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Abstract
Groupjoins combine execution of a join and a subsequent group-by. They are common in analytical queries and occur in
about 1/8 of the queries in TPC-H and TPC-DS. While they were originally invented to improve performance, efficient
parallel execution of groupjoins can be limited by contention in many-core systems. Efficient implementations of groupjoins
are highly desirable, as groupjoins are not only used to fuse group-by and join, but are also useful to efficiently execute nested
aggregates. For these, the query optimizer needs to reason over the result of aggregation to optimally schedule it. Traditional
systems quickly reach their limits of selectivity and cardinality estimations over computed columns and often treat group-by
as an optimization barrier. In this paper, we present techniques to efficiently estimate, plan, and execute groupjoins and nested
aggregates. We propose four novel techniques, aggregate estimates to predict the result distributions of aggregates, parallel
groupjoin execution for scalable execution of groupjoins, index groupjoins, and a greedy eager aggregation optimization
technique that introduces nested preaggregations to significantly improve execution plans. The resulting system has improved
estimates, better execution plans, and a contention-free evaluation of groupjoins, which speeds up TPC-H and TPC-DS queries
significantly.

Keywords Query optimization · Query processing · Parallel processing

1 Introduction

Joins and aggregations are the backbone of query engines.
A common query pattern, which we observe in many bench-
marks [10,59] and industry applications [77], is a join with
grouped aggregation on the same key:

SELECT cust.id, COUNT(*), SUM(s.value)
FROM customer cust, sales s
WHERE cust.id = s.c_id
GROUP BY cust.id

In a traditional implementation, we answer the query by
building two hash tables on the same key, one for the hash
join and one for the group-by. However, we can speed up this
query by reusing the join’s hash table to also store the aggre-
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gate values. This combined execution of join and group-by
is called a groupjoin [56].

The primary reason to use a groupjoin is its performance.
We spend less time building hash tables, use less mem-
ory, and improve the responsiveness of this query. However,
groupjoins are also more capable than regular group-bys, as
we can create the groups explicitly. Consider the following
nested query, with subtly different semantics:

SELECT cust.id, cnt, s
FROM customer cust, (

SELECT COUNT(*) AS cnt, SUM(s.value)
AS s
FROM sales s
WHERE cust.id = s.c_id
GROUP BY cust.id

)

Here, nested the query calculates a COUNT(*) over the inner
table, which evaluates to zerowhen there are no join partners.
Answering that query without nested-loop evaluation of the
inner query is tricky, as a regular join plus group-by will
produce wrong results for empty subqueries, which is known
as the COUNT bug [58]. A groupjoin directly supports such
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Fig. 1 Missing components for practical groupjoins. Our improve-
ments to estimation and parallel execution enable efficient evaluation
of queries with nested aggregates

queries by evaluating the static aggregate for the nested side
of the join, taking the groups from the other side.

Despite their benefits, groupjoins are not widely in use.
We identify two problems and propose solutions that make
groupjoins more practical: First, existing algorithms for
groupjoins do not scale well for parallel execution. Since
groupjoin hash tables contain shared aggregation state, par-
allel updates of these need synchronization, and can cause
heavy memory contention. Furthermore, current estima-
tion techniques deal poorly with results of groupjoins from
unnested aggregates.

The unnesting of inner aggregation subqueries is very
profitable, since it eliminates nested-loops evaluation and
improves the asymptotic complexity of the query. How-
ever, this causes the aggregates to be part of a bigger
query tree, mangled between joins, predicates and other
relational operators. Query optimization, specifically join
ordering, depends on the quality of cardinality and selectiv-
ity estimates [49]. With unnested aggregates, the estimation
includes group-byoperations and aggregates,which are noto-
riously hard [28,40]. Consider the following nested aggregate
with a predicate:

SELECT ... GROUP BY x HAVING
SUM(value) > 100

The result might have vastly different cardinality, depend-
ing on the selectivity, which in turn influences the optimal
execution order of the query.

In our paper, we work on techniques that make combined
join and aggregation more efficient, e.g., with eager aggrega-
tion [70,79] and hash table sharing via groupjoins [25,56]. In
addition, we propose a novel estimation framework for com-
puted aggregate columns, which improves the plan quality
with nested aggregates. We introduce this here as part of our
work in groupjoins, but the estimation framework is useful
for querieswith regular group-by operators, too.We integrate
our work in the high-performance compiling query engine of
our research database system Umbra [61]. Figure1 shows a
high-level overview of our query optimizer. On the way from
an SQL query from a relational algebra query plan to the

query result, we focus on efficiently evaluating nested aggre-
gateswith computed columnestimates andparallel groupjoin
execution.

The rest of this paper is structured as follows: First, we
introduce the groupjoin and its use in general unnesting in
Sect. 2. Then, we discuss and evaluate four parallel groupjoin
execution strategies in Sect. 3, and propose a cost model to
choose the optimal execution strategy. We evaluate the exe-
cution strategies and our costmodel based on thewell-known
TPC-H and TPC-DS benchmarks in Sect. 4. Afterwards, we
introduce our estimations for computed columns in Sect. 5
and evaluate them in Sect. 6. Furthermore, in Sects. 7 and8,
we improve query plans by considering groupjoins for oper-
ator ordering and propose an eager aggregation strategy.
Section9 discusses the impact of our work on queries from
TPC-H, before we discuss related work in Sect. 10, and con-
clude in Sect. 11.

2 Groupjoin for nested aggregates

Apart from better performance, the semantics of groupjoins
are useful to compute nested aggregates. Due to the versatile
subqueries in SQL, aggregates can appear in various places
of the query plan. To efficiently calculate such aggregates,
it is important to unnest and not evaluate them in nested-
loops [6,34,62]. However, decorrelated aggregates need a
careful implementation and are challenging for query plan-
ning.

2.1 Groupjoin

We define a groupjoin Γ [56] as an equi-join with separate
aggregates over its binary inputs grouped by the join key.

R Γ a1 = a2 : agg S := {r ◦ [gr : GR] ◦ [gs : GS] | r ∈ R,

GS = agg({s | s ∈ S ∧ r .a1 = s.a2}),
GR = agg({r | r ∈ R ∧ r .a1 = s.a2})}

Wefurther require thata1 → R, i.e., that the join condition
functionally determines R. With this definition, we compute
an equi-join between R and S on a key of R, and compute
aggregates separately over the matching tuples, which can
be beneficial since we can avoid duplicate tuples of R and
building a duplicate hash table.

The intuitive use-case for groupjoins is an optimization to
fuse a join and a group-by operator, given that the precon-
ditions shown in Fig. 2 are satisfied, and we can separately
evaluate the aggregates: 1© The join and aggregation keys
need to be equivalent, and 2© these keys are superkeys w.r.t.
functional dependencies of the left build side. In this case,
introducing a groupjoin is usually considered to be a net

123



Practical planning and execution of groupjoin and nested aggregates 1167

Fig. 2 Preconditions to introduce a groupjoin

Fig. 3 General unnesting: decorrelation of dependent subqueries con-
taining an aggregation can introduce a groupjoin

win [16,25] and can reduce the cost of those operators by up
to 50% by eliminating intermediate results.

2.2 Correlated subquery unnesting

The groupjoin also supports the challenging edge cases of
whole table aggregates in a correlated subquery. Consider
the correlated subquery from Sect. 1, where we calculate a
whole-table COUNT(*) on sales that is correlated with the
outer query’s customer. Conceptually, we need to calculate a
whole table aggregate for each customer, but ideally want to
introduce a more efficient join. However, using an outer join
is tricky, sincewe cannot directly translatewhole table aggre-
gates to the join result. A groupjoin can instead evaluate the
left and right sides separately, where a careful initialization
can produce equivalent results to whole table aggregates. For
the COUNT(*) example, we initialize empty groups (e.g.,
customerswith no sales) as zero, and increment itwithwhole-
table tuple counting logic1.

For the general case,we deliberately introduce a groupjoin
to separately calculate the aggregates of the correlated
subquery, filter unnecessary tuples, and avoid the COUNT
bug [62]. Figure3 shows this unnesting for two arbitrary
tablesR andS,with the dependent subquery-join on top and
a nested whole table aggregate Γ in the correlated right sub-
tree. Todecorrelate this aggregate,wefirst compute themagic
set � of relevant tuples for the correlated subquery [73]. To
compute the set, we eliminate any duplicates of the outer-
side join key with a group-by Γ and get the precise domain
D of potentially equivalent keys for which we need to cal-
culate the inner aggregate. With this condensed set of outer
keys, we satisfy both preconditions to introduce a groupjoin,

1 COUNT(*) has some edge cases that are trivial in a groupjoin, but
difficult in separate operators. See Sect. 3.3 for an extended discussion.

Fig. 4 Single threaded groupjoin Hash table. Aggregates from either
join side are materialized as hash table payload

which we use to keep the aggregation of the subquery side S
separate.

In the following, we parallelize groupjoins with on-the-fly
adaptive data segmentation into morsels and contention-
avoiding relational operators that allow dynamic work-
stealing.

3 Parallel execution of groupjoins

The parallel execution of common relational operators is
widely studied and efficient parallel join and aggregation
algorithms are used in many systems that can scale ana-
lytical workloads [14,38,63]. Groupjoins, which fuse join
with aggregation hash tables, promise a significant speedup
in comparison to separate operators and are necessary for
general unnesting. However, parallel execution of groupjoins
can be a bottleneck due to contention. While several publi-
cations have previously discussed groupjoins, they are now
well over a decade old and single-threaded [12,15,53].

Figure 4 shows a basic, single-threaded implementation of
a groupjoin, and its similarity to a regular hash join. In this
example, we use a hash table to store the hash table payload,
which includes the accumulators for the aggregates of both
sides. During the build phase, we initialize these as empty to
support the semantics of static (whole table) aggregation.

In contrast to joins, the probe phase of groupjoins is
not read-only, but needs synchronization of the aggregate
updates when using more than one thread. The shared state
of the aggregates poses a problem for parallel execution,
and we need synchronization, e.g., with fine-grained lock-
ing, to avoid data races. Unsurprisingly, the synchronization
overhead can quickly become a bottleneck, especially in the
presence of heavy-hitters [67]. While updating the aggre-
gates is generally a quick operation, and the critical section
only spans a couple of instructions, all threads will compete
for the same locks of the heavy-hitters. Even when eliding
this lock and updating the aggregates with lock-free atomic
instructions, memory contention, which is the root-cause for
this bottleneck, still remains a problem and causes subopti-
mal performance.

In the following, we propose three execution strategies
for groupjoins that avoid synchronization between threads.
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Fig. 5 Eager grouping. While the middle groupjoin eliminates the
second hash table, the schematic eager aggregation on the right can
additionally eliminate the result scan

For each implementation, we discuss, in which scenarios it
is an efficient implementation of a groupjoin. Based on these
insights, we propose a cost-based strategy in Sect. 3.5, to
choose the best physical plan, depending on the underlying
data distribution.

