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Abstract
In this paper, we study the Time-Dependent k Nearest Neighbor (TD-kNN) query on moving objects that aims to return
k objects arriving at the query location with the least traveling cost departing at a given time t . Although the kNN query
on moving objects has been widely studied in the scenario of the static road network, the TD-kNN query tends to be more
complicated and challenging because under the time-dependent road network, the cost of each edge is measured by a cost
function rather than a fixed distance value. To tackle such difficulty, we adopt the framework of GLAD and develop an
advanced index structure to support efficient fastest travel cost query on time-dependent road network. In particular, we
propose the Time-Dependent H2H (TD-H2H) index, which pre-computes the aggregated weight functions between each
node to some specific nodes in the decomposition tree derived from the road network. Additionally, we establish a grid index
on moving objects for candidate object retrieval and location update. To further accelerate the TD-kNN query, two pruning
strategies are proposed in our solution. Apart from that, we extend our framework to tackle the time-dependent approachable
kNN (TD-AkNN) query on moving objects targeting for the application of taxi-hailing service, where the moving object
might have been occupied. Extensive experiments with different parameter settings on real-world road network show that our
solutions for both TD-kNN and TD-AkNN queries are superior to the competitors in orders of magnitude.
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1 Introduction

With the proliferation of GPS-equipped devices, intelligent
transportation services, e.g., DiDi [1], Uber [2], have served
as essential travel tools for customers, which provide sig-
nificant improvements against traditional service systems in
terms of reducing taxi cruising time [3,4] and passengers’
waiting time. Meanwhile, they also foster plenty of studies
for location-based queries on road networks, among which
the k nearest neighbor (kNN) query on moving objects plays
an important role as a technical support for such service sys-
tems. In particular, given a query location, and a set ofmoving
objects, the kNN query is to find the k nearest objects trav-
eling from their current locations to the query location. The
kNN query on moving objects has been widely studied [5–9]
in the scenario of static road network, where the closeness
between moving objects and the query location is measured
by the road network distance.

In practice, however, the road networks are essentially
dynamic, which means the traveling cost varies over time.
On a time-dependent road network, the weight of each edge
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is usually associated with a function of time, rather than a
fixed distance value. Accordingly, the kNN query on such
time-dependent road network aims to return k objects that
could arrive fastest. In this case, the solutions for kNN
query on static road network are no longer utilitarian. Moti-
vated by this, in this paper, we study the Time-Dependent
k Nearest Neighbor (TD-kNN) query on moving objects
under time-dependent road networks, which to the best of
our knowledge has not been resolved by any of the existing
studies. In literature, time-dependent road network query has
been extensively studied for years [10–21], while most of
them focus on fastest travel path query of a given source and
destination pair. Additionally, kNN query for static objects,
e.g., point-of-interest, on time-dependent road network [22–
26] has beenwell addressed, where travel cost from the query
location to the static objects is concerned. Nevertheless, it is
not straightforward to adopt the aforementioned two trends
of algorithms to solve the TD-kNN query on moving objects
due to the following challenges.

Challenges: In a time-dependent road network, the travel
cost from the moving object to the query location is different
from the one from the query location to object with the same
departure time. For example, consider the real-world case
that one travel from his/her home to the office in the morn-
ing. In common sense, the cost from home to office would be
much larger compared to the one from office to home during
the rush hour. Thus, the algorithms [24–26] that return the
kNN objects departing from the query location would not be
helpful. In the static road network, such issue could be easily
handled by developing a reverse graph of the original graph,
where the cost from the query location to the object in the
reverse graph would be equivalent to the one from the object
to the query location in the original graph. However, building
a reverse graph for a time-dependent road network is chal-
lenging as the cost of each edge is measured by a function of
time. Moreover, the queries on time-dependent road network
are usually very time-consuming since the travel cost for each
edge along a path depends on the cost for its previous edge.
For instance, consider the travel cost for a path {v1, v2, v5}
on the time-dependent graph in Fig. 1. Let f(vi ,v j )(t) be the
cost function of an edge (vi , v j ). Then, the cost from v2 to v5
along this path is measured by f(v2,v5)(t + f(v1,v2)(t)). Con-
sequently, without knowing the departure time, it is difficult
to pre-compute the exact travel cost between some labeled
vertices on the graph to accelerate the search.

