the user question as query
candidates. It processes them in descending order of length
and if a n-gram is marked as a schema link, the system dis-
cards all the smaller n-grams that are contained in it, to avoid
generating duplicate links. Furthermore, IRNet [33] assumes
that any phrase (n-gram) appearing inside quotes must be a
reference to a value stored inside the database. Note that in
this case, the system not only discovers a query candidate,
but also asserts that the database candidate that will be linked
to it must be a value.

Named entities ValueNet [10] adds an extra step for intel-
ligent candidate discovery, by performing Named Entity
Recognition (NER) on the user’s NLQ to discover possible
query candidates. This technique is very effective in discov-
ering candidates that refer to a widely known entity such as a
place or a person but might not generalise to entities that are
specific to a certain domain. ValueNet asserts that candidates
discovered through NER refer to a DB value, i.e. the DB can-
didate they will be matched to, must be a value. TypeSQL

123



A survey on deep learning approaches for text-to-SQL 913

[103] uses the Freebase4 Knowledge Graph to performNER.
It searches for five types of entities, namely: Person, Place,
Country, Organization and Sport. However, the query candi-
dates that are found to be Named Entities are not matched to
a DB candidate, but simply marked with the entity type that
describes them.

Additional candidates As mentioned earlier, creating cor-
rect conditions can be even more challenging when the value
is not expressed in the NLQ exactly as it is stored in the DB.
ValueNet [10] proposes an improved pipeline for generat-
ing additional candidates for value links that consists of: (a)
identifying possible query candidates using NER, (b) gener-
ating additional candidates by looking up similar values in
the database and by using string manipulation, and (c) vali-
dating all the generated candidates by confirming they appear
in the database. The validated candidates are then given to
the system, to aid it in generating correct conditions. Let us
consider the following example, where the NLQ contains
the phrase “New York”, but the DB contains the value “NY”.
ValueNet would recognise “New York” as a named entity, it
would generate additional similar candidates (e.g. “N. York”,
“N.Y.” and “NY”) and it would look them up in the DB.
Doing so, it would discover that only “NY” appears in the
DB, and would only add this value in the input to help the
system create a correct condition (e.g. “state=NY”).

4.1.2 Database candidate discovery

Table and column names The first and most obvious source
for database candidates are the names of the tables and
columns of the database. Given that most databases contain
a relatively small number of tables and columns, all of them
can be database candidates.

Values via lookup Values stored in the database comprise
another large pool for database candidates. However, due to
the volume of data, iterating over all the DB values is not
performance-wise. Indexes have been widely used in ear-
lier text-to-SQL systems, which do not rely on deep learning
[36,53], to accelerate the search. ValueNet [10] also uses
indexes and computationally cheap methods for retrieving
values from the DB. It is necessary to note that a database
lookup requires the use of an already discovered query can-
didate. In order to avoid greedily looking up all the query
candidates, the systemmight only look up certain query can-
didates that seemmore likely to refer to a value (e.g. because
they are found inside quotes or based on heuristics).

Values via knowledge graphs IRNet [33] assumes that
access to the database contents is not possible and employs
the knowledge graph ConceptNet [82] for recognising value
links. As a first step, IRNet considers that all n-grams begin-
ning and ending with single quotes are query candidates

4 https://developers.google.com/freebase.

referring to values. In order to discover the DB column or
table that could contain a value such as the discovered query
candidate, the system searches each candidate in the knowl-
edge graph and only keeps two types of results: is-type-of
and related-terms. For example, when searching for “New
York” in ConceptNet, one of the returned results is is-type-of
“state”. This result helps IRNet link“NewYork” to a column
named “state” or similarly. Note that this approach stands
out from what has been discussed so far, in the way that
a value link is discovered using an intermediate candidate
(knowledge graph result) and the column names.

4.1.3 Candidate matching

Having discovered the query and database candidates, an
efficient method is needed for comparing them to identify
possible links.As discussed earlier, candidates are not always
expressed in the sameway inboth sides, so identifying links is
not straightforward. Techniques that can recognise semantic
similarities between candidates are required.

Exact and partial matching The simplest approach is to
look for exact and partial matches, as it is done by IRNet
[33]. An exact match requires that the candidates are iden-
tical, while a partial match occurs when one candidate is
a substring of the other. Admittedly, this approach is bare-
bone and while it can discover more obvious links, it can
also result in false positive matches when candidates share
the same words (e.g. “residence”would be considered a par-
tial match with “former residence”).

Fuzzy/approximate string matching Another useful tech-
nique for identifying matches when the link in the candidates
are written differently is approximate string matching. An
example of such an approach is the Damerau–Levenshtein
distance [16], used by ValueNet [10]. While such tech-
niques aid at identifying matches with different spelling or
spelling mistakes (e.g. “color”-“colour”), they cannot han-
dle synonyms and thus are not robust to the use of different
vocabulary.

Learned embeddings To calculate the similarity between
words of the NLQ and schema entities, an earlier work in
the area of semantic parsing [49] proposes the use of learned
word embeddings. The system learnsword embeddings using
the words of the text-to-SQL training corpus and combines
them with additional features that are calculated using NER,
edit distance and indicators for exact token and lemmamatch.
These embeddings are then used to calculate the similarity
of query candidates to DB candidates. While this approach
is more expensive than previous matching techniques, it
allows for much more flexible and intelligent matching. This
approach was also adopted by text-to-SQL systems [8,9] as
well.

123

https://developers.google.com/freebase


914 G. Katsogiannis-Meimarakis, G. Koutrika

ClassifiersGiven the complexity of schema linking, itmay
be possible to achieve better results by training a model to
perform schema linking.

A Conditional Random Field (CRF) model [50] can be
trained on a small group of hand-labelled samples to recog-
nise column links, table links and value links for numerical
and textual values [11]. The predictions of this model can
then be passed to the main neural network of the text-to-
SQL system along with the rest of the inputs. DBTagger [86]
uses a similar approach to solve the schema linking problem
as a sequence tagging problem. It employs CRFs on every
token of theNLQ to identify: (a) its Part of Speech (POS), (b)
schema link type (e.g. table link, value link, etc.), and (c) the
specific schema element that it refers to. The authors argue
that learning these three tasks in a multi-learning paradigm
helps the system achieve better performance than it would
if it only learned to identify the schema element each token
refers to.

The SDSQL [38] system is simultaneously trained on
two tasks: (a) the text-to-SQL task, similarly to all sys-
tems, and (b) the Schema Dependency Learning task. For
this additional learning task, the system is essentially trained
to discover schema links in the formof dependencies between
the words of the NLQ and the parts of the SQL query.
Namely, the possible dependencies are: select-column (S-
Col), select-aggregation (S-Agg), where-column (W-Col),
where-operator (W-Op) andwhere-value (W-Val). For exam-
ple, a select-column (S-Col) label is assigned to the depen-
dency between the column appearing in the SELECT clause
and the word of the NLQ that refers to it. A deep biaffine
network [23,25] is trained along the rest of the system to
detect the existence and type of these dependencies. Train-
ing data for this task is created from the already available NL
and SQL pairs, by assigning dependency labels between the
NLQ tokens and table columns. Although the schema links
discovered by the system are not directly used for predict-
ing the SQL query, training for both tasks simultaneously
has a positive effect on the system performance. This task
goes beyond the schema linking task, as some of the afore-
mentioned dependencies include query candidates thatmight
refer to query parts (e.g. aggregation functions and condition
operations). It should also be noted that this approach has
been applied to WikiSQL, but it has not yet been extended
to the more challenging Spider dataset.

Neural attention While attention layers do not directly
determine a match, we mention them briefly because of their
capability to highlight connections between query and DB
candidates, which can improve the system’s internal repre-
sentation and boost its performance. SQLNet [96] was the
first system to introduce such a mechanism, named Col-
umn Attention, that processes the NLQ and column names
and finds relevant columns for each word of the NLQ.
The Transformer [87] neural architecture, which is based

on an attention mechanism, has been instrumental to the
widespread use of PLMs that have become the go-to solu-
tion for input encoding, greatly benefiting the accuracy of
text-to-SQL systems. Finally, RAT-SQL [89] proposed a
modified Transformer layer, called Relation-Aware Trans-
former (RAT), that biases the attention mechanism of the
Transformer towards already-known relations from the DB
schema and discovered schema links.

4.2 Natural language representation

An essential step for text-to-SQL systems is creating and pro-
cessing numerical representations of their NL inputs. Until
recently, the most popular technique for NL representation
has been pre-trained word embeddings. Recent advances in
NLP, such as the introduction of the Transformer architecture
[87] followed by its use to create large Pre-trained Language
Models (PLMs), has tipped the scales greatly to its favour.
Additionally, as new PLMs are emerging, a new research
path is being paved focusing on the design of better PLMs or
PLMs created specifically for certain problems (such as the
text-to-SQL problem).

4.2.1 Word embeddings

Word embeddings aim at mapping each word to a unique
numerical vector. While there are simplistic approaches
for creating such vectors (e.g. one-hot embeddings), more
advanced algorithms [65,68] aim at making the value of
each vector meaningful. These vectors are usually trained
from a large text corpus (e.g. Wikipedia or Twitter) using a
self-supervised algorithm that is mainly based on word co-
occurrences. The set of pre-trained vectors can then be used
to build a model that benefits from the inherent knowledge
that is present in the vectors due to their training.

For example, the GloVe [68] embeddings, which capture
interesting word relationships, were frequently used by the
first text-to-SQL systems. Such word relationships include
words with similar meaning being near neighbours and lin-
ear substructures that indicate similar relationships between
words (e.g. the distances between theword pairs Paris-France
andAthens-Greece will be similar because these words share
a capital-country relation).Apre-trained set ofGloVeembed-
dings can be used to create numerical representations for NL
inputs of a model, which can then be encoded using a RNN
(such as a LSTM).

4.2.2 Pre-trained languagemodels

The introduction of the Transformer architecture [87] and its
use inPLMssuch asBERT[19] has led to agreat performance
boost inmanyNLP problems. The text-to-SQL problem is no
exception, as the use of PLMs has quickly become the go-to

123



A survey on deep learning approaches for text-to-SQL 915

solution for NL representation. In order to understand how a
PLM can be used in a text-to-SQL system, it is first necessary
to highlight the difference between two main categories of
PLMs: (a) encoder-only and (b) encoder–decoder models.

Encoder-only models, like BERT [19], RoBERTa [59],
and TaBERT [101], take a sequential input and produce a
contextualised numerical representation for each input token.
The term“contextualized”marks a notable difference toword
embedding techniques, which map each word to a fixed vec-
tor, while the representations given by PLMs are computed
taking all tokens of the input into account. This representa-
tion can then be used by additional neural layers to make
a prediction for the downstream task at hand. While GloVe
representations can be seen as improved word embeddings
and can be used in similar fashion (e.g. using an LSTM), this
is not necessary. In fact, due to the robustness of PLMs, it is
possible to process their outputs using very simple and small
neural networks and still achieve better results than complex
networks using word embeddings.

Encoder–decoder models, like T5 [74] and BART [52],
are full end-to-end models that take a sequential text input
and return a sequential text output (seq-to-seq). Thesemodels
produce the final output on their own, without the need for
any extra neural layers, and can be used on any downstream
task as long as the expected output can be modelled as a text
sequence.

Furthermore, as such models are gaining more atten-
tion, the creation of task-specific PLMs is becoming a new
research area of its own. Such models can be customised to
work with different types of inputs and perform better on
less generic tasks, such as the text-to-SQL task. There are
multiple PLMs, such as GraPPa [104] and TaBERT [101],
that have been designed to work with structured and tabular
data as well as to better generalise in tasks that use SQL, and
they can improve the performance of a text-to-SQL system
when used in place of a generic PLM. It must also be noted
that while most text-to-SQL systems are originally proposed
with BERT [19] or another general-purpose PLM, they often
manage to achieve higher scores by replacing it with a PLM,
such as TaBERT [101], that was specifically pre-trained for
a task that uses structured data, like the text-to-SQL task.

4.3 Input encoding

The dimension of input encoding examines how the input is
structured and fed to the neural encoder of the system, so
that it can be processed effectively. There are different inputs
that are useful for translating a NLQ to SQL. The NLQ and
the names of the DB columns and tables could be consid-
ered the minimum required input. Other features that could
improve the network performance include: (a) the relation-
ships present in theDBschema, including primary-to-foreign
key relationships and relationships between columns and

tables, and (b) links and additional values that have been
discovered during the schema linking process.

The use of neural networks mandates the transformation
of all inputs into a form that can be accepted by the network.
This can be very restrictive, given how heterogeneous these
types of inputs are and how difficult it is to represent them all
in a single type of input. In this section, we examine the most
representative choices for input encoding, while also tak-
ing into account the additional features that each choice can
incorporate. We distinguish four encoding schemes: (a) sep-
arate NLQ and column encodings (b) input serialisation (c)
encoding NLQ with each column separately, and (d) schema
graph encoding.A schematic overviewof the possible encod-
ing choices can be seen in Fig. 5.

4.3.1 Separate NLQ and column encodings

A first approach, used mostly by earlier systems (e.g.
Seq2SQL [112], SQLNet [96]), is to encode the NLQ sepa-
rately from the table columns. The main reason for encoding
the two inputs separately is the shape mismatch between
them; while the NLQ is a simple sentence (i.e. a sequence
of words), the table header is a list of column names, where
each name can contain multiple words, i.e. it is a sequence
of sequences of words.

In Seq2SQL [112], SQLNet [96] and IncSQL [79], each
word (embedding) of the NLQ is fed into a bi-directional
LSTM (bi-LSTM) that produces a hidden state representa-
tion for each word. For column headers, since each column
name can have multiple words, a bi-LSTM is used for each
column name, and the final hidden state of each column is
used as the initial representation for the column. Notice that
by keeping only the last state of each column name, the rep-
resentation of the header becomes a simple sequence and not
a nested sequence. Since the two inputs are encoded sep-
arately, they must be combined at some point so that the
output is influenced by both of them. This can be done by
using cross-serial dot-product attention [61], concatenating
the two representations, summing them or using a combina-
tion of the above.

None of the studied systems that follow this encoding
approach use any extra features besides the NLQ and DB
columns. This may be attributed to the fact that these are
some of the earliest neural text-to-SQL proposals, which did
not perform schema linking and focused on the simplerWik-
iSQL dataset.

4.3.2 Input serialisation

A different approach is to serialise all the inputs into a single
sequence and encode it all at once. This is a very common
practicewhen using PLMs (e.g. BERT [19], T5 [74]) that cre-
ate a contextualised representation of their input, because if

123



916 G. Katsogiannis-Meimarakis, G. Koutrika

Fig. 5 An overview of the possible encoding choices. Pink tokens represent words of the NLQ, blue tokens represent database elements and grey
tokens are auxiliary tokens (color figure online)

each input were to be encoded separately, the system would
not benefit from the PLM’s contextualisation ability. This
approach simplifies the encoding process and benefits from
the robustness of PLMs. However, it also carries disadvan-
tages, such as losing schema structure information and being
unable to easily represent relationships between the inputs
(e.g. primary-foreign key relationships, schema links, etc.).
As we go through some different serialisation approaches,
we will also examine how much information can be retained
in each case.