3.1 Eager right groupjoin

One well-known technique of aggregation queries is eager
aggregation [79]. A group-by can be pushed down, past a
join, to reduce the number of input tuples to the join. In
the general case, this needs an additional group-by after the
join, since the join might have a multiplying effect on the
aggregate tuples. In this section, we apply eager aggregation
to groupjoins:Whenwe can speculate that almost every tuple
finds a join partner, i.e., the relative-right selectivity σS is
close to 1, then eager aggregation will substantially reduce
the number of tuples that need to be processed by the join.

When eagerly aggregating in a groupjoin, we can exploit
several facts that allow making eager aggregation very
efficient: Precondition 2© (cf. Sect. 2.1) of the groupjoin
guarantees that the join and group key of the left-hand side
functionally determine the left tuples. In other words, the left
side does not contain duplicates and, thus, cannot have amul-
tiplying effect on the right aggregation. As sketched in Fig. 5,
we can exploit this fact by first eagerly executing the right
aggregation. If there are any aggregates on attributes of R,
duplicate keys in S have a multiplying effect that duplicates
the keys but do not change their value. We account for this
effect with a count(*) aggregate on S, which we apply
as multiplication factor of the unique tuples of R. In result,
we elide the final group-by that would be needed for general
eager aggregation as described by Yan and Larson [79], and
replace the result scan with a single hash table probe.

We eliminate the result scan, and improve the pipeline
behavior, by using the same precondition 2©. A group-by is
a full pipeline breaker [60], i.e., it materializes all incoming
tuples and scans the result when the last tuple was processed.
However, this flushes all data from CPU registers, or very
hot cache, which makes pipeline breakers expensive. Algo-
rithm 1 shows pseudocode to execute this operator, where
each loop represents one pipeline. In the first loop,we eagerly
aggregate the whole right side S into the aggregation hash

Algorithm 1 Example code generated to execute an eager
right groupjoin with inner-join semantics.

initialize memory of Γs

for each tuple s in S
aggregate s as as in hash table of Γs

for each tuple r in R
if r has match as in Γs # inner
groupjoin

ar := agg(r * as.count(*))
output: r ◦ ar ◦ as

table ΓS . The second loop probes with the left side R and
calculates the complete left aggregate in a single step with
the probe result. Afterwards, the loop still is not terminated,
but can continue its pipeline with any next operations, in this
case output.

In contrast to a lazily aggregated groupjoin, eager aggre-
gation requires no explicit synchronization through locks.
Our implementation reuses the implementation of regu-
lar aggregation, which first builds partitioned, thread-local
aggregation hash tables [42,46,69]. A second step exchanges
these partitions between threads andmerges them into a parti-
tioned global result hash table. Afterwards, the duplicate-free
left side can exclusively read its matches in the hash table,
which allows contention-free and full parallel execution.

While it can be executed very efficiently, eager aggrega-
tion is no one-size-fits-all solution. Depending on the relative
right selectivity of the join part, i.e., how many groups of
the right-hand side are not matched by the left, we might
calculate many unneeded aggregates. Therefore, we deem it
necessary to only use this eager aggregation, when a local
cost-model predicts it to be beneficial.

The following cost function models the eager right
groupjoin and closely follows the presented algorithm:

Ceager = |S| + |R S|

First, we build the eager hash aggregation in two passes over
the data,which touches every tuple of S twice: 2 |S|. Then,we
probe the hash table with the left-hand side |R|, and check
the matching tuples |R S|, for equality. In our cost func-
tion Ceager, we exclude the initial passes over each input side
|R| + |S|, which are required by any groupjoin implementa-
tion. Nevertheless, we include the result scanning phase of
pipeline breakers, to differentiate operator-fused pipelines
that do not need to materialize their result.

3.2 Memoizing groupjoin

Eagerly aggregating is very beneficial, when almost every
right tuple finds a join partner. The other extreme is also com-
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mon, i.e., thatmany tuples are filtered by the join. In this case,
we want to filter right-hand side tuples, before aggregating
them. In the following, we present a groupjoin implementa-
tion that builds filtered thread-local aggregates and efficiently
merges them to a groupjoin result.

The idea of this implementation is to optimistically use a
shared global aggregation hash table for aggregates with few
tuples, but aggregate heavy-hitters thread-locally. The global
hash table resembles the sketched single-threaded groupjoin
in Fig. 4, where we first build a join hash table with the left-
hand side R with additional space for the aggregates. For
synchronization, we use an atomic set-on-first-use thread-id
tag that assigns groups to the first thread that updates it. Addi-
tionally, when we probe the hash table with S, we memoize
the payload pointer to avoid a duplicate lookup.

Algorithm2Memoizing groupjoin probe pipelinewith own-
ership tagging.

1 Hashtable globalHt
2 // Omitted: Concurrent build of R hash
3 table
4 thread_local localHt, tid
5 for each tuple s in S
6 hash := hash(s.key)
7 *p := globalHt.probe(hash, s.key)
8 if p not found
9 continue

10 owner := p->tid.atomic_load(relaxed)
11 inPlace := owner == tid;
12 // Is uninitialized?
13 if owner == 0
14 inPlace = p->tid.CAS(owner, tid)
15 if inPlace
16 p->aggregate(s)
17 else
18 localHt[hash, p].aggregate(s)

The intent behind this hybrid synchronization strategy is to
avoid tiny thread-local groupswith very few tuples,while still
aggregating heavy-hitters thread-locally. With the thread-id
tags, singleton groups, and groups that are clustered on a
single thread, directly use the result hash table,which reduces
the size of local hash tables thatwould later need to bemerged
again. In effect, this reduces the partial aggregates to the
number of threads n, compared to n + 1 for full thread-local
preaggregation and merging into a global hash table.

Algorithm2showspseudocode for thedescribedgroupjoin
probe pipeline. The atomic operations here use a memory
model akin to the C++model [8]. For our optimistic synchro-
nization, we use a single atomic compare-and-swap (CAS),

which is the only operation that requires memory synchro-
nization. The low-cost relaxed read of the current tag in line
9 does not need synchronization and could read stale data.
For correctness, in the sense of being free of data races, this
read is not required. However, it is a vital optimization for
heavy-hitters, where the CAS synchronization would cause
memory contention. Instead, after the initial CAS, any heavy-
hitters will not take this branch again and all other operations
are either non-atomic or relaxed. In result, this thread-local
preaggregation is virtually contention free.Afterwards,when
all input data was either aggregated locally or globally, we
exchange the local partitions between threads.

In the thread-local aggregation, we reuse previously cal-
culated intermediates. The local hash table lookup reuses the
hash of the global hash table lookup, and, instead of com-
paring the full key for equality, we only check if the pointer
of the probe result from line 6 matches. We also store just
this pointer in the local tables, which we also use as a short-
cut for merging the aggregates. When all probes from R are
finished, we merge the thread-local groups by following this
memoized probe pointer, which reduces the number of cache
misses and avoids a second hash table lookup.

Compared to the eager right groupjoin, this memoiz-
ing approach favors small left sides with a selective join.
Expressed more formally for our cost model, we use a build
of the left hash table in two passes 2 |R|, probe once with
the entire right side |S|, before checking the matching tuples
|R S| for equality. Then, we use these to build thread-local
aggregates, before merging them into their memoized global
bucket, 2 |R S|. Since this variant of the groupjoin is a full
pipeline breaker, we additionally need to scan the entire |R|
hash table to start the next pipeline, while omitting unjoined
results. In sum, we arrive at the following cost function:

Cmemo = 2 |R| + 3 |R S|

3.3 Separating join and group-by

As laid out in Sect. 2, groupjoin has its own semantics that
is useful for whole-table aggregates of unnested queries. An
alternative to a dedicated operator would be to emulate this
behavior with reused join and group-by operators, which
reduces the implementation overhead, but might build dupli-
cate state in two hash tables.

This duplicate state was the reason that previous work [16,
25,56] considered a groupjoin as unconditionally advanta-
geous to a separate execution. However, a careful analysis of
the involved operations shows that there exist cases where a
groupjoin is more expensive than a separate inner join fol-
lowed by a group-by. The intuition behind this somewhat
counter-intuitive finding is that the groupjoin result set might
be bigger than that of a separate group-by. That is, when
the join is selective on the left build side R, then the join-
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Table 1 Static count semantics R S count(*)
subquery

count(S)
after

count(*)
before

(NULL, NULL) 1 0 1

(1, 1) 1 1 1

(2, NULL) 0 0 NULL

In separate operators count(*) aggregates might produce different results
Bold values are different results

reduced aggregate table will be significantly smaller than the
join table. In this case, it is cheaper to probe a separate join
table and build a densely populated aggregation table instead
of reusing the relatively sparse matches in the join table. In
the following, we show how a groupjoin can be rewritten as
a join and group-by, while still preserving the static aggre-
gation semantics to unnest arbitrary queries (cf. Sect. 2.2).

While for most groupjoins, the separation into a join and
group-by is trivial, the ungrouped whole table aggregations
that can appear in correlated subqueries require special care
to preserve their semantics, especially with NULL values [15,
74]. We call this special case a static groupjoin. Consider the
following example of a query that we process with such a
static groupjoin:

SELECT r.id, cnt FROM R r, (
SELECT COUNT(*) cnt
FROM S s
WHERE r.id IS s.r_id)

Our general unnesting resolves the correlated subquery
with a groupjoin. The following shows the resulting plan in
SQL-like syntax:

SELECT r.id, COUNT(S::*) FROM R r
STATIC LEFT GROUP JOIN S s
ON r.id IS s.r_id

The important distinction of the static groupjoin is
between empty inner tables and NULL values. Table 1
shows three cases, where the aggregated count differs: A
count(*) in a subquery counts any matching tuple, even
when its value is NULL. Executing an outer join R S, pro-
duces additional NULL values that need to be ignored by
a count of S tuples. However, with a separate aggregation
operator, a naïve count cannot distinguish between matches,
where NULL IS NULL and padded tuples that did not have
a join partner. Even evaluating the aggregates before the join
would still require coalescing of NULL aggregates. To exe-
cute the join before aggregating, we ensure the correctness
of the aggregates with a join marker that decides between
ignored and NULL tuples:

SELECT r.id, COUNT(s.joinMarker)
FROM R r LEFT OUTER JOIN (

SELECT *, TRUE AS joinMarker FROM S

) ON r.id = s.r_id
GROUP BY r.id

Rewriting such a groupjoin as LEFT JOIN is usually
not beneficial for performance, since it fixes the relative left
selectivity to one. On the other hand, most groupjoins do not
need an outer join, andmight be cheaper executed in separate
hash tables. For our cost model calculation, we first two-pass
build a 2 |R| hash table, then probewith |S| andmatch |R S|
right tuples. With the resulting tuples, we build a separate
aggregation table, again in two passes 2 |R S|, before we
scan the |R S| matched aggregation groups. The drawback
in comparison to the memoizing approach is that we do not
know the size of the aggregation state beforehand. Therefore,
we need to additionally check if the aggregate already exists,
and dynamically allocate and initialize memory on demand.
While this can reduce resource usage for unmatched keys in
R, the fine-grained allocations are more expensive per match
(|R S|) than a bulk operation for all keys. In our simplified
cost model, we express this as a fixed factor, which we mea-
sured empirically as c = 30% overhead. In total, we arrive
at the following cost function:

Csep = |R| + (3 + c) |R S| + |R S|

3.4 Using indexes for groupjoins

The previous execution strategies are designed to work over
arbitrary inputs. That means, we always need to build a data
structure to aggregate values during execution. For join pro-
cessing, one can often use indexes to access a base table
relation on one side of the join [72]. Using indexes to support
aggregations can also be beneficial when applied properly.

