
The VLDB Journal (2023) 32:689–715
https://doi.org/10.1007/s00778-022-00764-y

REGULAR PAPER

Robust and scalable content-and-structure indexing

Kevin Wellenzohn1 ·Michael H. Böhlen1 · Sven Helmer1 · Antoine Pietri2 · Stefano Zacchiroli3

Received: 21 February 2022 / Revised: 5 September 2022 / Accepted: 9 September 2022 / Published online: 15 October 2022
© The Author(s) 2022

Abstract
Frequent queries on semi-structured hierarchical data are Content-and-Structure (CAS) queries that filter data items based on
their location in the hierarchical structure and their value for some attribute.We propose the Robust and Scalable Content-and-
Structure (RSCAS) index to efficiently answer CAS queries on big semi-structured data. To get an index that is robust against
queries with varying selectivities, we introduce a novel dynamic interleaving that merges the path and value dimensions of
composite keys in a balanced manner. We store interleaved keys in our trie-based RSCAS index, which efficiently supports a
wide range of CAS queries, including queries with wildcards and descendant axes. We implement RSCAS as a log-structured
merge tree to scale it to data-intensive applications with a high insertion rate.We illustrate RSCAS’s robustness and scalability
by indexing data from the Software Heritage (SWH) archive, which is the world’s largest, publicly available source code
archive.

Keywords Indexing · Content and structure · Interleaving · Hierarchical data · Semi-structured data · XML · LSM trees

1 Introduction

A lot of the data in business and engineering applications is
semi-structured and inherently hierarchical. Typical exam-
ples are source code archives [2], bills of materials [9],
enterprise asset hierarchies [14], and enterprise resource
planning applications [15]. A common type of queries on
such data are content-and-structure (CAS) queries [25], con-
taining a value predicate on the content of an attribute and a
path predicate on the location of this attribute in the hierar-
chical structure.

B Sven Helmer
helmer@ifi.uzh.ch

Kevin Wellenzohn
wellenzohn@ifi.uzh.ch

Michael H. Böhlen
boehlen@ifi.uzh.ch

Antoine Pietri
antoine.pietri@inria.fr

Stefano Zacchiroli
stefano.zacchiroli@telecom-paris.fr

1 Department of Informatics, University of Zurich, Zurich,
Switzerland

2 Inria, Paris, France

3 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris,
France

CAS indexes are being used to support the efficient pro-
cessing of CAS queries. There are two important properties
that we look for in a CAS index: robustness and scalability.
Robustness means that a CAS index optimizes the average
query runtime over all possible queries. It ensures that an
index can efficiently deal with a wide range of CAS queries.
Many existing indexes are not robust since the performance
depends on the individual selectivities of its path and value
predicates. If either the path or value selectivity is high,
these indexes produce large intermediate results even if the
combined selectivity is low. This happens because existing
solutions either build separate indexes for, respectively, con-
tent and structure [25] or prioritize one dimension over the
other (i.e., content over structure or vice versa) [6,11,41].
Scalability means that even for large datasets an index can
be efficiently created and updated, and is not constrained by
the size of the available memory. Existing indexes are often
not scalable since they rely on in-memory data structures that
do not scale to large datasets. For instance, with the memory-
based CAS index [42] it is impossible to index datasets larger
than 100GB on a machine with 400GB main memory.

We propose RSCAS, a robust and scalable CAS index.
RSCAS’s robustness is rooted in awell-balanced integration
of the content and structure of the data in a single index. Its
scalability is due to log-structured merge (LSM) trees [32]
that combine an in-memory structure for fast insertions with

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00764-y&domain=pdf
http://orcid.org/0000-0002-9666-1932

690 K. Wellenzohn et al.

a series of read-only disk-based structures for fast sequential
reads and writes.

To achieve robustness, we propose to interleave the path
and value bytes of composite keys in a balanced manner. A
well-known technique to interleave composite keys is the
z-order curve [30,33], but applying the z-order curve to
paths and values is subtle. Often the query performance is
poor because of long common prefixes, varying key lengths,
different domain sizes, and data skew. The paths in a hier-
archical structure have, by their very nature, long common
prefixes, but the first byte following a longest common prefix
separates data items. We call such a byte a discriminative
byte and propose a dynamic interleaving that interleaves
the discriminative bytes of paths and values alternatingly.
This leads to a well-balanced partitioning of the data with a
robust query performance. We use the dynamic interleaving
to define the RSCAS index for semi-structured hierarchical
data. The RSCAS index is trie-based and efficiently supports
the basic search methods for CAS queries: range searches
and prefix searches. Range searches enable value predicates
that are expressed as a value range and prefix searches sup-
port path predicates that contain wildcards and descendant
axes. Crucially, tries in combination with dynamically inter-
leaved keys allow us to efficiently evaluate path and value
predicates simultaneously.

To scale the RSCAS index to large datasets and support
efficient insertions, we use LSM trees [32] that combine an
in-memoryRSCAS triewith a series of disk-resident RSCAS
tries whose size is doubling in each step. RSCAS currently
supports only insertions since our main use case, indexing an
append-only archive, does not require updates or deletes. The
in-memory trie is based on the Adaptive Radix Tree (ART)
[21], which is a memory-optimized trie structure that sup-
ports efficient insertions. Whenever the in-memory RSCAS
trie reaches its maximum capacity, we create a new disk-
based trie. Since disk-based RSCAS tries are immutable, we
store them compactly on disk and leave no gaps between
nodes. We develop a partitioning-based bulk-loading algo-
rithm that builds RSCAS on disk while, at the same time,
dynamically interleaving the keys. This algorithmworkswell
with limited memory but scales nicely with the amount of
memory to reduce the disk I/O during bulk-loading.

Main contributions:

– We develop a dynamic interleaving to interleave paths
and values in an alternating way using the concept of
discriminative bytes. We show how to compute this inter-
leaving by a hierarchical partitioning of the data. We
prove that our dynamic interleaving is robust against
varying selectivities (Sect. 5).

– We propose the trie-based Robust and Scalable Content-
and-Structure (RSCAS) index for semi-structured hierar-

chical data. Dynamically interleaved keys give RSCAS
its robustness. Its scalability is rooted in LSM trees that
combine a memory-optimized trie for fast in-place inser-
tions with a series of disk-optimized tries (Sect. 6).

– We propose efficient algorithms for querying, inserting,
bulk-loading, and merging RSCAS tries. A combination
of range and prefix searches is used to evaluate CAS
queries on the trie-based structure of RSCAS. Insertions
are performed on the in-memory trie using lazy restruc-
turing. Bulk-loading creates large disk-optimized tries in
the background. Merging is applied when the in-memory
trie overflows to combine it with a series of disk-resident
tries (Sect. 7).

– We conduct an experimental evaluation with three real-
world and one synthetic dataset. One of the real-
world datasets is Software Heritage (SWH) [2], the
world’s largest archive of publicly-available source code.
Our experiments show that RSCAS delivers robust
query performance with up to two orders of magnitude
improvements over existing approaches, while offer-
ing comparable bulk-loading and insertion performance
(Sect. 8).

2 Application scenario

As a practical use case, we deploy a large-scale CAS index
for Software Heritage (SWH) [13], the largest public archive
of software source code and its development history.1

At its core, Software Heritage archives version control
systems (VCSs), storing all recorded source code artifacts
in a giant, globally deduplicated Merkle structure [27] that
stores elements from many different VCSs using crypto-
graphic hashes as keys. VCSs record the evolution of source
code trees over time, an aspect that is reflected in the data
model of Software Heritage [34]. The data model supports
the archiving of artifacts, such as file blobs (byte sequences,
corresponding to tree leaves), source code directories (inner
nodes, pointing to sub-directories and files, giving them
local path names), commits (called revisions in this context),
releases (commits annotated with memorable names such as
“1.0”), and VCS repository snapshots. Nodes in the data
model are associated with properties that are relevant for
querying. Examples of node properties are: cryptographic
node identifiers, as well as commit and releasemetadata such
as authors, log messages, timestamps, etc.

Revisions are a key piece of software development work-
flows. Each of them, except the very first one in a given

1 As of 2021-11-08, the Software Heritage archive contains more than
11 billion source code files and 2 billion commits, coming from more
than 160 million public software projects. The archive can be browsed
at: https://archive.softwareheritage.org/.

123

https://archive.softwareheritage.org/

Robust and scalable content-and-structure indexing 691

repository, is connected to the previous “parent” revision, or
possibly multiple parents in case of merge commits. These
connections allow the computation of the popular diff rep-
resentations of commits that show how and which files have
been changed in any given revision.

Several aspects make Software Heritage a relevant and
challenging use case for CAS indexing. First, the size of
the archive is significant: at the time of writing, the archive
consists of about 20 billion nodes (total file size is about
1 PiB, but we will not index within files, so this measure
is less relevant). Second, the archive grows constantly by
continuously crawling public data sources such as collabo-
rative development platforms (e.g., GitHub, GitLab), Linux
distributions (e.g., Debian, NixOS), and package manager
repositories (e.g., PyPI, NPM). The archive growth ratio is
also very significant: the amount of archived source code
artifacts grows exponentially over time, doubling every 2
to 3 years [37], which calls for an incremental indexing
approach to avoid indexing lag. For instance, during 2020
alone the archive has ingested about 600 million new revi-
sions and 3 billion newfile blobs (i.e., file contents never seen
before).

Last but not least, short of the CAS queries proposed in
this paper, the current querying capabilities for the archive
are quite limited. Entire software repositories can be looked
up by full-text search on their URLs, providing entry points
into the archive. From there, users can browse the archive,
reaching the desired revisions (e.g., the most recent revi-
sion in the master branch since the last time a repository
was crawled) and, from there, the corresponding source
code trees. It is not possible to query the “diff”, i.e.,
find revisions that modified certain files in a certain time
period, which is limiting for both user-facing and research-
oriented queries (e.g., in the field of empirical software
engineering).

With the approach proposed in this paper, we offer func-
tionality to answer CAS queries like the following:

Find all revisions from June 2021 that modify a C file
located in a folder whose name begins with “ext”.

This query consists of two predicates. First, a content pred-
icate on the revision time, which is a range predicate that
matches all revisions from the first to the last day of June
2021. Second, a structure predicate on the paths of the files
thatwere touchedby a revision.Weare only interested in revi-
sions that modify files with .c extension and that are located
in a certain directory. This path predicate can be expressed
as /**/ext*/*.c with wildcard ** to match folders that
are nested arbitrarily deeply in the filesystem of a repository
and wildcard * to match all characters in a directory or file
name.

3 Related work

For related work, two CAS indexing techniques have been
investigated: (a) creating separate indexes for content and
structure, and (b) combining content and structure in one
index. We call these two techniques separate CAS indexing
and combined CAS indexing, respectively.

Separate CAS indexing creates dedicated indexes for,
respectively, the content and the structure of the data. Mathis
et al. [25] use a B+ tree to index the content and a structural
summary (i.e., a DataGuide [17]) to index the structure of
the data. The DataGuide maps each unique path to a numeric
identifier, called the path class reference (PCR), and the B+
tree stores the values along with their PCRs. Thus, the B+
tree stores (value, 〈nodeId,PCR〉) tuples in its leaf nodes,
wherenodeId points to a nodewhose content isvalue and
whose path is given byPCR. To answer aCASquery,wemust
look at the path index and the value index independently. The
subsequent join on the PCR is slow if intermediate results are
large. Kaushik et al. [20] present an approach that combines
a 1-index [28] to evaluate path predicates with a B+ tree to
evaluate value predicates, but they do not consider updates.

A popular system that implements separate indexing
is Apache Lucene [1]. Lucene uses different index types
depending on the type of the indexed attributes. For CAS
indexing, we represent paths as strings and values as num-
bers. Lucene indexes strings with finite state transducers
(FSTs), which are automata that map strings to lists of sorted
document IDs (called postings lists). Numeric attributes are
indexed in a Bkd-tree [35], which is a disk-optimized kd-
tree. Lucene answers conjunctive queries, like CAS queries,
by evaluating each predicate on the appropriate index. The
indexes return sorted postings lists that must be intersected
to see if a document matches all predicates of a conjunctive
query. Since the lists are sorted, the intersection can be per-
formed efficiently. However, the independent evaluation of
the predicates may yield large intermediate results, making
the approach non-robust. To scale to large datasets, Lucene
implements techniques that are similar to LSM trees [32] (cf.
Sect. 6).

The problem with separate CAS-indexing is that it is
not robust. If at least one predicate of a CAS query is not
selective, separate indexing approaches generate large inter-
mediate results. This is inefficient if the final result is small.
Since the predicates are evaluated on different indexes, we
cannot use the more selective predicate to prune the search
space.

Combined CAS indexing integrates paths and values in
one index. A well-known and mature technology are com-
posite indexes, which are used, e.g., in relational databases to
index keys that consist of more than one attribute. Compos-
ite indexes concatenate the indexed attributes according to a
specified ordering. In CAS indexing, there are two possible

123

692 K. Wellenzohn et al.

orderings of the paths and values: the PV -ordering orders
the paths before the values, while the V P-ordering orders
the values first. The ordering determines what queries a com-
posite index can evaluate efficiently. Composite indexes are
only efficient for queries that have a small selectivity for
the attribute appearing first. In our experiments, we use the
composite B+ tree of Postgres as the reference point for an
efficient and scalable implementation of composite indexes.

IndexFabric [11] is another example of a composite CAS
index. It uses a PV -ordering, concatenating the (shortened)
paths and values of composite keys, and storing them in a
disk-optimized PATRICIA trie [29]. IndexFabric shortens
the paths to save disk space by mapping long node labels
to short strings (e.g., map label ‘extension’ to ‘e’). During
query evaluation, IndexFabric must first fully evaluate the
path predicate before it can look at the value predicate since
it orders paths before the values in the index. Since it uses
shortened paths, it cannot evaluate wildcards within a node
label (e.g., ext* to match extension, exterior, etc.). IndexFab-
ric does not support bulk-loading.

The problemwith composite indexes is that they prioritize
the dimension appearing first. The selectivity of the predicate
in the first dimension determines the query performance. If
it is high and the other selectivity is low, the composite index
performs badly because the first predicate must be fully eval-
uated before the second predicate can be evaluated. As a
result, a composite index is not robust.

Instead of concatenating dimensions, it is possible to inter-
leave dimensions. The z-order curve [30,33], for example, is
obtained by interleaving the binary representation of the indi-
vidual dimensions and is used in UB-trees [36] and k-d tries
[31,33,38]. Unfortunately, the z-order curve deteriorates to
the performance of a composite index if the data contain
long common prefixes [42]. This is the case in CAS indexing
where paths have long common prefixes.

LSM trees [32] are used to create scalable indexing sys-
tems with high write throughput (see, e.g., AsterixDB [5],
BigTable [10], Dynamo [12], etc.). They turn expensive
in-place updates that cause many random disk I/Os into out-
of-place updates that use sequential writes. To achieve that,
LSM trees combine a small in-memory tree RM

0 with a series
of disk-resident trees R0, R1, . . ., each tree being T times
larger than the tree in the previous level. Insertions are per-
formed exclusively in the main-memory tree RM

0 .
Modern LSM tree implementations, see [23] for an excel-

lent recent survey, use sorted string tables (SSTables) or other
immutable data structures at multiple levels. Generally, there
are two different merge policies: leveling and tiering. With
the leveling merge policy, each level i contains exactly one
structure and when the structure at level i grows too big, this
structure and the one at level i + 1 are merged. A structure
on level i + 1 is T times larger than a structure on level i .
Tiering maintains multiple structures per level. When a level

i fills up with T structures, they are merged into a structure
on level i + 1. We discuss the design decisions regarding
LSM-trees and RSCAS in Sect. 6.2.

