
The VLDB Journal (2023) 32:963–983
https://doi.org/10.1007/s00778-022-00769-7

REGULAR PAPER

Augmented lineage: traceability of data analysis including complex
UDF processing

Masaya Yamada1,3 · Hiroyuki Kitagawa2,3 · Toshiyuki Amagasa4 · Akiyoshi Matono3

Received: 13 March 2022 / Revised: 4 September 2022 / Accepted: 24 October 2022 / Published online: 23 November 2022
© The Author(s) 2022

Abstract
Data lineage allows information to be traced to its origin in data analysis by showing how the results were derived. Although
manymethods have been proposed to identify the source data fromwhich the analysis results are derived, analysis is becoming
increasingly complex both with regard to the target (e.g., images, videos, and texts) and technology (e.g., AI and machine
learning (ML)). In such complex data analysis, simply showing the source data may not ensure traceability. For example,
ML analysts building image classifier models often need to know which parts of images are relevant to the output and why
the classifier made a decision. Recent studies have intensively investigated interpretability and explainability in the AI/ML
domain. Integrating these techniques into the lineage frameworkwill help analysts understandmore precisely how the analysis
results were derived and how the results are trustful. In this paper, we propose the concept of augmented lineage for this
purpose, which is an extended lineage, and an efficient method to derive the augmented lineage for complex data analysis.
We express complex data analysis flows using relational operators by combining user-defined functions (UDFs). UDFs can
represent invocations of AI/ML models within the data analysis. Then, we present a method taking UDFs into consideration
to derive the augmented lineage for arbitrarily chosen tuples among the analysis results. We also experimentally demonstrate
the efficiency of the proposed method.

Keywords Traceability · Lineage · User-defined function · Complex data analysis · Augmented lineage

B Masaya Yamada
yamada@kde.cs.tsukuba.ac.jp

Hiroyuki Kitagawa
kitagawa@cs.tsukuba.ac.jp

Toshiyuki Amagasa
amagasa@cs.tsukuba.ac.jp

Akiyoshi Matono
a.matono@aist.go.jp

1 Graduate School of Science and Technology, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

2 International Institute for Integrative Sleep Medicine,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki,
Japan

3 Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology, 2-4-7 Aomi,
Koto-ku, Tokyo, Japan

4 Center for Computational Sciences, University of Tsukuba,
1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

1 Introduction

When data analysis is utilized for decision-making, it is
critical to guarantee the traceability of the results.Data prove-
nance in data analysis refers to all metadata describing its
processing and is essential for traceability. It has been dis-
cussed in many research domains such as debugging [30,37],
security [12], scientificworkflow [24], and visualization [10].
In particular, data lineage refers to tracing the source data
from which the analysis results are derived. This topic has
been widely researched in the database domain [16,17,53].

Even with lineage, traceability remains a challenge. The
assumption for the conventional lineage is that users can
understandwhy the output was derived only by observing the
source data. This assumption holds if the analysis consists of
a sequence of simple operators (e.g., filter, join, and aggre-
gation) and their operational semantics are simple. However,
moderndata analysis has becomemore complex.Not only are
the targets composed of diverse content data such as images,
videos, and texts but processing often involves sophisticated
technologies such as AI and machine learning (ML). In such

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00769-7&domain=pdf
http://orcid.org/0000-0003-0096-2827
http://orcid.org/0000-0002-2984-2258
http://orcid.org/0000-0003-0595-2230
http://orcid.org/0000-0002-7242-5126

964 M. Yamada et al.

Fig. 1 Analysis summarizing the results of examinations for loan appli-
cation applied on December using an MLmodel. Tuples surrounded by
dashed lines represent the source data of the result tuple 〈Reject, 1〉

complex analysis, users cannot understand the reason for the
analysis result only from the lineage (source data). In other
words, we need more information about the reasoning basis
for AI/ML processing. Consider the following example.

Example 1 Figure 1 shows an analysis of a financial insti-
tution summarizing the results of examinations for loan
application applied on December based on customer infor-
mation using an ML model. The ML model takes three
attribute values (Income, Debt, LoanAmount) as inputs and
returns the examination result (Accept, Marginal, Reject).
The reason that an application was rejected is not obvious
only from the input. In this case, the lineage of 〈Reject, 1〉 is
a set of tuples {〈0002, Joa, US, 2200〉, 〈0002, 1350, 12/17〉,
〈0002, 20000, 12/19〉}. This is insufficient to understand
why 〈Reject, 1〉 was derived from these source tuples. In
other words, the source tuples do not fully explain “why
this application was rejected.” However, the reason for the
decision in the ML model along with the source tuples may
explain why an application was rejected. For example, “the
model rejected this application because the debt and loan
amount of the applicant are both large.” This reason describes
the basis of the result, and it can help people understand the
model behavior leading to traceability for complex data anal-
ysis.

In this paper, we propose the concept of augmented lin-
eage, which is an extension of lineage that incorporates the
basis for computation (reason) in complexdata analysis.Rea-
son provides information which helps users understand the
computation, for example, (1) which region of the content
data (e.g., images or videos) the analytical model emphasizes
and (2) which attributes much affect the AI/ML model deci-
sion. Since reason is essential in our augmentation of lineage,
we use the term “augmented lineage” in the sense of “reason-
augmented lineage” in this paper. The contributions of this
paper are as follows: (i) proposal and formulation of aug-
mented lineage, (ii) proposal of a basic algorithm to derive

the augmented lineage, (iii) proposal of an enhanced method
for its efficient derivation, and (iv) experimental evaluation
of the proposed derivation method.

The preliminary version of this paper was published in
[55]. We have intensively extended our previous work in
the following three points: (i) This paper includes detailed
descriptions of our model, augmented lineage, and algo-
rithms to derive augmented lineage. (ii) We fully revised
our segmentation scheme for augmented lineage derivation.
The revised one preserves the order of operators in a given
operator tree as it is. This feature is beneficial if the given
operator tree is optimized by the query optimizer. (iii) This
paper includes extensive experiments based on the derived
TPC-H benchmark databases and queries of three scale fac-
tors [50] as well as the original experiments based on LFW
image dataset [28].

The rest of this paper is organized as follows: Sect. 2
overviews related work. Section 3 presents the data model
to represent data analysis in this paper. Section 4 proposes
the augmented lineage, while Sect. 5 formulizes a basic algo-
rithm to derive the augmented lineage. Section 6 details its
enhanced method and the system architecture. Section 7
experimentally investigates the derivation method. Finally,
Sect. 8 concludes this paper.

2 Related work

Provenance and lineage have been researchedwidely inmany
domains [8,13,27].

[4–6,14,15,17,23,43,52] proposed methods that derive
source data for database queries. [52] derived lineage of out-
put values using user-defined weak inversion functions. In
the framework, the derived lineage depends on the inversion
functions the user provides and the framework provides, and
it may derive incomplete and/or redundant lineage. [9] dis-
cussed two granularities for provenance: tuple-level (Why-
Provenance) and value-level (Where-Provenance). Value-
level lineage was derived in [52], and tuple-level lineage was
derived in [15,17]. [15,17] proposed amethod to derive accu-
rate tuple-level lineage for relational queries by performing
tracing queries. These frameworks focused on deriving the
lineage of specified output tuples after query execution. Such
a framework is called the lazy approach. The lazy approach
has the feature that it takes no/small overhead for the ordi-
nary query execution, but it takes some extra work to derive
lineage after the query.

There is an alternative approach called the eager approach.
Frameworks based on the eager approach generally derive
provenance/lineage for all output tuples while executing the
analysis. Therefore, it incurs some overhead for the ordinary
analysis execution, but the provenance/lineage is ready as
well as query results. [4–6,14,23,43] are frameworks based

123

Augmented lineage: traceability of data analysis including complex UDF processing 965

on the eager approach. Trio [4,5] attached identifiers to all
source tuples and inherited them as annotations to query
results during the analysis to derive tuple-level lineage. They
also considered the application of the lineage for the uncer-
tain datamodel and probabilistic datamodel.DBNotes [6,14]
attached value IDs to all attribute values in source tables,
inherited the IDs during the query execution, and finally cap-
tured value-level provenance. Perm [23] derived tuple-level
lineage by rewriting original relational queries so that they
keep information about attributes in the source tuples as well.
Smoke [43] instrumented relational operators to construct
lineage indexes, which maintain the relationship between
input and output tuples while executing the query. Using the
indexes, it could identify the input tuples from which output
tuples were derived (backward lineage) and the output tuples
to which input tuples contributed (forward lineage).

[3,25,47] discussed more sophisticated annotation-based
provenance models known as the semiring provenance
model. [25] firstly proposed the model. Annotations were
attached to the source tuple and inherited during analysis,
and polynomials on semiring were derived as provenance.
Following this, [3] extended the framework to handle aggre-
gate operation.When the database size is huge or the complex
query is executed, the polynomial for semiring provenance
becomes quite huge, leading to difficulty in understand-
ing provenance information. Some frameworks addressed
the problem. [20] represented semiring-based provenance
using the circuit, which reduced the provenance size, and
[1] focused on approximating the provenance with practi-
cal information loss. In addition to the above frameworks,
some studied provenance in other types of database queries
(e.g., Datalog [19,25], XQuery [22], and SPARQL [49]).
Traceability has been researched in domains other than the
database.

In the scientific workflow, [7,24] captured the prove-
nance for reproducibility of the computation. Recently,
some researches targeted the distributed big data process-
ing systems and proposed how to capture provenance (e.g.,
MapReduce [2,36], Spark [30] and Flink [41,42]). In addi-
tion, provenance has been also researched in theML domain,
and [39,48,54] focused on the provenance for the training
phase of ML models.