Some DBMSs already use index scans to filter and com-
pute group-by aggregates pipelined. Similarly, we can avoid
building a separate aggregation data structure and use the
index for a groupjoin implementation that aggregate the
group with little overhead. The idea here is similar to the
eager right groupjoins (cf. Sect. 3.1), where we probe the
right side aggregation hash table. However, for already exist-
ing indexes, we do not have matching aggregates, but need
to calculate them during the index probe. We can do this effi-
ciently, since the left side is duplicate free, and we visit all
elements of the right group during a regular index probe.
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Using indexes is especially fitting for groupjoins, since
we operate on a key of the left side. When we have a key and
join with a base relation, this usually means that there exists
a foreign key constraint with a corresponding index. Thus,
we likely already maintain matching indexes for groupjoins
and can use them for a more efficient execution.

Using already existing indexes for groupjoins has sev-
eral advantages: By using the index to find matching join
partners, we avoid accessing unrelated tuples, e.g., when the
relative right selectivity σs is very low. Also, we need a min-
imal amount of working memory, since we only keep the
aggregation state for the current index probe. As a conse-
quence, e.g., when we calculate a single sum, we can keep
the aggregate in a dedicated CPU register and get excellent
performance.

Algorithm 3 Example code generated to execute an index
groupjoin with inner-join semantics.

for each tuple r in R
as := ∅

for each matching tuple s in S.index
:aggregate s in as

if at least one match: # inner
groupjoin

ar := agg(r * as.count(*))
output: r ◦ ar ◦ as

Algorithm 3 shows pseudocode to execute such an index
groupjoin. The outer loop represents the input pipeline, in
this case a table scan, but we can also operate on arbitrary
input tuples, e.g., from a join result. For each input tuple,
we initialize an empty aggregate as, before we probe the
index for matching tuples and combine them in this local
aggregate. After probing the index, we report the result to
the next operator, depending on if we had at least one join
partner, or if we need to report static (cf. Sect. 3.3) results.

In contrast to the methods presented in the previous sub-
sections, probing an index has some inherent limitations in
parallel execution. While we can probe the index in parallel
with multiple threads, scanning the matching tuples in the
index is harder to parallelize. This is especially problematic
for heavy hitters, e.g., when a single left tuple finds millions
of join partners on the right. Then, it is unattractive to aggre-
gate this heavy hitter single-threaded.

In this case, it is advantageous to split the equality
ranges into schedulable morsels and use multiple threads to
aggregate in thread-local storage. This, however, looses the
pipelining benefits of the index-based groupjoin operation
and effectively executes the groupjoin separately. Defending
against this case requires metadata in the index to detect the

presence of such heavy hitters. When this is the case, we fall
back to a separate execution as presented in Sect. 3.3.

The JCC-H [9] benchmark demonstrates these prob-
lems, where there are five populous orders that have very
many lineitems. When we groupjoin these orders with the
lineitem table, the index based execution is essentially single-
threaded, while the memoizing and eager right execution
execute on all available cores. In this scenario, the optimal
method additionally depends on the available cores of the
machine.

The cost calculation for this execution strategy differs
significantly from the other strategies. Since we choose a
different access path for the tuples of the right side S, the
decision to use an index is strongly dependent on the rel-
ative performance of accessing data linearly during a table
scan, or using the random-accesses of an index. This per-
formance depends on many factors: What kind of index do
we use? Traditional B-Trees [4,30], or in-memory optimized
indexes such as lock free hash indexes [20] or Adaptive
Radix Trees [48,50]. Additionally, the random-access per-
formance also depends on the physical storage of the base
table. For example, cloud-centric storage architectures using
large files [17] have large read amplification for random
lookups, and even storing tuples in main-memory optimized
compressed Data Blocks [44] introduces some overhead.

We, therefore, exclude index groupjoins from our regular
cost models. In our system Umbra, we instead use a two-
stage optimization, where we first decide if we use the index,
and if not choose one of the other execution strategies. In
Umbra, we use an empirically determined 10× overhead of
accessing tuples via an index join with a B-Tree index and
cached pages, compared to a full table scan.

When we have a suitable index and accessing it is cheaper
than the full table scan, index groupjoins have excellent per-
formance. In comparison to the other combined methods, we
can avoid scanning the full right table. In separate join and
group-by execution, we also use the index, but still break the
execution pipeline by building the aggregation hash table.
By avoiding this unnecessary hash table, index groupjoins
are about 33% faster than separate index joins.

3.5 Choosing a physical implementation

To recap, we presented four parallel execution strategies for
groupjoins. In Sect. 3.1, we presented an eagerly right aggre-
gating groupjoin, in Sect. 3.2 we used a combined join and
aggregation table withmemoizing thread-local aggregations.
Furthermore,we showed inSect. 3.3, thatwe can rewrite arbi-
trary groupjoins as separate join and group-by. Lastly, we
described how to use indexes for groupjoins in Sect. 3.4. All
four implementations have different characteristics, which
we formalized for the first three as a cost model to compare
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Table 2 Example cost
calculations of groupjoin
implementations

|R| |S| σR (%) σS (%) |R S| |R S| Ceager Cmemo Csep

100 200 80 80 80 160 280 680 708

100 200 80 10 80 20 280 260 246

100 100 100 10 100 10 200 230 233

100 500 100 5 100 25 600 275 283

Bold values mark the best value

their relative performance:

Ceager = |S| + |R S|
Cmemo = 2 |R| + 3|R S|
Csep = |R| + 3.3 |R S| + |R S|

The base of all three cost functions consists of the under-
lying cardinalities |R| and |S|, and the semijoin reduced
cardinalities |R S| = |R| σR and |R S| = |S| σS . In
Table 2 we go through some exemplary calculations of this
cost model. As the examples show, the different imple-
mentations have significant differences in the total cost of
execution, depending on how much a side is reduced with its
relative selectivity σ .

When considering Ceager, the differences are especially
pronounced.Cmemo andCsep are closer, sinceboth approaches
implement similar logic. Their largest difference is the static
vs. dynamic memory allocation to compute the aggregates.
Figure6 shows the allocated memory in Umbra during the
execution of a groupjoin with our three implementations. In
the shown case, every input tuple finds a join partner, thus we
need memory to store all tuples. Both fused approaches store
them in one hash table, either statically allocated up front
(memoizing), or dynamically during eager aggregation of
S. In contrast, separate execution allocates a smaller initial
hash table and dynamically builds the additional aggrega-
tion table. In this example, the fused storage uses about 1GB
peakmemory,while separate execution consumes about 50%
more. However, depending on how many distinct aggregates
we encounter (σR), the dynamic allocation of the separate
execution might also use less memory. In our cost model, we
encode this difference as the simplified 30% factor in Csep.
However, this factor depends on a few system characteris-
tics, e.g., the cost to dynamically allocate memory and the
momentary scarcity of it. Additionally, the number of aggre-
gates also influences the hash table payload sizes.

Like any cost-based optimization, this approach relies on
estimates of the underlying data. While this works well for
base tables and joins, the quality can deteriorate with nested
groupjoins and other aggregates.

Fig. 6 Memory consumption of TPC-H SF 10 orders - lineitem
groupjoins

Fig. 7 Performance of the index groupjoin on TPC-H SF 10 orders
- lineitem via the l_orderkey foreign key

4 Evaluation of groupjoins

In this chapter, we present the experimental evalua-
tion of the presented groupjoins in our research RDBMS
Umbra [61]. We start with a study of the behavior of par-
allel groupjoin execution in the TPC-H benchmark, and if
it corresponds to our presented cost model. As detailed in
Sect. 3, groupjoins are commonly used in unnesting, but we
also apply them when they can improve performance. For
this evaluation,we consider the groupjoins in thewell-known
analytical benchmark TPC-H, compare the performance of
our proposed implementations, and evaluate our cost model
therein.

Hypothesis For TPC-H, the selectivity and relative sizes do
not change when increasing the scale factor, thus our cost
model presented should stay consistent relative to each vari-
ant. Since all three proposed algorithms are virtually lock
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Fig. 8 Comparison of fastest and cost model recommended implemen-
tation for a TPC-H orders - lineitem groupjoin

and contention free, we expect no relative changes between
algorithms under varying parallelism or data size.

Setup of performance measurements We run all bench-
marks on a NUMA system with 2× Intel Xeon E5-2660v2
CPU with 10 cores each, 2× hyper-threads, and 256GB
RAM. Tomeasure performancewith warm caches, we repeat
the executions 20 times and report the median value. The
typical run-to-run median absolute deviation for this setup is
1%.

In a first experiment, we evaluate the performance of our
different groupjoin implementations under a varying right
selectivity σs. Figure7 shows the execution time of our dif-
ferent groupjoin implementations. In this experiment, we
groupjoin the TPC-H orders and lineitem tables with a for-
eign key index on l_orderkey, which we use either in
an index join or an index groupjoin. In a direct comparison,
index groupjoins are strictly better than building a separate
aggregation hash table when σs is small. However unsur-
prisingly, when we join with more tuples of lineitem, the
memoizing and eager right approaches can be faster. Index
groupjoins are faster for a right selectivity of up to σs = 15%.
Compared to this, Umbra’s 10× heuristic is rather conserva-
tive.

In the second experiment, we validate the quality of our
cost model recommendations. This experiment compares the
predicted cheapest to the actually measured fastest imple-
mentation. The setup is a micro benchmark on the TPC-H
SF 10 data set with the same, single orders-lineitem
groupjoin. To test the whole σR and σS parameter space, we
prefilter each of the tables in 1% increments via the primary
key. Figure8 shows the 10,000 combinations, and plots the
measured fastest implementations in the left plot, in compar-
ison to the cost model recommended ones on the right.

This experiment shows that our prediction is a good indi-
cator of the actual fastest performance. As expected from the
costmodel, themost impactful decision is whetherwe should
aggregate eagerly. Our cost model recommends this for the
upper two-thirds of the σS range, while the measurements
indicate that the break-even point is already a bit lower. How-

Fig. 9 Peak memory usage for a TPC-H orders - lineitem
groupjoin

ever, at this border themethods only haveminor performance
differences. To quantify this,we pairwise compare the perfor-
mance of the measured fastest method with the, sometimes
slower, cost model recommendation. Using the recommen-
dations results in a mean absolute percentage error of only
1.7% over the best performance and a maximum absolute
percentage error of 95%.

However, thememoizing and separate execution strategies
are generally closer in their measured runtime performance.
We attribute this mostly to the optimized dynamic memory
allocation in Umbra [22], since the peak memory usage dif-
fers much more. To quantify this, we measure the maximum
amount of memory used to execute the groupjoin under a
varying left selectivity σS in Fig. 9.