It should also be noted that PLMs usually employ a few
special tokens that are added to the serialised sequence.
For example, BERT [19] uses the classification [CLS] and
the separating [SEP] special tokens. The [CLS] token is
added at the start of the sequence. Its contextualised out-
put, which gathers information from all the tokens in the
sequence thanks to the underlying attention networks, can
be used to make classification predictions that concern the
entire sequence. The [SEP] special token can be used to sep-
arate different sentences in the same sequence. These tokens
are also useful for the text-to-SQL problem.

The simplest serialisation technique, used by several sys-
tems [35,39,63] that work on the WikiSQL dataset, creates a
single input sequence that only contains the NLQ and all the
table headers. The serialised sequence starts with the [CLS]
token, as is common for BERT, then the NLQ tokens are
appended, followed by a [SEP] token marking the end of the
NLQ and then each column name is added followed by a
[SEP] token. This input is processed by BERT, which cre-
ates a contextualised representation that has the same length
as the input, and that can be processed by the rest of the
network to make predictions. Since these systems only work
with single tables, there is not a lot of information that needs
to be preserved, but it could be argued that this approach sep-
arates the column names much less strictly compared to the
separate encoding approach.

IRNet [33] (when using BERT) creates an input that starts
with a [CLS] token, then continues with the NLQ’s tokens
followed by a [SEP] token, the name of each column of the
database followed by a [SEP] token, and finally the table
names of the schema, each separated with a [SEP] token as

well. In order to encode discovered schema links along with
the rest of the input, IRNet uses three extra tokens, namely
[Column], [Table], [Value], that can be appended before a
NLQ token or phrase, to mark that it was linked to a database
candidate. Still, using this serialisation format, there is a lot
of schema information not captured. For example, it is not
possible to extract any primary-foreign key relationships, or
to which table each column belongs.

Finally, BRIDGE [57] constructs an input for a PLM that
starts with a [CLS] token, followed by the NLQ and a [SEP]
token, as well as the tables and column of the DB, where
a [T] and [C] token is added before each table and column
name, respectively, so as to better preserve each attribute’s
role. The difference between IRNet’s and BRIDGE’s use of
the special [C]/[Column] and [T]/[Table] tokens is that the
former uses them in the NLQ part to indicate a schema link
to a column or table, while the latter uses them to indicate
that the tokens after a [C] or [T] token are a column or table
name, respectively. BRIDGE also uses an extra third token
[V] along with a value, after a column name, to mark that this
value appears under the column at hand and was discovered
as a possible value link to some NLQ candidate. In this case,
BRIDGE uses the [V] token in the DB schema part of the
input while also appending a value after it, while IRNet uses
the [Value] token in the NLQ part, without providing the
actual value. Additionally, all the columns belonging to a
certain table are added right after the table’s name in the
sequence so as to better preserve the schema structure in
this serialised representation. Nevertheless, all relationships
between attributes (e.g. primary/foreign keys) are still lost
when following this representation.

4.3.3 Encoding NLQ with each column separately

HydraNet [62] employs a unique approach: it processes the
NLQ with each column separately and makes predictions
for each column independently. For each table column, a
different input is constructed by concatenating the NLQwith
the column name and type and the table name. Using this
input, the system predicts the probability of the column at
hand appearing in the SELECT clause, the probability of the

123



A survey on deep learning approaches for text-to-SQL 917

Fig. 6 System categorisation on the taxonomy dimensions of natural
language representation, input encoding, output decoding, neural train-
ing and output refinement

column appearing in the WHERE clause, the operation that
will be used if this column appears in the WHERE clause,
and so on. It could be argued that this approach does not
allow the system to have a complete view of the problem
instance, because the neural network makes predictions for
each column separately, without being aware of the rest of the
table columns. Nevertheless, HydraNet achieves exceptional
performance on the WikiSQL benchmark.

This approach does not utilise any additional features (e.g.
schema links). However, given that it also serialises its inputs
(albeit, only keeping a single column each time), it could
draw inspiration from the serialisation techniques described
in Sect. 4.3.2 to encode information about schema links. For
example, it could append values similarly to BRIDGE [57],
or use [Table] and [Column] tokens to explicitlymark column
and table names in the input NLQ.

It shouldbenoted, however, that generalising this approach
to a complete relationalDBwould not be an easy task. First of
all, a DB usually has multiple tables, each containing mul-
tiple columns, which means that the network would have
to make predictions for a much larger number of columns,
greatly increasing time complexity for predicting a single
SQL query. Furthermore, queries posed on complete DBs
often contain JOIN clauses and other operations that depend
onmore thanone entity; as such, processing each column sep-
arately becomes very counter-intuitive. Finally, this approach
is based on a sketch-based decoder (more in Sect. 4.4), which
is hard to extend for complete DBs.

4.3.4 Schema graph encoding

A graph is the most effective way for representing the DB
elements and their relationships. Representing and encoding
the input using a graph is used only by a handful of systems
[8,9,89]. Each node in the graph represents a database table
or a column, while their relationships can be represented by
edges that connect the respective nodes. It is also possible to
add the NLQwords as nodes in the graph, and add edges that
connect the query candidates with their equivalent database
candidates for representing all the discovered schema links.
Additionally, the used graph representation may allow for
different classes of nodes and edges leading to even higher
expressivity. There can be different classes of nodes to distin-
guish between tables, columns and NLQwords and different
classes of edges to distinguish between edges that represent
foreign-primary key relations, edges that indicate a column
belonging to a table and edges that represent schema links.

Even though representing the system input as a graph
allows for minimal loss of information and can include many
types of additional inputs, processing a graph with a neural
network is farmore difficult than processing a sequence. This
is the main reason why graphs have yet to see widespread
use in the text-to-SQL problem. However, recent advances

123



918 G. Katsogiannis-Meimarakis, G. Koutrika

in graph neural networks and the clever use of Transformers
[87] proposed by RAT-SQL [89] and [78], are showing very
promising and might be a good choice for future research.

4.4 Output decoding

Text-to-SQL systems following the encoder–decoder archi-
tecture can be divided into three categories based onhow their
decoder generates the output [13]: (a) sequence-based, (b)
grammar-based, and (c) sketch-based slot-filling approaches.

4.4.1 Sequence-based approaches

This category includes systems that generate the predicted
SQL, or a large part of it, as a sequence of words (comprising
SQL tokens and schema elements) [11,57,112]. This decod-
ing technique is the simplest, and was adopted by Seq2SQL
[112],which is one of the first deep-learning text-to-SQL sys-
tems. Later systems steered away from sequence decoding
because it is prone to errors.

The main drawback of sequence decoding is that it treats
the SQL query as a sequence that needs to be learnt, and
at prediction time, there are no measures to safeguard from
producing syntactically incorrect queries.When generating a
query, it does not take into account the strict SQL grammat-
ical rules, nor does it actively prevent generating incorrect
column and table names that do not exist in the DB.

Nevertheless, sequence-based approaches are starting to
be used again and are proving to be very efficient thanks to
two advances: (a) the introduction of large pre-trained seq-
to-seq Transformer [87] models (e.g. T5 [74], BART [52])
and (b) the use of smarter decoding techniques that constrain
the predictions of the decoder and prevent it from producing
invalid queries (e.g. PICARD [76]).

4.4.2 Sketch-based slot-filling approaches

Systems in this category [35,39,62,63,96,103] aim at simpli-
fying the difficult task of generating a SQLquery to the easier
task of predicting certain parts of the query, such as predict-
ing the table columns that appear in the SELECT clause. In
this way, the SQL generation task is transformed into a clas-
sification task. In particular, we consider a query sketch with
a number of empty slots that must be filled in, and develop
neural networks that predict the most probable elements for
each slot. A basic prerequisite for such approaches is to have
a query sketch that, when completed, will be able to capture
the NLQ’s intention.

While dividing the text-to-SQL problem into small sub-
tasksmakes it easier to generate syntactically correct queries,
sketch-based approaches may have two drawbacks. Firstly,
the resulting neural network architecture may end up being
quite complex since dedicated networksmay be used for each

slot or part of the query. Furthermore, it is hard to extend to
complex SQL queries, because generating sketches for any
type of SQL query is not trivial.

4.4.3 Grammar-based approaches

Systems using a grammar-based decoder [13,22,33,79,89]
are an evolution of sequence-to-sequence approaches, and
produce a sequence of grammar rules instead of simple
tokens in their output. These grammar rules are instructions
that, when applied, can create a structured query.

The most often used grammar-based decoders by text-
to-SQL systems have been previously proposed for code
generation as anAbstract Syntax Tree (AST) [99,100]. These
models take into account the grammar of the target code lan-
guage (in our case, the SQL grammar) and consider the target
program to be an AST, whose nodes are expanded at every
tree level using the grammar rules, until all branches reach
a terminal rule. When it reaches a terminal rule, the model
might generate a token, for example, a table name, anoperator
or a condition value, in the case of text-to-SQL. The decoder
uses a LSTM-based architecture that predicts a sequence of
actions, where each action is the next rule to apply to the
program AST. Because the available predictions are based
both on the given grammar and the current state of the AST,
the possibility of generating a grammatically incorrect query
is greatly reduced.

Grammar-based approaches are considered the most
advantageous option for generating complex SQL queries,
as sequence-based approaches were too prone to errors and
sketch-based approaches are difficult to be extended to com-
plex queries. While their status is recently being challenged
by the advances of sequence-based decoders discussed ear-
lier, the quest for the most effective decoding technique is far
from over.

4.5 Neural training

Another dimension that must be examined when consider-
ing a neural text-to-SQL system is the methodology that is
followed to train it.

Even though the description of a system is usually focused
around its architecture and neural layers as well as the way
it encodes the inputs and decodes the output, the dimension
of neural training is important, because it is the process that
enables the neural network to learn how to perform the task
at hand.

Earlier systems adopted the simple paradigm of training
the network exclusively on a text-to-SQL dataset, however,
recent systems have proposedmore sophisticated approaches
that can greatly benefit the network performance and its gen-
eralisation capabilities.

123



A survey on deep learning approaches for text-to-SQL 919

Fresh start The most common approach is to train the
network from scratch, i.e. initialise all the weights with a ran-
dom initialisation algorithm and train them on a downstream
task. However, recent developments in the domain of NLP
are showing that pre-trained networks and self-supervised
learning are able to achieve much better performance.

Transfer learning The use of transfer learning is quickly
gaining ground in the NLP community, due to the introduc-
tion of Transformers [87], which greatly reduce training time
compared to RNNs. Transfer learning refers to when amodel
trained on a different, usually more generic task, and a differ-
ent dataset, is incorporated to a newmodel and further trained
on a downstream task (e.g. text-to-SQL). Language models,
i.e. networks that have been trained to predict missing words
or phrases on huge text corpora, are becoming the standard
approach for most NLP tasks, given the performance boost
they provide in almost all cases.

Some systems, such as HydraNet [62], rely on language
models almost completely, only using linear output layers
to produce predictions. Most systems however, incorporate
language models as an alternative or an enhancement for
word embeddings and RNNs.

Additional objectives Another interesting approach that
follows the success of language models and self-supervised
learning is that of using additional self-supervised tasks
while training for the text-to-SQL problem. Recent research
[12,38,97] suggests that training neural models for more
generic tasks besides the downstream task of text-to-SQL that
the model is designed to solve, can improve performance on
the downstream task. When using additional objectives, one
must decide whether the model should be trained on all the
auxiliary objectives along the downstream task or whether it
should be first trained on the auxiliary tasks and then fine-
tuned on the downstream task.

– Erosion The erosion task, proposed by [97], consists of
randomly permuting, removing and adding columns to
the input schema and training the model to produce the
correct SQL query using the eroded schema. Addition-
ally, the system must learn to produce an unknown token
when it has to use a column that has been removed from
the given schema.

– Shuffling The shuffle task, proposed by [97], randomly
changes the order of schema entities and condition values
in the input SQL query and NLQ, training the model to
correctly re-order them.

– Graph pruningThe graph pruning task, proposed by [12],
trains the model to prune all the nodes of the input graph
representation that are irrelevant to the given NLQ.

– Schema dependency learning SDSQL [38] proposes an
additional task to the text-to-SQL task, that closely
resonates to the schema linking problem. SDSQL is
designed for the WikiSQL dataset. Schema Dependency

Learning consists of predicting which words or phrases
of the NLQ have a dependency to which columns of the
table and the type of the dependency that connects them.
The goal is to learn which parts of the NLQ signify that
a specific column will appear in the SQL query and the
role that the column will have in it (e.g. if it appears in
the SELECT clause, if it implies the use of the MAX
aggregation function, etc.).

Pre-training specific components Another approach is to
train specific parts of our network so that they can better
adjust to the peculiarities of the task. For example, GP [111]
proposes a framework that pre-trains the system decoder,
before training the entire system, in order to better train it on
the context-free parts of the SQL grammar, e.g. SQL queries
always start with SELECT, the FROM clause is second, and
so forth. For this purpose, the encoder’s semantic information
is replaced by zero vectors so that the decoder is pre-trained
without any information about the particular NLQ.

4.6 Output refinement

Once trained, a neural model can be used for inference. There
is one last dimension to consider; that of output refinement,
i.e. additional techniques that can be applied on a trained
model to produce even better results, or to avoid producing
incorrect SQL queries.

None An obvious approach is to use the trained model as
is, without output refinement.

Themost important reason for this approach concerns time
and resource availability; in some applications, it might be
crucial to achieve low latency responses or to run on everyday
machines. For example, PICARD [76], increases inference
time by 0.6s when running on a machine with very high-end
GPU and arguably even more so on a personal computer. It
must be noted however that almost all leader-board entries
that achieve high results, use some refinement technique.

Execution-guided decoding This is a mechanism [91] that
helps prevent text-to-SQL systems from predicting SQL
queries that return execution errors. Even though sketch-
based approaches are designed to avoid syntactical errors, the
possibility for semantical errors is ever-present. Some exam-
ples of such errors include aggregation functionsmismatches
(e.g. using AVERAGE on a string type column), condition
type mismatches (e.g. comparing a float type column with a
string type value), and so forth. To avoid these type of errors,
execution-guided decoding can execute partially complete
SQL queries at prediction time and decide to avoid a certain
prediction if the execution fails or if it returns an empty out-
put. Execution-guided decoding is system-agnostic and can
be applied to most sketch-based systems (e.g. HydraNet, IE-
SQL), increasing their accuracy in almost all cases. Let us
note that even though some systems presented in this work

123



920 G. Katsogiannis-Meimarakis, G. Koutrika

might not be proposed using execution-guided decoding in
their original paper, they are subsequently shown to perform
better in the WikiSQL leaderboard when using it. For this
reason, they are shown to use execution-guided decoding in
Fig. 6 and Table 3.