An LSM tree requires an efficient bulk-loading algorithm
to create a disk-based RSCAS trie when the in-memory trie
overflows. Sort-based algorithms sort the data and build an
index bottom-up. Buffer-tree methods bulk-load a tree by
buffering insertions in nodes and flushing them in batches to
its children when a buffer overflows. Neither sort- nor buffer-
based techniques [3,7,8] can be used for RSCAS because our
dynamic interleaving must look at all keys to correctly inter-
leave them. We develop a partitioning-based bulk-loading
algorithm for RSCAS that alternatingly partitions the data in
the path and value dimension to dynamically interleave paths
and values.

The combination of the dynamic interleaving with wild-
cards and range queries makes it hard to embed RSCAS
into an LSM-tree-based key-value (KV) store. While early,
simple KV-stores did not support range queries at all, more
recent KV-stores create Bloom filters for a predefined set of
fixed prefixes [26], i.e., only range queries using these pre-
fixes can be answered efficiently. SuRF was one of the first
approaches able to handle arbitrary range queries by stor-
ing minimum-length prefixes in a trie so that all keys can
be uniquely identified [45]. This was followed by Rosetta,
which stores all prefixes for each key in a hierarchical series
of Bloom filters [24]. KV-stores supporting ranges queries
without filters have also been developed. EvenDB optimizes
the evaluation of queries exhibiting spatial locality, i.e., keys
with the same prefixes are kept close together and in main
memory [16]. REMIX offers a globally sorted view of all
keys with a logical sorting of the data [46]. The evaluation of
range queries boils down to seeking the first matching ele-
ment in a sorted sequence of keys and scanning to the end
of the range. CAS queries follow a different pattern. During
query evaluation, we simultaneously process a range query
in the value dimension and match strings with wildcards at
arbitrary positions in the path dimension. The prefix shared
by the matching keys ends at the first wildcard, which can
occur early in the path. We prune queries with wildcards by
regularly switching back to the more selective value dimen-
sion.

4 Background

4.1 Data representation

We use composite keys to represent the paths and values of
data items in semi-structured hierarchical data.

Definition 1 (Composite Key) A composite key k is a two-
dimensional key that consists of a path k.P and a value k.V ,

123

Robust and scalable content-and-structure indexing 693

Table 1 A set K1...9 = {k1, . . . , k9} of composite keys

and each key stores a reference k.R as payload that points to
the corresponding data item in the database.

Given a dimension D ∈ {P, V }, we write k.D to access
k’s path (if D = P) or value (if D = V). Composite keys can
be extracted from popular semi-structured hierarchical data
formats, such as JSON and XML. In the context of SWH, we
use composite keys k to represent that a file with path k.P
is modified (i.e., added, changed, or deleted) at time k.V in
revision k.R.

Example 1 Table 1 shows the set K1..−9 = {k1, . . . , k9} of
composite keys (we use a sans-serif font to refer to con-
crete instances in our examples). We write K2,5,6,7 to refer
to {k2, k5, k6, k7}. Composite key k2 denotes that the file
/crypto/ecc.h$ was modified on 2019-07-20 in revi-
sion r2. In the same revision, also file /crypto/ecc.c$
is modified, see key k3. ��

We represent paths and values as byte strings that we
access byte-wise. We visualize them with one byte ASCII
characters for the path dimension and italic hexadecimal
numbers for the value dimension, see Table 1. To guarantee
that no path is a prefix of another we append the end-of-string
character $ (ASCII code 0x00) to each path. Fixed-length
byte strings (e.g., 64 bit numbers) are prefix-free because of
the fixed length. We assume that the path and value dimen-
sions are binary-comparable, i.e., two paths or values are
<, =, or > iff their corresponding byte strings are <, =, or
>, respectively [21]. For example, big-endian integers are
binary-comparable while little-endian integers are not.

Let s be a byte-string, then |s| denotes the length of s and
s[i] denotes the i-th byte in s. The left-most byte of a byte-
string is byte one. s[i] = ε is the empty string if i > |s|.
s[i, j] denotes the substring of s from position i to j and
s[i, j] = ε if i > j .

Definition 2 (Longest Common Prefix) The longest common
prefix lcp(K , D) of a set of keys K in dimension D is the
longest prefix s that all keys k ∈ K share in dimension D,
i.e.,

lcp(K , D) = s iff

∀k ∈ K (k.D[1, |s|] = s) ∧
�l(l > |s| ∧ ∀k, k′ ∈ K (

l ≤ min(|k.D|, |k′.D|) ∧ k.D[1, l] = k′.D[1, l]))

Example 2 The longest common prefix in the path and value
dimensions of the nine keys in Table 1 is lcp(K1...9, P) = /
and lcp(K1...9, V) = 00 00 00 00. If we narrow down the
set of keys to K5,6 the longest common prefixes become
longer: lcp(K5,6, P) = /fs/ext and lcp(K5,6, V) =
00 00 00 00 5E. ��

4.2 Content-and-structure (CAS) queries

Content-and-structure (CAS)queries contain a path predicate
and value predicate [25]. The path predicate is expressed
as a query path q that supports two wildcard symbols. The
descendant axis ** matches zero to any number of node
labels, while the * wildcard matches zero to any number of
characters in a single label.

Definition 3 (Query Path) A query path q is denoted by q =
/λ1/λ2/ . . . /λm . Each label λi is a string λi ∈ (A ∪ {*})+,
where A is an alphabet and * is a reserved wildcard symbol.
The wildcard *matches zero to any number of characters in
a label. We call λi = ** the descendant axis that matches
zero to any number of labels.

Definition 4 (CASQuery)CASquery Q(q, [vl , vh]) consists
of a query path q and a value predicate [vl , vh]. Given a set
K of composite keys, CAS query Q returns the revisions k.R
of all composite keys k ∈ K for which k.P matches q and
vl ≤ k.V ≤ vh .

Example 3 CAS query Q(/**/ext*/*.c, [2021-06-01,
2021-06-30]) matches all revisions (a) committed in June
2021 that (b) modified a C file located in a folder that begins
with name ext, anywhere in the directory structure of a
software repository. ��

123

694 K. Wellenzohn et al.

Table 2 Key k9 is interleaved using different approaches

4.3 Interleaving of composite keys

Weintegrate path k.P andvalue k.V of a key k by interleaving
them. Table 2 shows three commonways to integrate k.P and
k.V of key k9 from Table 1. Value bytes are written in italic
and shown in red, path bytes are shown in blue. The first two
rows show the path-value and value-path concatenation (IPV
and IV P), respectively. The byte-wise interleaving IBW in the
third row interleaves one value byte with one path byte. Note
that none of these interleavings is well-balanced. The byte-
wise interleaving is not well-balanced, since all value-bytes
are interleaved with a single label of the path (/Sources).

5 Theoretical foundation: dynamic
interleaving

We propose the dynamic interleaving to interleave the paths
and values of a set of composite keys K and show how
to build the dynamic interleaving through a recursive par-
titioning that groups keys based on the shortest prefixes that
distinguish keys from one another. We introduce the parti-
tioning in Sect. 5.1 and highlight in Sect. 5.2 the properties
that we use to construct the interleaving. In Sect. 5.3, we
define the dynamic interleaving with a recursive partitioning
and develop a costmodel in Sect. 5.4 to analyze the efficiency
of interleavings.

The dynamic interleaving adapts to the specific character-
istics of paths and values, such as common prefixes, varying
key lengths, differing domain sizes, and the skew of the data.
To achieve this, we consider the discriminative bytes.

Definition 5 (Discriminative Byte) The discriminative byte
dsc(K , D) of keys K in dimension D is the first byte for
which the keys differ in dimension D, i.e., dsc(K , D) =
|lcp(K , D)| + 1.

Example 4 Table 3 illustrates the position of the discrimina-
tive bytes for the path and value dimensions for various sets
of composite keys K . Set K9 = {k9} contains only a single
key. In this case, the discriminative bytes are the first position
after the end of k9’s byte-strings in the respective dimensions.
For example, k9’s value is eight bytes long; hence, the dis-
criminative value byte of {k9} is the ninth byte. ��

Discriminative bytes are crucial during query evaluation
since at their positions the search space can be narrowed

Table 3 Illustration of the discriminative bytes for K1...9 from Table 1
and various subsets of it

Composite keys K dsc(K , P) dsc(K , V)

K1...9 2 5

K1,4,8,9 10 7

K4,8,9 14 7

K8,9 18 9

K9 23 9

down. We alternate in a round-robin fashion between dis-
criminative path and value bytes in our interleaving. Each
discriminative byte partitions a set of keys into subsets,which
we recursively partition further.

5.1 Ã-Partitioning

Theψ-partitioning of a set of keys K groups composite keys
together that have the same value at the discriminative byte
in dimension D. Thus, K is split into at most 28 non-empty
partitions, one partition for each value (0x00 to 0xFF) of
the discriminative byte in dimension D.

Definition 6 (ψ-Partitioning) The ψ-partitioning of a set of
keys K in dimension D is ψ(K , D) = {K1, . . . , Km} iff

1. (Correctness) All keys in a set Ki have the same value at
K ’s discriminative byte in dimension D:

– ∀k, k′ ∈ Ki
(
k.D[dsc(K , D)] = k′.D[dsc(K , D)])

2. (Disjointness) Keys from different sets Ki �= K j do not
have the same value at K ’s discriminative byte in D:

– ∀k ∈ Ki , k′ ∈ K j (k.D[dsc(K , D)] �=
k′.D[dsc(K , D)])

3. (Completeness) Every key in K is assigned to a set Ki .
All Ki are non-empty.

– K = ⋃
1≤i≤m Ki ∧ ∅ /∈ ψ(K , D)

Let k ∈ K be a composite key. We write ψk(K , D) to
denote the ψ-partitioning of k with respect to K and dimen-
sion D, i.e., the partition in ψ(K , D) that contains key k.

Example 5 Let K1...9 be the set of composite keys from
Table 1. Theψ-partitioning of selected sets of keys in dimen-
sion P or V is as follows:

– ψ(K1...9, V) = {K1,4,8,9, K5,6, K2,3,7}
– ψ(K1,4,8,9, P) = {K1, K4,8,9}
– ψ(K4,8,9, V) = {K4, K8,9}
– ψ(K8,9, P) = {K8, K9}
– ψ(K9, V) = ψ(K9, P) = {K9}

123

Robust and scalable content-and-structure indexing 695

The ψ-partitioning of key k9 with respect to sets of keys and
dimensions is as follows:

– ψk9(K
1...9, V) = K1,4,8,9

– ψk9(K
1,4,8,9, P) = K4,8,9

– ψk9(K
4,8,9, V) = K8,9

– ψk9(K
9, V) = ψk9(K

9, P) = K9. ��

5.2 Properties of theÃ-partitioning

We work out four key properties of the ψ-partitioning. The
first two properties, order-preserving and prefix-preserving,
allow us to evaluate CAS queries efficiently while the other
two properties, guaranteed progress and monotonicity, help
us to construct the dynamic interleaving.

Lemma 1 (Order-Preserving) ψ-partitioning ψ(K , D) =
{K1, . . . , Km} is order-preserving in dimension D, i.e., all
keys in set Ki are either strictly greater or smaller in dimen-
sion D than all keys from another set K j :

∀1 ≤ i, j ≤ m, i �= j : (∀k ∈ Ki ,∀k′ ∈ K j : k.D < k′.D)

∨ (∀k∈Ki ,∀k′ ∈K j : k.D > k′.D)

The proofs of all lemmas and theorems can be found in
the accompanying technical report [43].

Example 6 The ψ-partitioning ψ(K1...9, V) is equal to the
partitions {K1,4,8,9, K5,6, K2,3,7}. It is order-preserving in
dimension V . The partitions cover the following value ranges
(denoted in seconds since the Unix epoch):

– [0x5D 00 00 00, 0x5D FF FF FF]; approx. 06/2019 – 12/2019

– [0x5E 00 00 00, 0x5E FF FF FF]; approx. 01/2020 – 07/2020

– [0x5F 00 00 00, 0x5F FF FF FF]; approx. 08/2020 – 12/2021

The value predicate [07/2019, 09/2019) only needs to
consider partition K1,4,8,9, which spans keys from June to
December, 2019, since partitions do not overlap. ��
Lemma 2 (Prefix-Preserving) ψ-partitioning ψ(K , D) =
{K1, . . . , Km} is prefix-preserving in dimension D, i.e., keys
in the same set Ki have a longer common prefix in dimension
D than keys from different sets Ki �= K j :

∀1 ≤ i, j ≤ m, i �= j : |lcp(Ki , D)| > |lcp(Ki ∪ K j , D)| ∧
|lcp(K , D)| = |lcp(Ki ∪ K j , D)|

Example 7 The ψ-partitioning ψ(K1...9, P) = {K1,4,8,9,
K2,3, K5,6,7} is prefix-preserving in dimension P . For exam-
ple, K1,4,8,9 has a longer common path prefix lcp(K1,4,8,9, P)

= /Source/ than keys across partitions, e.g., lcp(K1,4,8,9∪
K2,3, P) = /. Query path /Source/S*.go only needs to
consider partition K1,4,8,9. ��

Lemmas 1 and 2 guarantee a total ordering among the
sets ψ(K , D) = {K1, . . . , Km}. In our RSCAS index, we
order the nodes by the value at the discriminative byte such
that range and prefix queries can quickly choose the correct
subtree.

The next two properties allow us to efficiently compute
the dynamic interleaving of composite keys.

Lemma 3 (Guaranteed Progress) Let K be a set of compos-
ite keys for which not all keys are equal in dimension D.
ψ(K , D) guarantees progress, i.e., ψ splits K into at least
two sets: |ψ(K , D)| ≥ 2.

Guaranteed progress ensures that each step partitions the
data and when we repeatedly apply ψ(K , D), we eventually
narrow a set of keys down to a single key. For each set of
keys that ψ(K , D) creates, the position of the discrimina-
tive byte for dimension D increases. This property of the
ψ-partitioning holds since each set of keys is built based on
the discriminative byte and to ψ-partition an existing set of
keys we need a discriminative byte that is positioned further
down in the byte-string. For the alternate dimension D, i.e.,
D = P if D = V and D = V if D = P , the position of the
discriminative byte remains unchanged or increases.

Lemma 4 (Monotonicity of Discriminative Bytes) Let Ki be
one of the partitions of K after partitioning in dimension D.
In dimension D, the position of the discriminative byte in Ki

is strictly greater than in K . In dimension D, the discrimi-
native byte is equal or greater than in K , i.e.,

Ki ∈ ψ(K , D) ∧ Ki ⊂ K ⇒
dsc(Ki , D) > dsc(K , D) ∧ dsc(Ki , D) ≥ dsc(K , D)

Example 8 The discriminative path byte of K1...9 is 2 while
the discriminative value byte of K1...9 is 5 as shown in
Table 3. For partition K1,4,8,9, which is obtained by parti-
tioning K1...9 in the value dimension, the discriminative path
byte is 10 while the discriminative value byte is 7. For par-
tition K4,8,9, which is obtained by partitioning K1,4,8,9 in the
path dimension, the discriminative path byte is 14 while the
discriminative value byte is still 7. ��

Monotonicity guarantees that each time we ψ-partition
a set K we advance the discriminative byte in at least one
dimension. Thus, wemake progress in at least one dimension
when we dynamically interleave a set of keys.