Modern data analysis includes content data analysis and
AI/ML analysis (e.g., recommendation [56], anomaly detec-
tion [11,33], and medical diagnosis [32,35]). There are some
researches that can handle traceability in such complex data
analysis. [16,53] derived the lineage for the analysis which
included user-defined functions (UDFs) and relational opera-
tors. [16] proposed amethod to derive the lineage for analysis
which included more generalized operators. Their method
can deal with non-relational operators by focusing on the
relationship between the input and output data (e.g., one-
to-one, N-to-one, N-to-M relationships) of each operator

and schema information. [53] presented a method to find
lineage in SciDB, which handles multi-dimensional array
data for analysis involving user-defined operators. Their
study could identify backward lineage and forward lineage
at the cell level. The lineage was obtained by recording
the input/output relationships of each operator in the work-
flow. They proposed a method to efficiently manage and
later derive lineages by rerunning. In these studies, lin-
eage means the correspondence between input/output tuples
(cells). However, they did not show the important parts of
the content data (images, texts, etc.). Moreover, they did not
cover the reasoning basis for AI/ML decisions. [57] pro-
posed a method to track information about which parts of
the content data were extracted by data extraction process-
ing represented by UDFs as well as the traditional tuple-level
provenance based on the semiring model. Even this frame-
work cannot provide the basis for decisions made by AI/ML
processing.

Recently, many studies have investigated interpretabil-
ity and explainability of AI/ML processing [21,26]. Using
frameworks such as [38,45,46], the basis for the decisions in
AI/ML processing can be shown. The augmented lineage
presented in this paper is a general framework that inte-
grates such reasoning functions into lineage and contributes
to the traceability suitable for complex data analysis, includ-
ing AI/ML processing.

Our framework lazily derives augmented lineage, and it
uses [17] as a base reference model. [17] is a state-of-the-
art approach to lazily derive tuple-level lineage for relational
queries. However, our framework extends the base model in
the following points: (1) Inclusion of an additional operator
(Function operator) tomodel complex data analysis. (2)Aug-
mentation of lineage by reason to show the basis of complex
data analysis. (3) Proposal of augmented lineage derivation
methods. (4) Intensive experimental evaluation of augmented
lineage derivation performance.

3 Datamodel

This section describes the data model to represent data anal-
ysis. Complex data analysis is modeled as a task consisting
of relation-like operators.

3.1 Data

We model data as a collection of tables. Table T (A1, . . . ,

An) has a set of tuples {t1, . . . , tp}. AT denotes all attributes
of a table T . t .A projects tuple t onto the tuple with an
attribute set A (⊆ AT). For a set of tuples {t1, . . . , tq} (includ-
ing, in special cases, single value instead of ti), 〈t1, . . . , tq〉
denotes the tuple that concatenates them. For example, for
t1 = 〈1, 2〉, t2 = 〈3〉, 〈t1, t2〉 = 〈1, 2, 3〉. Source data set

123

966 M. Yamada et al.

D consists of tables (T1, . . . , Tm).1 T denotes a task which
consists of operators defined in Sect. 3.2 on the source data
set D, and O denotes its output. That is, O = T (D) =
T (T1, . . . , Tm). A task can consist of no operator as a special
case. In this case, the output is a source table itself, O = Ti .

3.2 Operators

We describe the operators that compose a task. To model
data analysis, we assume seven set-relational operators: basic
operators (Selection σ , Projection π , Join ��, Aggregation
α, Union ∪, Difference −) and Function operator φ, which
models complex data analysis. A task is represented as a tree
consisting of these operators, while leaf nodes are source
tables. First, we define each basic operators as follows:

Definition 1 (Basic operators)

– Selection: σC (T) = {t | t ∈ T ∧ t satisfies condition C}.
– Projection: πA(T) = {t .
A | t ∈ T }. Note that its results

are duplicate eliminated.
– Join: T1 ��θ1 · · · ��θm−1 Tm = {〈t1, . . . , tm〉 | ti ∈

Ti (i = 1, . . . ,m)∧〈t1, . . . , tm〉satisfies condition θi (i =
1, . . . ,m − 1)}. Join operator without θi represents nat-
ural join.

– Aggregation: αG,g(B)(T) = {〈T ′.G, g(T ′.B)〉 | T ′ ⊆
T ,∀t, t ′ ∈ T ′,∀t ′′ /∈ T ′ : t ′.G = t .G∧ t ′′.G = t .G}.
Note that G. denotes the grouping key of T and g(B)

denotes an aggregate function over attribute B in the
grouped table.

– Union: T1 ∪ · · · ∪ Tm = {t | t ∈ Ti (i = 1, . . . ,m)}.
– Difference: T1 − T2 = {t | t ∈ T1 ∧ t /∈ T2}.

To model complex data analysis, we will employ UDF
and the function operator to invoke UDF. Before explaining
them, we define reason.

Definition 2 (Reason) Reason is a data object returned by
each UDF invocation to help users understand the UDF com-
putation. UDF developers are responsible for making each
invocation of UDF output both a computation result and a
reason.

Our definition of reason here is very general, and any
data object which may help users understand the behavior
of the computation and model can be defined as a reason.
In the domain of explainable AI models, various types of
data are used as “explanations” or “reasons” depending on
models and problems [21,31]. To make our model applicable
to different domains, we employ this rather general defi-
nition here. Recently, model-agonistic explanation models

1 If a table is referred to more than once in a task, each reference is
regarded as access to a different table.

such as LIME [45] and SHAP [38] are attracting atten-
tion. In those approaches, interpretable approximations of the
original model are used as explanation models, and weights
associated with simplified features of the explanation model
are often deployed as “explanations”. Our definition can
accommodate such “explanations” when the UDF developer
thinks they are useful to help understand the UDF computa-
tion.

Example 2 (Reason) Let us consider a classifier that takes
customer and loan application information as input to exam-
ine the application, like in Example 1. Suppose a developer
wants the classifier to show which input attributes contribute
a lot in decision-making as well as the decision results to
help understand the basis for the decision. In that case, the
developer can make a data object specifying significant input
attributes as a reason.

Now, we define UDF that models complex data analysis
and is invoked in a function operator in our model. UDF has
two execution modes (normal mode and reasoning mode).
Intuitively, given input attribute values, the normalmode only
returns the result of complex data analysis. On the other hand,
the reasoning mode returns reasons as well as the results.

Definition 3 (UDF) UDF is the function, which has the fol-
lowing input and output depending on its execution mode.

1. Normal mode

fn : Domain(E) → Value

2. Reasoning mode

fr : Domain(E) → Value × Reason

Here, Domain(E) is the domain of attributes E, Value is the
domain of the output values of the complex data analysis,
Reason represents the domain of reasons, and × denotes the
cross product of each domain. In thenormalmode, UDF invo-
cation outputs just the calculation result of the UDF, while, in
the reasoningmode, it produces the reason for the calculation
result as well. The UDF developers have to design and deter-
minewhat information is produced as reasons. Inmore detail,
our framework assumes that the developer should implement
two functions for a UDF: main(), which is called in the nor-
mal mode invocation and returns only the UDF computation
result, and main_with_reason(), which is called in the rea-
soning mode invocation and returns a reason as well. We
assume that UDFs invoke pre-trained AI/ML models and
their training is out of the scope of this paper.

Depending on the property and implementation of UDF,
providing reason information may need much extra compu-
tation and be time-consuming processing. In addition, as we

123

Augmented lineage: traceability of data analysis including complex UDF processing 967

discuss later, it is not always needed for UDF to generate rea-
sons even in deriving augmented lineage. The two execution
modes of UDF provide such choices.

Example 3 (UDF) In Fig. 1, we employ credit_exam function
as UDF, which takes attribute values of Income, Debt, and
LoanAmount of a client, and then returns the examination
result (Accept, Marginal, Reject). Besides, it outputs the set
of attributes contributing a lot to the result as a reason when
it is invoked in reasoning mode. For example, credit_exam
function returns the following output(s) for the client with
ClientID “0001”:

1. Normal mode

credit_examn({3400, 810, 4000}) = “Accept”

2. Reasoning mode

credit_examr ({3400, 810, 4000})
= [“Accept”, {Income,LoanAmount}]

Then,we define the function operator. Intuitively, function
operator adds the result (Value) of the UDF as a new attribute
value to the input tuplewhen invoked in the normalmode, and
adds Value and Reason of the UDF as new attribute values
when invoked in the reasoning mode.

Definition 4 (Function operator) Function operator φ f (E)

applies UDF f to all tuples (more precisely, to their values
for attributes E) in the input table. The output of function
operator φ f (E) is as follows depending on UDF’s execution
mode:

1. Normal mode

φn
f (E)(T) = φ fn(E)(T)

= {〈t, fn(t .E).Value〉|t ∈ T }

2. Reasoning mode

φr
f (E)(T) = φ fr (E)(T)

= {〈t, fr (t .E).Value, fr (t .E).Reason〉|t ∈ T }

Example 4 (Analysis modeling and function operator) The
analysis in Fig. 1 can be modeled as follows:

O = T (D) = αJudge,COUNT(∗)

(φ f (E)(πA(Client �� Debt �� σC (Loan))))

s.t. A = E = {Income,Debt,LoanAmount}
C : Application date is on December

(a) (b)

Fig. 2 Segmentation of the operator tree

Figure 2a shows its operator tree, and Fig. 3 shows its inter-
mediate results.

The function operator invokes credit_examUDF in Exam-
ple 3. Here, “Judge” corresponds to the UDF’s Value,
and * denotes all the attributes of the input table. In the
reasoning mode, the function operator returns a table in
Fig. 3e.“Reason” corresponds to the UDF’s Reason.

For ease of exposition, this paper restricts the operators to
relational operators. However, our framework can deal with
more generalized processing and external programs as long
as they have the same input/output relationships as relational
operators. For example, when an external program inputs
each tuple and (1) outputs it or (2) discards it, then we can
model this processing as selection σ because it has the same
input/output relationship. Similarly, other data processing
can be modeled as one of the above operators as long as
their input/output relationship is the same.