Constrained decoding While generative models with
sequence-based outputs are becoming more powerful for NL
generation, they are clearly prone to errors when it comes
to generating structured language like SQL. PICARD [76]
proposes a novel method for incrementally parsing and con-
straining auto-regressive decoders, to prevent them from
producing grammatical or syntactical errors. For each token
prediction, PICARD examines the generated sequence so
far along with the k most probable next tokens and dis-
cards all tokens thatwould produce a grammatically incorrect
SQL query, use an attribute that is not present in the DB
at hand, or use a table column without having its table in
the query scope (i.e. not having the appropriate table in
the FROM clause). Using PICARD, a seq-to-seq pre-trained
transformer model (T5-3B [74]) has managed to reach the
top of the SPIDER leader-board, lifting the barriers of using
sequence-based decoders for text-to-SQL. It should be noted
that while PICARD could be considered as the most sophis-
ticated constrained decoding technique, other systems with
sequence-based decoders have proposed similar decoding
techniques to avoid errors. Some examples of such systems
are SeaD [97] and BRIDGE [57].

Discriminative re-ranking The Global-GNN
parser [9] proposes an additional network that re-ranks the
top-k predictions of the main text-to-SQL network and is
trained separately from it. The discriminative re-ranker net-
work takes into account the words of the NLQ and the
database elements used by each of the k highest-confidence
SQL predictions, by the text-to-SQL network, and re-ranks
them based on how relevant it believes they are. Its authors
argue that while the text-to-SQL network usually predicts
the correct structure for the target SQL query, it might not
always predict the correct columns, tables and aggregation
functions, because each of them is predicted only knowing
already predicted elements and not future predictions. On the
other hand, the re-ranker can look at the completed predic-
tions and judge the use of each database element in hindsight,
thus improving the prediction quality.

5 Neural architecture

Neural architecture refers to thebuildingblocks used to create
all neural parts of the system. This section examines the types
of neural layers used by text-to-SQL systems and analyses
the roles and functions that each one of them is often used
for.

Linear networks Linear (or Dense) Neural Networks are
often used as output layers for sketch-based decoders or to
process an internal representation.Given that this type of neu-
ral layer is not suited for processing data in a sequence format,
they are not effective at processing input such as a NLQ, or
producing output in a sequence format (e.g. in a sequence
or grammar-based decoder). In sketch-based decoders, how-
ever, where the network must predict the correct choice for a
certain slot, linear layers are the best suited option to perform
this classification task (i.e. choose the best option for filling
a slot out of all the available options).

Recurrent neural networks Recurrent neural networks
(RNNs) have long been considered the go-to solution for
NLP, only to be recently dethroned by the powerful Trans-
formers. The main advantage of RNNs is their ability to (a)
effectively process series inputs, such as a NLQ, which is a
series of words, and (b) to generate a series output, such as
the condition value of a WHERE clause, or a series of gram-
mar rules that can generate a SQL query. Well-known RNN
architectures include the LSTM (Long Short-TermMemory)
and the GRU (Gated Recurrent Unit). The LSTM is popular
for NLP tasks and most often used in text-to-SQL systems.

Early systems, such as Seq2SQL [112] and SQLNet [96],
relied on LSTMs for input encoding (along with pre-trained
word embeddings), but this type of use is now outperformed
by pre-trained Language Models. Even though the recent
success of Transformers and Language Models has greatly
reduced the use of RNNs in the input encoding phase, RNNs
are still being used to assist LMs in input encoding and to
generate non-NL series outputs. For example, IRNet [33]
uses BERT to encode the input NLQ and schema but also
employs LSTMs to create single-token representations for
columns and tables with more than one word in their name
(and more than one token to represent them).

RNNs are also often used for generating a series out-
put. For example, Seq2SQL [112] and SQLNet [96] employ
pointer networks [88] comprised of LSTM layers that gen-
erate the entire WHERE clause or the condition value of the
WHERE clause, respectively. Another case of RNNs for out-
put generation is seen in systems (e.g. IRNet [33], RAT-SQL
[89]) that employ a grammar-based decoder that generates
an SQL query as an abstract syntax tree, leveraging work in
semantic parsing [99] that uses LSTMs.

Transformers In text-to-SQL systems, Transformers are
commonly used in Transformer-based Pre-trained Language
Models for input encoding, to create a contextualised rep-
resentation of the input text. Pre-trained Language Models
offer more robust representations and greatly improve the
model performance almost all of the times, making them
more preferable than pre-trained word embeddings. To use
them for input encoding, one can simply replace the input
encoder (e.g. word embeddings and LSTM) with a model
like BERT.

123



A survey on deep learning approaches for text-to-SQL 921

There have been also other, rarer uses of Transformers
in text-to-SQL systems. For example, HydraNet is a system
completely reliant on a pre-trained language model. In this
case, the text-to-SQLproblem is formulated so that itmatches
the pre-training logic of a language model and only very
simple linear networks are used to make predictions using
the contextualised representations created by the Language
Model.

Another unique example is RAT-SQL [89], which uses
specifically modified Relation Aware Transformers (RAT)
to encode its input. What is special about RAT is that they
also accept pre-defined relations about the elements of input
series, which essentially allows to bias the encoder towards
already known relations in the database schema and the user
question.A similar approach is used by [78] in order to extend
the Transformer architecture to support relations between
elements of the inputs, in the form of a GNN Sub-layer. This
extension of the Transformer allows to encode the input as
a graph, where the edges can have different layers, similarly
to RAT-SQL; however, its performance is much lower on the
Spider benchmark.

Conditional random fields (CRFs)CRFs [50] are a type of
discriminative machine learning model that excels at mod-
elling relations and dependencies. Because of this capability,
CRFs are often used in NLP for labelling tasks such as Part-
of-Speech (POS) tagging and Named Entity Recognition
(NER). Even though CRFs are rarely used in text-to-SQL,
there is a notable mention of a system integrating them in its
neural architecture for a specific sub-task. Namely, IE-SQL
[63] employs CRFs tasked with two schema-linking tasks
of recognising: (a) which words in the NLQ are slot men-
tions to SQL elements, such as the SELECT column and the
WHERE columns, and (b) finding slot relations, i.e. group-
ing each of theWHERE column mentions with the mentions
of operations and values that correspond to them. Both tasks
are modelled as labelling tasks, which is why CRFs are a
good choice.

Convolutional neural networks (CNNs) Convolutional
networks are very rarely used for the text-to-SQL task, since
they are best suited for processing visual data. One exam-
ple of a system using CNNs is RYANSQL [13], which uses
CNNs with Dense Connections [102], in order to encode the
inputs. However, the authors of RYANSQL demonstrate that
replacing this CNN-based encoder with a PLM can greatly
improve themodel’s performance, making the choice to steer
away from CNNs all the more obvious.

6 Systems

Having established a taxonomy for deep learning text-to-
SQL systems, let us now zoom in on key systems that have
introduced novel and interesting ideas and have shaped the

area. This section provides insights and explanations on
these systems while also grouping them based on impor-
tant milestones of this research area. Figure 7 presents a
chronological view on deep learning text-to-SQL systems,
along with important datasets and language representation
advancements that have had a great impact on the domain.
While certain systems could obviously fit in multiple sec-
tions, this specific categorisation is based on the novelty
introduced by each system at the time of its publishing, its
influence on later systems, as well as the possible importance
of each novelty given its capability to address future and open
research problems.

6.1 The dawn of an era

As mentioned before, the era of deep learning text-to-SQL
systems essentially starts with the release of the first large
annotated text-to-SQL dataset. WikiSQL was released along
with Seq2SQL [112], which was one of the first neural net-
works for the text-to-SQL task and was based on previous
work focusing on generating logical forms using neural net-
works [21]. The system predicts the aggregation function and
the column for the SELECT clause as classification tasks
and generates the WHERE clause using a seq-to-seq pointer
network. The latter part of the system is burdened with gen-
erating parts of the query that can lead to syntactic errors,
which is its major drawback.

A big difference from almost all other systems is that
Seq2SQL is partly trained using reinforcement learning.
While the aggregation function and SELECT column predic-
tors are trained using cross entropy loss, the WHERE clause
predictor is trained using a reward function that returns a pos-
itive reward if the produced query returns the same results
as the ground truth query and a negative reward if the query
returns different results or if it cannot be executed due to
errors. The reasoning behind using reinforcement learning,
even though it generally performs worse than supervised
learning, is that theWHERE clause can be expressed in mul-
tiple ways and still be correct.

To address these problems, i.e. that sequence decoders can
produce errors and that reinforcement learning is not ideal,
SQLNet [96] proposed using a query sketch with fixed slots
that, when filled, form a SQL query. This sketch can be seen
in Fig. 8, and it covers all the queries present in theWikiSQL
dataset. Using a sketch allowed the problem to be formu-
lated almost entirely as a classification problem, since the
network has to predict: (a) the aggregation function between
a fixed number of choices, (b) the SELECT column among
a number of columns present in the table, (c) the number of
conditions (between 0 and 4 in the WikiSQL dataset), (d)
the columns present in the WHERE clause (as multi-label
classification, since they can be more than one), (e) the oper-
ation of each condition among a fixed number of operations

123



922 G. Katsogiannis-Meimarakis, G. Koutrika

Fig. 7 A timeline of deep learning text-to-sql systems, datasets and language representation techniques

Fig. 8 Query Sketch proposed by SQLNet

(≤,=,≥) and (f ) the value of each condition. Predicting the
value is achieved using a sequence generator network, which
in this case is only responsible for the value and not for the
SQL syntax or grammar, so syntactic mistakes are avoided.

Another improvement introduced in SQLNet is the intro-
duction of a column attention neural architecture to the
network. Given that SQLNet encodes the NLQ and table
columns separately, the encoded representation of the NLQ
does not have any information on the available columns and
thus cannot inform the system on which words in the NLQ
are important for generating the correct SQL query. Column
attention is an attentionmechanism that infuses theNLQ rep-
resentationwith information about the table columns, so as to
emphasise the words that might be more related to the table.
Other than that, both systems are similar to each other, using
GloVe [68] embeddings for text representation and LSTM
networks for encoding them.

6.2 Sketch generation

While the use of a sketch greatly simplifies the text-to-SQL
problem and makes predictions simpler for neural networks,
the complexity of SQL queries the system can generate using
a single sketch is restricted. Systems such as Coarse2Fine
[22] and RYANSQL [13] have tried to generalise sketch-
based decoding, by attempting to not only fill in the slots of
a sketch but also generate the appropriate sketch for a given
NLQ.

Coarse2Fine [22] is a semantic parser that can generate
various types of programs, one of which is SQL. Its main
highlight is that it decomposes the decoding process into
two steps: first, it generates a rough (coarse) sketch of the
target program without low-level details, and then it fills this
sketch with the missing (fine) details. Its authors argue that
a great advantage of this approach is that the network can
disentangle high-level from low-level knowledge and learn
each one of themmore effectively. Unfortunately, this system

is only used on the WikiSQL dataset and is not extended to
more complex SQL queries, which is not trivial work. In fact,
because Coarse2Fine is designed for the WikiSQL dataset,
the sketches it generates only differ between them in the
number of conditions that appear in the WHERE clause and
the operations in each condition. As such, while the idea it
proposes might be very interesting, in practice, it essentially
achieves generating SQL queries of no greater complexity
than what simple sketch-based systems do.

RYANSQL [13] is another system that generates the appro-
priate sketch before filling it, but in contrast to the previous, it
manages to produce much more complex SQL queries such
as the ones present in the Spider dataset. This is achieved
by breaking down each SQL query into a non-nested form
that consists of multiple, simpler, sub-queries. The authors
propose 7 types of sub-queries, each with its own sketch,
that can be combined to produce more complex queries. The
network then learns to recursively predict the type of each
sub-query and to subsequently fill in its sketch. RYANSQL
achieved the first position in the Spider benchmark at the
time of its publication, but has since been surpassed by other
systems, while no other similar approach has been able to
achieve comparable performance.

SyntaxSQLNet [105] follows a similar approach, but
instead of generating the query sketch, it follows a pre-
defined SQL grammar that determines which of its 9 slot-
filling modules needs to be called to make a prediction. This
allow the system to produce grammatically correct complex
querieswhile enjoying the benefits of a sketch-based decoder.
At each prediction step, the grammar and the prediction his-
tory from the previous steps are used to determine themodule
(e.g. COLUMNmodule, AGGREGATORmodule, OPERA-
TOR module, HAVING module, etc.) that needs to make a
prediction in order to build the SQL query. Although this is
a hybrid approach, the architecture of the decoder modules
classifies SyntaxSQLNet as a sketch-based decoding system.
The main difference is that most sketch-based decoders call
all their slot-filling modules simultaneously to fill the sketch,
whereas SyntaxSQLNet calls specific modules recursively
because the grammar defines what needs to be filled in at
each prediction step. SyntaxSQLNet was one of the first sys-
tems proposed for Spider. Since then, many systems have
achieved better performance scoreswhile steering away from

123



A survey on deep learning approaches for text-to-SQL 923

this methodology, hinting at its weaknesses. For example,
one of the main challenges is to effectively pass all the infor-
mation of the prediction history and the current state of the
generated SQL to each module, at every prediction step.

6.3 Graph representations

The use of graphs for input encoding has only recently seen
increased use, despite its powerful capability to represent
the DB schema. This section explores key systems that have
shown new perspectives on how graphs can be represented
and used in the text-to-SQL task.

A natural option for processing graphs are Graph Neu-
ral Networks (GNNs). However, while being a good option
for tasks such as node classification, node clustering and
edge prediction, they are not as suitable for generative tasks
like the text-to-SQL problem. Two systems manage to lever-
age GNNs to encode the database schema and its elements:
the GNN parser [8] and its successor Global-GNN parser
[9]. To achieve this, the database schema is represented
as a graph, where tables and columns are represented as
nodes, and different types of edges represent the relation-
ships between them (e.g. which columns appear in which
table and which columns and tables are connected with a
primary-foreign key relationship). For NLQ encoding, both
systems use word embeddings and LSTM networks, while
node encodings calculated by the GNNs are concatenated to
eachword embedding, based on the discovered schema links.
For decoding, both systems use a grammar-based decoder
[99] that generates a SQL query as an Abstract Syntax
Tree (AST), which is often used by grammar-based systems
[10,33,89]. Global-GNN [9] introduces the use of a re-ranker
that, given k SQL predictions from the network, chooses the
best interpretation based on the database elements used and
the graph representation calculated.