These four properties of the ψ-partitioning are true
because we partition K at its discriminative byte. If we parti-
tioned the data before this byte, we would not make progress
and the monotonicity would be violated, because every byte
before the discriminative byte is part of the longest com-
mon prefix. If we partitioned the data after the discriminative

123

696 K. Wellenzohn et al.

Fig. 1 Definition of partitioning sequence ρ(k, K , D) for a threshold τ ≥ 1. Operator ◦ denotes concatenation, e.g., a ◦b = (a, b) and a ◦ (b, c) =
(a, b, c)

byte, the partitioning would no longer be order- and prefix-
preserving. Skipping some keys by sampling the set is not an
option, as this could lead to an (incorrect) partitioning using
a byte located after the actual discriminative byte.

Example 9 K1...9’s discriminative value byte is byte five. If
we partitioned K1...9 at value byte four, we would get {K1...9}
and there is no progress since all keys have 0x00 at value
byte four. The discriminative path and value bytes would
remain unchanged. If we partitioned K1...9 at value byte six,
we would get {K1,4,8,9, K2,3,6,7, K5}, which is neither order-
nor prefix-preserving in V . Consider keys k3, k6 ∈ K2,3,6,7

and k5 ∈ K5. The partitioning is not order-preserving in V
since k6.V < k5.V < k3.V . The partitioning is not prefix-
preserving in V since the longest common value prefix in
K2,3,6,7 is 00 00 00 00, which is not longer than the longest
common value prefix of keys from different partitions since
lcp(K2,3,6,7 ∪ K5, V) = 00 00 00 00. ��

5.3 Dynamic interleaving

To compute the dynamic interleaving of a composite key
k ∈ K , we recursively ψ-partition K while alternating
between dimension V and P . In each step, we interleave a
part of k.P with a part of k.V . The recursive ψ-partitioning
yields a partitioning sequence (K1, D1), . . . , (Kn, Dn) for
key k with K1 ⊃ K2 ⊃ · · · ⊃ Kn .We start with K1 = K and
D1 = V . Next, K2 = ψk(K1, V) and D2 = D1 = P . We
continue with the general scheme Ki+1 = ψk(Ki , Di) and
Di+1 = Di . This continues until we reach a set Kn that con-
tains at most τ keys, where τ is a threshold (explained later).
The recursive ψ-partitioning alternates between dimensions
V and P until we run out of discriminative bytes in one
dimension, which means ψk(Ki , D) = Ki . From then on,
we can only ψ-partition in dimension D until we run out
of discriminative bytes in this dimension as well, that is
ψk(Ki , D) = ψk(Ki , D) = Ki , or we reach a Kn that con-
tains at most τ keys. The partitioning sequence is finite due
to the monotonicity of the ψ-partitioning (see Lemma 4),
which guarantees that we make progress in each step in at
least one dimension.

Definition 7 (Partitioning Sequence) The partitioning
sequence ρ(k, K , D) = ((K1, D1), . . . , (Kn, Dn)) of a
composite key k ∈ K is the recursive ψ-partitioning of
the sets to which k belongs. The pair (Ki , Di) denotes the
partitioning of Ki in dimension Di . The partitioning stops

when Kn contains at most τ keys or Kn cannot be further
ψ-partitioned in any dimension (Kn .D = ⊥ in this case).
ρ(k, K , D) is defined in Fig. 1.

Example 10 Below we illustrate the step-by-step expansion
of ρ(k9, K1...9, V) to get k9’s partitioning sequence. We set
τ = 2.

ρ(k9, K1...9, V)

= (K1...9, V) ◦ ρ(k9, K1,4,8,9, P)

= (K1...9, V) ◦ (K1,4,8,9, P) ◦ ρ(k9, K4,8,9, V)

= (K1...9, V) ◦ (K1,4,8,9, P) ◦ (K4,8,9, V) ◦ ρ(k9, K8,9, P)

= (K1...9, V) ◦ (K1,4,8,9, P) ◦ (K4,8,9, V) ◦ (K8,9,⊥)

Note the alternating partitioning in, respectively, V and P .
We only deviate from this if partitioning in one of the dimen-
sions is not possible. Had we set τ = 1, K8,9 would be
partitioned once more in the path dimension. ��

To compute the full dynamic interleaving of a key k, we
set τ = 1 and continue until the final set Kn contains a single
key (i.e, key k). To interleave only a prefix of k and keep
a suffix non-interleaved we increase τ . Increasing τ stops
the partitioning earlier and speeds up the computation. An
index structure that uses dynamic interleaving can tune τ

to trade the time it takes to build the index and to query it.
In Sect. 6, we introduce a memory-optimized and a disk-
optimized version of our RSCAS index. They use different
values of τ to adapt to the underlying storage.

We determine the dynamic interleaving IDY(k, K) of a
key k ∈ K via k’s partitioning sequence ρ. For each element
in ρ, we generate a tuple with strings sP and sV and the
partitioning dimension of the element. The strings sP and sV
are composed of substrings of k.P and k.V , ranging from the
previous discriminative byte up to, but excluding, the current
discriminative byte in the respective dimension. The order of
sP and sV in a tuple depends on the dimension used in the
previous step: the dimension that has been chosen for the
partitioning comes first. Formally, this is defined as follows:

Definition 8 (Dynamic Interleaving) Let k ∈ K be a com-
posite key and let ρ(k, K , V) = ((K1, D1), . . . , (Kn, Dn))

be the partitioning sequence of k. The dynamic interleaving
IDY(k, K) = (t1, . . . , tn, tn+1) of k is a sequence of tuples ti ,
where ti = (sP , sV , D) if Di−1 = P and ti = (sV , sP , D)

123

Robust and scalable content-and-structure indexing 697

Table 4 Computing IDY(k9, K1...9).

if Di−1 = V . The tuples ti , 1 ≤ i ≤ n, are determined as
follows:

ti .sP = k.P[dsc(Ki−1, P),dsc(Ki , P) − 1]
ti .sV = k.V [dsc(Ki−1, V),dsc(Ki , V) − 1]
ti .D = Di

Tocorrectly handle thefirst tuple,wedefinedsc(K0, V) =
1, dsc(K0, P) = 1 and D0 = V . The last tuple tn+1 =
(sP , sV , R) stores the non-interleaved suffixes along with

revision k.R:

tn+1.sP = k.P[dsc(Kn, P), |k.P|]
tn+1.sV = k.V [dsc(Kn, V), |k.P|]
tn+1.R = k.R �

Example 11 We compute the tuples for the dynamic inter-
leaving IDY(k9, K1...9) = (t1, . . . , t5) of key k9 using the
partitioning sequence ρ(k9, K1...9, V) from Example 10. The
necessary discriminative path and value bytes can be found
in Table 3. Table 4 shows the details of each tuple of k9’s
dynamic interleavingwith respect toK1...9. The final dynamic
interleavings of all keys from Table 1 are displayed in Table
5. We highlight in bold the values of the discriminative bytes
at which the paths and values are interleaved, e.g., for key k9
these are bytes 5D, S, and 97. ��

Unlike static interleavings I (k) that interleave a key k in
isolation, the dynamic interleaving IDY(k, K) of k depends
on the set of all keys K to adapt to the data. The result is a
well-balanced interleaving (compare Tables 2 and 5).

5.4 Efficiency of interleavings

We propose a cost model to measure the efficiency of inter-
leavings that organize the interleaved keys in a tree-like
search structure. Each node represents the ψ-partitioning of
the composite keys by either path or value, and the node
branches for each different value of a discriminative path or
value byte. We simplify the cost model by assuming that the
search structure is a complete tree with fanout o where every
root-to-leaf path contains h edges (h is the height). Further,
we assume that all nodes on one level represent a partition-
ing in the same dimension φi ∈ {P, V } and we use a vector
φ(φ1, . . . , φh) to specify the partitioning dimension on each

Fig. 2 The search structure in our cost model is a complete tree of
height h and fanout o

level. We assume that the number of Ps and V s in each φ are
equal. Figure 2 visualizes this scheme.

To answer a query, we start at the root and traverse the
search structure to determine the answer set. In the case of
range queries, more than one branch must be followed. A
search follows a fraction of the outgoing branches o origi-
nating at this node. We call this the selectivity of a node (or
just selectivity). We assume that every path node has a selec-
tivity of ςP and every value node has a selectivity of ςV . The
cost Ĉ of a search, measured in the number of visited nodes
during the search, is as follows:

Ĉ(o, h, φ, ςP , ςV) = 1 +
h∑

l=1

l∏

i=1

(o · ςφi)

If a workload is well-known and consists of a small set
of specific queries, it is highly likely that an index adapted
to this workload will outperform RSCAS. For instance, if
ςV � ςP for all queries, then a VP-index shows better per-
formance than an RSCAS-index. However, it performs badly
for queries deviating from that workload (ςV > ςP). Our
goal is an access method that can deal with a wide range of
queries in a dynamic environment in a robust way, i.e., avoid-
ing a bad performance for any particular query type. This is
motivated by the fact that modern data analytics utilizes a
large number of ad hoc queries to do exploratory analysis.
For example, in the context of building a robust partitioning
for ad hoc query workloads, Shanbhag et al. [40] found that
after analyzing the first 80% of a real-world workload the
remaining 20% still contained 57% completely new queries.
We aim for a good average performance across all queries.

Definition 9 (Robustness) A CAS-index is robust if it opti-
mizes the average performance andminimizes the variability
over all queries.

State-of-the-art CAS-indexes are not robust because they
favor either path or value predicates. As a result they show
a very good performance for one type of query but run into
problems for other types of queries. To illustrate this problem,
we define the notion of complementary queries.

123

698 K. Wellenzohn et al.

Table 5 The dynamic interleaving of the composite keys in K1...9. The values at the discriminative bytes are written in bold

(a) (b)

Fig. 3 Robustness of dynamic interleaving

Definition 10 (Complementary Query) Given a query Q =
(ςP , ςV) with path selectivity ςP and value selectivity ςV ,
there is a complementary query Q′ = (ς ′

P , ς ′
V) with path

selectivity ς ′
P = ςV and value selectivity ς ′

V = ςP

Example 12 Figure 3a shows the costs for a query Q and
its complementary query Q′ for different interleavings in
terms of the number of visited nodes during the search. We
assume parameters o = 10 and h = 12 for the search
structure and a dynamic interleaving IDY with τ = 1.
IPV stands for path-value concatenation with φi = P for
1 ≤ i ≤ 6 and φi = V for 7 ≤ i ≤ 12. IVP is a
value-path concatenation (with an inverse φ compared to
IPV). We also consider two additional permutations: I1 uses
a vector φ = (V , V , V , V , P, V , P, V , P, P, P, P) and
I2 a vector equal to (V , V , V , P, P, V , P, V , V , P, P, P).
They resemble byte-wise interleavings,which usually exhibit
irregular alternation patterns with a clustering of, respec-
tively, discriminative path and value bytes. Figure 3b shows
the average costs and the standard deviation. The numbers
demonstrate the robustness of our dynamic interleaving: it
performs best in terms of average costs and standard devia-
tion.

In the previous example, we used our cost model to show
that a perfectly alternating interleaving exhibits the best
overall performance and standard deviation when evaluat-
ing complementary queries. We prove that this is always the
case.

Theorem 1 Consider a query Q with selectivities ςP and ςV
and its complementary query Q′ with selectivities ς ′

P = ςV
and ς ′

V = ςP . There is no interleaving that on average per-
forms better than the dynamic interleaving with a perfectly
alternating vector φDY, i.e., ∀φ : Ĉ(o, h, φDY, ςP , ςV) +
Ĉ(o, h, φDY, ς

′
P , ς ′

V) ≤ Ĉ(o, h, φ, ςP , ςV) + Ĉ(o, h, φ,

ς ′
P , ς ′

V).

Theorem 1 shows that the dynamic interleaving has the
best query performance for complementary queries. It fol-
lows that for any set of complementary queries Q, the
dynamic interleaving has the best performance.

Theorem 2 Let Q be a set of complementary queries, i.e.,
(ςP , ςV) ∈ Q ⇔ (ςV , ςP) ∈ Q. There is no interleaving φ

that in total performs better than the dynamic interleaving
over all queries Q, i.e.,

∀φ :
∑

(ςP ,ςV)∈Q
Ĉ(o, h, φDY, ςP , ςV)

≤
∑

(ςP ,ςV)∈Q
Ĉ(o, h, φ, ςP , ςV)

This also holds for the set of all queries, since for every
query there exists a complementary query. Thus, the dynamic
interleaving optimizes the average performance over all
queries and, as a result, a CAS index that uses dynamic inter-
leaving is robust.

Corollary 1 Let Q = {(ςP , ςV) | 0 ≤ ςP , ςV ≤ 1} be the
set of all possible queries. There is no interleaving φ that in
total performs better than the dynamic interleaving φDY over
all queries Q.

Wenow turn to the variability of the search costs and show
that they are minimal for dynamic interleavings.

Theorem 3 Given a query Q (with ςP and ςV) and its com-
plementary query Q′ (with ς ′

P = ςV and ς ′
V = ςP), there

is no interleaving that has a smaller variability than the

123

Robust and scalable content-and-structure indexing 699

dynamic interleaving with a perfectly alternating vectorφDY,
i.e., ∀φ : |Ĉ(o, h, φDY, ςP , ςV) − Ĉ(o, h, φDY, ς

′
P , ς ′

V)| ≤
|Ĉ(o, h, φ, ςP , ςV) − Ĉ(o, h, φ, ς ′

P , ς ′
V)|.

Similar to the results for the average performance, Theo-
rem 3 can be generalized to the set of all queries.

Note that in practice the search structure is not a complete
tree and the fraction ςP and ςV of children that are traversed
at each node is not constant. We previously evaluated the
cost model experimentally on real-world datasets [42] and
showed that the estimated and true cost of a query are off by
a factor of two on average, which is a good estimate for the
cost of a query.

6 Robust and scalable CAS (RSCAS) index

Data-intensive applications require indexing techniques that
make it possible to efficiently index, insert, and query large
amounts of data. The SWH archive, for example, stores
billions of revisions and every day millions of revisions
are crawled from popular software forges. We propose the
Robust and Scalable Content-And-Structure (RSCAS) index
to provide support for querying and updating the content and
structure of big hierarchical data. For robustness, the RSCAS
index uses our dynamic interleaving to integrate the paths and
values of composite keys in a trie structure. For scalability,
RSCAS implements log-structured merge trees (LSM trees)
that combine a memory-optimized trie with a series of disk-
optimized tries (see Fig. 5).