In the next experiment, we limit the amount of parallelism
and observe the query performance with a fixed groupjoin
algorithm, and fixed TPC-H scale factor 10. The third exper-
iment uses all threads, but varies the scale factor. Note
that Umbra was already a system with state-of-the-art per-
formance, even without our contributions. As baseline for
TPC-H, the speedup of Umbra over MonetDB [11] is about
3.2× and about 101× over PostgreSQL [76].

Cost model We first go through the cost model calcula-
tions for groupjoins in TPC-H, before evaluating if themodel
accurately predicts the performance of these queries. For this
evaluation, we look at a total of four TPC-H queries using a
groupjoin: Q3 is an organically occurring groupjoin, where
we first join and then group-by the same key. Q13 has a
similar groupjoin sequence, albeit in a nested query itself.
In contrast, the groupjoins in Q17 and Q18 are the result of
unnesting. We also provide an interactive query plan viewer
for these queries online.2

The costmodel calculations for these joins in Table 3 show
our predicted relative performance for these queries. Q3 has
high selectivity of the right-hand side, which favors the lazily
aggregating variants, and a moderate relative left selectivity,
which puts separate processing at an advantage. When we
look at Q13, the join is very unselective on the right side,

2 https://umbra-db.com/interface/.
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Table 3 TPC-H Groupjoins. Cost model calculations with four TPC-H
groupjoin queries on scale factor 1

Q |R| |S| σR (%) σS (%) Ceager Cmemo Csep

3 147k 3.24M 54 6.8 3.32M 956k 954k

13 150k 1.48M 63 100 1.58M 4.75M 5.14M

17 204 6.00M 100 0.10 6.00M 19.0k 20.9k

18 57 6.00M 100 0.84 6.00M 152k 167k

Bold values mark the best value

Fig. 10 Parallel scale-out of TPC-H SF10 groupjoin queries

which puts eager right aggregation at a clear advantage. Both
unnested queries Q17 and Q18 only compute the groupjoin
on a small and highly selective left side,which puts the hybrid
memoizing groupjoin at a slight advantage.

In the following, we run two experiments of our algo-
rithms under a varying parallelism and data scale to validate
these claims and to show that the cost model calculations are
robust under these parameters. In contrast to the cost calcu-
lations from Table 3, which only include the variable costs
of the groupjoin implementation, our benchmarks measure
the throughput of the whole query.

Figure 10 shows the relative performance of the different
groupjoin implementations with increasing parallelism. We
observe that, as expected, the relative performance between
the algorithms stays the same. All three implementations
show a linear speedup when increasing the parallelism, with
a tamping down speedup on hyper-threads.

In Fig. 11, we vary the amount of processed data via the
scale factor and see a similar picture. Again, the relative per-
formance stays unchanged and, apart from some effectswhen
exceeding cache sizes, the overall throughput stays relatively
constant. All in all, our cost model has proven to be robust in

Fig. 11 Data size scale-out of groupjoins in TPC-H

regard to variable system parameters, and accurately predicts
the most efficient groupjoin implementation.

Overall, eager aggregation can bring over 2× improve-
ment inQ13, but is over an order ofmagnitude slower inQ17.
The other implementations are much closer to one another,
mostly becausewe build the hash tablewith the duplicate free
left side, which is orders of magnitude smaller than the right
side. In comparison to processing the large right side, build-
ing the relatively small left hash table has only a minuscule
impact on the overall query. Nevertheless, a proper model
will find the best execution plan and significantly improve
the efficiency.

Over the four queries in TPC-H that use a groupjoin,
our cost model based approach achieves a geometric mean
speedup of 20% over a baseline that executes join and group-
by separately.Wealso ran a similar experiment overTPC-DS,
where we see similar results: A total of 13 queries can use a
groupjoin, with a geometric mean speedup of 5%.

5 Aggregate estimates

Good estimates for computed columns in nested aggregates
are one of themissing links in cost-based query optimization.
Cardinality and selectivity estimations for base table columns
are well-known, and despite some problems, work quite well
in practice [47,63]. While statistics on singular columns fail
to capture correlations, histograms, samples, and sketches
provide a solid baseline, and recently developed techniques
using machine-learning work towards multi-column esti-
mates [23,41]. However, estimates for computed columns

123



Practical planning and execution of groupjoin and nested aggregates 1175

(a) (b)

Fig. 12 Possible query plans for TPC-H Query 18. Depending on the
σ filter selectivity, we use the customer relation as hash-join build or
probe side, which roughly leads to a 10% difference in performance

such as aggregates are rarely used, which results in poor
cost-model calculations, and suboptimal query plans.

We propose to extend existing approaches that work on
base table columns by calculating statistics, which allow
deducing computed column estimates. Our approach uses
a lightweight statistical model that can be piggybacked onto
regular sampling or histogram-based statistics. The key idea
is to fit a skew-normal distribution to the underlying data
using a method of moments estimator, which can be cheaply
maintained on base tables, as well as for computations
throughout the query tree. With this fitted distribution, we
then efficiently estimate the selectivity of predicates on com-
puted columns, and the resulting cardinality.

Surprisingly few systems consider the results of com-
puted columns in cardinality estimation, which is rather
surprising considering this is a part of standard SQL, which
even has a dedicated HAVING syntax. After unnesting or
in nested analytical views, it is common to have aggregates
and predicates on aggregates embedded in lower parts of
the algebra tree, where the resulting cardinality has conse-
quences for the quality of query plans.One example isTPC-H
Q18 shown in Fig. 12, with the nested predicate HAVING
SUM(l_quantity) > 300. The estimated selectivity
for the filter σ in the green pipeline has significant impact
on the query performance. Depending on the selectivity, the
optimal query plan is either, a) when the predicate is very
selective, or b) if it is not.

In the figure, we use the convention to build the join hash
tables with the left and probe with the right side. For Q18,
all data sources except the aggregate result are unfiltered
base tables, where cardinality estimation is trivial. The chal-
lenging part for cardinality estimation is the join with the
customer table �, which is marked with an asterisk. Since
building a hash table is more expensive than probing it, we
estimate which side is smaller. In Q18, we estimate if the σ
filter condition produces less tuples than the entire customer
table. The base table cardinalities differ by an order of mag-
nitude (150k customers and 1.6M distinct orders for scale
factor 1), so simple heuristics most likely mispredict these
cardinalities. In preliminary experiments, this misprediction

has roughly a 10% performance penalty for the whole query.
To avoid this and get closer to the real selectivity of .003%,
we need robust estimation of computed columns.

In the following, we present our novel computed column
estimator, based on the method of moments for skew-normal
distributions [66]. In result, we get orders of magnitude bet-
ter estimates for filters on computed columns and in turn
generate better query plans.

5.1 Skew normal distribution

Our key insight is that HAVING predicates are mostly on
computed values based on columns of “natural” numerical
quantities, e.g., price, balance, counts, ratings, durations, etc.
In contrast to predicates on keys or identifiers, they are rarely
compared for equality, but more commonly with range pred-
icates, e.g., ≤ or BETWEEN. In the following, we propose an
estimation model for computed columns that roughly follow
a normal distribution, i.e., most values center around a mean,
with relatively few outliers from that mean. Additionally, we
model a limited amount of skewness in the underlying data
to break the inherent symmetry of a pure Gaussian normal
distribution. The resulting selectivity estimation framework
then handles a wide variety of computed columns.

The centerpiece of our estimation framework is the skew-
normal distribution, as proposed by Azzalini [1], which
combines the normality assumption with a better fit for
skewed distributions. For our estimation framework, the
skew-normal is a good trade-off for a reasonably robust,
yet computationally simple statistical model. The skew-
normal sn(ξ, ω, α) is closely related to the normal distri-
bution N (μ, σ 2), with an additional shape parameter α,
that allows some asymmetry as skew. With the special case
sn(μ, σ, 0) ∼ N (μ, σ 2), the skew-normal represents a
superset of the normal distribution.

To reason about computed columns, we first discuss how
to fit the distribution to existing columns, before defining
transformations that describe the calculation of newcolumns.
For the base table fit, we use the method of moments as pro-
posed by Pewsey [66], which uses the observed moments
of a random sample. For our approach, we piggyback this
calculation of the moments, in the form of descriptive statis-
tics, onto regular table samples. To calculate these, we take a
sample X of size n of each numerical column and calculate
the statistics as follows:

Mean: x̄ =
∑

X

n

Standard deviation: σ̄ =
√∑

X2

n
− x̄2

Skewness: γ̄ =
∑

X3

n − 3x̄
∑

X2

n + 2x̄3

σ̄ 3
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Fig. 13 Skew-normal fit. Histograms of several data sets, ranging from uniform synthetic to skewed real-world data sets. The overlayed red
distribution is a fitted skew-normal distribution

Then, we transform the observed moments to the param-
eters of the skew-normal sn(ξ, ω, α), as described by Azza-
lini.

ξ = x̄ − ω · m

ω =
√

σ̄ 2

1 − m2

α = δ√
1 − δ2

where

δ = √
π/2 · m

m = n√
1 + n2

n = ± 3

√
2|γ̄ |
4 − π

In Umbra, we default to a sample size of 1024 values,
which we keep up-to-date using reservoir sampling [7]. Our
sampling process also incrementally updates the observed
moments, which means that we can keep online statistics
that always track the up-to-date state of the database.

Figure 13 shows the calculated skew-normal fit over four
data sets. The two left distributions are both generated,
i.e., uniform random data from TPC-H and a sample of a
moderately skewed Zipf distribution [31]. Both distributions
on the right are from real-world data sets: Steam App statis-
tics Metacritic ratings [65] and IMDb movie ratings [49].
The figure shows the underlying data as gray histogram in
the top row, and the empirical distribution function in the
bottom row. Overlayed in red, we plot the PDF and the CDF,
of our inferred skew-normal model.

Arguably, this method leads to a good fit of the underlying
data. However, the synthetic data also pinpoints a funda-
mental limit of this approach. The skew-normal is unable
to accurately capture the “squareness” of the uniform ran-
dom data with its heavy tails, respectively “peakiness” of left
edge of the Zipf distribution.More formally, the skew normal
cannot fit the kurtosis—the fourth statisticalmoment. In addi-
tion, it can only fit a limited skewness within its parameter

space (γmax =
√
2(4−π)

(π−2)3/2
≈ 0.9953 for α → ∞ [2]). Ideally,

we would detect these edge cases and switch to a better fit-
ting distribution using a hyperparameter model. While such
a more advanced model would probably produce a better fit,
the trade-off we take here has little overhead, while still fit-
ting a CDF that produces a relatively low error for selectivity
estimates of predicates.

This resulting statistical distribution sn(ξ, ω, α) has sev-
eral applications for our estimations. Themain use-case is the
estimation of≤ predicates, like the one in TPC-HQ18,which
follows naturally from the CDF Φsn of the skew-normal:

Pr[x ≤ c] = Φsn(c)

Estimating equality is only possible indirectly, since the
probability distribution is continuous. As approximation,
we evaluate a range predicate BETWEEN ± ε with default
ε = 0.5 to get a bucket sized for one integer.