4 Augmented lineage

This section defines augmented lineage. Augmented lineage
is an extension of lineage in [15]. The set of the source tuples
from which tuple o(∈ T (D)) of task T is derived is called
the source lineage of tuple o in task T .

We first define the source lineage of tuple o in an operator
Op, and then define the source lineage of tuple o in task
T . The following definition specifies three features: (1) The
tuples in the source lineage produce output tuple o. (2) Every
tuple in the source lineage contributes to deriving tuple o. (3)
The source lineage is the maximum subsets of source tables
that meet conditions (1) and (2).

Definition 5 (Source Lineage in an Operator) Let O(=
Op(T1, . . . , Tm)) be the result of performing an operator Op
on the set of tables {T1, . . . , Tm}. Source lineage of tuple

123

968 M. Yamada et al.

(a)

(c)

(b)

(d)

(e)

(f)

Fig. 3 Base tables, intermediate results, and final result of the task

o(∈ O) in operator Op(SLOp(o)) is the set of T̂i ⊆ Ti (i =
1, . . . ,m) which meets the following conditions.2

1. Op(T̂1, . . . , T̂m) = {o}
2. ∀T̂i : ∀t̂ ∈ T̂i : Op(T̂1, . . . , {t̂}, . . . , T̂m) = ∅
3. T̂i is the maximum subset of Ti that meets 1 and 2.

The source lineage of tuple set Ō(⊆ O) in operator Op
is SLOp(Ō) = ⋃̂

o∈ŌSLOp(o). Note that
⋃̂

produces the

union for each table: {T 1
1 , . . . , T 1

m} ⋃̂ {T 2
1 , . . . , T 2

m} = {T 1
1 ∪

T 2
1 , . . . , T 1

m ∪ T 2
m} s.t. T j

i ⊆ Ti . T̂i ∈ SLOp(Ō) is denoted as
PTi (SLOp(Ō)).

2 T̂i is the subset of tuples in Ti .

Example 5 (Source lineage in an operator) Let us consider the
join operator �� in Fig. 2a, which produces the table shown
in Fig. 3c. The source lineage of tuple (〈0001, . . . , 12/16〉)
in the join is SL��(〈0001, . . . , 12/16〉) = {Client :
{〈0001, . . . , 3400〉},Debt : { 〈0001, 810, 12/7〉},Loan :
{〈0001, 4000, 12/16〉}}. Similarly, SL��(〈0002, . . . , 12/19〉)
= {Client : {〈0002, . . . , 2200〉},Debt : {〈0002, 1350,
12/17〉},Loan : {〈0002, 20000, 12/19〉}}. Then, the source
lineage of the both tuples in the join is SL��({〈0001, . . . ,
12/16〉, 〈0002, . . . , 12/19〉})= {Client : {〈0001, . . . , 3400〉,
〈0002, . . . , 2200〉},Debt : {〈0001, 810, 12/7〉, 〈0002, 1350,
12/17〉},Loan : {〈0001, 4000, 12/16〉, 〈0002, 20000,
12/19〉}}.

123

Augmented lineage: traceability of data analysis including complex UDF processing 969

Fig. 4 Augmented lineage of tuple set {〈Reject, 1〉} in Example 4

Next, we define source lineage in a task. Since a task is
an operator tree, the source lineage in the task is obtained by
recursively deriving the source lineage in each operator in
the operator tree.

Definition 6 (Source Lineage in Task) Let O(= T (T1, . . . ,
Tm)) be the result of performing a taskT on the set of tables
{T1, . . . , Tm}. Source lineage of tuple o(∈ O) in task T
(denoted by SLT (o)) is the set of T̂i ⊆ Ti which meets the
following conditions.

1. If T contains no operator, namely O = Ti , SLT (o) =
o ∈ Ti .

2. Otherwise,T (D) = Op(O1, . . . , On) s.t.Oi = Ti (Di),

Di ⊆ D. Let Ôi = POi (SLOp(o)). Then, SLTi (o) =
⋃

1≤i≤n(
⋃̂

ôi∈Ôi
SLTi (ôi)).

The source lineage of tuple set Ō(⊆ O) in task T is
SLT (Ō) = ⋃̂

o∈ŌSLT (o). Note that the source lineage in
a task depends on the operator tree and may change even if
a different operator tree logically equivalent to the original
tree is given, as suggested in [17].

Example 6 (Source lineage in task) Let us consider the partial
task T (π -��-σ) in Fig. 2a, which takes base tables shown
in Fig. 3a and produces the table shown in Fig. 3d. Then,
the source lineage of tuple (〈3400, 810, 4000〉) in the task is
SLT (〈3400, 810, 4000〉) = {Client : {〈0001, . . . , 3400〉},
Debt : {〈0001, 810, 12/7〉},Loan : {〈0001, 4000, 12/16〉}}.

Before defining the augmented lineage, we define inter-
mediate lineage of tuple set Ō(⊆ T (D)) in an intermediate
result. It represents the set of tuples in the intermediate result
which contribute to Ō .

Definition 7 (Intermediate Lineage) Let O be the output
tuples of task T . That is, O = T (D) = T (T1,
. . . , Tm). Furthermore, let task T be divided into two tasks,
T ′ and T ′′ s.t. T (D) = T ′(O ′, Tli+1 , . . . , Tlm), O ′ =
T ′′(Tl1, . . . , Tli). Namely, O ′ is the intermediate result of
the task T ′′. The intermediate lineage I L(Ō, O ′) of tuple
set Ō (⊆ T (D)) in intermediate result O ′ is the source lin-
eage Ô ′ ⊆ O ′ of tuple set Ō in taskT ′, namely IL(Ō, O ′) =
PO ′(SLT ′(Ō)).

Example 7 (Intermediate lineage) Let T denote the whole
task shown in Fig. 2a, and INTσ denote the intermedi-
ate result of σ in the task shown in Fig. 3b. Then, the

intermediate lineage of tuple set {〈reject, 1〉} in INTσ is
IL({〈reject〉}, INTσ) = {〈0002, 20000, 12/19〉}.

Finally, we define augmented lineage. Augmented lineage
consists of source lineage (source tuples contributed to the
output tuples) and reasoning lineage (reasons for UDF invo-
cations).

Definition 8 (Augmented Lineage) Augmented lineage
AL(Ō) of tuple set Ō(⊆ T (D)) in task T consists of the
following pair, where O ′

i denotes the intermediate result gen-
erated by each function operator φr

fi (Ei)
invoked in reasoning

mode.

– Source Lineage (SL): SLT (Ō)

– Reasoning Lineage (RL): RLT (Ō) = {〈o.Ei , o.Value,
o.Reason〉|∀i : o ∈ I L(Ō, O ′

i)}

Example 8 (Augmented lineage) Referring to the outputs of
the function operator shown in Fig. 3e, the augmented lineage
of tuple set {〈Reject, 1〉} in the task of Example 4 is shown
in Fig. 4.

5 Augmented lineage derivation

Asmentioned in Section 2, there are two approaches (i.e., the
eager approach and lazy approach) to obtaining the lineage
[13,27]. The former produces lineage for all analysis results
during the ordinary analysis execution. The latter derives the
lineage for the chosen analysis results after the analysis exe-
cution.This paper focuses on the lazy approach. In recent data
analysis, analysts often develop analysis flows using trial and
error to configure parameters, change source data, etc. In this
context, the lazy approach is more desirable than the eager
approach. The reason is that the lazy one derives the lineage
only when needed, while the eager one has larger overhead
for every analytical execution even when the lineage is not
required. Our proposed method to derive the augmented lin-
eage is based on [17], which proposed a method to obtain
lineage of database queries via the lazy approach. Our exten-
sion enables use of UDFs for complex data analysis, a more
practical treatment of operators and operator trees, and inclu-
sion of reasons for the augmented lineage.

When a tuple in the analysis output is specified as a tar-
get for augmented lineage derivation, our method first tries to
look for tuples in source tableswhose corresponding attribute

123

970 M. Yamada et al.

values match the attribute values in the specified target tuple
as in the lineage derivation in [17]. In cases of simple tasks,
this approach directly leads to finding source tuples in the
source tables. However, when the task is complex, some
attribute values in the target tuple may have been newly
generated by operators such as aggregations and functions
and do not have directly corresponding attribute values in
source tables. In such cases, we need to decompose a task
into smaller sub-tasks, and derive augmented lineage step by
step using intermediate results of the sub-tasks, rather than
deriving augmented lineage from the source tables directly.
For this purpose, given a task, we divide its operator tree
into one or more operator sub-trees (segments). Then, we
derive augmented lineage recursively in a top-down manner,
as illustrated in the following example.

Example 9 Consider the augmented lineage of a tuple
〈Reject, 1〉 in Fig. 1, which is shown in Example 4. To derive
its augmented lineage, we divide the analysis into segments
because attribute values in the tuple 〈Reject, 1〉 are gener-
ated by the aggregation and function operators and do not
have corresponding attribute values in the source tables. In
this example, we have two segments: (1) α and (2) φ-π -
��-σ . φ’s intermediate result (namely, the input to α) has
five attributes (Income, Debt, LoanAmount, Judge, Reason).
Then, we first find the tuple 〈2200, 1350, 20000,Reject,
{Debt,LoanAmount}〉 as the intermediate lineage of the tuple
〈Reject, 1〉 in the intermediate result showing in Fig. 3e,
which is the output ofφ.Wealso record {〈〈2200, 1350, 20000〉,
Reject, {Debt,LoanAmount}〉} as reasoning lineage. Next,
we derive the source lineage of the tuple 〈2200, 1350, 20000,
Reject, {Debt,LoanAmount}〉 in the source tables. Eventu-
ally, we derive the augmented lineage as the pair of source
lineage {{〈0002, Joa,US, 2200〉}, {〈0002, 1350, 12/17〉},
{〈0002, 20000, 12/19〉}} and reasoning lineage {〈〈2200,
1350, 20000〉, Reject, {Debt,LoanAmount}〉}.