6.1 Structure of an RSCAS trie

RSCAS tries support CAS queries with range and prefix
searches. Each node n in an RSCAS trie includes a dimen-
sion n.D, a path substring n.sP , and a value substring n.sV .
They correspond to fields t .D, t .sP and t .sV in the dynamic
interleaving of a key (see Definition 8). Substrings n.sP and
n.sV are variable-length strings. Dimension n.D is P or V
for inner nodes and⊥ for leaf nodes. Leaf nodes additionally
store a set of suffixes, denoted by n.suffixes. This set contains
non-interleaved path and value suffixes alongwith references
to data items in the database. Each dynamically interleaved
key corresponds to a root-to-leaf path in the RSCAS trie.

Definition 11 (RSCAS Trie)Let K be a set of composite keys
and let R be a trie. Trie R is the RSCAS trie for K iff the
following conditions are satisfied.

1. IDY(k, K) = (t1, . . . , tm, tm+1) is the dynamic inter-
leaving of a key k ∈ K iff there is a root-to-leaf path
(n1, . . . , nm) in R such that ti .sP = ni .sP , ti .sV = ni .sV ,
and ti .D = ni .D for 1 ≤ i ≤ m. Suffix tm+1 is stored in
leaf node nm , i.e., tm+1 ∈ nm .suffixes.

2. R does not include duplicate siblings, i.e., no two sibling
nodes n and n′, n �= n′, in R have the same values for
sP , sV , and D, respectively.

Example 13 Figure 4 shows the RSCAS trie for keys K1...9.
The values at the discriminative bytes are highlighted in bold.
The dynamic interleaving IDY(k9, K1...9) = (t1, t2, t3, t4, t5)
from Table 5 is mapped to the root-to-leaf path (n1,n2,n4,
n6) in the RSCAS trie. Tuple t5 is stored in n6.suffixes. Key
k8 is stored in the same root-to-leaf path. For key k1, the
first two tuples of IDY(k1, K1...9) are mapped to n1 and n2,
respectively, while the third tuple is mapped to n3. ��

6.2 RSCAS index

The RSCAS index combines a memory-optimized RSCAS
trie for in-place insertions with a sequence of disk-based
RSCAS tries for out-of-place insertions to get good inser-
tion performance for large data-intensive applications. LSM
trees [32,35] have pioneered combining memory- and disk-
resident components and are now the de-facto standard to
build scalable index structures (see, e.g., [5,10,12]).

We implement RSCAS as an LSM trie that fixes the size
ratio between two consecutive tries at T = 2 and uses the
leveling merge policy with full merges (this combination
is also known as the logarithmic method in [35]). Leveling
optimizes query performance and space utilization in com-
parison with the tiering merge policy at the expense of a
higher merge cost [22,23]. Luo and Carey show that a size
ratio of T = 2 achieves the maximum write throughput for
leveling, but may have a negative impact on the latency [22].
Since query performance and space utilization are important
to us, while latency does not play a large role (due to batched
updates in the background), we choose the setup described
above. If needed the LSM trie can be improved with the tech-
niques presented by Luo and Carey [22,23]. For example,
one such improvement is partitioned merging where multi-
ple tries with non-overlapping key ranges can exist at the
same level and when a trie overflows at level i , this trie needs
only to be merged with overlapping tries at level i + 1. Par-
titioned merges reduce the I/O during merging since not all
data at level i needs to be merged into level i + 1.

Our focus is to show how to integrate a CAS index with
LSM trees. We do not address aspects related to recovery
and multi-user synchronization. These challenges, however,
exist and must be handled by the system. Typical KV-stores
use write-ahead logging (WAL) to make their system recov-
erable and multi-version concurrency control (MVCC) to
provide concurrency. These techniques are also applicable
to the RSCAS index.

The in-memory RSCAS trie RM
0 is combined with a

sequence of disk-basedRSCAS tries R0, . . . , Rk that grow in
size as illustrated in Fig. 5. The most recently inserted keys

123

700 K. Wellenzohn et al.

Fig. 4 The RSCAS trie for the composite keys K1...9

Fig. 5 The RSCAS index combines memory- and disk-based RSCAS
tries for scalability

are accumulated in the in-memory RSCAS trie RM
0 where

insertions can be performed efficiently. When RM
0 grows too

big, the keys are migrated to a disk-based RSCAS trie Ri . A
query is executed on each trie individually and the result sets
are combined.We only consider insertions since deletions do
not occur in the SWH archive.

The size of each trie is bounded. RM
0 and R0 contain up

to M keys, where M is chosen according to the memory
capacity of the system. With an average key length of 80
bytes in the SWHarchive, reasonable values ofM range from
tens of millions to a few billion keys (e.g., with M = 108,
RM
0 requires about 8GB of memory). Each disk-based trie

Ri , i ≥ 1, is either empty or contains between 2i−1M keys
(exclusive) and 2i M keys (inclusive).

When RM
0 is full, we look for the first disk-based trie Ri

that is empty. We (a) collect all keys in tries RM
0 and R j ,

0 ≤ j < i , (b) bulk-load trie Ri from these keys, and (c)
delete all previous tries.

Example 14 Assume we set the number of keys that fit in
memory toM = 10million, which is the number of new keys
that arrive every day in the SWH archive, on average. When
RM
0 overflows after one day we redirect incoming insertions

to a new in-memory trie and look for the first non-empty trie
Ri . Assuming this is R0, the disk-resident trie R0 is bulk-
loadedwith the keys in RM

0 . After another day, RM
0 overflows

again and this time the first non-empty trie is R1. Trie R1 is

created from the keys in RM
0 and R0. At the end, R1 contains

20M keys, and RM
0 and R0 are deleted. ��

An overflow in RM
0 does not stall continuous indexing

since we immediately redirect all incoming insertions to a
new in-memory trie RM ′

0 while we bulk-load Ri in the back-
ground. In order for this towork, RM

0 cannot allocate all of the
available memory. We need to reserve a sufficient amount of
memory for RM ′

0 (in the SWH archive scenario we allowed
RM
0 to take up at most half of the memory). During bulk-

loading, we keep the old tries RM
0 and R0, . . . , Ri−1 around

such that queries have access to all indexed data. As soon as
Ri is complete, we replace RM

0 with RM ′
0 and R0, . . . , Ri−1

with Ri . In practice, neither insertions nor queries stall as
long as the insertion rate is bounded. If the insertion rate is too
high and RM ′

0 overflows before we finish bulk-loading Ri , we
block and do not accept more insertions. This does not hap-
pen in the SWH archive since with our default of M = 108

keys (about 8GBmemory) trie RM ′
0 overflows every ten days

and bulk-loading the trie on our biggest dataset takes about
four hours.

6.3 Storage layout

The RSCAS index consists of a mutable in-memory trie RM
0

and a series of immutable disk-based tries Ri . For RM
0 , we

use a node structure that is easy to update in-place, while we
design Ri for compact storage on disk.

6.3.1 Memory-optimized RSCAS trie

The memory-optimized RSCAS trie RM
0 provides fast in-

place insertions for a small number of composite keys that fit
into memory. Since all insertions are buffered in RM

0 before
they are migrated in bulk to disk, RM

0 is in the critical path of
our indexing pipeline and must support efficient insertions.
We reuse the memory-optimized trie [42] that is based on the
memory-optimized Adaptive Radix Tree (ART) [21]. ART
implements four node types that are optimized for the hard-
ware’s memory hierarchy and that have a physical fanout
of 4, 16, 48, and 256 child pointers, respectively. A node

123

Robust and scalable content-and-structure indexing 701

Fig. 6 Structure of an inner node with 256 pointers

uses the smallest node type that can accommodate the node’s
child pointers. Insertions add node pointers and when a node
becomes too big, the node is resized to the next appropriate
node type. This ensures that not every insertion requires resiz-
ing, e.g., a node with ten children can sustain six deletions or
seven insertions before it is resized. Figure 6 illustrates the
node type with 256 child pointers; for the remaining node
types we refer to Leis et al. [21]. The node header stores
the dimension D, the lengths lP and lV of substrings sP and
sV , and the number of children m. Substrings sP and sV are
implemented as variable-length byte vectors. The remaining
space of an inner node (beige-colored in Fig. 6) is reserved for
child pointers. For each possible value b of the discriminative
byte, there is a pointer (possibly NULL) to the subtree where
all keys have value b at the discriminative byte in dimension
D.

The structure of leaf nodes is similar, except that leaf nodes
contain a variable-length vector with references k.R instead
of child pointers.

For the memory-optimized RSCAS trie, we set the par-
titioning threshold τ = 1, meaning that RM

0 dynamically
interleaves keys completely. This provides fast and fine-
grained access to the indexed keys.

6.3.2 Disk-optimized RSCAS trie

We propose a disk-resident RSCAS trie to compactly store
dynamically-interleaved keys on disk. Since a disk-resident
RSCAS trie is immutable,weoptimize it for compact storage.
To that end, we store nodes gapless on disk and we increase
the granularity of leaf nodes by setting τ > 1. We look at
these techniques in turn.We store nodes gapless on disk since
we do not have to reserve space for future in-place insertions.
This means a node can cross page boundaries, but we found
that in practice this is not a problem. We tested various node
clustering techniques to align nodes to disk pages. The most
compact node clustering algorithm [19] produced a trie that
was 30% larger than with gapless storage as it kept space
empty on a page if it could not add another node without
exceeding the page size. In addition to the gapless storage,
we increase the granularity of leaf nodes by setting τ > 1.
As a result the RSCAS index contains fewer nodes, but the
size of leaf nodes increases. We found that by storing fewer
but bigger nodes we save space because we store less meta-
data like node headers, child pointers, etc. In Sect. 8.4.1, we
determine the optimal value for τ .

Fig. 7 Serializing nodes on disk

Figure 7 shows how to compactly serialize nodes on disk.
Inner nodes point to other nodes, while leaf nodes store a set
of suffixes. Both node types store the same four-byte header
that encodes dimension D ∈ {P, V ,⊥}, the lengths lP and
lV of the substrings sP and sV , and a number m. For inner
nodes,m denotes the number of children, while for leaf nodes
it denotes the number of suffixes. Next, we store substrings
sP and sV (exactly lP and lV bytes long, respectively). After
the header, inner nodes store m pairs (bi , ptri), where bi (1
byte long) is the value at the discriminative byte that is used
to descend to this child node and ptri (6 bytes long) is the
position of this child in the trie file. Leaf nodes, instead, store
m suffixes, and for each suffix, we record substrings sP and
sV along with their lengths and the revision r (20 byte SHA1
hash).

Example 15 The size ofn1 in Fig. 4 is 30 bytes: 4 bytes for the
header, 4 bytes for sV , 1 byte for sP , and 3 × (1 + 6) = 21
bytes for the three child pointers and their discriminative
bytes. ��

7 Algorithms

We propose algorithms for querying, inserting, bulk-loading,
and merging RSCAS tries. Queries are executed indepen-
dently on all in-memory and disk-based RSCAS tries and
the results are combined. Insertions are directed at the in-
memory RSCAS trie alone. Merging is used whenever the
in-memory RSCAS trie overflows and applies bulk-loading
to create a large disk-optimized RSCAS trie.

7.1 Querying RSCAS

We traverse an RSCAS trie in pre-order to evaluate a CAS
query, skipping subtrees that cannotmatch the query. Starting
at the root node, we traverse the trie and evaluate at each
node part of the query’s path and value predicate. Evaluating
a predicate on a node returns MATCH if the full predicate
has been matched, MISMATCH if it has become clear that no
node in the current node’s subtree can match the predicate,
and INCOMPLETE if we need more information. In case of
a MISMATCH, we can safely skip the entire subtree. If both

123

702 K. Wellenzohn et al.

predicates return MATCH, we collect all revisions r in the leaf
nodes of this subtree. Otherwise, we traverse the trie further
to reach a decision.

7.1.1 Query algorithm

Algorithm 1 shows the pseudocode for evaluating a CAS
query on a RSCAS trie. It takes the following parameters: the
current node n (initially the root node of the trie), a query path
q, and a range [vl , vh] for the value predicate. Furthermore,
we need two buffers buffP and buffV (initially empty)
that hold, respectively, all path and value bytes from the root
to the current node n. Finally, we require state information s
to evaluate the path and value predicates (we provide details
as we go along) and an answer set W to collect the results.

Algorithm 1: CasQuery(n, q, [vl , vh],buffV ,buffP , s,W)

1 UpdateBuffers(n.sV , n.sP ,buffV ,buffP)

2 if n is an inner node then
3 matchV ← MatchValue(buffV , vl , vh , s, n)

4 matchP ← MatchPath(buffP , q, s, n)

5 if matchV �= MISMATCH ∧ matchP �= MISMATCH then
6 for each matching child c of n do
7 CasQuery(c, q, [vl , vh],buffV ,buffP , s,W)

8 else
9 foreach t ∈ n.suffixes do

10 UpdateBuffers(t .sV , t .sP ,buffV ,buffP)

11 matchV ← MatchValue(buffV , vl , vh , s, n)

12 matchP ← MatchPath(buffP , q, s, n)

13 if matchV = MATCH ∧ matchP = MATCH then
14 W ← W ∪ {t .R}

First, we update buffV and buffP by adding the infor-
mation in sV and sP of the current node n (line 1).

For inner nodes, wematch the query predicates against the
current node. MatchValue computes the longest common
prefix between buffV and vl and between buffV and vh .
The position of the first byte for which buffV and vl differ
is lo, and the position of the first byte for which buffV

and vh differ is hi. If buffV [lo] < vl [lo], we know that
the node’s value lies outside of the range; hence, we return
MISMATCH. If buffV [hi] > vh[hi], the node’s value lies
outside of the upper bound and we return MISMATCH as
well. If buffV contains a complete value (e.g., all eight
bytes of a 64 bit integer) and vl ≤ buffV ≤ vh , we return
MATCH. If buffV is incomplete, but vl [lo] < buffV [lo]
and buffV [hi] < vh[hi], we know that all values in the
subtree rooted at n match and we also return MATCH. In
all other cases, we cannot make a decision yet and return
INCOMPLETE. The values of lo and hi are kept in the
state to avoid recomputing the longest common prefix from
scratch for each node. Instead we resume the search from the
previous values of lo and hi.

Function MatchPath matches the query path q against
the current path prefix buffP . It supports symbols * and **
to match any number of characters in a node label, respec-
tively, any number of node labels in a path. As long as we do
not encounter any wildcards in the query path q, we directly
compare (a prefix of) q with the current content of buffP

byte by byte. As soon as a byte does not match, we return
MISMATCH. If we successfully match the complete query
path q against a complete path inbuffP (both terminated by
$), we return MATCH. Otherwise, we return INCOMPLETE.
When we encounter wildcard * in q, we match it success-
fully to the corresponding label in buffP and continue with
the next label. A wildcard * itself will not cause a mismatch
(unless we try to match it against the terminator $), so we
either return MATCH if it is the final label in q and buffP

or INCOMPLETE. Matching the descendant-axis ** is more
complicated. We store in state s the current position where
we are in buffP and continue matching the label after **
in q. If at any point we find a mismatch, we backtrack to the
next path separator after the noted position, thus skipping a
label in buffP and restarting the search from there. Once
buffP contains a complete path, we can make a decision
between MATCH or MISMATCH.

The algorithm continues by checking the outcomes of the
value and path matching (line 5). If one of the outcomes
is MISMATCH, we stop the search since no descendant can
match the query. Otherwise, we continue with the matching
children of n (lines 6–8). Finding the matching children fol-
lows the same logic as described above for MatchValue
and MatchPath. If node n.D = P and we have seen a
descendant axis in the query path, all children of the current
node match.