5.2 Transformations on the skew normal

To reason about computed columns,wefirst define arithmetic
transformations on our statistics. Given two skew normal
input distributions, we model binary arithmetic expressions
to estimate predicates on computed columns. As an example,
consider the following condition on an analytical query that
filters for orders exceeding the customer’s current balance:

... WHERE
part.price * ord.quantity > cust.
balance

We estimate the resulting distribution of such algebraic
expressions using ◦ ∈ {+,−, ∗, /}with our statisticalmodel.
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Fig. 14 Skew-normal fit of aggregates. The first column shows three different distributions of base column and group size. The next three columns
compare simulated aggregates with a calculated fit of our skew-normal estimator

We piecewise transform the input moments, before fitting a
skew-normal distribution for the resulting computed column:

μx◦y = μx ◦ μy

σ 2
x◦y = E[(x ◦ y)2] − μ2

x◦y
γx◦y = σ−3

x◦y(E[(x ◦ y)3] − 3μx◦yσ 2
x◦y − μ3

x◦y)

5.3 Aggregate estimation

We extend these statistical building blocks on binary expres-
sions to reason about the statistical distributions of aggre-
gated n-ary columns. Staying with a similar example as
previously, consider a query that builds an analysis on the
biggest customers that have at least a revenue of one million:

... GROUP BY cust.id HAVING
SUM(part.price * ord.quantity) >
1000000

In the following, we go over the standard SQL aggregate
functions, i.e., AVG, COUNT, MAX, MIN, and SUM, and dis-
cuss our estimates for these. Figure14 shows three examples
of differently skewed input columns X in green. We model
the group sizes of these aggregates as i.i.d. random variables
within the domain of the estimated distinct values of the
grouping key [28]. This results in a binomial distribution
of group sizes, which we again approximate using a skew-
normal distribution, plotted in blue. For COUNT aggregates,
this already estimates the result distribution. AVG aggregates
are similarly independent of the group size and follow the
same distribution as the input of the aggregation function.

More interesting are SUM aggregates, shown in the second
column, which depend on both input statistical distributions:

The distribution of the summed-up column, and that of the
group size. We approximate the resulting computed column
by a multiplication via the previously discussed transforma-
tions, and plot the resulting calculated estimate in red. To
cross-validate the fit of this model, we simulate the calcula-
tion of the aggregates and plot a histogram of the resulting
data in gray. For MIN and MAX aggregates, as displayed in
the following two columns, we additionally need to consider
their extreme value property, which wemodel with a Gumbel
extreme value distribution G [19]. Since the distributions of
maximum and minimum are symmetrical, we only detail the
MAX case here, but MIN behaves similarly with flipped signs.

Let X be a skew-normal distributed random variable with
inverseCDFquantile functionΦ−1

sn . Thenwe use the theorem
of Fisher-Tippet and Gnedenko [19] to find parameters for
the extreme value distribution G(μ, σ ):

μ = Φ−1
sn

(

1 − 1

n

)

σ = Φ−1
sn

(

1 − 1

n
e−1

)

− μ

Then, we fit a skew-normal distribution to G(μ, σ ) to make
our model closed. The resulting models provide insight on
the expected distribution of such computed columns. For our
query optimization pipeline, this means that we can provide
accurate input for subsequent cost-based join-ordering.Good
estimates, in combination with low-contention parallel exe-
cution, then produce near-optimal query plans.

123



1178 P. Fent et al.

Fig. 15 Estimates for TPC-H Q18 style subqueries

6 Evaluation of estimates

In this chapter, we present the experimental evaluation of the
quality of our aggregate estimations in our research RDBMS
Umbra [61]. We determine how much impact improved
aggregate estimates have with a comparison of the esti-
mated cardinalities for predicates on aggregated columns.We
compare our implementation to three other RDBMS, before
isolating the effect of aggregate estimation.

In TPC-H, the only query with a nested aggregation is
the Large Volume Customer Query Q18, with a fairly sim-
ple HAVING predicate. To focus on the quality of aggregate
estimates, we only consider its subquery in this experiment:

SELECT l_orderkey
FROM lineitem
GROUP BY l_orderkey
HAVING SUM(l_quantity) > THRESHOLD

The subquery sums the quantity of items in an order and only
selects the orderswith themost numerous items.Asdescribed
in the TPC-H specification, the threshold over which an order
is considered large is a substitution parameter. In our exper-
iment, we extend the range of this parameter to vary the
predicate selectivity from0%to100%andalso considermore
challenging expressions.

Systems comparison In the first part of our evalua-
tion of aggregate estimates, we consider a total of four
database management systems: Tableau Hyper via its Python
API 0.0.15145,DBMSX, PostgreSQL14.4, and our research
systemUmbra [61]. To get accurate cardinality estimates, we
load the TPC-H scale factor 1 validation data into an empty
database. Then, we ensure that theDBMShas accurate statis-
tics over this data by issuing control commands to regenerate
statistics, if such commands exist.Afterwards,we execute the
subquery with the substituted constant and extract the query
plan. For this evaluation,we record the estimated, and the true
cardinality in four different scenarios that are similar to the
subquery ofTPC-HQ18. First the regularQ18 aggregate over
the uniform random base column sum(quantity), and
with a skewed Zipf 0.5 quantity. As a slightly more complex

aggregate, we use sum(quantity * price), again on
the uniform random base columns, and with an additional
anti-correlation (ρ = −0.7) between quantity and price (i.e.,
the higher the price, the lower the quantity). Note, that all
these scenarios depend on group-size estimates, which we
do not consider in the scope of our work, but refer to previ-
ous work [28].

Figure 15 shows this data, where the ground truth cardi-
nality describes a decreasing curve that corresponds to higher
thresholds. Our presented estimation framework in Umbra is
close to the ground truth over the whole range of the thresh-
old, even for complex predicates. In the simple scenarios
with aggregates over a single column, DBMS X behaves
similar. However, it does not publicly describe or document
the underlying model. In addition, it falls back to estimating
“magic constants” for expressions referencingmore than one
base column. That means, when the selectivity for a predi-
cate cannot be determined, the systems just estimate a fixed
fraction of the estimated input cardinality. Indeed,Hyper esti-
mates 1/2 of its input estimate and PostgreSQL 1/3.

Isolating the impact of aggregate estimates We estab-
lished that our estimates capture the cardinality of HAVING
predicates. In the following, we isolate the impact of these
aggregate estimations, and increase the complexity of queries
and data sets. To eliminate other factors, we emulate the
selectivity estimation with a fixed selectivity inside Umbra.
This allows a more clear-cut evaluation of the impact of
Umbra’s skew-normal model on the estimation.

This evaluation uses queries on two real-world data sets. In
contrast to the generated TPC-H data, these are full of corre-
lations and non-uniform data distributions. The first data set
is the InternetMovieDatabase (IMDb), in a slightlymodified
form from the Join Order Benchmark (JOB)3: Since IMDb
primarily stores facts as strings, we extract a separate table
that contains the vote count and the user rating for movies,
to allow statistics collection. On these columns, we define
five additional aggregation queries that calculate statistics
on the new numerical columns. Furthermore, we also con-

3 https://homepages.cwi.nl/~boncz/job/imdb.tgz.
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Fig. 16 Estimation quality of aggregation queries. The box plots show
the log-scale q-error of our estimates in comparison to the static selec-
tivity of Hyper. Our skew-normal model reduces the geomean q-error
by 46% from 45.8 to 24.7

sider aggregation queries derived from public workbooks in
Tableau Public.4 The query set is available online.5

To measure the quality of the estimates, we report the q-
error. The q-error measures the factor that an estimate differs
from the ground truth. It captures the relative difference to the
real value and is symmetric and multiplicative. For example,
a q-error of one means that the estimate accurately captured
the true cardinality, and a q-error of 10 corresponds either an
over- or underestimation by a factor of 10.With a bounded q-
error, it is also possible to give a theoretical guarantee about
the optimal query plan quality [57].

In Fig. 16, we visualize the quality of our estimates from
over 100 individual queries with predicates on aggregates.
For the IMDb queries, we vary a replacement parameter of a
having predicate, similar to the last experiment, to cover the
whole range of 0 to 100% true selectivity. From the public BI
benchmark, we consider all queries that evaluate a predicate
on more than one aggregation tuple. In total, this gives us 82
IMDb aggregation queries and 48 aggregation queries from
the public BI benchmark. Each box in this plot shows the
median and the first and third quartiles, with individual dots
for outliers.

The quality of our estimates strongly depends on the calcu-
lated statistics. For Q35 to Q38, the estimates are close to the
true cardinality, with occasional outliers on the tail edges of
the distribution, i.e., when the predicate is very selective. Our
estimates, compared to a static selectivity estimation, capture
the shape of the aggregates better and reduce over- as well
as underestimation. Q34 shows one of the shortcomings of
our approach, where a sum aggregate combines two distri-
butions with heavy tails. In comparison to static selectivity
estimation, our skew-normal model improves the error, but is
limited by the quality of the baseline group size estimates.We
found that for static estimation, we get the least error with the

4 https://github.com/cwida/public_bi_benchmark.
5 https://db.in.tum.de/~fent/data/aggEst.tgz.

Fig. 17 Overall impact on TPC-H and TPC-DS

1/2 fraction that Hyper uses, which we compare in Fig. 16. In
comparison to this configuration, our skew-normal selectiv-
ity estimation is a clear advantage and reduces the geometric
mean of the q-errors from 45.8 to 24.7, which eliminates the
impact of bad selectivity estimation.

To summarize, computed column estimates improve the
estimation quality of nested aggregates. In combination with
efficient parallel groupjoins, this can have significant impact
on query performance. Figure17 shows a breakdown of
the affected queries in TPC-H and TPC-DS. Most queries
see a moderate speedup, with only one major slowdown in
TPC-DS Q73. The slowdown arises due to a worse logical
plan, where previous the magic-constant estimation had a
lucky guess and canceled out an unrelated error in group-
size estimation. Nevertheless, it is still valuable to improve
estimates so that they can capture the behavior of nested
aggregates. Over the affected queries, we get a geometric
mean speedup of 23% in TPC-H and 6% in TPC-DS.

7 Planning with groupjoins

Our previous discussions of the groupjoin focussed on the
implementation of an individual operator. By choosing an
optimal execution strategy, we get cheaper physical execu-
tionplans. In the following,weuse groupjoins to reason about
the whole logical query plan and improve its overall quality.

So far, we only considered strictly better plans by oppor-
tunistically introducing groupjoins when our join reorder-
ing [64] produces a suitable plan. Specifically, this requires
that the resulting plan resembles Fig. 18a, and contains
a sequence of matching group-by and join without inter-
mediary operators. Figure18b illustrates that this misses
opportunities for plans with nested aggregates. Thus, plan-
ning of groupjoins early on produces better and more robust
query plans. Instead of introducing groupjoins opportunis-
tically, we look for and eagerly introduce groupjoins for
nested aggregates. This improves the plan for this potential
groupjoin, and helps to find a better overall plan by provid-
ing reordering possibilities. We first show, how we eagerly
introduce groupjoins in our logical query plan, before we
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(a) (b)

Fig. 18 Physical planning of groupjoin operators depends on join order-
ing. A purely opportunistic approach misses non-trivial combinations

discuss two example queries from TPC-H that benefit from
this optimization.