Inspired from the framework of GLAD [6], which devel-
ops a light-weighted index to support efficient kNN query
on moving objects under static road network, in this paper,
we introduce an effective solution to solve TD-kNN query
on moving objects. In particular, we use the uniform grid to
index the moving objects, which is proved to be very effi-
cient in updating the locations of moving objects. Then, we

apply the expand-and-bound algorithm to explore the grid
from the query location to retrieve the candidate objects.
Next, the problem turns out to be how we can quickly refine
the final results by computing the exact travel costs from
the kNN objects to the query location. A naive way is to
apply the existing algorithms for shortest path query on time-
dependent road network, e.g., TD-Dijkstra [27], TD-G-tree
[13] to calculate the travel cost for every candidate object.
However, as we will show in our experiment, the compu-
tational cost for such solution is huge. To this end, in our
paper, we develop a labeling index for time dependent travel
cost calculation, named TD-H2H, which extends the H2H
index [28] for static road network to adapt to the dynamic
scenario. Such extension is not straightforward as the label-
ing information is not a distance value but an aggregated
weight function,whichwill be discussed in Sect. 4. To further
improve the query efficiency, we utilize a staticH2H index on
a lower-bound graph to prune some objects that would never
be the kNN results, and propose several pruning strategies to
avoid some unnecessary computation. In addition, we extend
this framework to answer the time-dependent approachable
kNN query considering the scenario that the moving objects
contain two conditions (occupied/non-occupied), for appli-
cations like taxi-hailing service.

To sum up, our work has four primary contributions:

– We develop a TD-H2H index, which is able to return
the fastest travel cost for any given pair of vertices on a
time-dependent road network very efficiently.

– We introduce efficient and novel algorithm for time-
dependent kNN query on moving objects, which has not
been well addressed in literature. And, we propose sev-
eral pruning strategies to further reduce the query time.

– We extend our proposed solution to tackle the time-
dependent approachable kNN query on conditional mov-
ing objects considering more practical scenario.

– We conduct extensive experiments with real-world road
network to show the superiority of our proposed solution
against the competitors. And the results show that our
algorithm is more efficient than the competitors in orders
of magnitude.

2 Related work

In this section, we discuss the existing works of the kNN
query on the static and time-dependent networks, and the
moving object kNN on the static network.

2.1 Static kNN query on static road networks

This is the most fundamental type of kNN where the net-
work distance never changes and the objects never move.
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Firstly, ROAD [29] expands the network until k objects
are found. It speeds up the expansion by skipping the non-
moving objects sub-networks with the help of indexes and
partitions. However, when the objects are distributed evenly,
it would decay to the Dijkstra’s algorithm. Therefore, the
other approaches improve the efficiency by searching toward
the promising objects with different heuristic functions and
indexes [30]. For instance, TEN-QueryIP [31] pre-computes
the top-k nearest objects for each vertex with the help of tree
decomposition, and the query results are retrieved by com-
bining these pre-computed top-k nearest objects. IER [32]
computes the closest objects in Euclidean distance, until the
minimum Euclidean distance is greater than the maximum
network distance of the best k objects found. [30] uses PHL
[33] as the underlying index for IER to speed up the retrieval
of network shortest distance. Nevertheless, since the weights
of the time-dependent road network vary over time, their
indexes cannot solve the TD-kNN query directly. Moreover,
because each vertex’s top-k nearest objects are different at
different time, and the moving object’s position also keeps
changing dynamically, the precomputed top-k information
would become invalid and they can hardly be updated.

2.2 Static kNN query on time-dependent network

We first discuss the time-dependent routing briefly and then
discuss the static kNN methods in this scenario.