As soon aswe reach a leaf node, we iterate over each suffix
t in the leaf to check if it matches the query using the same
functions as explained above (lines 10–14). If the current
buffers indeed match the query, we add the reference t .R to
the result set.

Example 16 Consider a CAS query that looks for revisions in
2020 that modified a C file in the ext3 or ext4 filesystem.
Thus, the query path is q = /fs/ext*/*.c$ and the value
range is vl = 2020-01-01 (00 00 00 00 5E 0B E1 00) and
vh = 2020-12-31 (00 00 00 00 5F EE 65 FF).We execute
the query on the trie in Fig. 4.

– Starting at n1, we update buffV to 00 00 00 00 and
buffP to /. MatchValue matches four value bytes
and returns INCOMPLETE. MatchPath matches one
path byte and also returns INCOMPLETE. Both func-
tions return INCOMPLETE, so we have to traverse all
matching children. Since n1 is a value node, we look for
all matching children whose value for the discriminative

123

Robust and scalable content-and-structure indexing 703

value byte is between5E and5F . Nodesn7 andn8 satisfy
this condition.

– Node n7 is a leaf. We iterate over each suffix (there are
two) and update the buffers accordingly. For the first
suffix with path substring 3/inode.c$ we find that
MatchPath and MatchValue both return MATCH.
Hence, revision r4 is added toW . The next suffixmatches
the value predicate but not the path predicate and is there-
fore discarded.

– Next, we look at node n8. We find that vl [5] = 5E <

5F = buffV [5] = vh[5] and buffV [6] = BD < EE =
vh[6], thus all values of n9’s descendants are within the
bounds vl and vh , and MatchValue returns MATCH.
Sincen8.sP is the empty string,MatchPath still returns
INCOMPLETE and we descend further. According to the
second byte in the query path, q[2] = f, we must match
letter f; hence, we descend to node n10, where both pred-
icates match. Therefore, revision r6 is added to W .

7.2 Updatingmemory-based RSCAS trie

All insertions are performed in the in-memory RSCAS trie
RM
0 where they can be executed efficiently. Inserting a new

key into RM
0 usually changes the position of the discrimina-

tive bytes, which means that the dynamic interleaving of all
keys that are located in the node’s subtree is invalidated.

Example 17 We insert the key k10 = (/crypto/rsa.c$,

00 00 00 00 5F 83 B9 AC, r8) into theRSCAS trie inFig. 4.
First we traverse the trie starting from root n1. Sincen1’s sub-
strings completely match k10’s path and value we traverse to
child n8. In n8, there is a mismatch in the value dimension:
k10’s sixth byte is 83 while for node n8 the corresponding
byte is BD. This invalidates the dynamic interleaving of keys
K2,3,7 in n8’s subtree. ��

7.2.1 Lazy restructuring

If we want to preserve the dynamic interleaving, we need
to re-compute the dynamic interleaving of all affected keys,
which is expensive. Instead, we relax the dynamic interleav-
ing using lazy restructuring [44]. Lazy restructuring resolves
themismatch by adding exactly two newnodes, npar and nsib,
to RSCAS instead of restructuring large parts of the trie. The
basic idea is to add a new intermediate node npar between
node n where the mismatch happened and n’s new sibling
node nsib that represents the newly inserted key. We put all
bytes leading up to the position of the mismatch into npar,
and all bytes starting from this position move to nodes n and
nsib. After that, we insert node npar between node n and its
previous parent node n p.

Example 18 Figure 8 shows the rightmost subtree of Fig. 4
after it is lazily restructured when k10 is inserted. Two new

Fig. 8 The rightmost subtree of Fig. 4 after inserting key k10 with lazy
restructuring

nodes are created, parent npar = n′
8 and sibling nsib = n′′

8.
Additionally, n8.sV is updated. ��

Lazy restructuring is efficient: it adds exactly two new
nodes to RM

0 ; thus, the main cost is traversing the trie.
However, while efficient, lazy restructuring introduces small
irregularities that are limited to the dynamic interleaving of
the keys in the subtree where the mismatch occurred. These
irregularities do not affect the correctness of CAS queries,
but they slowly separate (rather than interleave) paths and
values if insertions repeatedly force the algorithm to split the
same subtree in the same dimension. Since RM

0 is memory-
based and small in comparison with the disk-based tries, the
overall effect on query performance is negligible.

Example 19 After inserting k10, root node n1 and its new
child n′

8 both ψ-partition the data in the value dimension,
violating the strictly alternating property of the dynamic
interleaving, see Fig. 8. ��

7.2.2 Inserting keys with lazy restructuring

Algorithm 2 inserts a key k in RM
0 rooted at node n. If RM

0
is empty (i.e., n is Nil), we create a new root node in lines
1-3. Otherwise, we traverse the trie to k’s insertion position.
We compare the key’s path and value with the current node’s
path and value by keeping track of positions gP , gV , iP , iV
in strings k.P, k.V , n.sP , n.sV , respectively (lines 8–11). As
long as the substrings at their corresponding positions coin-
cide we descend. If we completely matched key k, it means
that we reached a leaf node and we add k.R to the current
node’s suffixes (lines 12–14). If during the traversal we can-
not find the next node to descend to, the key has a new value
at a discriminative byte that did not exist before in the data.
We create a new leaf node and set its substrings sP and sV to
the still unmatched bytes in k.P and k.V , respectively (lines
20–22). If we find a mismatch between the key and the cur-
rent node in at least one dimension, we lazily restructure the
trie (lines 15–17).

Algorithm 3 implements lazy restructuring. Lines 1–4
determine the dimension in which npar partitions the data.

123

704 K. Wellenzohn et al.

Algorithm 2: Insert(k, n)

1 if n = Nil then // RSCAS is empty; create new root
2 Install new root node: leaf(k.P, k.V , k.R)

3 return

4 n p ← Nil
5 gP , gV ← 1
6 while true do
7 iP , iV ← 1
8 while iP ≤ |n.sP | ∧ gP ≤ |k.P| ∧ n.sP [iP] = k.P[gP] do
9 gP++; iP++

10 while iV ≤ |n.sV | ∧ gV ≤ |k.V | ∧ n.sV [iV] = k.V [gV] do
11 gV ++; iV ++

12 if gP > |k.P| ∧ gV > |k.V | then
13 n.suffixes ← n.suffixes ∪ {(ε, ε, k.R)}
14 return
15 else if iP ≤ |n.sP | ∨ iV ≤ |n.sV | then
16 LazyRestructuring(k, n, n p , gP , gV , iP , iV)

17 return

18 if n.D = P then b ← k.P[gP] else b ← k.V [gV]
19 (n p , n) ← (n, n.children[b])
20 if n = Nil then
21 n p .children[b] ← leaf(k.P[gP , |k.P|], k.V [gV , |k.V |], k.R)

22 return

If only a path mismatch occurred between n and k, we have
to use dimension P . In case of only a value mismatch, we
have to use V . If we have mismatches in both dimensions,
then we take the opposite dimension of parent node np to
keep up an alternating interleaving as long as possible. In
lines 5–6, we create nodes npar and nsib. Node npar is an
inner node of type node4, which is the node type with the
smallest fanout in ART [21]. In lines 9–12, we install n and
nsib as children of npar. Finally, in lines 13–15, we place the
new parent node npar between n and its former parent node
n p.

Algorithm3:LazyRestructuring(k, n, n p, gP , gV , iP , iV)

1 if iP ≤ |n.sP | ∧ iV > |n.sV | then D ← P // mismatch in P
2 else if iP > |n.sP | ∧ iV ≤ |n.sV | then D ← V // mismatch in V

3 else if n p �= Nil then D ← n p .D // mismatch in P and V
4 else D ← V

5 npar ← node4(D, n.sP [1, iP − 1], n.sV [1, iV − 1])
6 nsib ← leaf(k.P[gP , |k.P|], k.V [gV , |k.V |], k.R)

7 n.sP ← n.sP [iP , |n.sP |]
8 n.sV ← n.sV [iV , |n.sV |]
9 if D = P then b1 ← nsib.sP [1] else b1 ← nsib.sV [1]

10 if D = P then b2 ← n.sP [1] else b2 ← n.sV [1]
11 npar.children[b1] ← nsib
12 npar.children[b2] ← n

13 if n p = Nil then install npar as new root node
14 else if n p .D = P then n p .children[npar.sP [1]] ← npar
15 else if n p .D = V then n p .children[npar.sV [1]] ← npar

7.3 Bulk-loading a disk-based RSCAS trie

We create and bulk-load a new disk-based RSCAS trie when-
ever the in-memory trie RM

0 overflows. The bulk-loading
algorithmconstructsRSCASwhile, at the same time, dynam-

ically interleaving a set of keys. Bulk-loading RSCAS is
difficult because all keys must be considered together to
dynamically interleave them. The bulk-loading algorithm
starts with all non-interleaved keys in the root partition. We
use partitions during bulk-loading to temporarily store keys
along with their discriminative bytes. Once a partition has
been processed, it is deleted.

Definition 12 (Partition)Apartition L = (gP , gV , size,ptr)
stores a set K of composite keys. gP = dsc(K , P) and gV =
dsc(K , V) denote the discriminative path and value byte,
respectively. size = |K | denotes the number of keys in the
partition. L is either memory-resident or disk-resident, and
ptr points to the keys in memory or on disk. ��
Example 20 Root partition L1...9 = (2, 5, 9, •) in Fig. 9a
stores keys K1...9 from Table 1. The longest common prefixes
of L1...9 are type-set in bold-face. The first bytes after these
prefixes are L1...9’s discriminative bytes gP = 2 and gV = 5.
We use placeholder • for pointer ptr; we describe later how
to decide if partitions are stored on disk or in memory. ��

Bulk-loading starts with root partition L and breaks it into
smaller partitions using the ψ-partitioning until a partition
contains at most τ keys. Theψ-partitioningψ(L, D) groups
keys together that have the same prefix in dimension D, and
returns a partition table where each entry in this table points
to a new partition Li .We applyψ alternatingly in dimensions
V and P to interleave the keys at their discriminative bytes.
In each call, the algorithm adds a new node to RSCAS with
L’s longest common path and value prefixes.

Example 21 Figure 9 shows how the RSCAS from Fig. 4 is
built. In Fig. 9b, we extract L1...9’s longest common path
and value prefixes and store them in the new root node n1.
Then, we ψ-partition L1...9 in dimension V and obtain a par-
tition table (light green) that points to three new partitions:
L1,4,8,9, L5,6, and L2,3,7. We drop L1...9’s longest common
prefixes from these new partitions. We proceed recursively
with L1,4,8,9. In Fig. 9c, we create node n2 as before and this
time weψ-partition in dimension P and obtain two new par-
titions. Given τ = 2, L1 is not partitioned further, but in the
next recursive step, L4,8,9 would be partitioned one last time
in dimension V . ��

To avoid scanning L twice (first to compute the dis-
criminative byte; second to compute ψ(L, D)) we make
the ψ-partitioning proactive by exploiting that ψ(L, D) is
applied hierarchically. This means we pre-compute the dis-
criminative bytes of every new partition Li ∈ ψ(L, D) as
we ψ-partition L . As a result, by the time Li itself is ψ-
partitioned, we already know its discriminative bytes and can
directly compute the partitioning. Algorithm 6 in Sect. 7.4
shows how to compute the root partition’s discriminative
bytes; the discriminative bytes of all subsequent partitions

123

Robust and scalable content-and-structure indexing 705

(c)

(a) (b)

Fig. 9 The keys are recursively ψ-partitioned depth-first, creating new RSCAS nodes in pre-order. A node represents the longest common path
and value prefixes of its corresponding partition

are computed proactively during the partitioning itself. This
halves the scans over the data during bulk-loading.

7.3.1 Bulk-loading algorithm

The bulk-loading algorithm (Algorithm 4) takes three param-
eters: a partition L (initially the root partition), the partition-
ing dimension D (initially dimension V), and the position
in the trie file where the next node is written to (initially 0).
Each invocation adds a node n to the RSCAS trie and returns
the position in the trie file of the first byte after the subtree
rooted in n. Lines 1–3 create node n and set its longest com-
mon prefixes n.sP and n.sV , which are extracted from a key
k ∈ L from the first byte up to, but excluding, the positions
of L’s discriminative bytes L.gP and L.gV . If the number of
keys in the current partition exceeds the partitioning thresh-
old τ and L can be ψ-partitioned, we break L further up.
In lines 5–6, we check if we can indeed ψ-partition L in D
and switch to the alternate dimension D otherwise. In line
8, we apply ψ(L, D) and obtain a partition table T , which
is a 28-long array that maps the 28 possible values b of a
discriminative byte (0x00 ≤ b ≤ 0xFF) to partitions. We
write T [b] to access the partition for value b (T [b] = Nil if
no partition exists for value b). ψ(L, D) drops L’s longest
common prefixes from each key k ∈ L since we store these
prefixes already in node n. We apply Algorithm 4 recursively
on each partition in T with the alternate dimension D, which
returns the position where the next child is written to on disk.
We terminate if partition L contains no more than τ keys or
cannot be partitioned further. We iterate over all remaining

keys in L and store their non-interleaved suffixes in the set
n.suffixes of leaf node n (lines 16–19). Finally, in line 22 we
write node n to disk at the given offset in the trie file.

Algorithm 4: BulkLoad(L, D,preorderPos)
1 Let n be a new node, k a key in L;
2 n.sP ← k.P[1, L.gP − 1];
3 n.sV ← k.V [1, L.gV − 1];
4 if L.size > τ ∧ (L.gP > |k.P| ∨ L.gV > |k.V |) then
5 if D = P ∧ L.gP > |k.P| then D ← V ;
6 else if D = V ∧ L.gV > |k.V | then D ← P;
7 n.D ← D;
8 T ← ψ(L, D);
9 pos ← preorderPos + size(n);

10 for b ← 0x00 to 0xFF do
11 if T [b] �= Nil then
12 n.children[b] ← pos;
13 pos ← BulkLoad(T [b], D, pos);

14 else
15 n.D ← ⊥;
16 foreach key k ∈ L do
17 sP ← k.P[L.gP , |k.P|];
18 sV ← k.V [L.gV , |k.V |];
19 n.suffixes ← n.suffixes ∪ {(sP , sV , k.R)};
20 Delete L;
21 pos ← preorderPos + size(n);

22 Write node n to disk from position preorderPos to preorderPos + size(n);
23 return pos;

Algorithm 5 implements ψ(L, D). We organize the keys
in a partition L at the granularity of pages so that we can
seamlessly transition between memory- and disk-resident
partitions. A page is a fixed-length buffer that contains a
variable number of keys. If L is disk-resident, L.ptr points
to a page-structured file on disk and if L is memory-resident,

123

706 K. Wellenzohn et al.

L.mptr points to the head of a singly-linked list of pages.
Algorithm 5 iterates over all pages in L and for each key in a
page, line 6 determines the partition T [b] to which k belongs
by looking at its value b at the discriminative byte. Next,
we drop the longest common path and value prefixes from
k (lines 7–8). We proactively compute T [b]’s discriminative
bytes whenever we add a key k to T [b] (lines 10–17). Two
cases can arise. If k is T [b]’s first key, we initialize partition
T [b]. If L fits into memory, we make T [b]memory-resident,
else disk-resident. We initialize gP and gV with one past the
length of k in the respective dimension (lines 9–12). These
values are valid upper-bounds for the discriminative bytes
since keys are prefix-free. We store k as a reference key for
partition T [b] in refkeys[b]. If k is not the first key in T [b],
we update the upper bounds (lines 13–17) as follows. Start-
ing from the first byte, we compare k with reference key
refkeys[b] byte-by-byte in both dimension until we reach
the upper-bounds T [b].gP and T [b].gV , or we find new dis-
criminative bytes and update T [b].gP and T [b].gV .