7.1 Eagerly introducing groupjoins

For join ordering, we build a query graph that connects rela-
tions by join predicates. For the initial construction of this
graph, we consider any non-inner-joins as relations [68]. As
a consequence, group-by operations form boundaries of our
reordering graphs.

Algorithm 4 Identifying Groupjoins.

input: JoinGraph (relations, predicates)
for each GroupBy Γ ∈ relations:

ps <- predicates joining on Γ .key
// Precondition 1©
if ps does not cover Γ .key completely:

continue
R <- opposite relation(s) of ps
// Precondition 2©
if ps is not a superkey of R:

continue
push (R ps Γ .key) below Γ

We identify potential groupjoins in this graph via Algo-
rithm 4. The algorithm first identifies potential group-bys in
the input relations and checks the preconditions to introduce
a groupjoin, i.e., that we have a foreign key join with the
group-by key (cf. Sect. 2.1). However, we do not immedi-
ately introduce a groupjoin, but only push this join into the
group-by inputs. Swapping join and group-by allows opti-
mizing the input even further [78]. If the join is selective, we
might want to push it even further down. Keeping this con-
ceptual groupjoin separated allows our standard reordering
algorithm to determine the optimal plan. Otherwise, the join
will end up at the top of the subtree, and we choose a fitting
groupjoin according to our cost model (Sect. 3.5).

As a result, we get an improved intermediary plan with a
conceptual groupjoin. While this plan does not necessarily

Fig. 19 Intermediary planned groupjoin for TPC-H Q2

Fig. 20 Final plan for TPC-H Q2

result in the execution of a groupjoin, the resulting plan is
strictly better than the initial plan.

7.2 Additional groupjoins in TPC-H

In the following, we show that this eagerly introduction
of groupjoins also practically results in better plans. In
TPC-H, there are two queries with such groupjoins over
nested aggregates: Q2 and Q20.

TPC-H Q2 finds the minimum cost supplier for certain parts
using a dependent subquery. With basic decorrelation, we
calculate the minimum supply cost for all parts, before join-
ing with the specific parts. Figure19 shows a first execution
plan to evaluate this query. Note that we abbreviated the triv-
ial join between region and nation as the CTE “europe”.

In this plan, Algorithm 4 detects a groupjoin for the nested
aggregate of the join with part. Therefore, we conceptually
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Fig. 21 Groupjoin query plan for TPC-H Q20

introduce the groupjoin shown in Fig. 19. The overall utility
of physically executing this groupjoin is limited, but it acts
as a useful stepping stone during query planning. We then
push the join below the group-by and consider it during join
reordering in the lower subtree.

In a first approximation, this technique generates plans
that are somewhat similar to the common optimization tech-
niqueof introducing semi join reductions tofilter the partsupp
relation earlier [21,75]. However, since we directly join with
the interesting parts, we can avoid duplicating the work of
selecting the correct parts. Besides, in the final query plan
shown in Fig. 20, we do not build a hash table over the parts,
but use index joins, as the filtered part table is about three
orders of magnitude smaller than its join partner. Thus, we
can avoid the costly full table scan of the largest table in this
query, partsupp, which greatly improves its runtime.

TPC-H Q20 identifies suppliers that have an excess of parts,
that it determines via an aggregation over lineitem in a depen-
dent subquery. In this subquery, we join with the partsupp
relation, which we unnest initially as an outer join with the
aggregate. When we collect the join graph for this query,
Algorithm 4 detects that this is a groupjoin and pushes the
join with part and partsupp down the aggregation. Then,
we estimate the predicate on the nested aggregate using the
statisticalmethod presented in Sect. 5,which reduces the esti-
mation q-error from 2.4 with no statistics to 1.2. Then, our
join optimizer determines the optimal join order for the input
of the nested aggregate, where we join early with the parts
we are interested in. As a consequence, we execute the join
we identified as a groupjoin last and introduce a groupjoin
again, arriving at the plan shown in Fig. 21.

Impact In both queries, this technique aids the perfor-
mance of unnested aggregates. For correlated predicates in
an aggregate subquery, we transform these into a group-
by key and a join over this key. When this additionally is
a foreign key, our presented transformation of conceptu-
ally introducing groupjoins before reordering additionally

(a) (b) (c)

Fig. 22 Eager aggregation of TPC-DS Q22

improves these plans. Note, that this is not limited to auto-
matically decorrelated queries, but also if the query had been
flattened manually. In addition to the performance improve-
ment already shown in the Evaluation in Sect. 4 and 6, we
get additional speedups.While the two example queries from
TPC-H previously had no performance changes, the changes
in our query planner now result in a 67% speedup in Q2 and
a 35% speedup in Q20.

8 Eager aggregation

In Sect. 7.1 we have explored pushing a group-by below a
join in the context of groupjoins. In this section, we evaluate
eager aggregations in general, pushing group-by operators
further down a join tree. We propose a fast greedy approach
to eager aggregation with a near-optimality guarantee, that
results in significant speedups to 11 TPC-DS queries with
queries 2, 22, and 59 almost reaching a 3× speedup.

Pushing a group-by down a join reduces the amount of
tuples going into the join by eliminating duplicates. How-
ever, duplicates are uncommon, and eager aggregations can
be costly. Thus, an eager aggregation strategy needs to intel-
ligently identify the beneficial cases in a cost based manner.

Our eager aggregation builds on the fundamentals by Yan
andLarson [78]. Chaudhuri andShim [13] introduce a greedy
heuristic for introducing eager aggregation into a join tree,
however, their heuristic lacks strong guarantees on the cost of
the resulting plan.We introduce an improved greedy heuristic
that is guaranteed to generate plans that are optimal in cost up
to a constant factor. Eich et al. [25] incorporate eager aggre-
gations into existing dynamic programming approaches to
generate optimal plans, but their approach incurs an exponen-
tial increase in optimization time. Using our greedy heuristic,
near optimality can be achievedwithout sacrificing optimiza-
tion time. In the following we summarize the fundamentals
and discuss the integration of our approach into a modern
optimizer. We additionally describe a cardinality estimation
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(a) (b) (c) (d)

Fig. 23 Possible plans using the potential preaggregation placements

technique for pushed down group-by operators that allows
for more consistent and reliable estimations.

As motivating example, consider the query tree of the
TPC-DS Query 22 in Fig. 22a. This query first looks up the
inventories of a certain date range, before finding their cor-
responding items, and aggregating some business metrics.
However, in the endwe are only interested in results per item.
So, we are only interested in the aggregates on i_item_sk
that we need to execute the following join, but not any partic-
ular sale or date. This means that we can preaggregate before
the join with item and significantly reduce the costs of the
join. Figure22b shows the preaggreagted query tree. Note
that we first group on inv_date_sk=i_item_sk and
then group again on other attributes of item. As the newly
placed group-by and the join directly above have the same
hash table key we merge them into an eager groupjoin in
Fig. 22c (cf. Sect. 3.1). However, this groupjoin has the slight
twist that we relax Precondition 2© and allow duplicates,
since we aggregate them properly later.

With this strategy,wecan reduce the incoming tuples into a
join with an additional group-by, which we refer to as preag-
gregation Γ ∗. To generalize this example, we first discuss
when and how preaggregations can be placed to determine
the space of possibilities for eager aggregation. Then we
reduce this space to useful eager aggregations with a car-
dinality estimation strategy and a corresponding cost model.
This model lends itself to a greedy approach, which we use
to find near-optimal arrangements of eager aggregations.

8.1 Placement of preaggregation

There are almost no limits towherewe can apply eager aggre-
gation within a query [33]. We show this by first discussing
how to represent duplicates of tuples, and how eager aggre-
gation allows us to switch between these representations at
will. Then, we study an example of the steps that we take to
apply eager aggregationwhile guaranteeing that the resulting
query is equivalent to the original query.

Relational algebra, as extended by Grefen and de By [32],
works onmultisets (or bags) of tuples. Amultiset can contain
multiple entries of the same tuple, where we refer to the
amount of duplicates of a tuple as its multiplicity. Multisets
can be represented practically in two main ways:

1. All duplicates are stored and processed as separate
copies, i.e., the expanded representation. This repre-
sents tuple a with three duplicates and a singleton b as
{a, a, a, b}

2. Themultiplicity is storedwithin the tuple as an additional
attributem, i.e., the (strongly) aggregated representation.
We represent our example tuple as {a3, b1}, where the
superscript denotes the tuple’s multiplicity.

The expanded representation of multisets is widely used,
easy to implement, and performant. However, it results in
repeated work for duplicates, as the same computations
have to be performed for different copies of the same val-
ues. The aggregated representation allows us to eliminate
such inefficiencies, but is difficult to maintain. As different
operators are applied and the projection onto the required
attributes shrinks, duplicates can arise, unless tuples are con-
stantly re-aggregated after every operator. We define the
weakly aggregated representation, that has both the desir-
able qualities of the strongly aggregated representation, but
is easier to maintain. The weakly aggregated representation
may contain multiple entries of the same tuple with differ-
ent multiplicities. {a3, b1}, {a2, a1, b1}, {a1, a1, a1, b1} are
all valid weakly aggregated representations of {a3, b1}. The
multiplicity of a tuple a in a weakly aggregated representa-
tion is the sum of all the multiplicities of all the occurrences
of a.

Eager aggregation allows us to intelligently switch from
the expanded representation to the aggregated representa-
tion. To switch to the aggregated representation, we place a
preaggregation operator [45] which can also be interpreted as
a generalized projection [33]. Preaggregations should elimi-
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Fig. 24 Potential
preaggregation placements

nate as many duplicates as possible, i.e., aggregate together
as many tuples as possible, while guaranteeing that the query
result is correct. When placing a preaggregation, we trans-
form the data into the strongly aggregated representation,
then do small modifications above the preaggregation to effi-
ciently maintain a weakly aggregated representation. While
we use group-bys as our preaggregation operators, a partial
preaggregation operator [45] that produces tuples in weakly
aggregated representation may be used analogously. If the
query result, or a specific operator requires the expanded
representation as input, we can use an expand-operator [33]
to transform the data back to that representation.

Preaggregations canbe applied in any join tree. If the result
of that join tree is to be aggregated with a group-by, it is more
likely that preaggregations will be useful, as the existence of
the group-by in the query implies that there likely will be
duplicates in the join tree’s result. Thus, we will focus on
applying preaggregations below a group-by, or similarly, a
non-duplicate sensitive operator such as distinct, or the set
operations intersect, union, and except. In these cases, an
expand-operator is not even needed, as the result of the join
tree can be directly processed in the (weakly) aggregated
representation.

Consider the example join tree below a group-by shown
in Fig. 24. Suppose our optimizer determines that duplicates
are likely at points 1©, 2©, and 3© during the execution. Thus,
we want to place preaggregation operators there to eliminate
duplicates and speedup the execution.To simplify,we assume
that all aggregates of Γ̂ are decomposable [25], which is true
for our example with the avg function.