In order to avoid the disadvantages of GNNs, other efforts
modify architectures that have already shown their power in
the text-to-SQL task, such as the Transformer [87], so that
they can accept edge information and process a graph. RAT-
SQL [89] uses a graph representation of the input, but instead
of using GNNs, it proposes a modified Transformer archi-
tecture named Relation Aware Transformer (RAT). Firstly, it
creates a question-contextualised schema graph, i.e. a graph
representing the database tables and columns as well as the
words of the NLQ as nodes and the relationships between
them as edges. An edge can appear either between two
database nodes, similarly to the previous systems, or between
a database node and a word node. In this graph, schema link-
ing is performed to discover connections between a database
node and a word node that might refer to it. The names of
all the nodes in the graph are first encoded using BERT [19]
and then processed by the RAT network, along with the edge
information of each node. The RAT neural block performs

relation aware self-attention on its inputs, which essentially
biases the network towards the given relations (edges). This
allows the system to use Transformers and even pre-trained
language models to process the graph as a series while also
utilising the information present in the graph edges. Finally,
it generates a SQL query as an AST using the method men-
tioned above [99].

All systems discussed in this section have grammar-based
decoders. This happens mainly because they aim to produce
complex queries such as the ones in the Spider dataset, and at
the time of their publication, grammar-based decoders were
the most common option. It would be possible for a system
using a graph representation of the input to use a different
decoder with its own advantages and drawbacks.

6.4 Using intermediate languages

Following the success of the grammar-based methods in
generating complex SQL queries over multi-table DBs,
researchers also examined the use of languages during the
decoding phase that can better align with NL than SQLmak-
ing it easier for the system to make predictions, but at the
same time they can be deterministically translated into SQL.
We examine key systems that use an Intermediate Language,
either a pre-existing language or one created specifically for
this task, as the target language for the neural decoder.

IRNet [33] is a grammar-based system capable of gener-
ating complex SQL queries, such as the ones in the Spider
dataset. It uses the same AST decoding method [99] for code
generation used in other grammar-based text-to-SQL sys-
tems (e.g. RATSQL [89] and the GNN parser [8]). The main
difference is that it predicts an AST of a SemQL program,
which is an Intermediate Language created specifically for
this system. Its authors argue that it is easier to generate
queries in this language and then transform them to SQL.
Furthermore, IRNet performs schema linking by consider-
ing all n-grams of length 1 to 6 as query candidates and all
column and table names as DB candidates and uses exact
and partial matches to discover links between them. It also
searches for all query candidates that appear inside quotes in
the ConceptNet knowledge graph [82] in order to link them
to a database column or table. Input encoding uses BERT
followed by linear and recurrent neural networks.

SmBoP [75] is a grammar-based system that introduces
various novelties in the decoding phase. The use of rela-
tional algebra as an Intermediate Language is one of them.
Its authors argue that, along with being better aligned with
NL, relational algebra is a language that is already used by
DB engines, unlike SemQL. Additionally, in order to decode
ASTs of queries in relational algebra, SmBoP uses a bottom-
up parser, in contrast to the usual approach of generating
ASTs by performing top-down depth-first traversal, followed
by almost all text-to-SQL systems. The bottom-up decoder

123



924 G. Katsogiannis-Meimarakis, G. Koutrika

generates at time step t , the top-k sub-trees of height ≤ t ,
where k is a given parameter that represents the number of
beams used during the decoding search. The main advan-
tage of the bottom-up parsing is that at any given time-step,
the generated sub-trees are meaningful and executable sub-
programs, while in the top-down parsing, intermediate states
are partial programs without a clear meaning.

6.5 The age of BERT

Much like in other NLP problems, replacing a conventional
encoder with a pre-trained language model such as BERT
[19] has been shown to improve performance of a text-to-
SQL system.

SQLova [39] is a sketch-based approach focused on the
WikiSQL dataset. It employs a large and complex network
almost identical to the one used by SQLNet, with its main
difference being that instead of GloVe embeddings, it uses
BERT to create a contextualised representation of the NLQ
and table headers. The representations are then passed to 6
networks, each responsible for a different part of the query
sketch, that are very similar to the sub-networks used by
SQLNet. The result is a staggering, almost 20%, increase in
execution accuracy on the test set of WikiSQL, indicating
BERT’s power in the text-to-SQL task.

HydraNet [62] is another sketch-based approach on the
WikiSQL benchmark taking advantage of the BERT lan-
guage model. Its main difference from SQLova is that
HydraNet aligns itself better to the way that BERT has been
pre-trained andonly uses a simple linear network after receiv-
ing the contextualised representations from BERT, instead
of large networks with LSTMs and attention modules like
SQLova. Furthermore,HydraNet processes each table header
separately instead of jointly encoding them, an approach that
is unique to this system. As a result, it can only make predic-
tions for each column on its own, i.e. it decides if the column
at hand will appear in the SELECT clause, if it will appear in
the WHERE clause, what its operation will be if it appears
in the WHERE clause and so on. HydraNet, with its simpler
architecture leveraging BERT, achieves better accuracy on
WikiSQL than SQLova, which employs a larger and more
complex network.

X-SQL [35] is a sketch-based system using the MT-
DNN pre-trained language model [58], that was built for the
WikiSQL benchmark. Similarly to HydraNet, it uses much
simpler networks than SQLova for filling the slots of the
query sketch. However, it encodes all table headers simulta-
neously, along with the user question. Additionally, instead
of using segment embeddings that originally indicate the
span of different sentences in the language model’s input,
X-SQL uses type embeddings. These embeddings differenti-
ate between the different types of elements in the input, such
as the user’s question, categorical columns and numerical

columns. Furthermore, it uses an attention layer to create a
single token representation for columns that have more than
one token (i.e. more than one word in their name). X-SQL
also outperforms themuchmore complexSQLova, achieving
slightly lower scores than HydraNet.

6.6 Schema linking focus

As discussed earlier, schema linking is a major part of creat-
ing a SQLquery from aNLQ. This section looks into systems
that have put extra effort on schema linking, or even based
their entire workflow on this process.

TypeSQL [103] is one of the first systems to introduce a
process similar to schema linking in its workflow, and one
of the few systems working on WikiSQL that uses schema
linking. Its methodology is described as Type Recognition,
but closely resonates to the concept of schema linking. The
goal of this methodology is to assign a “type” to every token
of the NLQ. It considers all n-grams in the NLQ of length
from 2 to 6 and tries to assign them one of the following
“types”: (a) Column, if it matches the name of a column or
a value that appears under a column, (b) Integer, Float, Date
or Year, if it a numerical n-gram, (c) Person, Place, Country,
Organization or Sport by performing NER using the Free-
base knowledge graph. Even though this process is unilateral,
as its main goal is to classify the query candidates into a type
category and not to explicitly link them to a DB candidate, it
is one of the first attempts towards schema linking.

ValueNet [10] builds on the grammar-based system IRNet
[33] focusing on schema linking and condition value dis-
covery. The main motivation of the system is that despite
the constant improvement of text-to-SQL systems, even the
state-of-the-art is falling behind at predicting the correct val-
ues in the SQL conditions. Similarly to IRNet, ValueNet
decodes a SQL query in a SemQL 2.0 AST. SemQL 2.0
extends the SemQLgrammarwith values.Additionally, since
condition values might not be written by the user in the
exact same way they appear in the DB, ValueNet employs
an extended value discovery workflow of five steps:

• value extraction to recognise possible value mentions in
the NLQ, it uses NER and heuristics;

• value candidate generation to create additional candidate
values, it uses string similarity, hand-crafted heuristics
and n-grams;

• value candidate validation to reduce the number of can-
didate values, it keeps only the candidates that appear in
the DB;

• value candidate encoding it appends each candidate to the
input along with the table and the column it was found
under, and

123



A survey on deep learning approaches for text-to-SQL 925

• neural processing the encoded representations are pro-
cessed by the neural network, which eventually decides
if and where they will be used.

The authors also provide a classification of the Spider
queries based on the difficulty of discovering the values. This
is another important aspect of the text-to-SQL problem usu-
ally overlooked by other works.

SDSQL [38] is a sketch-based system designed for the
WikiSQL task.What is special about this system is that it can
be viewed as two neural networks tackling two tasks at the
same time. The first network predicts SQL queries using the
samearchitecture used bySQLova [39],while the secondnet-
work performs schema dependency predictions. The schema
dependency network uses bi-affine networks [24] to predict
dependencies between the words of the NLQ and the table
headers. Such dependencies include: (a) the select-column
dependency that connects a query candidate that maps to
a column that will appear in the SELECT clause with the
corresponding column of the table, and (b) the where-value
dependency that connects the query candidate that refers to
a value that will appear in the WHERE clause to the table
column it belongs to. It must be noted that even though the
second network performs schema linking, its predictions are
not directly used by the first network to construct the SQL
query. Instead, a combined loss from the predictions of both
tasks is used to train the weights of the networks, which
allows the schema dependency learning to improve the first
network’s performance indirectly.

IE-SQL [63] proposes a unique approach to the text-to-
SQL problem almost completely based on schema linking.
It uses two instances of BERT [19] to perform two differ-
ent tasks: a mention extractor and a linker. The mention
extractor recognises which query candidates are mentions
of columns that will be used in the SELECT and WHERE
clauses of the SQL query, mentions of aggregation func-
tions, condition operators and condition values. Additionally,
the mention extractor recognises mentions that should be
grouped together. For example, the mentions of the column,
the operator and the value that belong to the same condi-
tion are grouped together. Having extracted the mentions,
the linker maps the mentions of column names to the actual
columns of the table they are referring to. The linker also
maps valuementions without a grouped column to the appro-
priate table column. By using the predictions of the mention
extractor and the linker, IE-SQL can predict an SQL query,
without any additional neural component. Even though this
approach may not be a clear match with any of the three
decoding categories, we classify it as a sketch-based system
because its methodology is heavily based on the existence
of a query sketch similar to the one used by SQLNet [96].
IE-SQL can better learn the dependencies between the slots
and uses a more robust approach. Still, the mention types it

recognises are a direct match to the slots of the query sketch.
Therefore, extending it to queries beyond the sketch is not
trivial.

6.7 The return of the sequence

Generating SQLqueries using a sequence-based decoderwas
initially avoided as it could produce syntax and grammar
errors, as discussed in Section 4.4. Grammar-based decoders
were instead regarded as the best choice for a system to
effectively generate complex SQL queries. However, recent
works [57,76,97] have changed the landscape by introducing
a series of techniques that minimise the possibility of errors
by sequence-based decoders. These techniques have made
the use of very powerful pre-trained encoder–decoder mod-
els [52,74] a viable and high-performing option, allowing the
systems that use them to achieve top performance in both the
Spider and WikiSQL benchmarks.

SeaD [97] is a system based on the BART [52] encoder–
decoder pre-trained language model designed on WikiSQL.
To overcome the drawbacks of its sequence-based decoder,
SeaD employs two techniques: (a) it introduces two addi-
tional tasks on which the model is trained at the same
time with the text-to-SQL task, and (b) it uses execution-
guided decoding [91], slightly modified to work with its
sequence-based decoder. Its main contribution is the use of
the two additional training tasks named erosion and shuffle
(see Sect. 4.5), which are designed specifically to help the
model better understand the nature of the text-to-SQL prob-
lem and the tables used by the WikiSQL dataset. The use
of additional training tasks is also closely aligned with how
language models are pre-trained to understand the more gen-
eral notion of natural language before being fine-tuned to a
specific task. Nevertheless, while SeaD hasmanaged to over-
come the limitations of sequence-based decoders and achieve
the best performance on the WikiSQL benchmark, both the
decoding technique and the additional objectives it employs
are designed with the WikiSQL dataset in mind. Extending
them to full relational databases would not be a trivial matter.

BRIDGE [57] is another recent system with a sequence-
based decoder that works on Spider, although it does not
use an encoder–decoder language model. Instead, it uses
BERT [19] and LSTM networks for input encoding and
enriches the input representation using linear networks that
use metadata such as foreign and primary key relation-
ships, as well as column type information. Additionally, the
system performs schema linking using fuzzy string match-
ing between query candidates and the values of columns
that only take values from a pre-defined list (i.e. picklist
attributes). The discovered values are added in the input
sequence to help the network create better SQL queries.
Finally, the sequence-based decoder used by BRIDGE is a
pointer generator network using schema-consistency guided

123



926 G. Katsogiannis-Meimarakis, G. Koutrika

decoding, a constraining strategy to avoid the aforemen-
tioneddrawbacks of sequence-based decoders. In order to use
schema-consistency guided decoding, BRIDGE is trained
(and makes predictions) on SQL queries written in execution
order, i.e. all queries start with the FROM clause, followed
by the WHERE, GROUP BY, HAVING, SELECT, ORDER
BY and LIMIT clauses, strictly in that order. This means that
all columns that appear in the query, must appear after the
table that they belong to has been generated. Based on this,
BRIDGE can limit the search space of columns and avoid
using columns that will produce invalid SQL queries.

PICARD [76] is a constraining technique for auto-
regressive decoders of language models, that is specifically
created to improve their performanceon the text-to-SQL task.
Essentially, at each prediction step, it constrains the model’s
set of possible predictions by removing tokens that could pro-
duce syntactically and grammatically incorrect SQL queries.

It is used at inference time, by looking at the confidence
scores of the model’s prediction and the schema of the under-
lying DB, and it operates at three levels:

• it rejects misspelled attributes and keywords, as well as
tables and columns that are invalid for the given schema,

• it parses the output as an AST to reject grammatical
errors, such as an incorrect order of keywords and clauses
or an incorrect query structure,

• it checks that all used tables have been brought into scope
by being included in the FROM clause and that all used
columns belong to exactly one table that has been brought
into scope.

When PICARD is used with the T5 [74] pre-trained lan-
guage model (the 3B parameters version), it ranked first on
the Spider leaderboard for execution with values. This of
course does not come without any drawbacks, such as the
increased prediction time due to the constrained decoding, as
well as the tremendous computational and memory require-
ments for training and running such a large model as T5-3B.

7 Discussion and higher-level comparison

In what follows, we make several observations regard-
ing how the landscape is shaped along the dimensions of
our taxonomy, presented in Sect. 4. Table 3 provides an
overview of the design choices of each system studied in this
survey. Additionally, we provide some higher-level insights
that can be useful for practitioners interested in introduc-
ing a deep learning text-to-SQL system in a real-world use
case. These insights include remarks concerning: adaptabil-
ity to new databases, difficulty of implementation, technical
demands, and other advantages and drawbacks of certain

design choices. A summary of these insights can be seen
in Table 4.