7.4 Merging RSCAS tries upon overflow

When the memory-resident trie RM
0 reaches its maximum

size of M keys, we move its keys to the first disk-based trie
Ri that is empty using Algorithm 6. We keep pointers to the
root nodes of all tries in an array. Algorithm 6 first collects
all keys from tries RM

0 , R0, . . . , Ri−1 and stores them in a
new partition L (lines 2–4). Next, in lines 5–11, we compute
L’s discriminative bytes L.gP and L.gV from the substrings

sP and sV of the root nodes of the i tries. Finally, in lines
12–14, we bulk-load trie Ri and delete all previous tries.

Algorithm 6: HandleOverflow
1 Let i be the smallest number such that index Ri is empty;
2 Let L be a new disk-resident partition;

3 foreach trie R ∈ {RM
0 , R0, . . . , Ri−1} do

4 Collect all composite keys in R and store them in L.ptr;

5 {nM0 , n0, . . . , ni−1} ← root nodes of all tries RM
0 , R0, . . . , Ri−1;

6 L.gP , L.gV ← (|nM0 .sP | + 1, |nM0 .sV | + 1);
7 foreach root node n ∈ {n0, . . . , ni−1} do
8 gP , gV ← (1, 1);

9 while gP < L.gP ∧ nM0 .sP [gP] = n.sP [gP] do gP++;

10 while gV < L.gV ∧ nM0 .sP [gV] = n.sV [gV] do gV ++;
11 L.gP , L.gV ← (gP , gV);

12 Create new trie file Ri ;
13 BulkLoad(L, V , position 0 in Ri ’s trie file);

14 Delete tries RM
0 , R0, . . . , Ri−1;

7.5 Analytical evaluation

7.5.1 Total I/O overhead during bulk-loading

The I/O overhead is the number of page I/Os without reading
the input and writing the output. We use N , M , and B for
the number of input keys, the number of keys that fit into
memory, and the number of keys that fit into a page, respec-
tively [4]. We analyze the I/O overhead of Algorithm 4 for a
uniform data distribution with a balanced RSCAS and for a
maximally skewed distribution with an unbalanced RSCAS.
The ψ-partitioning splits a partition into equally sized parti-
tions. Thus, with a fixed fanout f the ψ-partitioning splits a
partition into f , 2 ≤ f ≤ 28, partitions.

Lemma 5 The I/O overhead to build RSCAS with Algorithm
4 from uniformly distributed data is

2 × �log f � N
M

�� × �N
B

�

Example 22 We compute the I/O overhead for N = 16, M =
4, B = 2, and f = 2. There are �log2� 16

4 �� = 2 intermediate
levels with the data on disk. On each level, we read and write
16
2 = 8 pages. In total, the disk I/O is 2 × 2 × 8 = 32. ��
For maximally skewed data, RSCAS deteriorates to a trie

whose height is linear in the number of keys in the dataset.

Lemma 6 The I/O overhead to build RSCAS with Algorithm
4 from maximally skewed data is

2 ×
N−� M

B �B∑

i=1

(
�N − i

B
� + 1

)

123

Robust and scalable content-and-structure indexing 707

Example 23 We use the same parameters as in the previous
example but assume maximally skewed data. There are 16−
� 4
2�2 = 12 levels before the partitions fit into memory. For

example, at level i = 1 we write and read � 16−1
2 � = 8 pages

for L1,2. In total, the I/O overhead is 144 pages. ��
Theorem 4 The I/O overhead to build RSCAS with Algo-
rithm 4 depends on the data distribution. It is lower bounded
by O(log(N

M) NB) and upper bounded by O((N − M) NB).

Note that, sinceRSCAS is trie-based and keys are encoded
by the path from the root to the leaves, the height of the trie
is bounded by the length of the keys. The worst-case is very
unlikely in practice because it requires that the lengths of the
keys is linear in the number of keys. Typically, the key length
is at most tens or hundreds of bytes. We show in Sect. 8 that
buildingRSCASperforms close to the best case on real-world
data.

7.5.2 Amortized I/O overhead during insertions

Next, we consider the amortized I/O overhead of a single
insertion during a series of N insertions into an empty trie.
Note that M − 1 out of M consecutive insertions incur no
disk I/O since they are handled by the in-memory trie RM

0 .
Only the M th insertion bulk-loads a new disk-based trie.

Lemma 7 Let cost(N , M, B) be the I/O overhead of bulk-
loading RSCAS. The amortized I/O overhead of one insertion
out of N insertions into an initially empty trie is O(1

N ×
log2(

N
M) × cost(N , M, B)).

8 Experimental evaluation

8.1 Setup

Environment We use a Debian 10 server with 80 cores and
400GB main memory. The machine has six hard disks, each
2TB big, that are configured in a RAID 10 setup. The code
is written in C++ and compiled with g++ 8.3.0.

DatasetsWe use three real-world datasets and one synthetic
dataset. Table 6 provides an overview.

– GitLab. The GitLab data from SWH contain archived
copies of all publicly available GitLab repositories up
to 2020-12-15. The dataset contains 914593 archived
repositories, which correspond to a total of 120071946
unique revisions and 457839953 unique files. For all
revisions in theGitLab dataset, we index the commit time
and the modified files (equivalent to “commit diffstats”
in version control system terminology). In total, we index
6.9 billion composite keys similar to Table 1.

– ServerFarm. The ServerFarm dataset [42] mirrors the
file systems of 100 Linux servers. For each server, we
installed a default set of packages and randomly picked a
subset of optional packages. In total, there are 21 million
files. For each file, we record the file’s full path and size.

– Amazon. The Amazon dataset [18] contains hierarchi-
cally categorized products. For each product, its location
in the hierarchical categorization (the path) and its price
in cents (the value) are recorded. For example, the shoe
‘evo’ has path /sports/outdoor/running/evo
and its price is 10000 cents.

– XMark.TheXMark dataset [39] is a synthetic dataset that
models a database for an internet auction site. It contains
information about people, regions (subdivided by conti-
nent), etc.We generated the dataset with scale factor 500,
and we index the numeric attribute ‘category’.

Previous results In our previous work [44], we compared
RSCAS to state-of-the-art research solutions. We compared
RSCAS to theCAS index byMathis et al. [25],which indexes
paths and values in separate index structures. We also com-
pared RSCAS to a trie-based index where composite keys
are integrated with four different methods: (i) the z-order
curve with surrogate functions to map variable-length keys
to fixed-length keys, (ii) a label-wise interleaving where
we interleave one path label with one value byte, (iii) the
path-value concatenation, and (iv) value-path concatenation.
Our experiments showed that the approaches do not provide
robustCASquery performance because theymay create large
intermediate results.

Compared approaches This paper compares RSCAS to
scalable state-of-the-art industrial-strengths systems. First,
we compare RSCAS to Apache Lucene [1], which builds
separate indexes for the paths and values. Lucene creates an
FST on the paths and a Bkd-tree [35] on the values. Lucene
evaluates CAS queries by decomposing queries into their
two predicates, evaluating the predicates on the respective
indexes, and intersecting the sorted posting lists to produce
the final result. Second, we compare RSCAS to composite
B-trees in Postgres. This simulates the two possible c-order
curves that concatenate the paths and values (or vice versa).
We create a tabledata(P, V , R), similar to Table 1, and cre-
ate two composite B+ trees on attributes (P, V) and (V , P),
respectively.

Parameters Unless otherwise noted, we set the partition-
ing threshold τ = 100 based on experiments in Sect. 8.4.1.
The number of keys M that the main-memory RSCAS trie
RM
0 can hold is M = 108.
Artifacts The code and the datasets used for our experi-

ments are available online.2

2 https://github.com/k13n/scalable_rcas.

123

https://github.com/k13n/scalable_rcas

708 K. Wellenzohn et al.

Table 6 Dataset Statistics GitLab ServerFarm Amazon XMark

Origin SWH [42] [18] [39]

Attribute Commit time Size Price Category

Type real-world real-world real-world synthetic

Size 1.6TB 3.0GB 10.5GB 58.9GB

Nr. Keys 6891972832 21291019 6707397 60272422

Nr. Unique Keys 5849487576 9345668 6461587 1506408

Nr. Unique Paths 340614623 9331389 6311076 7

Nr. Unique Values 81829152 234961 47852 389847

Avg. Key Size 79.8B 79.8B 119.3B 54.8B

Total Size of Keys 550.2GB 1.7GB 0.8GB 3.3GB

8.2 Impact of datasets on RSCAS’s structure

In Fig. 10, we show how the shape (depth and width) of the
RSCAS trie adapts to the datasets. Figure 10a shows the dis-
tribution of the node depths in the RSCAS trie for the GitLab
dataset. Because of its trie-based structure not every root-to-
leaf path in RSCAS has the same length (see also Fig. 4).
The average node depth is about 10, with 90% of all nodes
occurring no deeper than level 14. The expected depth is
log f̄ � N

τ
� = log8� 6.9B

100 � = 8.7, where N is the number of
keys, τ is the partitioning threshold that denotes the maxi-
mum size of a leaf partition, and f̄ is the average fanout. The
actual average depth is higher than the expected depth since
the GitLab dataset is skewed and the expected depth assumes
a uniformly distributed dataset. In the GitLab dataset, the
average key length is 80 bytes, but the average node depth
is 10, meaning that RSCAS successfully extracts common
prefixes. Figure 10b shows how the fanout of the nodes is
distributed. Since RSCASψ-partitions the data at the granu-
larity of bytes, the fanout of a node is upper-bounded by 28,
but in practice most nodes have a smaller fanout (we cap the
x-axis in Fig. 10b at fanout 40, because there is a long tail of
high fanouts with low frequencies). Nodes that ψ-partition
the data in the path dimension typically have a lower fanout
because most paths contain only printable ASCII characters
(of which there are about 100), while value bytes span the
entire available byte spectrum.

The shape of the RSCAS tries on the ServerFarm and
Amazon datasets closely resemble that of the trie on the Git-
Lab dataset, see the second and third row in Fig. 10. This is
to be expected since all three datasets contain a large num-
ber of unique paths and values, see Table 6. As a result, the
data contain a large number of discriminative bytes that are
needed to distinguish keys from one another. The paths in
these datasets are typically longer than the values and con-
tain more discriminative bytes. In addition, as seen above,
the discriminative path bytes typically ψ-partition the data
into fewer partitions than the discriminative value bytes. As

Node Depth Node Fanout

0 10 20 30
0

10
20
30
40

Avg: 9.6
Exp: 8.7

(a)

G
it
L
ab

Fr
eq
ue
nc
y
[%

]

0 10 20 30 40
0

10
20
30
40

Avg: 8.0
(b)

0 10 20 30
0

10
20
30
40

Avg: 10.6
Exp: 6.1

(c)
Se
rv
er
F
ar
m

Fr
eq
ue
nc
y
[%

]

0 10 20 30 40
0

10
20
30
40

Avg: 7.6
(d)

0 10 20 30
0

10
20
30
40

Avg: 6.9
Exp: 4

(e)

A
m
az
on

Fr
eq
ue
nc
y
[%

]

0 10 20 30 40
0

10
20
30
40

Avg: 16.9
(f)

0 1 2 3 4 5 6
0

20

40

60
Avg: 4.8
Exp: 5.1

(g)

X
M
ar
k

Fr
eq
ue
nc
y
[%

]

0 10 20 30 40
0

20
40
60

Avg: 32.6
(h)

Fig. 10 Structure of the RSCAS trie

a consequence, the RSCAS trie on these three datasets is nar-
rower and deeper than the RSCAS trie on the XMark dataset,
which has only seven unique paths and about 390k unique
values in a dataset of 60M keys. Since the majority of the
discriminative bytes in the XMark dataset are value bytes,
the trie is flatter and wider on average, see the last row in
Fig. 10.

8.3 Query performance

Table 7 shows twelve typical CAS queries with their query
path q and the value range [vl , vh]. We show for each query
the final result size and the number of keys that match the
individual predicates. In addition, we provide the selectivi-

123

Robust and scalable content-and-structure indexing 709

Ta
bl
e
7

C
A
S
qu

er
ie
s
w
ith

th
ei
r
re
su
lt
si
ze

an
d
th
e
nu

m
be
r
of

ke
ys

th
at
m
at
ch

th
e
pa
th
,r
es
pe
ct
iv
el
y,
va
lu
e
pr
ed
ic
at
e

Q
ue
ry

pa
th

q
v
l

v
h

R
es
ul
ts
iz
e

(σ
)

Pa
th

m
at
ch
es

(σ
P
)

V
al
ue

m
at
ch
es

(σ
V
)

D
at
as
et
:G

it
L
ab

(t
he

va
lu
es

ar
e
co
m
m
it
tim

es
th
at
ar
e
st
or
ed

as
64

bi
tU

ni
x
tim

es
ta
m
ps
)

Q
1

/
d
r
i
v
e
r
s
/
a
n
d
r
o
i
d
/
b
i
n
d
e
r
.
c

09
/1
0/
17

09
/1
0/
17

2
9

(4
.2

·1
0−

9
)

1
2
5
8
4
9

(1
.8

·1
0−

5
)

3
2
8
6
0
3

(4
.8

·1
0−

5
)

Q
2

/
d
r
i
v
e
r
s
/
a
n
d
r
o
i
d
/
b
i
n
d
e
r
.
c

01
/1
0/
17

01
/1
1/
17

3
2
3
6

(4
.7

·1
0−

7
)

1
2
5
8
4
9

(1
.8

·1
0−

5
)

7
2
8
8
3
6
6
7

(1
.1

·1
0−

2
)

Q
3

/
d
r
i
v
e
r
s
/
g
p
u
/
*
*

07
/0
8/
14

08
/0
8/
14

6
0
3
4
4

(8
.8

·1
0−

6
)

1
5
1
8
7
1
5
0
3

(2
.2

·1
0−

2
)

3
5
0
3
0
7
6

(5
.1

·1
0−

4
)

Q
4

/
D
o
c
u
m
e
n
t
a
t
i
o
n
/
*
*
/
a
r
m
/
*
*
/
*
.
t
x
t

06
/0
5/
13

22
/0
5/
13

1
1
7
2
0

(1
.7

·1
0−

6
)

5
9
2
7
1
2
9

(8
.6

·1
0−

4
)

2
2
2
2
1
8
9
2

(3
.2

·1
0−

3
)

Q
5

/
*
*
/
M
a
k
e
f
i
l
e

22
/0
5/
12

04
/0
6/
12

2
6
3
7
5
4

(3
.8

·1
0−

5
)

1
1
2
0
3
7
1
4
0

(1
.6

·1
0−

2
)

1
0
9
3
2
7
5
6

(1
.6

·1
0−

3
)