By introducing a preaggregation operator Γ ∗, we eagerly
aggregate the required attributes for Γ̂ in the subtree below
Γ ∗. All non-preaggregated attributes, e.g., Γ̂ ’s key and join
predicates, form the key of the preaggregation. When an
attribute is preaggregated, it is split into three operations:

1. Initial aggregation, which computes an aggregate on
attributes that have not been preaggregated.

2. Merge aggregation, which aggregates on preaggrega-
tions.

3. Finalization, computing an expression on aggregations.

For avg(v), the initial aggregation is s : sum(v), c :
count(v). In an intermediary step, we merge them: s :
sum(s), c : sum(c). We then calculate the final aggregate
as s

c . In Fig. 23a, we place a preaggregation at 3©, where it

calculates the initial aggregates,while Γ̂ merges andfinalizes
them. Figure23b shows an additional preaggregation placed
in between at 2©, whichmerges the aggregates from its input.

If we also preaggregate at 1©, we need to compute and
propagate the multiplicity with a count(∗) aggregate. The
top aggregate in Fig. 23c then uses this multiplicity for the
finalization of its duplicate sensitive aggregates, bymultiply-
ing their inputs with the multiplicity.

We refer to the correction of aggregates with a multiplic-
ity as a multiplication mapping, which we also utilize for
computing groupjoins in Sect. 3.1. We maintain a weakly
aggregated representation of the tuples by using these multi-
plications. Such a multiplication is needed when both sides
of a join are preaggregated. Aggregates of the left side are
multiplied with the multiplicity of the right side and aggre-
gates of the right side are multiplied with the multiplicity of
the left side. The multiplicities of both sides are multiplied,
resulting in the output multiplicity. Note that the multiplicity
for the empty side after an outer join is 1. A multiplication is
also required when only one side of a join is preaggregated,
but attributes from the other side will be later aggregated
above the join. Figure23d shows an example with all preag-
gragations applied. In summary:

– We first determine suitable aggregates of Γ̂ , and include
any free attributes in the preaggregation key.

– Then, we decompose the aggregates of Γ̂ , depending on
whether the input already is preaggregated.

– Lastly, we apply multiplication mappings to maintain
correct weakly aggregated representation.

For a detailed listing of decompositions for various aggre-
gates and eager aggregation transformations, we refer to the
works by Gupta et al. [33] and Eich et al. [25].

8.2 Cardinality estimation strategy for
preaggregation

To find the optimal plan, join order optimizers estimate the
cardinalities and costs of many plans, which means this pro-
cess should be both fast and accurate. As we want our join
optimizer to consider preaggregations as well, we need fast
and accurate estimations for preaggregation result cardinali-
ties. Additionally, we need our estimations to be consistent.
Comparing the costs of plans with preaggregations and with-
out should make sense.

To estimate the cardinality of preaggregation, one can
naïvely use the standard cardinality estimator of full group-
by. This approach has multiple issues. Firstly, the estimators
for a full group-by are generally more involved and slower
than the join size estimators used within an optimizer. Sec-
ondly, optimizers have issues meaningfully comparing join
and group-by estimations as estimators tend to underestimate
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joins and overestimate group-bys in many systems includ-
ing but not limited to Umbra [61] and PostgreSQL. This is
due to the contradictory way the independence assumption
is generally applied to these two operators. The cardinality
estimates of joins are usually based on the multiplication of
individual selectivities of predicates, resulting in underesti-
mations. The cardinality estimates of group-bys are usually
based on the multiplication of the domain sizes of the key
attributes, resulting in overestimations. These estimations
are often “corrected” with a variety of heuristics, which do
improve the results, but do not fundamentally change their
shortcomings.

We neither want to reuse group-by estimators nor intro-
duce a new cardinality estimator specifically for preaggre-
gations. Regardless of how accurate such an estimator is, it
will not be useful unless its estimations are sensibly compa-
rable with join size estimations. Thus, we propose a simple
strategy that relies on cardinality estimations of semi joins.

We know that |X aΓa(Y )| = |X aY | for two relations
X and Y . Thus, we want to pick an estimate for |Γa(Y )|
in such a way that the estimate of the upcoming join car-
dinality |X aΓa(Y )| would be the same as the estimate for
|X aY |. So, our estimate for |Γa(Y )| is the size of Y ′ such
that |X aY ′| = |X aY |. If we use simple estimators for join
and semi join based on (relative) selectivities, this results in
the equivalence |Γa(Y )| = σX

σ
, where σ is the selectivity and

σX is the relative left selectivity of the join. This estimate
fits well into a join optimizer that also considers preaggre-
gations, as it needs to compare the cardinalities of plans of
different join orderings and preaggregations. By using a com-
mon system to estimate both joins and preaggregations, we
avoid introducing inconsistent estimates, which would result
in the optimizer making subpar decisions.

We have shown our estimate for the case when preaggre-
gation and join share the same key. If the preaggregation’s
key contains additional attributes from base relations which
are not key sides of a key-foreign key join, these attributes
may cause the number of distinct groups to increase. Let us
consider the general case in the presence of multiple joins
and additional attributes.

R := the join tree of a subset of relations

J := upcoming joins of the form S R where S /∈ R
K := the key attributes of the preaggregation

A(R) := the attributes of a relation R

dv(Ri ) := Estimate for |ΓK∩A(Ri )(Ri )| for a relation Ri
using an existing group-by estimator

Then our estimate v for |Γ ∗(R)| is:

v =
∏

j∈J

σS( j)

σ ( j)

·
∏

Ri∈R

{
1, if Ri is key side of a j ∈ J
dv(Ri ), otherwise

8.3 Integrating eager aggregation into an optimizer

Eager aggregation can theoretically speed up queries signifi-
cantly, as there is no upper bound on the number of duplicates
in multiset relational algebra. However, in reality, a high per-
centage of joins are key-foreign key joins [24] which do
not produce any duplicates and prevent many eager aggrega-
tions, as any preaggregation within the key side of the join
needs to contain the key, which makes such a preaggrega-
tion useless. So we need an efficient intelligent optimizer
that can recognize when eager aggregations will be useful,
apply eager aggregation when needed for significant gains
in performance, and avoid them when they are not needed.
Additionally, with the placement of eager aggregations, the
optimal join orderings for a query can change as an eager
aggregation can significantly reduce the cardinalities of sub-
trees. This further indicates the need to deeply integrate eager
aggregations into a join optimizer.

Chaudhuri andShim [13] propose a conservative (constant
additional time per generated plan) and greedy (locally eval-
uated costs) optimization technique for eager aggregation.
This technique extends an existing optimizer with an addi-
tional step that places a preaggregation directly below a join,
if it locally improves the cost for that join. This is guaranteed
to globally improve costs, as placing a preaggregation only
decreases cardinalities and, thus, decreases costs above the
preaggregation. However, this technique does not guarantee
to generate optimally preaggregated plans. Instead, it only
improves the (imperfect) plans of the original optimizer that
does not consider preaggregations. Note that the best plan
without any preaggregation can have a significantly higher
cost than the optimal plan with preaggregations.

Let T ∗ be the globally optimal plan among all possible
plans with and without preaggregations. Let J ∗ be the best
planwithout any preaggregations. In theworst case, the over-
head denoted by C(J∗)

C(T ∗) can be on the order of O(nk) where
C(T ) is a cost function, relations have sizesO(n), and there
are O(k) relations. So J ∗ can have an exponentially higher
cost than T ∗. The plans generatedwithChaudhuri andShim’s
greedy technique is guaranteed to have a cost lower than J ∗.
However, this is a really high upper bound for queries where
eager aggregation may be extremely useful, such as queries
with multiple N-to-M joins. We propose a slightly different
conservative greedy technique which is guaranteed to gener-
ate plans with costs O(C(T ∗)), meaning that our technique
generates plans which are at most a constant factor larger
than the globally optimal plan.

We start with the optimal query plan T ∗ among all pos-
sible plans, including plans with preaggregations. We take
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Fig. 25 Four alternative plans considered by the optimizer. All costs
contain the cost of a preaggregation on the join

this plan T ∗ and place additional preaggregations after every
single join in a risk averse way. We call the new fully preag-
gregated plan f (T ∗). As T ∗ was optimal, placing these
preaggregations increased the cost of the plan. However,
as a preaggregation operator cannot produce more tuples
than it consumes, and assuming the cost of a preaggrega-
tion operator is linear in its input size, placing additional
preaggregations can only increase costs by a constant factor.
Thus, f (T ∗) is optimal up to a constant factor. This implies
that any fully preaggregated plan f (T ′) better than the fully
preaggregated optimal plan f (T ∗) is also optimal up to a
constant factor.

It is trivial to modify a join optimizer to find the best
fully preaggregated plan as the structure of fully preaggre-
gated plans are simple; every join is always followed by a
preaggregation. The optimizer should simply place a preag-
gregation on top of every (sub-)plan it evaluates. As we have
shown, such a plan is guaranteed to be optimal up to a con-
stant factor as it would have a lower cost than f (T ∗), the
fully preaggregated version of the optimal plan. However, a
plan with preaggregations everywhere is suboptimal. Thus,
we can use a greedy approach to remove preaggregations and
improve the generated plan even further. We iterate on every
join, bottom-up, and remove the preaggregation on the join’s
left and/or right, if this locally improves the cost for the sub-
tree including the preaggregation above this join. As we also
consider the preaggregation above the join, and as the preag-
gregation’s output size is not dependent on its input’s size,
this operation is guaranteed to reduce costs globally as well.
The four alternative plans that are considered are shown in
Fig. 25, where the join’s inputs are denoted by R and S. This
approach guarantees the cost upper bound O(C(T ∗)).

In our database system Umbra, we have integrated this
optimization strategy into the adaptive optimization frame-
work [64] which can compute optimal join plans for small
queries using DPHyp [55] and high quality plans for larger
queries using LinDP++ [68] and iterative DP [43]. With the
consideration of these 4 preaggregated alternatives when
building operator trees, the adaptive optimizer is able to
generate high quality plans with preaggregations for a wide
variety of query sizes.

Fig. 26 Overall impact of eager aggregation on TPC-DS

Note that our approach is equivalent to the Chaudhuri
and Shim [13] approach for a simple preaggregation cost
function that does not depend on the input size such as
Cbad(Γ

∗(T )) = O(|Γ ∗(T )|) + C(T ). Such a cost func-
tion is not desirable as it underestimates costs and results in
preaggregations being placed too eagerly. For example, in
TPC-DS SF10 Query 22 as shown in Fig. 22a, an additional
group-by above inventory is placed when Cbad is used.
This does improve the join with date_dim, but not enough
to be worth the group-by’s cost. Thus, we use a cost function
of the form C(Γ ∗(T )) = |T | + O(|Γ ∗(T )|) + C(T ).

A final optimization step after the generation of preaggre-
gation operators is to pull up these preaggregations into the
joins above when possible, thus generating eager groupjoins
instead of a join and a group-by. This final optimization step
can result in significant performance improvements as one
less pipeline needs to be generated and processed.

8.4 Evaluation of eager aggregation

We have evaluated our eager aggregation strategy on the
TPC-H and TPC-DS Benchmarks. Both these benchmarks
contain many join trees below group-bys. However, most
of their queries are not amenable to eager aggregation, as
most of the joins below group-bys are key-foreign key joins
which are unlikely to produce duplicates. Thus, the eager
aggregation strategy does not change the plans generated for
the TPC-H queries. However, eager aggregation results in
significant improvements to some queries in TPC-DS.