Output decodingThere is a connection between the decod-
ing approach used by a system and the benchmark on which
it operates. Systems that operate on Spider do not use a
sketch-based decoder. This is due to the fact that sketch-
based approaches are more cumbersome to be adapted for
generating complex SQL queries. RYANSQL [13] attempted
extending the sketch-based approach to Spider, but later
systems steered away from this choice. Furthermore, while
until recently grammar-based decoders dominated the Spider
benchmark and sketch-based decoders dominatedWikiSQL,
recent improvements in sequenced-based decoders have
turned the tables, bringing sequence-based decoders on the
top of both benchmarks (i.e. T5-3B+PICARD [76] for Spider
and SeaD [97] for WikiSQL).

The output decoder is what defines the system’s SQL
expressiveness and the effort needed to implement and extend
the system to new types of SQL queries. For example,
grammar-based decoders are harder to implement, since an
extensive grammar is required in order for the system to
cover all the possible SQL queries that the use case in
question might require. Additionally, extending a system to
use mathematical operations (e.g. WHERE end_year -
start_year < 4) will require varying degrees of effort
depending on the type of decoder. In the case of a sketch-
based or grammar-based decoder, an extension of the sketch
or grammar is necessary to cover the new query type. On the
other hand, sequence-based decoders can effectively gener-
ate everything (which is usually a drawback), as long as there
are training examples to learn from.

NL representation. There is a clear tendency by the lat-
est models to use PLMs for NL representation. Besides the
systems that useGNNs for input encoding [8,9], the only sys-
tems that use word embeddings for NL representation, were
published before PLMs were widely available. In almost all
cases, the use of a PLM instead of word embeddings leads to
a boost in performance. This is also shown in some systems
thatwere originally designed toworkwithword embeddings,
but are also tested with a PLM during ablation studies (e.g.
RAT-SQL [89], RYANSQL [13]). In fact, with the constant
introduction of new PLMs, the question of which PLMs is
more suitable becomes all the more relevant. However, a
major, typically overlooked, drawback of PLMs is their com-
putational cost and hardware requirements. Even though the
cost of pre-training can be alleviated because it is very easy
to find a pre-trained model online, there is still the cost of
training for the text-to-SQL downstream task, as well as dur-
ing inference. Running a model with a PLMwill also require
an additional amount of computational resources (usually
memory and/or a GPU) due to the size of these models. For
example, BERT-base [19] has 110Mparameters, BERT-large
has 340M parameters, and T5 [74] has variations of similar

123



A survey on deep learning approaches for text-to-SQL 927

Ta
bl
e
3

Sy
st
em

s
ex
am

in
ed

in
th
is
w
or
k

Y
ea
r

Sy
st
em

B
en
ch
m
ar
k

Sc
he
m
a
lin

ki
ng

N
at
ur
al
la
ng
ua
ge

In
pu
te
nc
od
in
g

O
ut
pu
td

ec
od
in
g

N
eu
ra
lt
ra
in
in
g

O
ut
pu
tr
efi
ne
m
en
t

20
17

Se
q2
SQ

L
W
ik
iS
Q
L

×
W
E

Se
pa
ra
te

Se
qu
en
ce

FS
×

SQ
L
N
et

W
ik
iS
Q
L

×
W
E

Se
pa
ra
te

Sk
et
ch

FS
×

20
18

In
cS
Q
L

W
ik
iS
Q
L

×
W
E

Se
pa
ra
te

G
ra
m
m
ar

FS
×

Ty
pe
SQ

L
W
ik
iS
Q
L

�
W
E

Se
pa
ra
te

Sk
et
ch

FS
×

C
oa
rs
e2
Fi
ne

W
ik
iS
Q
L

×
W
E

Se
pa
ra
te

Sk
et
ch

FS
×

Sy
nt
ax
SQ

L
N
et

Sp
id
er

×
W
E

Se
pa
ra
te

Sk
et
ch

FS
×

20
19

SQ
L
ov
a

W
ik
iS
Q
L

×
E
-P
L
M

Se
ri
al
is
e

Sk
et
ch

T
L

E
G
de
co
di
ng

IR
N
et

Sp
id
er

�
W
E
or

E
-P
L
M

Se
ri
al
is
e

G
ra
m
m
ar

T
L

×
X
-S
Q
L

W
ik
iS
Q
L

×
E
-P
L
M

Se
ri
al
is
e

Sk
et
ch

T
L

E
G
de
co
di
ng

R
A
T-
SQ

L
Sp

id
er

�
W
E
or

E
-P
L
M

G
ra
ph

G
ra
m
m
ar

T
L

×
G
N
N

Sp
id
er

�
W
E

G
ra
ph

G
ra
m
m
ar

FS
×

G
lo
ba
l-
G
N
N

Sp
id
er

�
W
E

G
ra
ph

G
ra
m
m
ar

FS
R
e-
ra
nk
in
g

20
20

V
al
ue
N
et

Sp
id
er

�
E
-P
L
M

Se
ri
al
is
e

G
ra
m
m
ar

T
L

×
B
R
ID

G
E

Sp
id
er

�
E
-P
L
M

Se
ri
al
is
e

Se
qu

en
ce

T
L

C
on

st
r.
de
co
di
ng

H
yd
ra
N
et

W
ik
iS
Q
L

×
E
-P
L
M

Pe
r
co
lu
m
n

Sk
et
ch

T
L

E
G
de
co
di
ng

IE
-S
Q
L

W
ik
iS
Q
L

�
E
-P
L
M

Se
ri
al
is
e

Sk
et
ch

T
L

E
G
de
co
di
ng

R
Y
A
N
SQ

L
Sp

id
er

×
W
E
or

E
-P
L
M

Se
ri
al
is
e

Sk
et
ch

T
L

×
Sm

B
oP

Sp
id
er

�
E
-P
L
M

G
ra
ph

G
ra
m
m
ar

T
L

×
20
21

SD
SQ

L
W
ik
iS
Q
L

�
E
-P
L
M

Se
ri
al
is
e

Sk
et
ch

T
L
+
A
O

E
G
de
co
di
ng

Se
aD

W
ik
iS
Q
L

×
E
D
-P
L
M

Se
ri
al
is
e

Se
qu

en
ce

T
L
+
A
O

C
on

st
r.
de
co
di
ng

T
5-
3B

+
PI
C
A
R
D

Sp
id
er

×
E
D
-P
L
M

Se
ri
al
is
e

Se
qu

en
ce

T
L

C
on

st
r.
de
co
di
ng

In
th
e
na
tu
ra
ll
an
gu
ag
e
co
lu
m
n,

W
E
,E

-P
L
M

an
d
E
D
-P
L
M

st
an
d
fo
r
w
or
d
em

be
dd
in
gs
,e
nc
od
er
-o
nl
y
PL

M
an
d
en
co
de
r–
de
co
de
r
PL

M
ac
co
rd
in
gl
y.
In

th
e
ne
ur
al
tr
ai
ni
ng

co
lu
m
n,

FS
,T

L
an
d
A
O

st
an
d
fo
rf
re
sh

st
ar
t,
tr
an
sf
er
le
ar
ni
ng

an
d
ad
di
tio

na
lo
bj
ec
tiv

e
ac
co
rd
in
gl
y.
In

th
e
ou
tp
ut
re
fin

em
en
tc
ol
um

n,
E
G
de
co
di
ng

an
d
co
ns
tr.

D
ec
od
in
g
st
an
d
fo
re
xe
cu
tio

n-
gu
id
ed

an
d
co
ns
tr
ai
ne
d
de
co
di
ng

ac
co
rd
in
gl
y

123



928 G. Katsogiannis-Meimarakis, G. Koutrika

Table 4 Higher-level comparison of taxonomy dimensions on various practical dimensions (➚ signifies good performance, ➘ signifies poor
performance, and ➙ signifies average performance)

W
E

E
-P

L
M

E
D
-P

L
M

S
ep

ar
at
e

S
er
ia
li
se

P
er

co
lu
m
n

G
ra

p
h

S
ke

tc
h

G
ra

m
m
ar

S
eq

u
en

ce
F
re
sh

S
ta
rt

T
r.

le
ar

n
in
g

A
d
d
.
ob

je
ct
iv
es

E
G
-d
ec

od
in
g

C
on

st
r.
d
ec

od
in
g

R
e-
ra

n
ki
n
g

Natural Input Output Neural Output
language encoding decoding training refinement

Ease of implementation
Use with full RDBs

Extend to new SQL types
Computational costs

Handling large schemas

sizes that reach up to 11B parameters, while the one pre-
sented with PICARD [76] has 3B parameters. This must be
considered, especially when building applications that must
support heavy workloads or have low latency requirements.

Input encoding Regarding input encoding, there are two
main observations to point out: (a) while earlier systems
performed separate encoding, later systems use serialised or
graph encoding, and (b) newer systems working on the Wik-
iSQL, all use serialised encoding. The clear tendency to use
serialised encoding can be easily attributed to the extensive
use of PLMs, which offer much better performance with a
serialised input. This is even more true in the case of Wik-
iSQL, because single tables can easily be serialised along
with the NLQ making the combination of PLMs and seri-
alised encoding an easy and powerful choice. However, when
it comes to DBs with several tables and relationships among
them and their columns, a more flexible and informative rep-
resentation is required. Some systems have examined the
more innovative approach of graph encoding, which so far
seems promising, offering a lot of ground for future research.
Another practical limitation that must be taken into account
is how flexible each encoding option is when it comes to DBs
with large schemas. For example, the SDSS database, which
stores data from astronomical surveys, has 87 tables with
some tables containing up to a hundred columns. Serialising
such a schema would result in a very long sequence that can-
not be processed by a PLM due to their limitation in input
length. Similarly, performing separate encoding might cre-
ate a bottleneck in the schema encoder side. Graph encoding
might be more efficient for handling larger schemas, since
GNNs can encode each schema element as a single node.
However, this approach is also prone to poorer performance
as the schema gets larger.

Schema linking Table 5 displays the schema linking tech-
niques used by each system studied in this survey. While
the first text-to-SQL systems did not perform any kind of
schema linking, later systems have proposed various intri-

cate schema linking pipelines. On the query side, we observe
that almost all systems consider single-word and multi-word
tokens, while ValueNet [10] also performs NER to find pos-
sible candidates. On the DB side, using the table and column
names is the baseline for most systems, while some sys-
tems also lookup the values that are present in the DB.
Finally, to match the candidates, some systems use simple
text matching (either exact or partial), while newer systems
have experimented with the use of classifiers instead of string
operations to find matches. It becomes quickly apparent that
schema linking is mostly explored by systems operating on
the Spider dataset, accompanied by very few systems using
the WikiSQL benchmark. This is somewhat expected, given
that as the SQLcomplexity and the volumeof tables, columns
and data increase, researchers seek to aid the neural network
by providing auxiliary information. However, what is very
peculiar is that some high performing recent systems (i.e.
T5-3B+PICARD [76] and SeaD [97]) do not perform any
schema linking at all. This is an open research question. Can
powerful neural architectures, pre-trained on vast amounts
of data, defy the need for schema linking? Or, can they
achieve even higher scores if combined with schema link-
ing? One important observation is that very little effort has
been put into testing how fast and scalable these approaches
are, especially for very large databases. In fact, to the best
of our knowledge, only a single work [86] provides exper-
imental evaluations concerning the time and memory used
for schema linking. Hence, extra caution is necessary when
using these methods in a real-world system, as most of them
are not adequately optimised.

Neural training The neural training dimension is closely
connected to the NL representation adopted by each system.
This happens because using a PLM means that the model
adopts the Transfer Learning paradigm, because it further
trains an already pre-trained neural component on a new
downstream task. There are no cases of systems perform-
ing transfer learning on other parts of the model besides the

123



A survey on deep learning approaches for text-to-SQL 929

NL representation part. This is mostly due to the fact that
PLMs perform exceptionally well, and making an improve-
ment through a different transfer learning techniquewould be
verydifficult. Furthermore, there are only twomodels that use
additional objectives during training [57,97]. This relatively
novel approach follows the success of PLMs using vari-
ous auxiliary tasks during pre-training and seems to be very
promising in training amodel that achieves better generalisa-
tion. It must be noted that the time and computing resources
needed to train amodel using each training approach are usu-
ally not taken into account when presenting new models, in
favour of better performancemetrics. It is however necessary
to address them in order tomake the use of suchmodels feasi-
ble in a real-world application. For example, the pre-training
part of transfer learning is very costly, unless the pre-trained
model ismade available by its creators. Similarly, using addi-
tional objectives will greatly increase the computations that
must be performed, thus increasing the cost of training.

Output refinement The output refinement heavily depends
on the approach used for output decoding, as well as the
dataset that the system operates on. A system designed for
WikiSQL can use execution-guided decoding [91], nomatter
the type of its decoder because of the simplicity of the Wik-
iSQL queries. Systems with sequence-based decoders can
use constrained decoding techniques to improve their pre-
dictions and reduce the possibilities of errors. In fact, this
output refinement technique is one of the main reasons why
they can be so effective. The re-ranking technique could be
used by any system that can produce more than one predic-
tions for a single input, but in practice it has not been adopted
by anyother systemafter beingproposedbyGlobal-GNN[9].
Furthermore, each refinement technique adds an additional
burden to the system that translates to extra computational
cost and more time needed to make a prediction. When used
in a real-time application, it is necessary to consider if the
performance boost gained from the refinement step, is worth
the extra time and resources required.

8 Research challenges

While a lot of progress has been made on the text-to-SQL
problem, several important issues need to be tackled. In
this section, we outline some of the most challenging prob-
lems and highlight interesting research opportunities for the
database and the machine learning communities that could
greatly impact the state of the art in text-to-SQL research and
beyond.

8.1 Benchmarks

As mentioned earlier, WikiSQL and Spider are large-scale
query benchmarks that provide a common way to evaluate

and compare different systems. They have simplified system
evaluation, and they are often seen as the panacea for text-
to-SQL evaluation. Researchers tend to over-rely on these
benchmarks to argue that their systems are advancing the
state of the art, and they do not spend time performing addi-
tional experiments on other benchmarks. However, given the
progress in system-building, new standards are necessary for
benchmarking text-to-SQL systems, in order to make these
systems applicable to real-world scenarios, and to continue
pushing the state of the art.

First of all, datasets such asWikiSQL, that contain single-
table databases and very simple SQL queries, cannot be seen
as realistic benchmarks for real-world applications. Given
that the SQL queries in WikiSQL can be covered by a very
simple sketch, as the one shown in Fig. 8, and current systems
have reached very high accuracy scores on this dataset, there
is a need for more challenging benchmarks. These bench-
marks were a good start for the neural text-to-SQL field and
have allowed a lot of novel ideas to be implemented in a
“sandbox” environment, but the state of the art is now able
to achieve much more.