In Sects. 5.1 and 5.2, we explain the segment in more
detail and how to divide a task into segments, respectively.
The segmentation scheme shown here is quite different from
those in [17,55] in that it preserves the order of operators in
a given operator tree as it is. This feature is beneficial if the
given operator tree is optimized by the query optimizer based
on the cost model and/or heuristics such as selection push-
down. In Sect. 5.3, we introduce a tracing query, which finds
the source lineage for a single segment. Finally, we propose
a basic algorithm to derive the augmented lineage of a task
in Sect. 5.4.

5.1 Segment

There are two types of segments (Non-D-segment and
D-segment). The original idea of Non-D-segment and D-
segment comes from AUSPJ- and D-segments in our refer-

ence work [17]. The main reason for this separation will be
that due to the non-monotonic property of difference, for-
mulating the tracing query becomes complicated if we mix
difference and the other operators. We follow their approach
here.

– Non-D-segment: A segment of operators except the dif-
ference in the pattern: “φ∗-α∗-(∪|π |σ)∗-(π |σ | ��)∗”. φ∗
and α∗ denote sequences of function and aggregation
operators, respectively. (∪|π |σ)∗ and (π |σ | ��)∗ denote
the operator sub-trees that consist of any combinations
of the specified three operators. The leftmost operator
is located at the top of the operator tree. Namely, the
operators are executed from right to left in a bottom-up
manner. Note that all the operators do not need to actually
appear in a Non-D-segment. If α∗ consists of multiple
aggregations α1 − · · · − αm , the grouping keys Gi of αi

must meet the following conditions: G1 ⊆ · · · ⊆ Gm.
This segment is based on AUSPJ-segment α-∪-π -σ -��
proposed in [17]. Placing the function operator at the
top of the segment naturally extends AUSPJ-segment to
accommodate the function operator, since attributes cor-
responding to Value and Reason of UDFs are guaranteed
to appear in its intermediate result, which is convenient
for deriving reasoning lineage. Another change is gener-
alization of operator sequences to reduce the number of
segments.

– D-segment: A segment consisting of a single difference
operator. This segment is represented as the following
pattern: “−”.

The leftmost operator in a segment is called the top of the
segment, and the top segment of the whole operator tree is
called the root segment.

5.2 Segmentation

Given task T , which consists of one or more operators, the
segmentation splits the task into one or more segments by
applying the longest pattern matching to its operator tree in a
top-down manner from the root operator node. The patterns
here are those explained in the above segment description.

Proposition 1 The segmentation uniquely decomposes a task
into one or more (Non-D/D) segments.

Proof According to the definitions of segments, any opera-
tor can be the top of a segment. Therefore, the segmentation
decomposes the operator tree into one or more disjoint seg-
mentswhich covers thewhole operator tree. In addition, since
we do the longest pattern matching, the decomposition is
unique. ��

123

Augmented lineage: traceability of data analysis including complex UDF processing 971

Example 10 The task in Example 4 is divided into two
Non-D-segments by the segmentation: (1) Non-D-segment
consisting of α alone and (2) Non-D-segment φ-π -��-σ
(Fig. 2b).

5.3 Tracing query

We define a tracing query for each segment. Given a task T
consisting of a single segment, the tracing query finds the
source lineage SLT (Ō) of a tuple set Ō(⊆ T (T1, . . . , Tm))

in task T .
First, we introduce the split operator. Given a table and

the list of attributes’ sets, the split operator projects the table
onto each set of attributes.

Definition 9 (Split operator)Given a tableT with its attribute
set AT , the split operator produces a set of tables, each with
attribute set ATi ⊆ AT , using the projection as follows:

SplitAT1 ,...,ATn
(T) = {πAT1

(T), . . . , πATn
(T)}

Example 11 (Split operator) Let INT�� denote the output
table of the join in Fig. 2a shown in Fig. 3c. The split
operator SplitAClient,ADebt,ALoan

(INT��) produces {Client :
{〈0001,Havey,UK, 3400〉, 〈0002, Joa, US, 2200〉, . . .},
Debt : {〈0001, 810, 12/7〉, 〈0002, 1350,12/17〉, . . .},Loan :
{〈0001, 4000, 12/16〉, 〈0002, 20000, 12/19〉, . . .}}.

Proposition 2 A operator tree for a Non-D-segment can be
rewritten into the following form (Fig. 5), and the lineage
derived for this is same as that derived for the original oper-
ator tree.

T (D) = φ f1(E1)(. . . (φ fn(En)(αG1,g1(B1)

(. . . (αGk,gk (Bk)(∪i (πAi (σCi (T
i
1 �� · · · �� T i

mi
)))))))))

Proof We can prove that this rewriting preserves logical
equivalence by the commutativity of operators. As discussed
in Sect. 4, rewriting an operator tree may affect the derived
lineage. However, it is proved in [17] that this rewriting has
no effect on the derived lineage. ��

The tracing queries for Non-D-segments and D-segments
are shown as follows:

– Tracing Query for a Non-D-Segment:
Based on the rewriting in Proposition 2, the source lin-
eage of tuple set Ō(⊆ T (D)) in taskT can be obtained
by executing the following tracing query:

TQŌ,T (D) =
⋃

i

SplitA
T i1

,...,A
T imi

(σCi (T
i
1 �� · · · �� T i

mi
) � Ō)

Fig. 5 Transformed non-D-segment

Note that AT i
j
denotes the set of attributes of T i

j and

� denotes semi-join. If some operators are missing in
the Non-D-segment, their counterparts are omitted in the
tracing query. If tuple set Ō is the whole output T (D),
the tracing query is denoted as follows using the notation
ALL:

TQALL,T (D) =
⋃

i

SplitA
T i1

,...,A
T imi

(σCi (T
i
1 �� · · · �� T i

mi
))

– Tracing Query for a D-Segment:
Given a D-segmentT (D) = T1 −T2, the source lineage
of tuple set Ō(⊆ T (D)) in task T is represented as
follows:

TQŌ,T (T1, T2) = {Ō, T2}

Please note that the tracing query for a D-Segment iden-
tifies T2 as well as Ō as the source lineage.

5.4 Augmented lineage derivation procedure

We explain an algorithm to derive the augmented lineage of
tuple set Ō(⊆ T (D)) in task T . To obtain the augmented
lineage, we (1) split the task into segments as described in
Sect. 5.2 and (2) apply Algorithm 1 to the task. Algorithm 1

123

972 M. Yamada et al.

iteratively applies the tracing query to each segment from
the root of the operator tree, derives the source lineage of the
segment, and records the reasoning lineage if the tuples in
the intermediate result contain reasons.

Example 12 (Augmented lineage derivation procedure) Let
us consider the augmented lineage of the tuple 〈Reject, 1〉 in
the task shown in Example 4 using Algorithm 1. Source data
set D consists of three tables (Client, Debt, Loan), the task
T is composed of two segments (T1 = α and T2 = φ-π -
��-σ) as shown in Fig. 2b, and tuple set Ō is {〈Reject, 1〉}.
Therefore, TQqueue is [{〈Reject, 1〉},T] at line 5.

First, [{〈Reject, 1〉},T] is dequeued fromTQqueue at line
7. Then, since the top segment of the task is Non-D-segment
α, we execute the following tracing query at line 28:

ˆINT = TQ{〈Reject,1〉},T1
(D)

= INT �Judge {〈Reject, 1〉}

Note that INT denotes the intermediate result of the function
operator shown in Fig. 3e, and ˆINT denotes the intermediate
lineage of tuple set {〈Reject, 1〉} in INT.Then, since ˆINTdoes
not correspond to any source table, we enqueue [ˆINT,T2]
into TQqueue at line 38. Next, [ˆINT,T2] is dequeued at line
7. Then, we store the reasoning lineage from ˆINT in RL at
line 24 since T2 is a Non-D-segment, and its top operator
is a function operator. After that, we execute the following
tracing query for T2 at line 28:

TQ ˆINT,T2
(D) = SplitAClient,ADebt,ALoan

(σC (Client �� Debt �� Loan) �E ˆINT)

s.t. E = {Income,Debt,LoanAmount}
C : Application date is on December

Then, since ˆIncome, ˆDebt, and ˆLoan correspond to source
tables, they are stored in SL. Finally, the algorithm returns
the pair of SL and RL at line 42. Note that ˆINT, SL, and RL
are as explained in Example 9.

This algorithm basically assumes that when a task con-
sists of multiple segments, the intermediate result of the
lower segment is available for the tracing query to derive the
source lineage of the upper segment, and reason information
is included in the intermediate result of function operators.3

We discuss a number of alternative approaches on how to pre-
pare the intermediate results of non-root segments in Sect. 6.

We discuss the computational complexity of the algo-
rithms in terms of two points: (1) the number of executed

3 When there is a D-segment (O = O1 − O2), the algorithm does not
need intermediate results O1. If O2 is the result of a Non-D-segment
without the function operator, it does not need O2, either.

tracing queries for a task and (2) the complexity of a tracing
query itself.

Proposition 3 (The number of executed tracing queries) The
number of executed tracing queries for a task is the same as
the number of segments composing the task.

Proof It is obvious from Algorithm 1. ��
Proposition 4 (Complexity of a tracing query for a Non-D-
segment) The tracing query for a Non-D-segment can be
represented as follows as discussed in Sect. 5.3.

T QŌ,T (D) =
⋃

i

Spli tA
T i1

,...,A
T imi

(σCi (T
i
1 �� · · · �� T i

mi
) � Ō)

Note thatwhen the tracingquery is executed on the intermedi-
ate result, T i

1 · · · T i
mi

represent the intermediate result tables.

Let card(T i
j) denote the cardinality of T

i
j . Then, the complex-

ity of the tracing query is O(�i (� j card(T i
j) ∗ card(Ō))).

Proof In the tracing query, joins are dominant operators. For
each i , the join/semi-join operation over mi + 1 tables is
performed. Thus, we get the above equation. ��
Proposition 5 (Complexity of a tracing query for a D-
segment) The complexity of the tracing query for D-segment
is O(1).