For TPC-DS SF 10, our optimizer places preaggregations
in 22 out of 103 queries with a geometric mean speedup of
around 20% for those 22 queries. Figure26 shows the relative
speedups of individual queries. Q2, Q22, and Q59 with eager
aggregation applied run more than 2.8 times as fast as their
non-eagerly aggregated counterparts.

The queries with the biggest wins have a costly top group-
by but simple preaggregations. Their group-bys contain
multiple attributes, some of them strings, and may require
additional processing for features such as ROLLUP. As join
predicates primarily use integer keys, preaggregations below
joins have integer keys as well. The costly attributes are func-
tionally dependent on the integer keys; thus, they can be
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Fig. 27 Query plan for TPC-H Q3

excluded from preaggregation keys.While our cost functions
do not consider the costs of processing individual attributes,
we tend to overestimate cardinalities of group-byswith larger
keys, causing the optimizer to prefer simpler preaggrega-
tions.

9 Groupjoins in detail

For a qualitative analysis on the impact of groupjoins, we
now take a detailed look at the queries in TPC-H that benefit
from using groupjoins. In the previous sections, we already
saw improved query plans. In this section, we focus on the
operator selection for physical execution. Choosing the right
physical execution strategy improves performance consider-
ably, but is still sensitive to imperfect cardinality estimates.

We visualize query plans in tree form and mark our code
generation pipelines with colored regions on its branches.
The lowest operator of a pipeline typically generates a loop
that drives the query execution. Intermediary operators then
execute the query logic, before the pipelines ends at a mate-
rialization point, e.g., building a join hash table. In our
interactive online query plan demonstration,6 we use the
same notation and provide additional details of intermedi-
ary optimization and cardinality estimation.

When edges between a base table and a join are not part
of a pipeline, i.e., not included in a colored region, we deter-
mined it advantageous to use an index to access the table.
We additionally mark all edges between operators with the
cardinality of tuples that are produced on the TPC-H scale
factor 10, which allows us to reason about the quality of our
produced plans.

TPC-H Q3 We execute this query with a groupjoin for
the top level aggregate. During optimizing of the group-by,
we determine the equivalence relation between l_orderkey
and o_orderkey through the join condition. Thus, we can
eliminate the functionally dependent keys o_orderdate and
o_shippriority, and, since we now join and aggregate over
the same key, we introduce a groupjoin.

6 https://umbra-db.com/interface/.

Fig. 28 Operator trace of TPC-H Q3

Figure 27 shows Umbra’s execution plan for this query.
In contrast to the cost model calculation in Table 3, our opti-
mizer chooses to execute a suboptimalmemoizing groupjoin.
This is mainly caused by a misestimation of the relative left
selectivity of the groupjoin. In this query, the filter predicates
on the lineitem and order dates are correlated, but Umbra’s
estimations do not consider correlations [41,49]. In turn, only
about a tenth of the groups in the memoizing hash table have
a match, which wastes relatively much space.

The execution of this query spends most time in the
groupjoin. Figure28 shows a trace of the operator activity
over the execution [5]. Note that to get a precise trace, we
gathered it on a recent Ice Lake system and limited paral-
lelism, so the total execution time is not comparable to our
previous evaluation. In the plot, the relative frequency, com-
bined with the execution time, indicates the cost of executing
operators. When focussing on the groupjoin, we observe its
presence in four phases. In its first phase, itworks in a pipeline
along the table scan of orders and the join with customer,
and collects tuples in kernel allocated memory. In the sec-
ond phase, it builds the hash table, before probing it with the
tuples of lineitem, and scanning the results to sort and output
them.

TPC-HQ13 Fig. 29 shows the physical execution plan of this
query. In it, we first calculate a nested aggregate, where we
count how many orders each customer has made. However,
we also want to consider customers that have no recorded
orders, so this query needs proper outer join semantics in
the groupjoin. Since we match all customers, an eager right
aggregation strategy is very advantageous.

After probing the eagerly built right aggregation hash table
with the customer keys, we continue with the next aggrega-
tion that calculates the histogram over the amount of orders.
This way, we directly aggregate the customers in one of the
few top level groups. This pipelining, as indicated by the
marked colors, keeps tuples hot and usually directly in CPU
registers. In effect, we execute this query with two small, hot
aggregation loops.
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Fig. 29 Query plan for TPC-H Q13

Fig. 30 Query plan for TPC-H Q17

TPC-H Q17 The query plan shown in Fig. 30, again benefits
from unnesting. While we do have a static whole subquery
aggregate avg(l_quantity), this aggregate does not
require a complex unnesting that would require all empty
aggregates of the domain. Instead, we directly use all parts
and join them with a groupjoin with “inner join” semantics.

Since we only have two predicates directly on the part
table, we have correct estimates, and we confidently know
that the qualifying parts are four orders of magnitude fewer
than lineitem.Thus,weuse the foreignkey indexon l_partkey
and calculate the groupjoin aggregate pipelined, and directly
continue with another probe of the same index. We then sum
up the price of the matching tuples in the top level, before
finally calculating the yearly average.

On a tangent, this still does some duplicate work, since
we probe lineitem twice and check the partkey equivalence
condition twice. As a theoretical improvement, one could
execute both, groupjoin and join, with a single index lookup
using the partkey. We could first calculate the aggregate for
this key, before resetting and scanning the current probe index
cursor again, this time checking the quantity predicate.

TPC-H Q18 This query has several interesting challenges.
As we already discussed in Sect. 5, estimating the having
predicate on the nested aggregate (sum> 300) is challenging.
Originally, we also had a semijoin with orders as the literal
translation of the IN expression. We transform it to an easier
to execute inner join in a subsequent optimization, since we
join over the key of the nested aggregate, which results in the
query plan shown in Fig. 31. For the top level aggregate, we
also use our knowledge of such functional dependencies of

Fig. 31 Query plan for TPC-H Q18

the key and drop the four functionally dependent keys, which
allows the combined groupjoin with lineitem.

For physical execution, the theoretically best approach
would be to use three index lookups for orders, customer, and
lineitem. However, our estimates are still too uncertain, and
we still estimate the left side relatively large.Umbra currently
does not use in-memory optimized indexes like ART [48],
but uses a more traditional disk-oriented B-tree index [4].
Since these index lookups are relatively expensive, we only
use them when they are definitively faster than a full table
scan. For the smaller tables, our current heuristics do not use
the index, but for the large groupjoin with lineitem using the
foreign key index is very advantageous.

Observations Similar to the improvements of Q2 and Q20
that we saw in Sect. 7.2, unnesting is again one of the key
techniques for Q17. Since we first calculate the tiny domain,
we can use a very efficient index lookup over lineitem to
calculate the groupjoin result.

Using index lookups to answer queries is often very prof-
itable, but one limiting factor for them are estimation errors.
For example, in Q18, we use a suboptimal query plan that
does not use the indexes of orders and customer due to our
low confidence in the estimation of the nested aggregate.
While our aggregate estimates from Sect. 5 already improve
these, we still estimate that several thousand sums qualify
the condition, and we only choose to use the index for the
largest join partner, lineitem.

Using the index for the groupjoin in Q17, results in a 6×
speedup for scale factor 10. In Q18, the shown query plan has
an 15% speedup compared to using a memoizing groupjoin.
If we estimate the having predicate accurately and correctly
identify that few tuples qualify, we would also use an index
for customer, however the performance impact is negligible.

The tracking and inference of functional dependencies is
another fundamental optimization for these queries. These
allow us to minimize the grouping keys to only the candi-
date key over which we join with another table. In TPC-DS,
we can use significantly fewer groupjoins, since the func-
tional dependencies are not directly included in the schema.
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Although theDS schemadefines primary keys, it additionally
defines so-called business keys, which we cannot represent
in the schema. Many aggregates then use the business keys,
where we miss the functional dependency to minimize the
keys and thus do not produce optimal execution plans.

10 Related work

Asoutlined in Sect. 2, ourwork relies onwell-knownwork on
query unnesting, which enables aggregates to be embedded
in the query tree [18,27,39,62]. Subquery unnesting to flat-
ten the query tree is well-known as one of the most important
aspects of query optimization [10,21]. Galindo-Legaria and
Joshi [29] describe the comprehensive optimization of aggre-
gation inMicrosoft SQLServer. They describe the reordering
of group-by and outer-join, where they use similar conditions
to our groupjoin preconditions (cf. Sect. 2.1) and also dis-
cuss the problems with COUNT in static (scalar) aggregation.
In contrast to our work on groupjoins, they keep join and
aggregation separate, where a pushed-down group-by will
still build a redundant hash table.

Bellamkonda et al. [6] describe the execution of corre-
lated subqueries with window operations in Oracle. Hölsch
et al. [35] use an extended formof relational algebra to reason
about nested queries and are able to expressmore transforma-
tion on aggregations. To incorporate unnested aggregations
in cost models, practical implementations, e.g., in DB2, use
statistical views [26]. However, each query needs a matching
view, which are relatively costly to create and maintain, and
are usually only created where missing statistics lead to very
poor plans.

In many real-world evaluations, join and aggregation are
big contributors to the overall workload [37,77]. Conse-
quently, there is a large body of related work that optimizes
hash joins [52,63,71] and hash aggregations [51,67,80].
Re-using hash partitions, and even whole hash tables is
a well-known optimization [18,36]. One often discussed
question is, if hash tables should be partitioned or non-
partitioned [3]. Our proposed approaches in Sect. 3 try to
use a non-partitioned hash table to avoid materializing data,
while using thread-local partitioning for heavy-hitters. Other
recent work on the interaction of multiple operators focused
onmemory access patterns to better utilize the available hard-
ware [16,54].We see this work as orthogonal, and these ideas
can work hand-in-hand with parallel groupjoin execution.

11 Conclusion

In this paper, we improved several aspects for an efficient
evaluation of joins and aggregates in a general-purpose rela-
tional database management system. We improve important

pieces of the query engine that previously have not worked
well with nested aggregates. First, we presented a low over-
head estimation of computed columns, which significantly
improves the estimates that we use to find better query plans
in the query optimizer. Our aggregate estimates result in a
near 50% reduction of estimation error, without any changes
to the underlying sampling method.

Furthermore, we improved the execution of groupjoins,
which commonly occur in nested and regular aggregation
queries. Our contention-free parallel and index-based execu-
tion allows them to be more universally applicable. We also
demonstrated where using a groupjoin is advantageous and
presented a simple, yet effective cost model to plan the best
execution strategy. With our improved groupjoin execution,
we achieve significant speedups in several TPC-H queries.

Building on our improvements to groupjoins, we pre-
sented an eager aggregation technique that significantly
improves execution plans with minimal regressions. It con-
sists of a simple cardinality estimation strategy, and a novel
greedy conservative optimization approach to introducing
preaggregation operators. When integrated into the adaptive
optimization framework, this technique introduces preaggre-
gations in 22 TPC-DS queries, resulting in approximately
20% geometric mean speedup with scale factor 10, with 3
queries reaching almost a 3× speedup.
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