Q
6

/
*
*
/
e
x
t
*
/
i
n
o
d
e
.
*

07
/0
8/
18

29
/0
8/
18

5
0
8
0

(7
.4

·1
0−

7
)

5
2
9
8
7
5

(7
.7

·1
0−

5
)

7
0
9
7
1
3
8
2

(1
.0

·1
0−

2
)

D
at
as
et
:S

er
ve
rF

ar
m

(t
he

va
lu
es

ar
e
th
e
fil
e
si
ze
s
in

by
te
s)

Q
7

/
u
s
r
/
l
i
b
/
*
*

0
kB

1
kB

5
1
2
4
9
7

(2
.4

·1
0−

2
)

2
2
7
7
5
1
8

(1
.1

·1
0−

1
)

8
4
0
3
8
0
9

(3
.9

·1
0−

1
)

Q
8

/
u
s
r
/
s
h
a
r
e
/
d
o
c
/
*
*
/
R
E
A
D
M
E

4
kB

5
kB

5
2
1

(2
.4

·1
0−

5
)

2
4
6
9
8

(1
.2

·1
0−

3
)

7
6
1
5
1
3

(3
.6

·1
0−

2
)

D
at
as
et
:A

m
az
on

(t
he

va
lu
es

ar
e
pr
od

uc
tp

ri
ce
s
in

ce
nt
s)

Q
9

/
C
e
l
l
P
h
o
n
e
s
&
A
c
c
e
s
s
o
r
i
e
s
/
*
*

10
0
$

20
0
$

2
7
5
8

(4
.1

·1
0−

4
)

2
9
1
6
2
5

(4
.3

·1
0−

2
)

3
2
4
2
7
2

(4
.8

·1
0−

2
)

Q
10

/
C
l
o
t
h
i
n
g
/
W
o
m
e
n
/
*
/
S
w
e
a
t
e
r
s
/
*
*

70
$

10
0
$

2
3
9

(3
.6

·1
0−

5
)

4
6
5
4

(6
.9

·1
0−

4
)

2
6
9
9
3
6

(4
.0

·1
0−

2
)

D
at
as
et
:X

M
ar
k
(t
he

va
lu
es

de
no
te
th
e
nu
m
er
ic
at
tr
ib
ut
e
ca
te
go
ry
)

Q
11

/
s
i
t
e
/
p
e
o
p
l
e
/
*
*
/
i
n
t
e
r
e
s
t

0
50
00
0

1
9
1
0
5
2
4

(3
.2

·1
0−

2
)

1
9
0
0
9
7
2
3

(3
.2

·1
0−

1
)

6
0
6
6
5
4
6

(1
.0

·1
0−

1
)

Q
12

/
s
i
t
e
/
r
e
g
i
o
n
s
/
a
f
r
i
c
a
/
*
*

0
50
00
0

1
0
4
5
0
0

(1
.7

·1
0−

3
)

1
0
4
3
2
4
7

(1
.7

·1
0−

2
)

6
0
6
6
5
4
6

(1
.0

·1
0−

1
)

123

710 K. Wellenzohn et al.

(c)(b)(a)

(f)(e)(e)

Fig. 11 Runtime of queries Q1, . . . , Q6 on cold caches

ties of the queries. The selectivity σ (σP) [σV] is computed as
the fraction of all keys that match the CAS query (path predi-
cate) [value predicate]. A salient characteristic of the queries
is that the final result is orders of magnitude smaller than the
results of the individual predicates. Queries Q1 through Q6

on the GitLab dataset increase in complexity. Q1 looks up
all revisions that modify one specific file in a short two-hour
time frame. Thus, Q1 is similar to a point querywith very low
selectivity in both dimensions. The remaining queries have a
higher selectivity in at least one dimension. Q2 looks up all
revisions that modify one specific file in a one-month period.
Thus, its path selectivity is low, but its value selectivity is
high. Query Q3 does the opposite: its path predicate matches
all changes to GPU drivers using the ** wildcard, but we
only look for revisions in a very narrow one-day time frame.
Q4 mixes the * and ** wildcards multiple times and puts
them in different locations of the query path (in the middle
and towards the end). Q5 looks for changes to all Makefiles,
using the ** wildcard at the front of the query path. Simi-
larly, Q6 looks for all changes to files named inode (all file
extensions are accepted with the *wildcard). The remaining
six queries on the other three datasets are similar.

Figure 11 shows the runtime of the six queries on the
GitLab dataset (note the logarithmic y-axis). We clear the
operating system’s page cache before each query (later we
repeat the same experiment on warm caches). We start with
the runtime of query Q1 in Fig. 11a. This point query is well
suited for existing solutions because both predicates have low
selectivities and produce small intermediate results. There-
fore, the composite VP and PV indexes perform best. No
matter what attribute is ordered first in the composite index
(the paths or the values), the index can quickly narrow down
the set of possible candidates. Lucene on the other hand
evaluates both predicates and intersects the results, which
is more expensive. RSCAS is in between Lucene and the
two composite indexes. Q2 has a low path but high value

(c)(b)(a)

(f)(d)(e)

Fig. 12 Runtime of queries Q7, . . . , Q12 on cold caches

selectivity. Because of this, the composite PV index out-
performs the composite VP index, see Fig. 11b. Evaluating
this query in Lucene is costly since Lucene must fully iter-
ate over the large intermediate result produced by the value
predicate. RSCAS, on the other hand, uses the selective path
predicate to prune subtrees early during query evaluation.
For query Q3 in Fig. 11c, RSCAS performs best, but it is
closely followed by the composite VP index, for which Q3

is the best case since Q3 has a very low value selectivity.
While Q3 is the best case for VP, it is the worst case for
PV and indeed its query performance is an order of magni-
tude higher. For Lucene, the situation is similar to query Q2,
except that the path predicate produces a large intermediate
result (rather than the value predicate). Query Q4 uses the *
and **wildcards at the end of its query path. The placement
of the wildcards is important for all approaches. Query paths
that have wildcards in the middle or at the end can be eval-
uated efficiently with prefix searches. As a result, RSCAS’s
query performance remains stable and is similar to that for
queries Q1, . . . , Q3. Queries Q5 and Q6 are more difficult
for all approaches because they contain the descendant axis
at the beginning of the query path. Normally, when the query
path does not match a path in the trie, the node that is not
matched and its subtrees do not need to be considered any-
more because no path suffix can match the query path. The
** wildcard, however, may skip over mismatches and the
query path’s suffix may match. For this reason, Lucene must
traverse its entire FST that is used to evaluate path predicates.
Likewise, the composite PV index must traverse large parts
of the index because the keys are ordered first by the paths
and in the index. The VP index can use the value predicate to
prune subtrees that do not match the value predicate before
looking at the path predicate. RSCAS uses the value predi-
cate to prune subtrees when the path predicate does not prune
anymore because of wildcards and therefore delivers the best
query runtime.

123

Robust and scalable content-and-structure indexing 711

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

(l)(k)(j)

Fig. 13 Runtime of queries Q1, . . . , Q12 on warm caches

In Fig. 12, we show the runtime of queries Q7, . . . Q12

on the remaining three datasets (again on cold caches). The
absolute runtimes are lower because the datasets are consid-
erably smaller than the GitLab dataset, see Table 6, but the
relative differences between the approaches are comparable
to the previous set of queries, see Fig. 11.

We repeat the same experiments on warm caches, see
Fig. 13 (the y-axis shows the query runtime in milliseconds).
Note that we did not implement a dedicated caching mech-
anism and solely rely on the operating system’s page cache.
When the caches are hot the CPU usage and memory access
become the main bottlenecks. Since RSCAS produces the
smallest intermediate results, RSCAS requires the least CPU
time and memory accesses. As a result, RSCAS consistently
outperforms its competitors, see Fig. 13.

An analysis of the query performance for anRSCAS index
with different numbers of levels, i.e., tries, can be found in
the accompanying technical report [43].

8.4 Scalability

RSCAS uses its LSM-based structure to gracefully and effi-
ciently handle large datasets that do not fit intomainmemory.
We discuss how to choose threshold τ , the performance of

100 102 104
0

5

10
τ = 100

(a) Threshold τ

B
ul
k-
lo
ad
in
g
[h
]

100 102 104
0

0.5
1

1.5
τ = 100

(b) Threshold τ

N
r
N
od

es
[B

]

100 102 104
0
2
4
6
8

10

τ = 100

(c) Threshold τ

Q
ue
ry

R
un

tim
e
[s
]

100 102 104
0

20
40
60
80

τ = 100

(d) Threshold τ

In
de
x
Si
ze

[G
B
]

Fig. 14 Calibrating partitioning threshold τ

bulk-loading and individual insertions, the accuracy of the
cost model, and the index size.

8.4.1 Calibration

We start out by calibrating the partitioning threshold τ , i.e.,
the maximum number of suffixes in a leaf node. We calibrate
τ in Fig. 14 on a 100GB subset of the GitLab dataset. Even
on the 100GB subset, bulk-loading RSCASwith τ = 1 takes
more than 12 hours, see Fig. 14a. When we increase τ , the
recursive bulk-loading algorithm terminates earlier (see lines
15–21 in Algorithm 4); hence, fewer partitions are created
and the runtime improves. Since the bulk-loading algorithm
extracts from every partition its longest common prefixes and
stores them in a new node, the number of nodes in the index
also decreases as we increase τ , see Fig. 14b. As a result, leaf
nodes get bigger and store more un-interleaved suffixes. This
negatively affects the query performance and the index size,
see Fig. 14c, d, respectively. Figure 14c shows the average
runtime of the six queries Q1, . . . , Q6. A query that reaches a
leaf nodemust scan all suffixes to findmatches.Making τ too
small decreases query performance becausemore nodes need
to be traversed and making τ too big decreases query perfor-
mance because a node must scan many suffixes that do not
match a query. According to Fig. 14c, values τ ∈ [10, 100]
give the best query performance. Threshold τ also affects the
index size, see Fig. 14d. If τ is too small, many small nodes
are created and for each such node there is storage overhead
in terms of node headers, pointers, etc., see Fig. 7. If τ is
too big, leaf nodes contain long lists of suffixes for which we
could still extract common prefixes if weψ-partitioned them
further. As a consequence, we choose medium values for τ

to get a good balance between bulk-loading runtime, query
performance, and index size. Based on Fig. 14, we choose
τ = 100 as default value. More details on a quantitative
analysis on how τ affects certain parameters can be found in
the accompanying technical report [43].

123

712 K. Wellenzohn et al.

0 2 4 6
0

2

4

6

(a) Nr Keys [×109]

T
im

e
[h
]

RSCAS Postgres (VP) Postgres (PV) Lucene*

0 2 4 6
0
1
2
3

(b) Nr Keys [×109]

D
is
k
I/
O
[T
B
]

Fig. 15 Bulk-Loading performance

8.4.2 Bulk-loading performance

Bulk-loading is a core operation that we use in two situa-
tions. First, when we create RSCAS for an existing system
with large amounts of data we use bulk-loading to create
RSCAS. Second, our RSCAS index uses bulk-loading to
create a disk-based RSCAS trie whenever the in-memory
RSCAS trie RM

0 overflows. We compare our bulk-loading
algorithm with bulk-loading of composite B+ trees in Post-
gres (Lucene does not support bulk-loading; as a reference
point, we include Lucene’s performance for the correspond-
ing point insertions).

Figure 15 evaluates the performance of the bulk-loading
algorithms for RSCAS and Postgres. We give the systems
8GB of main memory. For a fair comparison, we set the
fill factor of the composite B+ trees in Postgres to 100%
to make them read-optimized and as compact as possible
since disk-based RSCAS tries are read-only. We compare
the systems for our biggest dataset, the GitLab dataset, in
Fig. 15. The GitLab dataset contains 6.9 billion keys and has
a size of 550GB. Fig. 15a confirms that bulk-loadingRSCAS
takes roughly the same time as bulk-loading the PV and VP
composite indexes in Postgres (notice that RSCAS and the
PV composite index have virtually the same runtime, thus
PV’s curve is barely visible). The runtime and disk I/O of all
algorithms increase linearly in Fig. 15a, which means it is
feasible to bulk-load these indexes efficiently for very large
datasets. Postgres creates a B+ tree by sorting the data and
then building the index bottom up, level by level. RSCAS
partitions the data and builds the index top down. In practice,
both paradigms perform similarly, both in terms of runtime
(Fig. 15a) and disk I/O (Fig. 15b).

8.4.3 Insertion performance

Newkeys are first inserted into the in-memory trie RM
0 before

they are written to disk when RM
0 overflows. We evaluate

insertions into RM
0 in Fig. 16a and look at the insertion speed

when RM
0 overflows in Fig. 16b. For the latter case, we com-

pare RSCAS’s on-disk insertion performance to Lucene’s
and Postgres’.

50 100
0

50

100

150

(a) Nr Keys [×106]

T
im

e
[s
]

RSCAS Lucene Postgres* (VP) Postgres* (PV)

0 200 400 600
0

20
40
60
80

(b) Nr Keys [×106]

T
im

e
[m

]

Fig. 16 Insertion (a) in memory and (b) on disk

Since RM
0 is memory-based, insertions can be performed

quickly, see Fig. 16a. For example, inserting 100million keys
takes less than three minutes with one insertion taking 1.7μs,
on average. In practice, the SWH archive crawls about one
million revisions per day and since a revision modifies on
average about 60 files in the GitLab dataset, there are 60
million insertions into the RSCAS index per day, on aver-
age. Therefore, our RSCAS index can easily keep up with
the ingestion rate of the SWH archive. Every two days, on
average, RM

0 overflows and a new disk-based RSCAS trie Ri

is bulk-loaded.
In Fig. 16b, we show how the RSCAS index performs

when RM
0 overflows. In this experiment, we set themaximum

capacity of RM
0 to M = 100 million keys and insert 600 mil-

lion keys, thus RM
0 overflows six times. Typically when RM

0
overflows we bulk-load a disk-based trie in a background
process, but in this experiment we execute all insertions in
the foreground in one process to show all times. As a result,
we observe a staircase runtime pattern, see Fig. 16b. A flat
part where insertions are performed efficiently in memory is
followed by a jumpwhere a disk-based trie Ri is bulk-loaded.
Not all jumps are equally high since their height depends on
the size of the trie Ri that is bulk-loaded. When RM

0 over-
flows, the RSCAS index looks for the smallest i such that
Ri does not exist yet and bulk-loads it from the keys in RM

0
and all R j , j < i . Therefore, a trie Ri , containing 2i M keys,
is created for the first time after 2i M insertions. For exam-
ple, after M insertions we bulk-load R0 (M keys); after 2M
insertions, we bulk-load R1 (2M keys) and delete R0; after
3M insertions we again bulk-load R0 (M keys); after 4M
insertions we bulk-load R2 (4M keys) and delete R0 and R1,
etc. Lucene’s insertion performance is comparable to that of
RSCAS, but insertion into Postgres’ B+ tree are expensive
in comparison.3 This is because insertions into Postgres’ B+
trees are executed in-place, causing many random updates,
while insertions inRSCASandLucene are doneout-of-place.

3 Wemeasure insertion performance in Postgres by importing a dataset
twice: once with index and once without index, and then we measure
the difference in runtime.