Proof It is obvious from the definition of the tracing query
for D-segment. ��

6 Implementation of augmented lineage
derivation

6.1 Deployment of intermediate results

The procedure to derive the augmented lineage shown in
Sect. 5.4 assumes that intermediate results of non-root seg-
ments are available before executionof tracingqueries. In this
section, we introduce how to deploy intermediate results.

There are following two naive approaches to do so.

– Rerun: This approach runs the original analysis task as
it is, usually in the normal mode. When the augmented
lineage is requested, it restores all the needed interme-
diate results of the non-root segments by rerunning the
original task in the reasoning mode. Although it causes
no runtime overhead and storage cost to the original anal-
ysis task, rerunning the task to restore the intermediate
results takes much time.

123

Augmented lineage: traceability of data analysis including complex UDF processing 973

Algorithm 1 Augmented Lineage Derivation Procedure

Input: Source data set D, Task T , Tuple set Ō (⊆ O = T (D))

Output: Augmented lineage of tuple set Ō in task T
1: SL = RL = ∅;
2: // TQqueue is a queue.
3: // [T1, . . . , Tn] means a list consisting of Ti .
4: Initialize TQqueue;
5: Enqueue [Ō,T] into TQqueue;
6: while TQqueue is not empty do
7: Dequeue [Ō,T] from TQqueue;
8: if T ′s top segment T̄ is a D-segment then
9: // O = T̄ (O1, O2) = O1 − O2
10: // Oi = Ti (Di) s.t. Di ⊆ D
11: if Ō = ALL then
12: Ō ⇐ O;
13: end if
14: [Ô1, Ô2] ⇐ [Ō,ALL];
15: else if T ′s top segment T̄ is a Non-D-segment then
16: // O = T̄ (O1, . . . , Ok)

17: // Oi = Ti (Di) s.t. Di ⊆ D
18: if T̄ ′s top operators are φ f1(E1)-. . .-φ fl (El) then
19: if Ō = ALL then
20: Ō ⇐ O;
21: end if
22: for o ∈ Ō do
23: for idx = 1, . . . , l do
24: RL = RL ∪

{〈o.Eidx , o.Valueidx , o.Reasonidx 〉};
25: end for
26: end for
27: end if
28: [Ô1, . . . , Ôk] ⇐ TQŌ, ¯T ([O1, . . . , Ok]);
29: end if
30: for Each Ôi do
31: if Ôi corresponds to source table Ti then
32: if Ôi = ALL then
33: Ôi is replaced with the set of tuples in Ti .
34: end if
35: // Ôi is added as a member

corresponding to Ti .
36: SL = SL ∪ {Ôi };
37: else
38: Enqueue [Ôi ,Ti] into TQqueue;
39: end if
40: end for
41: end while
42: return [SL,RL];

– Full Materialization (Full): This approach executes the
original analysis task in the reasoning mode and mate-
rializes (generates and stores) the needed intermediate
results of non-root segments during its execution. This
approach affects the performance of the original task
and needs the storage cost for managing the intermediate
results.

In the preliminary experiments, we evaluated the per-
formance of the above two approaches on complex data
analyses. We found that the execution cost of function opera-
torwith an expensiveUDF tends to be dominant in the overall
processing time compared with other relational operators.

Fig. 6 System architecture

Hence, based on this observation, we propose the following
alternative approach to providing the intermediate results of
non-root segments.

– Function Materialization (FM): This approach executes
the original analysis task in the reasoning mode as in Full
Materialization butmaterializes only intermediate results
of non-root segments which contain function operators
during its execution. Intermediate results of the other seg-
ments are restored by rerunning the segments.

To reduce the time of rerunning tasks and segments in
Rerun and FM, we utilize the semi-join pushdown optimiza-
tion used in [57]. When we get output tuples O of a task and
Ō ⊆ O are specified as targets for the augmented lineage
derivation, we apply the semi-join O � Ō and then push it
down along the operator tree. Although [57] does not con-
sider the difference operator, the pushdown transformation
((T1−T2)�Ō → (T1�Ō)−T2) is applicable. This optimiza-
tion will contribute to reducing the size of tables accessed in
rerunning the analysis. We experimentally evaluate the cost
of the above approaches.

6.2 System architecture

This section describes the system architecture which
enables complex data analysis with augmented lineage. The
overall organization is shown inFig. 6. The systemconsists of
five components: AL Manager, Parser, Segmenter, TQ Gen-
erator, and Executor.

AL Manager: It receives tasks from the user, manages
the translation to operator trees, their segmentation and exe-
cution, and returns the task results to the user. When the user
requests the augmented lineage for some result tuples, itman-

123

974 M. Yamada et al.

ages the tracing query generation and execution, and returns
the augmented lineage to the user.

Parser: It takes a task from AL Manager and translates it
into an optimized operator tree.

Segmenter: It takes an operator tree from AL Manager
and decomposes it into segments.

TQGenerator: It takes a segment of a task and generates
its tracing query in the form of an operator tree.

Executor: Given operator tree(s), it executes the tree(s)
over Database and Results Store, and returns the results.
Results Store preserves the task output and intermediate
results needed for augmented lineage derivation.

We explain the procedure of the system to derive aug-
mented lineage assuming Function Materialization. Rerun
and Full Materialization can be accommodated with minor
adjustment. In the following procedure, Steps 1©– 5© corre-
spond to the task execution, and Steps 6©– 10© correspond to
the augmented lineage derivation.

1© The user submits the task to AL Manager.
2© AL Manager passes the given task to Parser and obtains

its operator tree.
3© ALManager sends the tree to Segmenter and receives its

segments.
4© The segments are passed to Executor. Executor executes

the trees while storing necessary intermediate results in
Results Store. AL Manager obtains the task result.

5© AL Manager returns the task result to the user.
6© The user specifies the target tuples for augmented lineage

derivation (AL target tuples) to AL Manager.
7© AL Manager identifies segments needed to rerun for

the intermediate result deployment and passes them to
Executor. Executor executes them and store their results
in Results Store.

8© AL Manager sends all the segments of the task to TQ
Generator, and TQ Generator returns an operator tree of
the tracing query for each segment.

9© AL Manager performs Algorithm 1 with the help of
Executor and obtains augmented lineage.

10© AL Manager returns the augmented lineage to the user.

7 Experiment

This section experimentally evaluates the performance of
three methods to derive augmented lineage. We use two
datasets (LFW datasets [28] and Complex Data Analysis
workload (CDA workload)). In the CDA workload, we used
the extended TPC-H benchmark queries [50] including com-
plex content processing involving ML-based image and text
analysis. For each dataset, we first evaluate the processing
time of executing analysis tasks. In the case of Full Mate-
rialization and Function Materialization, the system needs

to store intermediate results while executing analysis tasks.
This intermediate result store takes an extra cost over the
ordinary analysis execution. We evaluate this additional cost
along with the cost for executing analysis tasks. Then, we
evaluate the three methods regarding processing time and
storage cost for deriving augmented lineage. As described
in Sect. 6.1, we utilize the semi-join pushdown optimization
proposed in [57] to rerun the task efficiently. Therefore, the
Rerun approach here is compatible with their framework.

For this experiment, we developed a prototypewhich has a
simplified version of the architecture discussed in Sect. 6.2.
The prototype implements AL Manager as python scripts
which also integrate functionality of Segmenter and TQGen-
erator. PostgreSQL is deployed to accommodate Database
and Results Store and to provide functionality of Parser and
Executor as well. Thus, we employ SQL to specify segments
and tracing queries to be evaluated in Executor. We imple-
mented this prototype using PostgreSQL 9.6 and Python
3.7.8, and we ran it on a machine with an Intel(R) Core(TM)
i7-8700 CPU@ 3.20 GHz, a GeForce GTX 1060 3 GB, and
two 16 GB DDR4 DIMMs.

We rebooted the machine before each measurement, and
allmeasurementswere independently performed 5–20 times.
We show the number of measurements in each experiment
section and the average value as the result.

The bar graphs below suggest statistical differences with
** (significance level 1%) and* (significance level 5%)under
Welch’s t-test [51]. We omitted error bars representing con-
fidence intervals, since their intervals are too narrow to see.

7.1 LFW dataset evaluation

In this experiment, we evaluate the performance of the three
methods using LFW dataset and investigate the impact of the
processing cost of the function operator in thewhole task.We
prepared two UDFs which have different processing costs.
All the results here are based on ten times measurement.

7.1.1 Task

We use the LFW dataset [28] for this experiment. The
database consists of two tables: Image and Event, whose
schemas are shown in Appendix. The attribute i_img stores
one photograph image from the LFW dataset, and it actually
contains the path (URI) of the external photograph image
file as a string. The path includes the name of the celebrity
in the photograph. The attribute e_visitors stores the number
of participants in the event. The other attributes store identi-
fiers for images, events, and places as integer values. Values
for attributes except for i_img were synthesized so that they
maintain consistency.

The SQL for the analysis task in this experiment is also
shown in Appendix. It uses UDF for person recognition for

123

Augmented lineage: traceability of data analysis including complex UDF processing 975

Table 1 Number of tuples in each source table

Small Medium Large

Image 4.5 × 104 4.5 × 105 4.5 × 106

Event 6.075 × 105 6.075 × 106 6.075 × 107

images and determines the number of times that celebrities
appeared on stage at large event places. We prepared two
implementations of the recognition UDF function with dif-
ference processing costs. Each implementation is explained
in detail in Sect. 7.1.2.

We prepared three different source table sizes (Small,
Medium, Large). Table 1 shows the number of tuples in each
case.

7.1.2 UDFs

The recognitionUDF takes the path to the photograph image
file as an argument and returns the person’s name in the
photograph. We prepared two different implementations as
follows:

– Face Recognition
A person is identified by an ML-based face recognition
model in the given image. It outputs the person’s name
as Value and the position of the bounding box around
the face as Reason. Its processing cost is more expensive
than the following alternative.