Similarly, Spider contains DBs and queries that were
specifically created for text-to-SQL evaluation but they are
rather simplistic and do not reflect the characteristics of real-
world DBs. For example, the Spider DBs have a simple
schema or too little data stored. In fact, the 166DBs of Spider
that are available to the public (i.e. train and dev set, since
the test set is held-out by the authors) sum up to less than
1GB. Ideally, newbenchmarks should aspire to introduce real
cases of DBs taken from the industry and academia, accom-
panied with real logs of SQL queries performed on them by
their users. The NLQ part could be obtained either by asking
the users to specify what their intention was when running
these queries, by asking SQL experts to explain them, or by
employing a SQL-to-text system.

Another important drawback of current benchmarks is
their relatively small number of examples (i.e. NL-SQL
pairs), especially compared to datasets used by deep neu-
ral networks in other problems (e.g. the SQuAD Question
Answering dataset contains more than 100K examples).
Besides the obvious contribution of creating a new large-
scale dataset from scratch, there are a few other paths that
could be considered. For example, it would be possible to
create a novel benchmark suite containing multiple previ-
ous benchmarks. This would not be a trivial work, since a
lot of consideration is needed concerning how to split the
datasets in a way that the train and test sets could help devel-
opers understand if their system can successfully generalise
to unseen DBs, domains, SQL query patterns, NLQ vocab-
ulary, etc. Another way to create a new benchmark could
be by transforming similar benchmarks used in slightly dif-
ferent tasks, or different query languages. For example, a
text-to-SPARQL dataset, such as the CFQ dataset [46] that

123



930 G. Katsogiannis-Meimarakis, G. Koutrika

Table 5 A comparison of schema linking techniques used by the examined systems; the schema linking process is divided in the query candidate
discovery, DB candidate discovery and candidate matching phases, as described in our taxonomy

Si
ng

le
to
ke
ns

M
ul
ti
-w

or
d
to
ke
ns

N
am

ed
en
ti
ti
es

A
dd

it
io
na

l
ca
nd

id
at
es

T
ab

le
an

d
co
lu
m
n
na

m
es

V
al
ue
s
vi
a
lo
ok

up
V
al
ue
s
vi
a
K
G
s

E
xa

ct
m
at
ch
in
g

P
ar
ti
al

m
at
ch
in
g

A
pp

ro
xi
m
at
e
m
at
ch
in
g

L
ea
rn
ed

em
be

dd
in
gs

C
la
ss
ifi
er
s

Year System Benchmark Query DB Matching

2017 Seq2SQL WikiSQL
SQLNet WikiSQL

2018

IncSQL WikiSQL
TypeSQL WikiSQL

Coarse2Fine WikiSQL
SyntaxSQLNet Spider

2019

SQLova WikiSQL
IRNet Spider
X-SQL WikiSQL

RAT-SQL Spider
GNN Spider

Global-GNN Spider

2020

ValueNet Spider
BRIDGE Spider
HydraNet WikiSQL
IE-SQL WikiSQL

RYANSQL Spider
SmBoP Spider

2021

DBTagger -
SDSQL WikiSQL
SeaD WikiSQL

T5-3B+PICARD Spider

contains more than 200 thousand NLQ-to-SPARQL exam-
ples or the LC-QuAD dataset [85] that contains 5 thousand
examples, would be very beneficial if converted to SQL (sim-
ilarly to how theWikiTableQuestions [67] was used to create
the SQUALL [80] text-to-SQL dataset).

Another critical limitation of existing benchmarks is that
they fail to address the question of what type of NL and SQL
queries a system can understand and build, respectively. This
is due to the lack of a clear query categorisation. For instance,
Spider has four very coarse-grained classes of queries. This
highlights the need for new benchmarks and in-depth system
evaluations, in the spirit of [6,30], that provide fine-grained
query categories and allow researchers to understand the
strengths and weaknesses of a system.

Furthermore, existing benchmarks assume that for each
NL query, there is only one correct SQL query. This may be
restricting. First, there are NL queries that may have more
thanone correct translations over the data. Second, equivalent
SQL queries arewritten in a different way but return the same
results.

Finally, while the state-of-the-art systems are still dealing
with “getting the answer right”, they are mostly overlooking

the “getting the answer fast”. The database community could
come up with benchmarks that focus on efficiency (not just
effectiveness) and allow evaluating systems based on execu-
tion time and resource consumption in addition to translation
accuracy.

8.2 System efficiency and technical feasibility

Focusing on the translation accuracy of the system is only one
side of the coin. Evaluating system efficiency is important in
order to understand the viability of a solution and pinpoint the
pain points that need to be addressed. Deep learning text-to-
SQL systems are typically relying on very complex models,
which have been trained and evaluated in toy databases (like
the ones contained in existing benchmarks). Hence, it comes
to no surprise that they have not yet seen practical applica-
tions in real-life use-cases and domains, and their usefulness
is to be proved. Several important challenges need to be tack-
led first.

Firstly, while the use of PLMs for NL Representation is
highly favoured by newer systems, these models introduce
a large overhead at inference time, and while using larger

123



A survey on deep learning approaches for text-to-SQL 931

PLMs usually translates to higher accuracy, it also trans-
lates to higher inference times. Output refinement techniques
are also adding extra overhead that might make a system
impractical to use in a real-world scenario. For example,
one of the best-performing models on the Spider dataset,
T5-3B+PICARD, uses a large PLM along with a compu-
tationally intensive output refinement technique. Adapting
such a model to work with fewer resources, reducing its
training time, or optimising its output refinement would be a
significant scientific and engineering achievement.

Furthermore, input encoding techniques such as serialisa-
tion combined with PLMs have an input size limit (usually
of 512 tokens), which poses no problem for the DBs in Spi-
der, but is restricting when working with real-world database
schemas. The challenge of creating a robust input encod-
ing technique that can efficiently work with larger schemas,
must also be tackled in order to make text-to-SQL systems
technically feasible.

Additionally, schema linking techniques have been shown
to work and be beneficial for systems working on the Spider
dataset, but they have yet to be tested on a real, large-
scale DB. Even though using indices and other DB lookup
techniques might speed up schema linking, it is still ques-
tionable if looking up multiple words or n-grams for every
NLQ, is efficient in a real application. Advanced matching
techniques, such as classifiers, also introduce additional over-
head. There is a lot of room for contributions in optimising
schema linking, and this could be the area where the DB
community has the most to offer in order to make the break-
throughs of the NLP world usable in practice.

In a nutshell, improving translation speed by building effi-
cient methods is necessary. But this may not be enough.
Text-to-SQL translation creates overhead to the overall query
execution time that the user will experience, and hence needs
to be weighted in. Early text-to-SQL systems originating
from the DB community [36,37,53,60,110] not only tried
to generate correct SQL queries but also optimal in terms of
execution speed. Hence, many of them contained logic for
generating code that would return the desired results fast.
Ultimately, allowing the user to express questions in natu-
ral language should free them from the technical details of
how this query should be expressed in the underlying system
language and how it should be executed efficiently.

8.3 Universality of the solution

Another challenge is the universality of the solution, i.e. per-
forming equally well for different databases. This problem
becomes highly relevant when applying a text-to-SQL sys-
tem to an actual database [34] that is used in a business,
research or any other real-world use case. Apart from the
large number of tables and attributes that we have already
discussed, such databases may contain table and column

names that use domain-specific terminology. For example,
the SDSS [83] database has attributes such as “speccobj”
(spectroscopic object) and “photoobj” (photometric object),
that are unknown to and hence cannot be translated by any
of the available text-to-SQL systems. That is why in real-life
applications, ontologies and domain knowledge are used to
enable reliable text-to-SQL translations [4,73].

It is also important to enable natural language queries
in languages other than English, which is the main focus
of current efforts. Due to the problem’s multidisciplinarity,
database, ML, and NLP approaches can join forces to push
the barrier further.

8.4 Data augmentation

The need of deep learningmodels to train on a high volume of
training examples, combined with the relatively small size of
available benchmarks and the cost of manually creating new
examples, has elevated data augmentation to an important
problem.

DBPal [94] is a template-based approach that uses manu-
ally crafted templates of NL/SQL-pairs, which can be filled
with the names of tables, columns and values in order to cre-
ate training instances. The NLQs can be further augmented,
with the use of NL techniques such as paraphrasing, random
deletions and synonymsubstitutions.Nevertheless, such tem-
plates and NL techniques can not work consistently across
all new DBs and might often result to “robotic” or unnatural
NLQs. Another approach [32] uses a similar template-based
approach to create SQL queries by sampling column names
and values from a given table and then applies recurrent neu-
ral networks (RNNs) to generate the equivalentNLQ.Amore
recent work [95] proposes a pipeline that can generate exam-
ples spanning over multiple tables of a relational database.
SQL queries are created using an abstract syntax tree gram-
mar and filling them with attributes from the database. The
NLQs are then generated using a hierarchical, RNN-based
neural model, that recursively generates explanations for all
parts of the queries and then concatenates them.

However, even though some initial efforts havebeenmade,
a systematic evaluation of how each approach affects differ-
ent systems, as well as the quality of generated data in each
case, is still missing. Additionally, another research question
that arises is how to train a system using domain-specific or
augmented data, along with a general-domain dataset such
as Spider. For example, should the system be trained simul-
taneously on domain-specific as well as general-use data, or
only on domain-specific data, or should a more advanced
sampling method be used [95]?

123



932 G. Katsogiannis-Meimarakis, G. Koutrika

8.5 The path to data democratisation

While the text-to-SQLproblem is amajor research challenge,
it is also important to understand that it is a piece of the greater
puzzle of data democratisation. In order to allow all users, no
matter their technical knowledge, to easily access data and to
derive value from it, we must consider complementary prob-
lems, such as query explanations, query result explanations,
and query recommendations. These problems can also bene-
fit from and be inspired by themodels andmethods presented
in our study.

Query explanationsWhen a user formulates a query using
a text-to-SQL system, the question is how they can confirm
that the obtained results match the intention of the NLQ.
Query explanations in natural language would allow the user
to cross-check their NLQ to the explanations of the predicted
SQL queries and validate the results. This is the SQL-to-
text problem [26,48,93], which has been understudied so
far, and would greatly benefit from models and methods
for the text-to-SQL problem. Many interesting questions
arise, including: how to transfer existing text-to-SQL meth-
ods to solve this problem, what evaluationmetrics to use, and
whether we can design systems that can use the same model
to solve both problems. In this direction, models such as T5
seem promising.

Query result explanations In a similar vein, results to a
query are typically presented in a tabular form that is not self-
explanatory. Generating NL explanations for query results
is another open research area [18,81]. Interestingly, while
there has been considerable work on the “sibling” area of
data-to-text generation [7], the problemof query result expla-
nations (or QR-to-text) has several intricacies that do not
allow directly adapting methods from the data-to-text gen-
eration domain. The need to capture query semantics (that
are implied by the results), the lack of appropriate bench-
marks, and the fact that query results may contain several
rows from different tables that are joined are just a few of the
open issues.

Query recommendations Even when the user understands
the data that is kept in the database, it might not always be
clear what kind of queries can be asked and what kind of
knowledge can be extracted. For this reason, query recom-
mendations can help a user find interesting queries to ask the
database, either based on the user preferences and history, or
on queries that are frequently asked by other users of the same
database [41] or by analysing the data [31]. In this context,
adapting deep-learning models for query recommendations
offers numerous challenges and opportunities.

Conversational text-to-SQL Developing a conversational
DB interface is another promising task, very similar to ear-
lier non-DL approaches such as Analyza [20], which heavily
involves the user in the translation process. Since our ultimate
goal is creating a user-friendly and seamless experience, it

would bevery interesting to allow theuser to access andquery
data solely through the power of natural language and conver-
sation. The release of a conversational (CoSQL [106]), and a
context-dependent (SParC [108]) text-to-SQL dataset, based
on the Spider [107] dataset, has allowed for more focused
progress in this domain. The conversational version of the
problem carries new aspects and difficulties that candidate
systems must tackle. First and foremost, for each prediction,
the system must take into account all previous interactions
with the user (i.e. all previous NLQs and the predicted SQL
queries). Additionally, it is often necessary to ask the user for
clarifications when facing vague questions, or ask the user
to choose between possible interpretations of an utterance
in the conversation. While some of the systems presented in
this work can be adapted to work in a conversational setting,
heavier modifications are often necessary in order for the
model to effectively encode the conversation history and the
previous SQL predictions (note that we have only discussed
about encoding NL andDB schemas). Ultimately, this aspect
of the problem opens the path towards “intelligent data assis-
tants“ [64], similar to but extremely more powerful than the
intelligent personal assistants that are gainingmore andmore
popularity and use through our smartphones and dedicated
speakers devices.

9 Conclusions

The domain of text-to-SQL translation has received increas-
ingly larger attention by both the database and NLP com-
munities. The recent introduction of two large text-to-SQL
datasets [107,112] has enabled the use of deep learning mod-
els and spurred a new wave of innovation. To understand
which milestones have been conquered and what obstacles
lie ahead, it is necessary to provide a systematic and organ-
ised study of the field.

This work explained the text-to-SQL problem and the
available benchmarks, before diving into the systems. We
provided a fine-grained taxonomy of deep learning text-
to-SQL systems, based on six axes: (a) schema linking,
(b) natural language representation, (c) input encoding, (d)
output decoding, (e) neural training, and (f ) output refine-
ment. For each axis of our taxonomy, we analysed all the
approaches that have been presented so far and explained
their strengths and weaknesses. We relied on this taxonomy
to present some of the most important systems that have been
proposed, grouping them together, in order to highlight their
similarities, differences and innovations.

Finally, having presented the current state of the art, we
discussed open challenges and research opportunities that
must be tackled in order to truly advance the field of text-to-
SQL, as well as broader challenges that are closely related
to it. It is important to keep in mind, that the ultimate goal
of text-to-SQL research is to empower the casual user to

123



A survey on deep learning approaches for text-to-SQL 933

access and derive value from data. This is a goal that requires
the combined effort of multiple disciplines and cannot be
measured by a single performance metric.

Acknowledgements This work has been partially funded by the Euro-
pean Union’s Horizon 2020 research and innovation program (Grant
Agreement No. 863410).