2.2.1 Time-dependent route planning

The time-dependent networks use time-dependent functions,
which is piecewise linear function, to describe the travel time
of each edge on different departure time.When the departure
time is a single timepoint, this problem is essentially the same
as the static path problem and can be solved by any index-free
shortest path algorithm. However, index cannot be built for it
as it requires an index for each departure time. Themore gen-
eral time-dependent path problem deal with the cases when
the departure time is an interval and finds the optimal depar-
ture timewith the fastest path [10,11,17–19,34,35].However,
its complexity lowerbound is Ω(|S|(|V |log|V |+ |E |)) [36],
where |V | and |E | are the vertex and edge number, and |S|
is the turning point number of the result’s time-dependent
function. It should be noted that |S| is normally on the
order of 2 or 3 magnitudes and no existing algorithm is
close to this complexity, it would be very time-consuming
to use them for TD-kNN query. Nevertheless, if we could
build an index on it, it could answer both the interval depar-
ture and single departure query in constant time. However,
the existing time-dependent indexes [13,15,16,20,37] are all
search-based, which suffer from the high construction com-
plexity (label / shortcut sizes×Ω(|S|(|V |log|V |+|E |))) and
take a long time to construct. Besides, the time-dependent

index size is also very big, which is normally their static ver-
sions’ size times |S|, and it normally takes hundreds of GB in
real life [15,20]. Therefore, the concatenation-based method
proposed in this work aims to reduce the time-dependent
index’s high construction cost.

2.2.2 Static kNN on time-dependent network

Since the query objects are static, it is easy to extend the
static methods to the time-dependent environment. TD-NE
[22] extends the search-based methods with the single depar-
ture time fastest path. However, its performance is limited by
the searching algorithm. More importantly, it cannot solve
our problem because it retrieve k objects that can be reached
the fastest from the query point, but not the objects that can
reach the query point, and such operation is not supported
since the time-dependent function cannot be reversed like the
static value. [23] extends the index-basedmethod by dividing
the whole time interval into several sub-intervals and pre-
computing the minimum travel time for each sub-interval.
Then, during the search, an A*-like algorithm is utilized
by referring to the minimum travel time from the index
until kNNs are found. However, this index cannot facilitate
queries effectively for large networks because the deviations
are always too large between the estimated and the actual
travel time. [25] utilizes the Voronoi diagram [24] with two
complementary index structures: Tight Network Index (TNI)
and Loose Network Index (LNI). The TNI/LNI cells for each
data object are pre-computed based on the upper/lower bound
of the travel time. If the query point locates in a TNI cell of
an object, this object is definitely the nearest result of the
query. Hence, the NN result can be obtained without per-
forming any shortest path computation. On the contrary, if a
query point is not in the TNI cell of any object, those objects
whose LNI cell contains the query are taken as potential can-
didates, and they need to compute the shortest path for result
verification. After that, [26] proposes another Voronoi-based
index, which builds a Voronoi cell for object o when all the
points within taking less time to o than to other objects at
any departure time. Based on the Voronoi cells, the V-tree is
constructed to manage all the closest cells to further speed up
the query. However, both the Voronoi-based methods build
the Voronoi cells based on the locations of objects. Once the
object moves to a new location, multiple Voronoi cells will
be affected and need to be re-calculated, which consumes
huge computational costs in the moving objects scenarios.

2.3 Moving object kNN on static network

Different from the previous static kNN, the moving objects
brings dynamic into this already complicated problem. Like
the similar situation faced by the dynamic routing problem
[38], the heavier (larger) index brings faster query perfor-
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mance, but it requires longer time to cope with the update
[39,40]. Therefore, the lighter index structure is preferable
in the moving object scenario. TOAIN [5] builds a shortcut-
based index called SCOB which a throughput optimizing
adaptive index, and it stores at each summit node the precom-
puted kNNobjects. The query time is significantly improved,
while the update cost for the precomputed kNN objects is
large to some extent. It proposes several settings to further
get the trade-off between query and update cost so as to opti-
mize the system throughput. GLAD [7] verifies the efficiency
of this idea to solve the kNN query of moving objects. It
utilizes the light-weighted grid index to manage the mov-
ing objects which make the location update cost very small.
Then, the distance between the query point and the border
point of the outermost expanded grids is taken as the lower
bound of the shortest network distance, which is used to filter
out the objects very far away from query and verify objects
by calculating and comparing their distances to query. By
integrating the H2H index [28], which is the state-of-the-
art labeling-based solution for distances queries on the road
network, GLAD significantly improves the throughput.

3 Preliminaries

In this section, we first introduce the important definitions,
notations, and problem statement, and then, we describe our
underlying structures H2H and GLAD.