– String Processing
A person is recognized by extracting the substring cor-
responding to the celebrity’s name from the URI string.
It outputs the person’s name as Value and the position of
the name substring in the URI as Reason. Its processing
cost is cheaper than the face recognition implementation.

Note that the output value of the two recognition UDF
implementations is the same.

7.1.3 Task processing

This subsection compares the processing time of the task
(analysis query) corresponding to the three methods (Rerun,
FM, and Full). In the case of Rerun, we execute the analy-
sis query as it is, since Rerun needs no stored intermediate
results. In the cases of FM and Full, we need to store some
intermediate results while executing the analysis query. Full
needs more storage than FM.

We used the medium-sized tables for this experiment.
Figure 7 shows the result. The left-hand side shows the pro-
cessing time of the analysis query involving the expensive
UDF, and the right-hand side shows the processing time for

Fig. 7 Task processing time

Fig. 8 Processing time for deriving the augmented lineage in the anal-
ysis with the expensive UDF

the cheap UDF. In the figure, Baseline corresponds to exe-
cuting the analysis query without storing any intermediate
results for Rerun, and SptFM and SptFull correspond to the
processing time including the storage of intermediate results
for FM and Full, respectively.

As shown in the figure, we validated the trend that SptFM
and SptFull incur some processing overhead compared with
Baseline, and the latter needsmore. The reason is that SptFull
stores more intermediate results. In addition, the increase in
processing overhead is larger in the case of the cheap UDF,
since the storage cost of intermediate results is almost same
no matter whether the UDF is expensive or cheap.

7.1.4 Derivation of augmented lineage

In this subsection, we measure the processing time to derive
augmented lineage for a single tuple in the analysis query
results.

Face recognition UDF (expensive UDF) case: Figure 8
summarizes the processing time. Table 2 shows the number
of tuples in the stored intermediate results. Both Function
Materialization (FM) and Full Materialization (Full) outper-
form Rerun with respect to the processing time. FM is up to

123

976 M. Yamada et al.

Table 2 Number of tuples in the stored intermediate results

Small Medium Large

FM 4.5 × 103 4.5 × 104 4.5 × 105

Full 4.95 × 104 4.95 × 105 4.95 × 106

Fig. 9 Processing time for deriving the augmented lineage in the anal-
ysis with the cheap UDF

371.9 times faster than Rerun for the large-sized tables, and
Full is up to 497.1 times faster than Rerun for the medium-
sized tables. FM drastically reduces the number of stored
intermediate tuples (by 90.9%) compared to Full (Table 2).

String processing UDF (cheap UDF) case: Figure 9
summarizes the processing time. In this case, FM and Full
also exceed Rerun with respect to the processing time. FM
is 1.6 times faster than Rerun, and Full is 2.6 times faster
than Rerun for the medium-sized tables. Since the number
of tuples in the stored intermediate results is the same as in
the expensive UDF case, FM incurs a smaller storage cost
than Full. However, the advantage of storing the interme-
diate results on the processing time is smaller because the
processing cost of UDF is not so expensive compared with
other relational operators. Therefore, the gain of FM and Full
over Rerun has become smaller.

The above experiments demonstrate that FM can con-
trol the tradeoff between the processing time for augmented
lineage derivation and the storage cost of the intermediate
results.

7.2 CDAworkload evaluation

This section measures the performance of the three meth-
ods using the CDAworkload.4 Since original TPC-H [18,50]
is composed of 22 SQL queries focusing on evaluating the
performance of a relational DBMS, it originally does not

4 This workload is derived from the TPC-HBenchmark and is not com-
parable to published TPC-H Benchmark results, as this implementation
does not comply with the TPC-H Benchmark.

involve any complexdata analysis.Weextended source tables
by adding and replacing some attributes, developed new sce-
narios for complex data analysis, and extended the original
queries to include UDFs whose processing costs are com-
parable to that of the expensive UDF in the LFW Dataset
experiment.

We explain database extension and analysis queries in
Sect. 7.2.1, and UDFs in Sect. 7.2.2. Then, we show the pro-
cessing time for executing each analysis query in Sect. 7.2.3.
Finally,we report the processing time for deriving augmented
lineage in Sect. 7.2.4.

7.2.1 Tasks

We extended the original TPC-H database. The main exten-
sion is as follows:

– Part table
We added a newattribute to store the photograph image of
the part (p_image). We used images in the COCO dataset
[34] for this extension, and we stored path strings of the
image files as its values.

– Lineitem table
We replaced the comment attribute (l_comment) values
with Amazon review text data [40].

Since we extended the database as described above, we can
develop new complex data analysis scenarios on the original
queries. For the Part table,we addedfiltering that selects parts
whose photograph images include anyhuman imagebasedon
the human detection UDF. For the Lineitem table, we added
another filtering that selects line-item tuples whose review
comment is positive based on the text sentiment classifier
UDF.

We picked up 10 queries (Q2, Q3, Q9, Q15, Q16, Q17,
Q18, Q19, Q20, and Q21) from the 22 TPC-H benchmark
queries for the CDA workload. These queries were chosen
by the following procedure:We first chose 19 TPC-H queries
which refer to the Part and/or Lineitem tables. Next, we fil-
tered out 3 queries which contain the CASE clause because
our model does not cover it. Then, we applied the following
two changes to the remaining 16 queries:

1. Rewrite queries containing nested subqueries (e.g., IN
clause and EXISTS clause) by join and difference oper-
ators.

2. Add the UDFs to do the above content processing.

Among the 16 queries, Full Materialization and Function
Materialization happen to do the same processing for 10
queries to derive augmented lineage. We chose 4 representa-
tive queries among them. Eventually, we selected 10 queries,

123

Augmented lineage: traceability of data analysis including complex UDF processing 977

Table 3 CDA workload queries

CDA workload query Original TPC-H
benchmark query

Changes Involved segment

Q1 Q2 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image

Non-D

Q2 Q3 Apply text_sentiment UDF to Lineitem table and select
line-item tuples whose review comments are positive

Non-D

Q3 Q9 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image

Non-D

Q4 Q15 Apply text_sentiment UDF to Lineitem table and select
line-item tuples whose review comments are positive

Non-D

Q5 Q16 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image

Non-D

Q6 Q17 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image

Non-D

Q7 Q18 Apply text_sentiment UDF to Lineitem table and select
line-item tuples whose review comments are positive

Non-D

Q8 Q19 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image

Non-D

Q9 Q20 Apply person_detection UDF to Part table and select parts
whose photograph images include any human image. Then,
add distinct clause to remove duplicate

Non-D

Q10 Q21 Apply text_sentiment UDF to Lineitem table and select
line-item tuples whose review comments are positive

Non-D and D

the 4 queries plus 6 queries in which Full Materialization and
Function Materialization do different processing.

We summarize the derivations of the 10 queries from
original queries and the types of involved segments in
Table 3. Note that person_detection is the UDF applied to
the attribute p_image, and text_sentiment is applied to the
attribute l_comment. Finally, we input those SQL queries
to PostgreSQL and obtained processing trees output by
the EXPLAIN command. Then, by applying our segmen-
tation algorithm, we decided segments to be used for tracing
queries. Hereafter, Qxx denotes the query xx of CDA work-
load.

In this experiment, we generated databases of three sizes
using DBGEN [18,50], whose scale factor (SF) is 1, 10 and
100.

7.2.2 UDFs

We implemented the above two UDFs. Both of the UDFs
utilize a neural network for their prediction.

– Human detection
This UDF is applied to the attribute p_image in the
extended Part table. This UDF takes image data as input
and decides whether any human image appears in the
whole image or not. It returns a Boolean value as Value
and the position of the bounding box of the human image

as Reason when it returns True. We implemented this
UDF usingYOLO [44], which can detect objects quickly.

– Text sentiment classifier
This UDF is applied to the attribute l_comment in the
extended Lineitem table. This UDF takes review com-
ment text data as input and returns Positive or Negative,
representing the sentiment of the review comment, as
Value and likelihood of the sentiment as Reason. We
implemented this UDF using BERT-Base text sentiment
classifier provided by IBM [29].

7.2.3 Task processing

Figure 10 shows the processing time for analysis queries.
This result is based on ten times measurements. Note that
SptFM and SptFull do the same processing for Q2, Q3, Q5,
and Q8. This shows that the overhead of storing interme-
diate results while executing the analysis is negligible. The
average overhead of SptFM and SptFull for all queries is 0.9
% and 0.5 %, respectively. This experiment suggests that the
overhead of storing intermediate results while analysis query
execution is rather small when the UDF processing cost is
not negligible.

7.2.4 Derivation of augmented lineage

In this experiment, we evaluate the performance when we
derive augmented lineage for target output tuples (AL_size).

123

978 M. Yamada et al.

Fig. 10 Task processing time

First, for all queries, we measure the processing time for
deriving augmented lineage for a randomly chosen single
tuple in the analysis query results.Q1,Q3,Q5,Q9, andQ10
have more than 100 output tuples. Then, we also measure
the processing time for deriving augmented lineage for ran-
domly chosen 100 tuples for these queries. The results for
SF = 1, 10, 100 are based on 20, 10, 5 times measurements,
respectively.

The processing time to derive the augmented lineage for
a single output tuple (AL_size = 1) for tables of the three
different scale factors is shown in Fig. 11a–c, and that for
100 output tuples is shown in Fig. 12a–c. We set the timeout
to 24 h, which means that we stopped deriving augmented
lineage when it would take more than 24 h. The processing
time of Rerun forQ3 andQ4 is not shown due to the timeout
in Figs. 11c and 12c. Table 4 shows the number of tuples in
the stored intermediate results. Note that FM and Full do the
same processing for Q2, Q3, Q5, and Q8.