Funding Open access funding provided by HEAL-Link Greece.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abbas, S., Khan, M.U., Lee, S.U.-J., Abbas, A., Bashir, A.K.: A
review of nlidb with deep learning: findings, challenges and open
issues. IEEE Access. 10, 14927–14945 (2022)

2. Affolter, K., Stockinger, K., Bernstein, A.: A comparative sur-
vey of recent natural language interfaces for databases. VLDB J.
28(5), 793–819 (2019)

3. Ambiguity. https://stanford.io/2YXcECi
4. Amer-Yahia, S., Koutrika, G., Braschler,M., Calvanese, D., Lanti,

D., Lücke-Tieke, H.,Mosca, A., de Farias, TMendes, Papadopou-
los, D., Patil, Y., Rull, G., Smith, E., Skoutas, D., Subramanian,
S., Stockinger, K.: Inode: building an end-to-end data exploration
system in practice. SIGMOD Rec. 50(4), 23–29 (2022)

5. Androutsopoulos, I., Ritchie,G.D., Thanisch, P.:Natural language
interfaces to databases—an introduction. Nat. Lang. Eng. 1(1),
29–81 (1995)

6. Belmpas, T., Gkini, O., Koutrika, G.: Analysis of database search
systems with THOR. In: Maier, D., Pottinger, R., Doan, A., Tan,
W.,Alawini,A.,Ngo,H.Q. (eds.) Proceedings of the 2020 Interna-
tional Conference onManagement of Data, SIGMODConference
2020, online conference [Portland, OR, USA], June 14–19, 2020,
pp. 2681–2684. ACM (2020)

7. Berant, J., Deutch, D., Globerson, A., Milo, T., Wolfson, T.:
Explaining queries over web tables to non-experts. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE), pp.
1570–1573 (2019)

8. Bogin, B., Berant, J., Gardner,M.: Representing schema struc-
ture with graph neural networks for text-to-SQL parsing. In:
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4560–4565. Association for Com-
putational Linguistics, Florence, Italy (2019)

9. Bogin, B., Gardner,M., Berant, J.: Global reasoning over database
structures for text-to-SQL parsing. In: Proceedings of the 2019
Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3659–3664. Asso-
ciation for Computational Linguistics, Hong Kong, China (2019)

10. Brunner, U., Stockinger, K.: Valuenet: a neural text-to-sql archi-
tecture incorporating values (2020). arXiv:2006.00888

11. Cai, R., Xu, B., Zhang, Z., Yang,X., Li, Z., Liang, Z.: An encoder–
decoder framework translating natural language to database
queries. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13–19, 2018, Stockholm, Sweden, pp. 3977–3983.
ijcai.org (2018)

12. Cao, R., Chen, L., Chen, Z., Zhao, Y., Zhu, S., Yu, K.: LGESQL:
line graph enhanced text-to-SQLmodelwithmixed local and non-
local relations. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 2541–2555. Association for Computational
Linguistics (2021)

13. Choi, D., Shin, M.C., Kim, E., Shin, D.R.: RYANSQL: recur-
sively applying sketch-based slot fillings for complex text-to-SQL
in cross-domain databases. Comput. Linguist. 47(2), 309–332.
https://doi.org/10.1162/coli_a_00403

14. Codd, E.F.: Seven steps to rendezvous with the casual user. In:
Klimbie, J.W., Koffeman, K.L. (eds.) Data Base Management,
Proceeding of the IFIP Working Conference Data Base Manage-
ment, Cargèse, Corsica, France, April 1–5, 1974, pp. 179–200.
North-Holland (1974)

15. Dahl, D.A., Bates, M., Brown, M., Fisher, W., Hunicke-Smith,
K., Pallett, D., Pao, C., Rudnicky, A., Shriberg, E.: Expanding the
scope of the atis task: The atis-3 corpus. In: Proceedings of the
Workshop on Human Language Technology, HLT ’94, pp. 43-48.
Association for Computational Linguistics, USA (1994)

16. Damerau, F.J.: A technique for computer detection and correction
of spelling errors. Commun. ACM 7(3), 171–176 (1964)

17. Deng, N., Chen, Y., Zhang, Y.: Recent advances in text-to-SQL:
a survey of what we have and what we expect. In: Proceedings
of the 29th International Conference on Computational Linguis-
tics, pp. 2166–2187. International Committee on Computational
Linguistics, Gyeongju, Republic of Korea (2022)

18. Deutch, D., Frost, N., Gilad, A.: Explaining natural language
query results. VLDB J. 29(1), 485–508 (2020)

19. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-
training of deep bidirectional transformers for language under-
standing. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, vol. 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguis-
tics, Minneapolis (2019). https://doi.org/10.18653/v1/N19-1423

20. Dhamdhere, K., McCurley, K.S., Nahmias, R., Sundararajan, M.,
Yan, Q.: Analyza: Exploring Data with Conversation. ACM, New
York (2017)

21. Dong, L., Lapata, M.: Language to logical form with neural
attention. In: Proceedings of the 54thAnnualMeeting of theAsso-
ciation for Computational Linguistics (Volume 1: Long Papers),
pp. 33–43. Association for Computational Linguistics, Berlin
(2016). https://doi.org/10.18653/v1/P16-1004

22. Dong, L., Lapata,M.: Coarse-to-fine decoding for neural semantic
parsing. In: Proceedings of the 56thAnnualMeetingof theAssoci-
ation for Computational Linguistics (Volume 1: Long Papers), pp.
731–742. Association for Computational Linguistics, Melbourne
(2018). https://doi.org/10.18653/v1/P18-1068

23. Dozat, T., Manning, C.D.: Deep biaffine attention for neural
dependency parsing (2017)

24. Dozat, T., Manning, C.D.: Deep biaffine attention for neural
dependency parsing. In: 5th International Conference onLearning
Representations, ICLR 2017, Toulon, France, April 24–26, 2017,
Conference Track Proceedings. OpenReview.net (2017)

25. Dozat, T., Manning, C.D.: Simpler but more accurate semantic
dependency parsing. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 484–490. Association for Computational

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://stanford.io/2YXcECi
http://arxiv.org/abs/2006.00888
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1068


934 G. Katsogiannis-Meimarakis, G. Koutrika

Linguistics, Melbourne (2018). https://doi.org/10.18653/v1/P18-
2077

26. Eleftherakis, S., Gkini, O., Koutrika, G.: Let the database talk
back: natural language explanations for SQL. In: Mottin, D.,
Lissandrini, M., Roy, S.B., Velegrakis, Y. (eds.) Proceedings of
the 2nd Workshop on Search, Exploration, and Analysis in Het-
erogeneous Datastores (SEA-Data 2021) Co-located with 47th
International Conference on Very Large Data Bases (VLDB
2021), Copenhagen, Denmark, August 20, 2021, volume 2929 of
CEURWorkshop Proceedings, pp. 14–19. CEUR-WS.org (2021)

27. Finegan-Dollak, C., Kummerfeld, J.K., Zhang, L., Ramanathan,
K., Sadasivam, S., Zhang, R., Radev, D.: Improving text-to-
SQL evaluation methodology. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Vol-
ume1:LongPapers), pp. 351–360.Association forComputational
Linguistics, Melbourne, Australia (2018)

28. Gan, Y., Chen, X., Huang, Q., Purver, M., Woodward, J.R., Xie,
J., Huang, P.: Towards robustness of text-to-SQL models against
synonym substitution. In: Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 2505–2515. Association for Com-
putational Linguistics (2021)

29. Gan, Y., Chen, X., Purver, M.: Exploring underexplored limita-
tions of cross-domain text-to-SQLgeneralization. In: Proceedings
of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 8926–8931, Online and Punta Cana,
Dominican Republic. Association for Computational Linguistics
(2021)

30. Gkini, O., Belmpas, T., Ioannidis, Y., Koutrika, G.: An in-depth
benchmarking of text-to-sql systems. In: SIGMOD Conference.
ACM (2021)

31. Glenis, A., Koutrika, G.: Pyexplore: query recommendations for
data exploration without query logs. In: Li, G., Li, Z., Idreos, S.,
Srivastava, D. (eds.) SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20–25, 2021,
pp. 2731–2735. ACM (2021)

32. Guo, D., Sun, Y., Tang, D., Duan, N., Yin, J., Chi, H., Cao,
J., Chen, P., Zhou, M.: Question generation from SQL queries
improves neural semantic parsing. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Process-
ing, pp. 1597–1607. Association for Computational Linguistics,
Brussels, Belgium (2018)

33. Guo, J., Zhan, Z., Gao, Y., Xiao, Y., Lou, J.-G., Liu, T., Zhang,
D.: Towards complex Text-to-SQL in cross-domain database with
intermediate representation (2019)

34. Hazoom, M., Malik, V., Bogin, B.: Text-to-SQL in the wild: a
naturally-occurring dataset based on stack exchange data. In: Pro-
ceedings of the 1st Workshop on Natural Language Processing
for Programming (NLP4Prog 2021), pp. 77–87. Association for
Computational Linguistics (2021)

35. He, P., Mao, Y., Chakrabarti, K., Chen, W.: X-sql: reinforce
schema representation with context (2019)

36. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

37. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

38. Hui,B., Shi,X.,Geng,R., Li,B., Li,Y., Sun, J., Zhu,X.: Improving
text-to-sql with schema dependency learning (2021)

39. Hwang, W., Yim, J., Park, S., Seo, M.: A comprehensive explo-
ration on wikisql with table-aware word contextualization (2019)

40. Iacob, R.C.A., Brad, F., Apostol, E.-S., Truică, C.-O., Hosu, I.A.,
Rebedea, T.: Neural approaches for natural language interfaces
to databases: A survey. In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 381–395. Interna-

tionalCommittee onComputational Linguistics,Barcelona, Spain
(2020)

41. Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data
exploration techniques. In: Sellis, T.K., Davidson, S.B., Ives, Z.G.
(eds.) Proceedings of the 2015ACMSIGMOD International Con-
ference on Management of Data, Melbourne, Victoria, Australia,
May 31–June 4, 2015, pp. 277–281. ACM (2015)

42. Iyer, S., Konstas, I., Cheung, A., Krishnamurthy, J., Zettlemoyer,
L.: Learning a neural semantic parser from user feedback. In:
Barzilay, R., Kan,M. (eds.) Proceedings of the 55thAnnualMeet-
ing of the Association for Computational Linguistics, ACL 2017,
Vancouver, Canada, July 30–August 4, Volume 1: Long Papers,
pp. 963–973. Association for Computational Linguistics (2017)

43. Kamath,A.,Das, R.:A survey on semantic parsing. In: 1st Confer-
ence on Automated Knowledge Base Construction, AKBC 2019,
Amherst, MA, USA, May 20–22, 2019 (2019)

44. Katsogiannis-Meimarakis, G., Koutrika, G.: A deep dive into
deep learning approaches for text-to-sql systems. In: Proceedings
of the 2021 International Conference on Management of Data,
SIGMOD/PODS ’21, pp. 2846–2851,NewYork,NY,USA.Asso-
ciation for Computing Machinery (2021)

45. Katsogiannis-Meimarakis, G., Koutrika, G.: Deep learning
approaches for text-to-sql systems. In: EDBT, pp. 710–713 (2021)

46. Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D.,
Kashubin, S., Momchev, N., Sinopalnikov, D., Stafiniak, L.,
Tihon, T., et al.: Measuring compositional generalization: a com-
prehensive method on realistic data (2019). arXiv:1912.09713

47. Kim, H., So, B.-H., Han, W.-S., Lee, H.: Natural language to sql:
where are we today? Proc. VLDB Endow. 13(10), 1737–1750
(2020)

48. Kokkalis, A., Vagenas, P., Zervakis, A., Simitsis, A., Koutrika,
G., Ioannidis, Y. E.: Logos: a system for translating queries into
narratives. In: Candan, K.S., Chen, Y., Snodgrass, R.T., Gravano,
L., Fuxman, A. (eds.) Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD 2012,
Scottsdale, AZ, USA, May 20–24, 2012, pp. 673–676. ACM
(2012)

49. Krishnamurthy, J., Dasigi, P., Gardner, M.: Neural semantic
parsing with type constraints for semi-structured tables. In: Pro-
ceedings of the 2017Conference onEmpiricalMethods inNatural
Language Processing, pp. 1516–1526. Association for Computa-
tional Linguistics, Copenhagen, Denmark (2017)

50. Lafferty, J.D.,McCallum,A., Pereira, F.C.N.:Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the Eighteenth International Conference
on Machine Learning, ICML ’01, pp. 282–289. Morgan Kauf-
mann Publishers Inc, San Francisco, CA, USA (2001)

51. Lee, C.-H., Polozov, O., Richardson,M.: KaggleDBQA: Realistic
evaluation of text-to-SQL parsers. In: Proceedings of the 59th
AnnualMeeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 2261–2273. Association
for Computational Linguistics (2021)

52. Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed,
A., Levy, O., Stoyanov, V., Zettlemoyer, L.: BART: denoising
sequence-to-sequence pre-training for natural language genera-
tion, translation, and comprehension. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguis-
tics, pp. 7871–7880. Association for Computational Linguistics
(2020). https://doi.org/10.18653/v1/2020.acl-main.703

53. Li, F., Jagadish,H.V.: Constructing an interactive natural language
interface for relational databases. PVLDB 8(1), 73–84 (2014)

54. Li, Y., Rafiei, D.: Natural language data management and inter-
faces: recent development and open challenges. In: Proceedings
of the 2017 ACM International Conference on Management of

123

http://arxiv.org/abs/1912.09713
https://doi.org/10.18653/v1/2020.acl-main.703


A survey on deep learning approaches for text-to-SQL 935

Data, SIGMOD ’17, pp. 1765–1770. Association for Computing
Machinery, New York, NY, USA (2017)

55. Li, Y., Rafiei, D.: Natural Language Data Management and
Interfaces. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers, San Rafael (2018)

56. Li, Z., Qu, L., Haffari, G.: Context dependent semantic parsing:
a survey. In: Proceedings of the 28th International Conference on
Computational Linguistics, pp. 2509–2521. International Com-
mittee on Computational Linguistics, Barcelona, Spain (2020)

57. Lin, X.V., Socher, R., Xiong, C.: Bridging textual and tabular
data for cross-domain text-to-SQL semantic parsing. In: Find-
ings of the Association for Computational Linguistics: EMNLP
2020, pages 4870–4888. Association for Computational Linguis-
tics (2020)

58. Liu, X., He, P., Chen,W., Gao, J.:Multi-task deep neural networks
for natural language understanding. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguis-
tics, pp. 4487–4496. Association for Computational Linguistics,
Florence (2019). https://doi.org/10.18653/v1/P19-1441

59. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy,
O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: Roberta: a robustly
optimized bert pretraining approach (2019)

60. Luo, Y., Lin, X.,Wang,W., Zhou, X.: Spark: top-k keyword query
in relational databases. In: ACM SIGMOD, pp. 115–126 (2007)

61. Luong, T., Pham, H., Manning, C. D.: Effective approaches to
attention-based neural machine translation. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing, pp. 1412–1421. Association for Computational Lin-
guistics, Lisbon (2015). https://doi.org/10.18653/v1/D15-1166

62. Lyu, Q., Chakrabarti, K., Hathi, S., Kundu, S., Zhang, J., Chen, Z.:
Hybrid ranking network for text-to-sql. Technical Report MSR-
TR-2020-7, Microsoft Dynamics 365 AI, March (2020)

63. Ma, J., Yan, Z., Pang, S., Zhang, Y., Shen, J.: Mention extraction
and linking for SQL query generation. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Process-
ing (EMNLP), pp. 6936–6942. Association for Computational
Linguistics (2020)