123

Robust and scalable content-and-structure indexing 713

0 2 4 6
0

1

2

(a) Nr KeysN [×109]

I/
O
O
ve
rh
ea
d
[T
B
] Actual I/O overhead Estimated I/O overhead

100 400 1600
0

1

2

(b)Memory KeysM [×106]

Fig. 17 Bulk-Loading cost model

8.4.4 Evaluating the cost model

We evaluate the cost model from Lemma 5 that measures
the I/O overhead of our bulk-loading algorithm for a uni-
form data distribution and compare it to the I/O overhead of
bulk-loading the real-worldGitLab dataset. The I/Ooverhead
is the number of page transfers to read/write intermediate
results during bulk-loading. We multiply the I/O overhead
with the page size to get the number of bytes that are trans-
ferred to and from disk. The cost model in Lemma 5 has four
parameters: N , M , B, and f (see Sect. 5.4). We set fanout
f = 10 since this is the average fanout of a node in RSCAS
for the GitLab dataset, see Fig. 10a. The cost model assumes
that M (B) keys fit into memory (a page). Therefore, we set
B = � 16KB

80B � = 205, where 16KB is the page size and 80 is
the average key length (see Sect. 8.2). Similarly, if the mem-
ory size is 8GB, we can store M = � 8GB

80B � = 100 million
keys in memory.

In Fig. 17a, we compare the actual and the estimated I/O
overhead to bulk-load RSCAS as we increase the number
of keys N in the dataset, keeping the memory size fixed at
M = 100 million keys. The estimated and actual cost are
close and within 15% of each other. In Fig. 17b, we vary
the memory size and fix the full GitLab dataset as input.
The estimated cost is constant from M = 100 to M = 400
million keys because of the ceiling operator in log f � N

M � to
compute the number of levels of the trie in Lemma 5. If we
increase M to 800 million keys, the trie in the cost model has
one level less before partitions fit entirely into memory and
therefore, the I/O overhead decreases and remains constant
thereafter since only the root partition does not fit into main
memory.

In Fig. 18a, we compare the actual and the estimated I/O
overhead to insert N keys one-by-one into RSCAS, setting
M = 100 × 106. We compute the estimated I/O overhead
by multiplying the amortized cost of one insertion accord-
ing to Lemma 7 with the number of keys N . We observe a
staircase pattern for the actual I/O overhead because of the
repeated bulk-loading when the in-memory trie overflows
after every M insertions. Next, we fix N = 600 million
keys and increase M in Fig. 18b. In general, increasing M
decreases the actual and estimated overhead because less data

200 400 600
0

0.1

0.2

0.3

(a) Nr KeysN [×106]

I/
O
O
ve
rh
ea
d
[T
B
] Actual I/O overhead Estimated I/O overhead

200 400 600
0

0.1

0.2

0.3

(b)Memory KeysM [×106]

Fig. 18 Insertion cost model

(a) (b) (c) (d)

Fig. 19 Space consumption

must be bulk-loaded. But this is not always the case. For
example, the actual I/O overhead increases from M = 200
to M = 300 million keys. To see why, we have to look at
the tries that need to be bulk-loaded. For M = 200, we cre-
ate three tries: after M insertions R0 (200 mil.), after 2M
insertions R1 (400 mil.), and after 3M insertions again R0

(200 mil.) for a total of 800 million bulk-loaded keys. For
M = 300, we create only two tries: after M insertions R0

(300 mil.) and after M insertions R1 (600 mil.) for a total of
900 million bulk-loaded keys.

8.4.5 Index size

Figure 19 shows the size of theRSCAS,Lucene, andPostgres
indexes for our four datasets. The RSCAS index is between
30% to 80% smaller than the input size (i.e., the size of
the indexed keys). The savings are highest for the XMark
dataset because it has only seven unique paths and therefore
the RSCAS trie has fewer nodes since there are fewer dis-
criminative bytes. But even for a dataset with a large number
of unique paths, e.g., the GitLab dataset, RSCAS is 43%
smaller than the input. RSCAS’s size is comparable to that
of the other indexes since all the indexes require space linear
in the number of keys in the input.

9 Conclusion and outlook

We propose the RSCAS index, a robust and scalable index
for semi-structured hierarchical data. Its robustness is rooted
in a well-balanced integration of paths and values in a single
index using a new dynamic interleaving. The dynamic inter-
leaving does not prioritize a particular dimension (paths or
values), making the index robust against queries with high

123

714 K. Wellenzohn et al.

individual selectivities that produce large intermediate results
and a small final result. We use an LSM-design to scale the
RSCAS index to applications with a high insertion rate. We
buffer insertions in a memory-optimized RSCAS trie that
we continuously flush to disk as a series of read-only disk-
optimized RSCAS tries. We evaluate our index analytically
and experimentally.We prove RSCAS’s robustness by show-
ing that it has the smallest average query runtime over all
queries among interleaving-based approaches. We evaluate
RSCAS experimentally on three real-world datasets and one
synthetic data. Our experiments show that the RSCAS index
outperforms state-of-the-art approaches by several orders of
magnitude on real-world and synthetic datasets. We show-
case RSCAS’s scalability by indexing the revisions (i.e.,
commits) of all public GitLab repositories archived by Soft-
ware Heritage, for a total of 6.9 billion modified files in 120
revisions.

In our future work, we plan to support deletions. In the
in-memory RSCAS trie, we plan to delete the appropriate
leaf node and efficiently restructure the trie if necessary. To
delete keys from the disk-resident RSCAS trie, we plan to
flag the appropriate leaf nodes as deleted to avoid expensive
restructuring ondisk.As a result, queries need tofilter flagged
leaf nodes. Whenever a new disk-based trie is bulk-loaded,
we remove the elements previously flagged for deletion. It
would also be interesting to implement RSCAS on top of a
high-performance platform, such as an LSM-tree-based KV-
store, the main challenge would be to adapt range filters to
our complex interleaved queries.

Acknowledgements We thank the anonymous reviewers and the editor
for their insightful andvaluable comments and for insisting onprecision.

Funding Open access funding provided by University of Zurich

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Apache Lucene.: https://lucene.apache.org/ (2021). Accessed
September 2021

2. Abramatic, J., Cosmo, R.D., Zacchiroli, S.: Building the universal
archive of source code. Commun. ACM 61(10), 29–31 (2018)

3. Achakeev, D., Seeger, B.: Efficient bulk updates on multiversion
B-trees. PVLDB 6(14), 1834–1845 (2013)

4. Aggarwal, A., Vitter, J.S.: The input/output complexity of sorting
and related problems. Commun. ACM 31(9), 1116–1127 (1988)

5. Alsubaiee, S., et al.: AsterixDB: a scalable, open source BDMS.
PVLDB 7(14), 1905–1916 (2014)

6. Apache.: Apache Jackrabbit Oak. https://jackrabbit.apache.org/
oak/ (2021). Accessed September 2021

7. Arge, L.: The buffer tree: a technique for designing batched external
data structures. Algorithmica 37(1), 1–24 (2003)

8. den Bercken, J.V., Seeger, B., Widmayer, P.: A generic approach
to bulk loading multidimensional index structures. In: VLDB, pp.
406–415 (1997)

9. Brunel, R., Finis, J., Franz, G., May, N., Kemper, A., Neumann, T.,
Färber, F.: Supporting hierarchical data in SAP HANA. In: ICDE,
pp. 1280–1291 (2015)

10. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a dis-
tributed storage system for structured data. ACM Trans. Comput.
Syst. 26(2), 4:1-4:26 (2008)

11. Cooper, B.F., Sample, N., Franklin, M.J., Hjaltason, G.R., Shad-
mon, M.: A fast index for semistructured data. In: VLDB, pp.
341–350 (2001)

12. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-
value store. In: ACM SOSP, pp. 205–220. ACM (2007)

13. Di Cosmo, R., Zacchiroli, S.: Software heritage: Why and how to
preserve software source code. In: iPRES (2017)

14. Finis, J., Brunel, R., Kemper, A., Neumann, T., Färber, F., May, N.:
DeltaNI: an efficient labeling scheme for versioned hierarchical
data. In: SIGMOD, pp. 905–916 (2013)

15. Finis, J., Brunel, R., Kemper, A., Neumann, T., May, N., Färber, F.:
Indexing highly dynamic hierarchical data. PVLDB 8(10), 986–
997 (2015)

16. Gilad, E., Bortnikov, E., Braginsky, A., Gottesman, Y., Hillel,
E., Keidar, I., Moscovici, N., Shahout, R.: Evendb: Optimizing
key-value storage for spatial locality. In: Proceedings of the 15th
European Conference on Computer Systems (EuroSys’20) (2020)

17. Goldman, R., Widom, J.: DataGuides: enabling query formulation
and optimization in semistructured databases. In: VLDB, pp. 436–
445 (1997)

18. He, R., McAuley, J.J.: Ups and downs: Modeling the visual evo-
lution of fashion trends with one-class collaborative filtering. In:
WWW, pp. 507–517 (2016)

19. Kanne, C., Moerkotte, G.: The importance of sibling clustering
for efficient bulkload of XML document trees. IBM Syst. J. 45(2),
321–334 (2006)

20. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan,
R.: On the integration of structure indexes and inverted lists. In:
SIGMOD, pp. 779–790 (2004)

21. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful
indexing for main-memory databases. In: ICDE, pp. 38–49 (2013)

22. Luo, C., Carey, M.J.: On performance stability in LSM-based stor-
age systems. Proc. VLDB Endow. 13(4), 449–462 (2019)

23. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey.
VLDB J. 29(1), 393–418 (2020)

24. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos,
S.: Rosetta: A robust space-time optimized range filter for key-
value stores. In: SIGMOD ’20, pp. 2071–2086 (2020)

25. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML indexing and
storage: fulfilling the wish list. Comput. Sci. - R&D 30(1), 1 (2015)

26. Matsunobu, Y., Dong, S., Lee, H.: MyRocks: LSM-tree database
storage engine serving Facebook’s social graph. Proc. VLDB
Endow. 13(12), 3217–3230 (2020)

27. Merkle, R.C.: A digital signature based on a conventional encryp-
tion function. In: CRYPTO, vol. 293, pp. 369–378 (1987)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://lucene.apache.org/
https://jackrabbit.apache.org/oak/
https://jackrabbit.apache.org/oak/

Robust and scalable content-and-structure indexing 715

28. Milo, T., Suciu, D.: Index structures for path expressions. In: ICDT,
pp. 277–295 (1999)

29. Morrison, D.R.: PATRICIA - practical algorithm to retrieve infor-
mation coded in alphanumeric. J. ACM 15(4), 514–534 (1968)

30. Morton, G.: A computer oriented geodetic data base; and a new
technique in file sequencing. Tech. rep, IBM Ltd (1966)

31. Nickerson, B.G., Shi, Q.: On k-d range search with patricia tries.
SIAM J. Comput. 37(5), 1373–1386 (2008)

32. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-
structured merge-tree (LSM-Tree). Acta Informatica 33(4), 351–
385 (1996)

33. Orenstein, J.A., Merrett, T.H.: A class of data structures for asso-
ciative searching. In: PODS, pp. 181–190 (1984)

34. Pietri, A., Spinellis, D., Zacchiroli, S.: The software heritage graph
dataset: Large-scale analysis of public software development his-
tory. In: MSR, pp. 138–142 (2020)

35. Procopiuc, O., Agarwal, P.K., Arge, L., Vitter, J.S.: Bkd-tree: A
dynamic scalable kd-tree. In: SSTD, pp. 46–65 (2003)

36. Ramsak, F., Markl, V., Fenk, R., Zirkel, M., Elhardt, K., Bayer, R.:
Integrating the UB-Tree into a database system kernel. In: VLDB,
pp. 263–272 (2000)

37. Rousseau, G., Cosmo, R.D., Zacchiroli, S.: Software provenance
tracking at the scale of public source code. Empir. Softw. Eng.
25(4), 2930–2959 (2020)

38. Samet, H.: Foundations of multidimensional and metric data struc-
tures. Morgan Kaufmann series in data management systems.
Academic Press (2006)

39. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I.,
Busse, R.: XMark: A benchmark for XML data management. In:
VLDB, pp. 974–985 (2002)

40. Shanbhag, A., Jindal, A., Madden, S., Quiané-Ruiz, J., Elmore,
A.J.: A robust partitioning scheme for ad-hoc query workloads. In:
SoCC, pp. 229–241 (2017)

41. Shukla, D., et al.: Schema-agnostic indexing with Azure Docu-
mentDB. PVLDB 8(12), 1668–1679 (2015)

42. Wellenzohn, K., Böhlen, M.H., Helmer, S.: Dynamic interleaving
of content and structure for robust indexing of semi-structured hier-
archical data. PVLDB 13(10), 1641–1653 (2020)

43. Wellenzohn, K., Böhlen, M.H., Helmer, S., Pietri, A., Zacchiroli,
S.: Robust and scalable content-and-structure indexing (extended
version). Tech. rep., CoRR (2022). https://arxiv.org/abs/2209.
05126

44. Wellenzohn,K., Popovic,L.,Böhlen,M.,Helmer, S.: Insertingkeys
into the robust content-and-structure (RCAS) index. In: ADBIS,
pp. 121–135 (2021)

45. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Kee-
ton, K., Pavlo, A.: Surf: Practical range query filtering with fast
succinct tries. In: SIGMOD ’18, pp. 323–336 (2018)

46. Zhong, W., Chen, C., Wu, X., Jiang, S.: REMIX: efficient range
query for lsm-trees. In: 19th USENIX Conf. on File and Storage
Technologies, (FAST’21), pp. 51–64 (2021)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://arxiv.org/abs/2209.05126
https://arxiv.org/abs/2209.05126

	Robust and scalable content-and-structure indexing
	Abstract
	1 Introduction
	2 Application scenario
	3 Related work
	4 Background
	4.1 Data representation
	4.2 Content-and-structure (CAS) queries
	4.3 Interleaving of composite keys

	5 Theoretical foundation: dynamic interleaving
	5.1 ψ-Partitioning
	5.2 Properties of the ψ-partitioning
	5.3 Dynamic interleaving
	5.4 Efficiency of interleavings

	6 Robust and scalable CAS (RSCAS) index
	6.1 Structure of an RSCAS trie
	6.2 RSCAS index
	6.3 Storage layout
	6.3.1 Memory-optimized RSCAS trie
	6.3.2 Disk-optimized RSCAS trie

	7 Algorithms
	7.1 Querying RSCAS
	7.1.1 Query algorithm

	7.2 Updating memory-based RSCAS trie
	7.2.1 Lazy restructuring
	7.2.2 Inserting keys with lazy restructuring

	7.3 Bulk-loading a disk-based RSCAS trie
	7.3.1 Bulk-loading algorithm

	7.4 Merging RSCAS tries upon overflow
	7.5 Analytical evaluation
	7.5.1 Total I/O overhead during bulk-loading
	7.5.2 Amortized I/O overhead during insertions

	8 Experimental evaluation
	8.1 Setup
	8.2 Impact of datasets on RSCAS's structure
	8.3 Query performance
	8.4 Scalability
	8.4.1 Calibration
	8.4.2 Bulk-loading performance
	8.4.3 Insertion performance
	8.4.4 Evaluating the cost model
	8.4.5 Index size

	9 Conclusion and outlook
	Acknowledgements
	References