In the case of AL_size = 1: We can see the trend that (1)
Rerun is themost time-consuming, (2) FunctionMaterializa-
tion (FM) is faster than Rerun, and (3) Full Materialization
(Full) is the fastest for deriving augmented lineage. Namely,
Rerun > FM > Full. However, FM often achieves the pro-
cessing time comparable to Full. Regarding the storage cost,
FM needs less stored tuples than Full as shown Table 4.

However, we can see some different cases, too. The first
one is the case of Full>Rerun>FM. This case applies toQ7
in Fig. 11b and c. In the query, Rerun and FM could rerun the
analysis query quickly due to the semi-join and predefined
indexes for source tables. Moreover, since the intermediate
results obtained by the rerun were far smaller than the stored
intermediate results in Full and cached in the DBMS, they
could execute the tracing queries quickly. On the other hand,
Full needed to scan the huge intermediate results without
using index. This will be the reasons why Rerun and FM
outperformed Full in this query. In Q5 in Fig. 11c, FM and
Full do the same processing, and Rerun outperformed FM
andFull. In addition to the abovementioned reason,we found

that the query plan of a tracing query was poor in FM and
Full.

In some queries, Rerun > FM/Full. Q1 in Fig. 11a and b,
Q4 in Fig. 11a–c, and Q9 in Fig. 11a are such cases. In Q7
in Fig. 11a, Rerun > Full > FM, and in Q1 in Fig. 11c, Full
> Rerun/FM. In these cases, FM was accelerated due to the
similar reason as mentioned above.

In Q10 in Fig. 11a–c, Rerun/FM > Full because the cost
of rerunning the UDFs was negligible.

We can see that the processing time generally increases as
the scale factor increases. InQ1 andQ7, Rerun and FM took
almost the same time evenwhen the scale factor increased. In
these queries, the processing time of the analysis queries was
not affectedmuch because of the efficient semi-join. Besides,
since the size of the intermediate result restored by rerunning
was almost same for the three scale factors, the processing
time of the tracing query in Rerun and FM was not affected.

InQ4, the processing time of FM and Full decreased even
though the scale factorwas increased from1 to 10. The reason
was that the query plans of the tracing query were different
for SF = 1 and SF = 10, and that for SF = 1 was inefficient.
InQ5, the processing time of FMandFull suddenly increased
over Rerun due to the similar reason. Namely, the query plan
of the tracing query for SF = 100 was poor in FM and Full.

In the case of AL_size = 100: When AL_size increases,
the overall processing time generally increases. The increase
in the processing time is x1–x13 in most queries, and the
maximum is x26 in Rerun for Q5 in SF = 100. Rerunning
the analysis query takes more time since the semi-join pro-
ducesmore source tuples. In addition, the tracing query needs
to process larger input tables. The comparison of the three
approaches is almost the same as in AL_size = 1.

InQ10, Rerun and FM outperformed Full in SF = 1.Q10
needs four tracing queries (TQ1, TQ2, TQ3, and TQ4) to
get the augmented lineage. In SF = 10 and SF = 100, the
execution of TQ4 was dominant in Full, while in SF = 1,
the execution of TQ3 accounted for almost half of the whole
processing time. Rerun and FM could run TQ3 very quickly
using the cache. This will be the reason for Q10 in SF = 1.

123

Augmented lineage: traceability of data analysis including complex UDF processing 979

Fig. 11 Processing time for deriving augmented lineage in the case of AL_size = 1

These experiments demonstrate that FM is an appropriate
approach to realize a tradeoff between processing time and
storage cost. For example, in Q9, FM can derive augmented
lineage 12.8 times faster than Rerun and reduce the number
of stored intermediate tuples by 99.6% in the case of SF = 10
and AL_size = 1.

8 Conclusions and future work

In this paper,wehave proposed the augmented lineage,which
is an extended lineage combining reasons for complex data
analysis. Augmented lineage ensures traceability of com-
plex data analysis including UDFs for AI/ML processing.
Additionally, we formulated an algorithm to derive the aug-
mented lineage using the lazy approach. We also proposed
a new execution scheme named Function Materialization
(FM), which allows for a tradeoff between runtime cost and

123

980 M. Yamada et al.

Fig. 12 Processing time for
deriving augmented lineage in
the case of AL_size = 100

123

Augmented lineage: traceability of data analysis including complex UDF processing 981

Table 4 Number of tuples in the stored intermediate results

FM Full FM Full FM Full

Q1 Q2 Q3

SF1 7.89 × 102 1.17 × 105 3.02 × 104 3.02 × 104 1.09 × 104 1.09 × 104

SF10 7.92 × 103 1.18 × 106 3.00 × 105 3.00 × 105 1.08 × 105 1.08 × 105

SF100 8.00 × 104 1.19 × 107 2.99 × 106 2.99 × 106 1.09 × 106 1.09 × 106

Q4 Q5 Q6

SF1 4.60 × 105 4.70 × 105 2.96 × 104 2.96 × 104 2.05 × 102 2.00 × 105

SF10 4.59 × 106 4.69 × 106 2.96 × 105 2.96 × 105 2.05 × 103 2.00 × 106

SF100 4.59 × 107 4.69 × 107 2.97 × 106 2.97 × 106 2.01 × 104 2.00 × 107

Q7 Q8 Q9

SF1 6.30 × 101 1.50 × 106 4.71 × 102 4.71 × 102 2.22 × 103 5.47 × 105

SF10 5.88 × 102 1.50 × 107 4.70 × 103 4.70 × 103 2.17 × 104 5.47 × 106

SF100 5.12 × 103 1.50 × 108 4.81 × 104 4.81 × 104 2.18 × 105 5.48 × 107

Q10

SF1 3.78 × 103 7.55 × 103

SF10 3.97 × 104 7.95 × 104

SF100 3.99 × 105 7.98 × 105

storage cost in deriving the augmented lineage. Experiments
showed that FM is effective, especially when the execution
time of UDFs involving sophisticated AI/ML processing is
high in the whole analysis tasks.

Interesting future research topics include generalization
of our reasoning framework. This paper assumes that UDFs
performing complex data analysis like AI/ML processing
provide reasons. Since the reason is a kind of annotation,
it could be used for other purposes, too. For example,
we may use it to show an operator’s processing time or
resource utilization to monitor the system behavior. In addi-
tion, extending the proposed framework to more general
data models and more generalized analysis contexts such
as big data processing systems and stream processing envi-
ronments is also an interesting issue. Finally, integrating
model-agonistic explanation systems (e.g., LIME [45] and
SHAP [38]) into our framework is also a challenging topic.

Acknowledgements This work was partly supported by JSPS KAK-
ENHI Grant Numbers JP19H04114 and JP22K19802, NEDO Grant
Number JPNP20006, AMED Grant Number JP21zf0127005, and JST
SPRING Grant Number JPMJSP2124.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix: LFW dataset evaluation

We show the database schema and analysis query for the
LFWdataset evaluation. The underlined attributes denote the
primary key of the table. Note that recognition is the UDF
applied to the attribute i_img. We highlight the part applying
UDF using the underline.

Database schema

– Image(i_imageid, i_placeid, i_img)
– Event(e_eventid, e_placeid, e_visi tors)

Analysis query

SELECT i_value, COUNT(*)
FROM (

SELECT i_imageid, i_placeid, avg, i_img,
(recognition(i_img)).value i_value

FROM Image, (
SELECT e_placeid, avg(e_visitors) avg
FROM Event
GROUP BY e_placeid

) Seg2
WHERE i_placeid = e_placeid

AND avg >= 50000
) Seg1
GROUP BY i_value;

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

982 M. Yamada et al.

References

1. Ainy, E., Bourhis, P., Davidson, S.B., Deutch,D.,Milo, T.: Approx-
imated summarization of data provenance. In: Proceedings of
the 24th ACM International on Conference on Information and
Knowledge Management, CIKM ’15, pp. 483–492. Association
for Computing Machinery, New York, NY, USA (2015)

2. Akoush, S., Sohan, R., Hopper, A.: Hadoopprov: towards prove-
nance as a first class citizen in mapreduce. In: 5th USENIX
Workshop on the Theory and Practice of Provenance (TaPP 13).
USENIX Association, Lombard, IL (2013)

3. Amsterdamer,Y.,Deutch,D., Tannen,V.: Provenance for aggregate
queries. In: Proceedings of the Thirtieth ACMSIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS
’11, pp. 153–164 (2011)

4. Benjelloun, O., Das Sarma, A., Halevy, A., Theobald, M., Widom,
J.: Databases with uncertainty and lineage. VLDB J. 17(2), 243–
264 (2008)

5. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: ULDBs:
Databaseswith uncertainty and lineage. In: Proceedings of the 32nd
International Conference on Very Large Data Bases, VLDB ’06,
pp. 953–964 (2006)

6. Bhagwat, D., Chiticariu, L., Tan, W.C., Vijayvargiya, G.: An anno-
tationmanagement system for relational databases. VLDB J. 14(4),
373–396 (2005)

7. Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Query-
ing and managing provenance through user views in scientific
workflows. In: 2008 IEEE 24th International Conference on Data
Engineering, pp. 1072–1081 (2008)

8. Bose, R., Frew, J.: Lineage retrieval for scientific data processing:
a survey. ACM Comput. Surv. 37(1), 1–28 (2005)

9. Buneman, P., Khanna, S.,Wang-Chiew, T.:Why andwhere: a char-
acterization of data provenance. In:DatabaseTheory—ICDT2001,
pp. 316–330 (2001)

10. Callahan, S.P., Freire, J., Santos, E., Scheidegger, C.E., Silva, C.T.,
Vo, H.T.: Vistrails: Visualization meets data management. In: Pro-
ceedings of the 2006 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’06, pp. 745–747. Association for
Computing Machinery, New York, NY, USA (2006)

11. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection:
a survey. arXiv:1901.03407 (2019)

12. Cheney, J.: A formal framework for provenance security. In: 2011
IEEE 24th Computer Security Foundations Symposium, pp. 281–
293 (2011)

13. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in Databases:
Why, How, and Where. Now Publishers Inc (2009)