64. Mandamadiotis, A., Koutrika, G., Eleftherakis, S., Glenis, A.,
Skoutas, D., Stavrakas, Y.: Datagent: the imminent age of intel-
ligent data assistants. Proc. VLDB Endow. 14(12), 2815–2818
(2021)

65. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation
of word representations in vector space. In: Bengio, Y., LeCun, Y.
(eds.) 1st International Conference on Learning Representations,
ICLR2013, Scottsdale, Arizona,USA,May 2–4, 2013,Workshop
Track Proceedings (2013)

66. Notes on ambiguity. http://bit.ly/2YTLFeR
67. Pasupat, P., Liang, P.: Compositional semantic parsing on semi-

structured tables. In: Proceedings of the 53rd Annual Meeting of
theAssociation forComputational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1470–1480. Association for Computational
Linguistics, Beijing, China (2015)

68. Pennington, J., Socher, R., Manning, C.: GloVe: Global vectors
for word representation. In: Proceedings of the 2014 Conference
onEmpiricalMethods inNatural LanguageProcessing (EMNLP),
pp. 1532–1543. Association for Computational Linguistics, Doha
(2014). https://doi.org/10.3115/v1/D14-1162

69. Popescu, A., Armanasu, A., Etzioni, O., Ko, D., Yates, A.: Mod-
ern natural language interfaces to databases: composing statistical
parsing with semantic tractability. In: COLING (2004)

70. Popescu, A.-M., Etzioni, O., Kautz, H.: Towards a theory of nat-
ural language interfaces to databases. In: Proceedings of the 8th
International Conference on Intelligent User Interfaces, IUI ’03,
pp. 149–157. Association for Computing Machinery, New York,
NY, USA (2003)

71. Price, P.J.: Evaluation of spoken language systems: the atis
domain. In: Proceedings of the Workshop on Speech and Natural
Language, HLT ’90, pp. 91–95. Association for Computational
Linguistics, USA (1990)

72. Quamar, A., Efthymiou, V., Lei, C., Özcan, F.: Natural lan-
guage interfaces to data. Found. TrendsDatabases 11(4), 319–414
(2022)

73. Quamar, A., Özcan, F., Miller, D., Moore, R.J., Niehus, R.,
Kreulen, J.: Conversational bi: an ontology-driven conversa-
tion system for business intelligence applications. Proc. VLDB
Endow. 13(12), 3369–3381 (2020)

74. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena,
M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn.
Res. 21(1), 1532–4435 (2022)

75. Rubin, O., Berant, J.: SmBoP: semi-autoregressive bottom-up
semantic parsing. In: Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 311–324. Asso-
ciation for Computational Linguistics (2021). https://doi.org/10.
18653/v1/2021.naacl-main.29

76. Scholak, T., Schucher, N., Bahdanau, D.: PICARD: parsing incre-
mentally for constrained auto-regressive decoding from language
models. In: Proceedings of the 2021 Conference on Empirical
Methods in Natural La nguage Processing, pp. 9895–9901. Asso-
ciation for Computational Linguistics (2021). https://doi.org/10.
18653/v1/2021.emnlp-main.779

77. Sen, J., Lei, C., Quamar, A., Ozcan, F., Efthymiou, V., Dalmia,
A., Stager, G., Mittal, A., Saha, D., Sankaranarayanan, K.:
ATHENA++: natural language querying for complex nested sql
queries. Proc. VLDB Endow. 13(11), 2747–2759 (2020)

78. Shaw, P., Massey, P., Chen, A., Piccinno, F., Altun, Y.: Generating
logical forms from graph representations of text and entities. In:
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 95–106. Association for Compu-
tational Linguistics, Florence, Italy (2019)

79. Shi, T., Tatwawadi, K., Chakrabarti, K., Mao, Y., Polozov, O.,
Chen, W.: Incsql: training incremental text-to-sql parsers with
non-deterministic oracles (2018)

80. Shi, T., Zhao, C., Boyd-Graber, J., Daumé III, H., Lee, L.: On
the potential of lexico-logical alignments for semantic parsing to
SQL queries. In: Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 1849–1864 (2020). Association
for Computational Linguistics

81. Simitsis, A., Koutrika, G., Ioannidis, Y.: Précis: from unstructured
keywords as queries to structured databases as answers. VLDB J.
17(1), 117–149 (2008)

82. Speer, R., Havasi, C.: Representing general relational knowledge
in conceptnet 5. In: LREC (2012)

83. Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Rad-
dick, J., Stoughton, C., vandenBerg, J.: The sdss skyserver: public
access to the sloan digital sky server data. In: Proceedings of the
2002 ACM SIGMOD International Conference on Management
of data, pp. 570–581 (2002)

84. Tang, L.R., Mooney, R.J.: Automated construction of database
interfaces: intergrating statistical and relational learning for
semantic parsing. In: 2000 Joint SIGDAT Conference on Empir-
ical Methods in Natural Language Processing and Very Large
Corpora, pp. 133–141. Association for Computational Linguis-
tics, Hong Kong, China (2000)

85. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: Lc-
quad: a corpus for complex question answering over knowledge
graphs. In: International SemanticWeb Conference, pp. 210–218.
Springer (2017)

123

https://doi.org/10.18653/v1/P19-1441
https://doi.org/10.18653/v1/D15-1166
http://bit.ly/2YTLFeR
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779


936 G. Katsogiannis-Meimarakis, G. Koutrika

86. Usta, A., Karakayali, A., Ulusoy, O.: Dbtagger: multi-task learn-
ing for keyword mapping in nlidbs using bi-directional recurrent
neural networks. Proc. VLDB Endow. 14(5), 813–821 (2021)

87. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need.
In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17, pp. 6000–6010. Cur-
ran Associates Inc., Red Hook, NY (2017)

88. Vinyals, O., Fortunato,M., Jaitly, N.: Pointer networks. In: Cortes,
C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.)
Advances inNeural InformationProcessingSystems, vol. 28.Cur-
ran Associates, Inc. (2015)

89. Wang, B., Shin, R., Liu, X., Polozov, O., Richardson, M.:
RAT-SQL: relation-aware schema encoding and linking for Text-
to-SQLparsers. In: Proceedings of the 58thAnnualMeeting of the
Association for Computational Linguistics, pp. 7567–7578.Asso-
ciation for Computational Linguistics (2020). https://doi.org/10.
18653/v1/2020.acl-main.677

90. Wang, C., Cheung, A., Bodík, R.: Synthesizing highly expressive
SQL queries from input-output examples. In: 38th ACM SIG-
PLAN, pp. 452–466 (2017)

91. Wang, C., Tatwawadi, K., Brockschmidt, M., Huang, P.-S., Mao,
Y., Polozov, O., Singh, R.: Robust text-to-sql generation with
execution-guided decoding (2018)

92. Wang, P., Shi, T., Reddy, C.K.: Text-to-sql generation for question
answering on electronic medical records. In: Proceedings of The
Web Conference, vol. 2020, pp. 350–361 (2020)

93. Wang, W., Bhowmick, S.S., Li, H., Joty, S.R., Liu, S., Chen, P.:
Towards enhancing database education: natural language gener-
ation meets query execution plans. In: Li, G., Li, Z., Idreos, S.,
Srivastava, D. (eds.) SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20–25, 2021,
pp. 1933–1945. ACM (2021)

94. Weir, N., Utama, P., Galakatos, A., Crotty, A., Ilkhechi, A.,
Ramaswamy, S., Bhushan, R., Geisler, N., Hättasch, B., Eger,
S., Cetintemel, U., Binnig, C.: Dbpal: a fully pluggable nl2sql
training pipeline. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’20, pp. 2347–2361. Association for Computing Machinery, New
York, NY, USA (2020)

95. Wu, K., Wang, L., Li, Z., Zhang, A., Xiao, X., Wu, H., Zhang, M.,
Wang, H.: Data augmentation with hierarchical SQL-to-question
generation for cross-domain text-to-SQL parsing. In: Proceed-
ings of the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 8974–8983, Online and Punta Cana,
Dominican Republic. Association for Computational Linguistics
(2021)

96. Xu, X., Liu, C., Song, D.: Sqlnet: generating structured queries
from natural language without reinforcement learning (2017)

97. Xu, K., Wang, Y., Wang, Y., Wang, Z., Wen, Z., Dong, Y.:
SeaD: end-to end Text-to-SQL generation with schema-aware
denoising. In: Findings of the Association for Computational
Linguistics: NAACL 2022, pp. 1845–1853. Association for Com-
putational Linguistics, Seattle (2021). https://doi.org/10.18653/
v1/2022.findings-naacl.141

98. Yaghmazadeh, N., Wang, Y., Dillig, I., Dillig, T.: Sqlizer: query
synthesis from natural language. In: PACMPL, pp. 63:1–63:26
(2017)

99. Yin, P., Neubig, G.: A syntactic neural model for general-purpose
code generation. In: Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 440–450. Association for Computational Linguistics,
Vancouver (2017). https://doi.org/10.18653/v1/P17-1041

100. Yin, P., Neubig, G.: TRANX: a transition-based neural abstract
syntax parser for semantic parsing and code generation. In: Pro-
ceedings of the 2018Conference onEmpiricalMethods inNatural

Language Processing: System Demonstrations, pp. 7–12. Asso-
ciation for Computational Linguistics, Brussels, Belgium (2018)

101. Yin, P., Neubig, G., tau Yih, W., Riedel, S.: TaBERT: pretraining
for joint understanding of textual and tabular data. In: Proceedings
of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8413–8426. Association for Computational Lin-
guistics (2020). https://doi.org/10.18653/v1/2020.acl-main.745

102. Yoon, D., Lee, D., Lee, S.: Dynamic self-attention: computing
attention over words dynamically for sentence embedding (2018)

103. Yu, T., Li, Z., Zhang, Z., Zhang, R., Radev, D.: TypeSQL:
knowledge-based type-aware neural Text-to-SQL generation. In:
Proceedings of the 2018Conference of theNorthAmericanChap-
ter of the Association for Computational Linguistics: Human
Language Technologies, vol. 2 (Short Papers), pp. 588–594.
Association for Computational Linguistics, New Orleans (2018).
https://doi.org/10.18653/v1/N18-2093

104. Yu, T., Wu, C.-S., Lin, X.V., Wang, B., Tan, Y.C., Yang, X.,
Radev, D., Socher, R., Xiong, C.: Grappa: grammar-augmented
pre-training for table semantic parsing (2020)

105. Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z.,
Radev, D.: SyntaxSQLNet: syntax tree networks for complex and
cross-domain text-to-SQL task. In: Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing,
pp. 1653–1663. Association for Computational Linguistics, Brus-
sels (2018). https://doi.org/10.18653/v1/D18-1193

106. Yu, T., Zhang, R., Er, H. Y., Li, S., Xue, E., Pang, B., Lin, X. V.,
Tan, Y. C., Shi, T., Li, Z., Jiang, Y., Yasunaga, M., Shim, S., Chen,
T., Fabbri, A., Li, Z., Chen, L., Zhang, Y., Dixit, S., Zhang, V.,
Xiong, C., Socher, R., Lasecki, W.S., Radev, D.: CoSQL: a con-
versational Text-to-SQL challenge towards cross-domain natural
language interfaces to databases. In: Proceedings of the 2019Con-
ference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 1962–1979. Association for
Computational Linguistics, Hong Kong (2019). https://doi.org/
10.18653/v1/D19-1204

107. Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D., Li, Z., Ma,
J., Li, I., Yao, Q., Roman, S., Zhang, Z., Radev, D.: Spider: a
large-scale human-labeled dataset for complex and cross-domain
semantic parsing and Text-to-SQL task. In: Proceedings of the
2018 Conference on Empirical Methods in Natural Language
Processing, pp. 3911–3921. Association for Computational Lin-
guistics, Brussels (2018). https://doi.org/10.18653/v1/D18-1425

108. Yu, T., Zhang, R., Yasunaga, M., Tan, Y. C., Lin, X. V., Li, S.,
Er, H., Li, I., Pang, B., Chen, T., Ji, E., Dixit, S., Proctor, D.,
Shim, S., Kraft, J., Zhang, V., Xiong, C., Socher, R., Radev, D.:
SParC: cross-domain semantic parsing in context. In: Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics, pp. 4511–4523. Association for Computational Lin-
guistics, Florence (2019). https://doi.org/10.18653/v1/P19-1443

109. Zelle, J.M., Mooney, R.J.: Learning to parse database queries
using inductive logic programming. In: Proceedings of the Thir-
teenth National Conference on Artificial Intelligence—Volume 2,
AAAI’96, pp. 1050–1055. AAAI Press (1996)

110. Zeng, Z., Lee, M. L., Ling, T. W.: Answering keyword queries
involving aggregates and groupby on relational databases. EDBT,
pp. 161–172 (2016)

111. Zhao, L., Cao, H., Zhao, Y.: Gp: Context-free grammar pre-
training for text-to-sql parsers (2021)

112. Zhong, V., Xiong, C., Socher, R.: Seq2sql: generating struc-
tured queries from natural language using reinforcement learning
(2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2022.findings-naacl.141
https://doi.org/10.18653/v1/2022.findings-naacl.141
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/D18-1193
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443

	A survey on deep learning approaches for text-to-SQL
	Abstract
	1 Introduction
	2 The text-to-SQL problem
	2.1 NL challenges
	2.2 SQL challenges

	3 Datasets and evaluation
	3.1 Domain-specific text-to-SQL datasets
	3.2 Cross-domain text-to-SQL datasets
	3.3 Evaluation metrics

	4 Taxonomy
	4.1 Schema linking
	4.1.1 Query candidate discovery
	4.1.2 Database candidate discovery
	4.1.3 Candidate matching

	4.2 Natural language representation
	4.2.1 Word embeddings
	4.2.2 Pre-trained language models

	4.3 Input encoding
	4.3.1 Separate NLQ and column encodings
	4.3.2 Input serialisation
	4.3.3 Encoding NLQ with each column separately
	4.3.4 Schema graph encoding

	4.4 Output decoding
	4.4.1 Sequence-based approaches
	4.4.2 Sketch-based slot-filling approaches
	4.4.3 Grammar-based approaches

	4.5 Neural training
	4.6 Output refinement

	5 Neural architecture
	6 Systems
	6.1 The dawn of an era
	6.2 Sketch generation
	6.3 Graph representations
	6.4 Using intermediate languages
	6.5 The age of BERT
	6.6 Schema linking focus
	6.7 The return of the sequence

	7 Discussion and higher-level comparison
	8 Research challenges
	8.1 Benchmarks
	8.2 System efficiency and technical feasibility
	8.3 Universality of the solution
	8.4 Data augmentation
	8.5 The path to data democratisation

	9 Conclusions
	Acknowledgements
	References