14. Chiticariu, L., Tan, W.C., Vijayvargiya, G.: Dbnotes: A post-it sys-
tem for relational databases based on provenance. In: Proceedings
of the 2005 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’05, pp. 942–944 (2005)

15. Cui, Y.,Widom, J.: Practical lineage tracing in data warehouses. In:
Proceedings of 16th InternationalConference onDataEngineering,
pp. 367–378 (2000)

16. Cui, Y., Widom, J.: Lineage tracing for general data warehouse
transformations. VLDB J. 12(1), 41–58 (2003)

17. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data
in a warehousing environment. ACM Trans. Database Syst. 25(2),
179–227 (2000)

18. Deister software: TPCH benchmark. https://docs.deistercloud.
com/content/Databases.30/TPCH%20Benchmark.90

19. Deutch, D., Gilad, A., Moskovitch, Y.: Selective provenance for
datalog programs using top-k queries. Proc. VLDB Endow. 8(12),
1394–1405 (2015)

20. Deutch,D.,Milo, T., Roy, S., Tannen,V.: Circuits for datalog prove-
nance. In: Proceedings of the 17th International Conference on

Database Theory (ICDT), Athens, Greece, March 24–28, 2014,
pp. 201–212 (2014)

21. Du, M., Liu, N., Hu, X.: Techniques for interpretable machine
learning. Commun. ACM 63(1), 68–77 (2019)

22. Foster, J.N., Green, T.J., Tannen, V.: Annotated xml: queries
and provenance. In: Proceedings of the Twenty-Seventh
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’08, pp. 271–280. Association for Com-
puting Machinery, New York, NY, USA (2008)

23. Glavic, B., Alonso, G.: Perm: processing provenance and data on
the same data model through query rewriting. In: 2009 IEEE 25th
International Conference onData Engineering, pp. 174–185 (2009)

24. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol. 11(8),
1–13 (2010)

25. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings.
In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-
SIGARTSymposiumonPrinciples ofDatabaseSystems, pp. 31–40
(2007)

26. Gunning, D.: Explainable Artificial Intelligence (XAI). Defense
Advanced Research Projects Agency (DARPA) (2017)

27. Herschel, M., Diestelkämper, R., Ben Lahmar, H.: A survey on
provenance: What for? What form? What from? VLDB J. 26(6),
881–906 (2017)

28. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled
Faces in the Wild: A Database for Studying Face Recognition in
Unconstrained Environments. Technical Reports 07-49, University
of Massachusetts, Amherst (2007)

29. IBM: Text Sentiment Classifier—IBM Developer. https://
developer.ibm.com/exchanges/models/all/max-text-sentiment-
classifier/

30. Interlandi, M., Shah, K., Tetali, S.D., Gulzar, M.A., Yoo, S., Kim,
M., Millstein, T., Condie, T.: Titian: Data provenance support in
spark. In: Proceedings of theVLDBEndowment InternationalCon-
ference on Very Large Data Bases, vol. 9, pp. 216–227. NIH Public
Access (2015)

31. Islam, S.R., Eberle, W., Ghafoor, S.K., Ahmed, M.: Explain-
able artificial intelligence approaches: A survey. CoRR
arXiv:2101.09429 (2021)

32. Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang,
H., Baxter, S.L., McKeown, A., Yang, G., Wu, X., Yan, F., et al.:
Identifying medical diagnoses and treatable diseases by image-
based deep learning. Cell 172(5), 1122–1131 (2018)

33. Kwon, D., Kim, H., Kim, J., Suh, S.C., Kim, I., Kim, K.J.: A survey
of deep learning-based network anomaly detection. Clust. Comput.
22(1), 949–961 (2019)

34. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays,
J., Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft
coco: Common objects in context. arXiv:1405.0312 (2014)

35. Litjens, G., Sánchez, C.I., Timofeeva, N., Hermsen,M., Nagtegaal,
I., Kovacs, I., Hulsbergen-Van-De, Kaa C., Bult, P., Van Ginneken,
B., Van Der Laak, J.: Deep learning as a tool for increased accuracy
and efficiency of histopathological diagnosis. Sci. Rep. 6(1), 1–11
(2016)

36. Logothetis, D., De, S., Yocum, K.: Scalable lineage capture for
debugging disc analytics. In: Proceedings of the 4th Annual
Symposium on Cloud Computing, SOCC ’13. Association for
Computing Machinery, New York, NY, USA (2013)

37. Lucia, B., Ceze, L.: Data provenance tracking for concurrent pro-
grams. In: 2015 IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 146–156 (2015)

38. Lundberg, S.M., Lee, S.I.: A unified approach to interpretingmodel
predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017)

39. Ma, S., Aafer, Y., Xu, Z., Lee, W.C., Zhai, J., Liu, Y., Zhang,
X.: Lamp: Data provenance for graph based machine learning

123

http://arxiv.org/abs/1901.03407
https://docs.deistercloud.com/content/Databases.30/TPCH%20Benchmark.90
https://docs.deistercloud.com/content/Databases.30/TPCH%20Benchmark.90
https://developer.ibm.com/exchanges/models/all/max-text-sentiment-classifier/
https://developer.ibm.com/exchanges/models/all/max-text-sentiment-classifier/
https://developer.ibm.com/exchanges/models/all/max-text-sentiment-classifier/
http://arxiv.org/abs/2101.09429
http://arxiv.org/abs/1405.0312

Augmented lineage: traceability of data analysis including complex UDF processing 983

algorithms through derivative computation. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, pp. 786–797 (2017)

40. Ni, J., Li, J., McAuley, J.: Justifying recommendations using
distantly-labeled reviews and fine-grained aspects. In: Proceedings
of the 2019Conference onEmpiricalMethods inNatural Language
Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 188–197 (2019)

41. Palyvos-Giannas, D., Gulisano, V., Papatriantafilou, M.: Genea-
Log: Fine-grained data streaming provenance in cyber-physical
systems. Parallel Comput. 89, 102–552 (2019)

42. Palyvos-Giannas, D., Havers, B., Papatriantafilou, M., Gulisano,
V.: Ananke: a streaming framework for live forward provenance.
Proc. VLDB Endow. 14(3), 391–403 (2020)

43. Psallidas, F., Wu, E.: Smoke: fine-grained lineage at interactive
speed. Proc. VLDB Endow. 11(6), 719–732 (2018)

44. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement.
arXiv:1804.02767 (2018)

45. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?”
explaining the predictions of any classifier. In: Proceedings of the
22ndACMSIGKDD International Conference onKnowledge Dis-
covery and Data Mining, pp. 1135–1144 (2016)

46. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D.,
Batra, D.: Grad-cam: Visual explanations from deep networks via
gradient-based localization. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 618–626 (2017)

47. Senellart, P.: Provenance and probabilities in relational databases.
SIGMOD Rec. 46(4), 5–15 (2018)

48. Souza, R., Azevedo, L.G., Lourenço, V., Soares, E., Thiago, R.,
Brandão, R., Civitarese, D., Vital-Brazil, E., Moreno, M., Val-
duriez, P., Mattoso, M., Cerqueira, R., Netto, M.A.S.: Workflow
provenance in the lifecycle of scientific machine learning. Con-
curr. Comput. Pract. Exp. 34(14), e6544 (2022)

49. Theoharis Y., Fundulaki I., Karvounarakis G., Christophides V.:
On provenance of queries on semantic web data. IEEE Internet
Comput. 15(1), 31–39 (2011)

50. Transaction Processing Performance Council: TPC-H Homepage.
http://tpc.org/tpch/

51. Welch, B.L.: The generalization of ‘student’s’ problem when
several different population varlances are involved. Biometrika
34(1–2), 28–35 (1947)

52. Woodruff, A., Stonebraker, M.: Supporting fine-grained data lin-
eage in a database visualization environment. In: Proceedings 13th
International Conference on Data Engineering, pp. 91–102 (1997)

53. Wu, E., Madden, S., Stonebraker, M.: Subzero: a fine-grained
lineage system for scientific databases. In: 2013 IEEE 29th Inter-
national Conference on Data Engineering (ICDE), pp. 865–876
(2013)

54. Wu, Y., Tannen, V., Davidson, S.B.: Priu: A provenance-based
approach for incrementally updating regression models. In: Pro-
ceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’20, pp. 447–462 (2020)

55. Yamada, M., Kitagawa, H., Amagasa, T., Matono, A.: Augmented
Lineage: Traceability of Data Analysis Including Complex UDFs.
In:Database andExpert SystemsApplications, pp. 65–77. Springer
International Publishing (2021)

56. Zhang, S., Yao, L., Sun, A., Tay, Y.: Deep learning based recom-
mender system: a survey and new perspectives. ACM Comput.
Surv. (CSUR) 52(1), 1–38 (2019)

57. Zheng, N., Alawini, A., Ives, Z.G.: Fine-grained provenance for
matching and etl. In: 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pp. 184–195 (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1804.02767
http://tpc.org/tpch/

	Augmented lineage: traceability of data analysis including complex UDF processing
	Abstract
	1 Introduction
	2 Related work
	3 Data model
	3.1 Data
	3.2 Operators

	4 Augmented lineage
	5 Augmented lineage derivation
	5.1 Segment
	5.2 Segmentation
	5.3 Tracing query
	5.4 Augmented lineage derivation procedure

	6 Implementation of augmented lineage derivation
	6.1 Deployment of intermediate results
	6.2 System architecture

	7 Experiment
	7.1 LFW dataset evaluation
	7.1.1 Task
	7.1.2 UDFs
	7.1.3 Task processing
	7.1.4 Derivation of augmented lineage

	7.2 CDA workload evaluation
	7.2.1 Tasks
	7.2.2 UDFs
	7.2.3 Task processing
	7.2.4 Derivation of augmented lineage

	8 Conclusions and future work
	Acknowledgements
	Appendix: LFW dataset evaluation
	Database schema
	Analysis query

	References