3.1 Problem statement

Definition 1 (Time-dependent directed graph) A time-
dependent road network is modeled as a directed graph
G = (V , E, F), where each vertex vi ∈ V represents road
intersection, (vi , v j ) ∈ E is a directed edge from vi to v j ,
f(vi ,v j ) ∈ F is a time-dependent function of (vi , v j ).

We use the piecewise linear functions [13] as the time-
dependent function to describe the travel time of different
departure time within the whole time domain T = [ts, te].
Specifically, given an edge (vi , v j ), fvi ,v j (t) is represented
as a set of points S = {(t1, f (t1)), . . . , (tk, f (tk))}, where t1
= ts and tk = te as illustrated in Fig. 2.

Example 1 Figure 1 illustrates an example of a time-
dependent graph with 9 vertices and 16 directed edges,
where the interpolation points of piecewise linear weight
function for each edge is given in Table 1. Consider the
travel cost for edge (v1, v2) with a set of interpolation points
{(0, 6), (20, 12), (40, 12), (60, 6)}. If a user departs at time
0 (resp.20), it takes 6 minutes (resp. 12 minutes) to travel
from v1 to v2.

Definition 2 (Time-Dependent Travel Cost (TTC)) Given a
path P = 〈v1, v2, . . . , vn〉 from G and a departure time t ,

Fig. 1 Time-dependent directed graph

Fig. 2 Piecewise linear weight function for edge(v1, v5), (v1, v2),
(v2, v5)

Table 1 Edge weights

Edge Piecewise linear weight function

(v0, v1) (0, 6), (20, 12), (60, 6)

(v0, v3) (0, 3), (60, 3)

(v1, v2) (0, 6), (20, 12), (40, 12), (60, 6)

(v1, v3) (0, 12), (20, 12), (40, 6), (60, 12)

(v1, v4) (0, 3), (40, 5), (60, 3)

(v1, v5) (0, 18), (60, 18)

(v2, v5) (0, 12), (20, 6), (40, 6), (60, 12)

(v3, v8) (0, 24), (60, 24)

(v4, v3) (0, 3), (60, 3)

(v4, v5) (0, 20), (60, 20)

(v5, v6) (0, 12), (20, 24), (60, 12)

(v6, v4) (0, 2), (60, 2)

(v6, v7) (0, 6), (20, 12), (40, 6), (60, 6)

(v7, v4) (0, 8), (20, 5), (40, 8), (60, 8)

(v7, v8) (0, 20), (60, 20)

(v8, v0) (0, 24), (20, 12), (40, 12), (60, 24)

the time-dependent travel cost of this path is calculated by
the following equation:

T TC(P, t) =
n−1∑

i=1

f(vi ,vi+1)(ti ),

123



Efficient kNN query for... 579

where t1 = t , ti = ti−1 + f(vi−1,vi )(ti−1), i = 2, . . . , n − 1.

Definition 3 (Time-Dependent Fastest Travel Cost (TFTC))
Given a source s, a destination d inG, and a departure time t ,
let P be the set of all possible paths from s to d inG. We have
the time-dependent fastest travel cost from s to d defined as:

T FTC(s, d, t) = min
P∈P

T TC(P, t)

Example 2 Consider the example in Fig. 1. Given a path
P = 〈v1, v2, v5〉 with a departure time 20, we have
T TC(P, 20) = 12 + 6 = 18. Given a source and desti-
nation pair v1 and v5, and the departure time 20, there are
three possible paths: P1 = 〈v1, v5〉 , P2 = 〈v1, v2, v5〉 , P3 =
〈v1, v4, v5〉. Correspondingly, T TC(P1, 20) = 18, T TC
(P2, 20) = 18, and T TC(P3, 20) = 24. Thus, T FTC(v1,

v5, 20) = 18.

Definition 4 (Lower Bound Graph) Given a time-dependent
graph G(V , E, F), the corresponding lower bound graph
Gl = (Vl , El) is a static directed graph, where V = Vl ,
E = El , and theweight for an edge (vi , v j ) ∈ El is static and
equal to the minimum travel cost from the time-dependent
weight function f(vi ,v j ).

Definition 5 (Lower Bound Travel Cost) Given a path Pl =
〈v1, v2, . . . , vn〉 from Gl , the travel cost for Pl , denoted by
CGl (Pl) is the sum of the weights along the path. Given a
source vertex s and a destination vertex d in Gl , let P� be
all the possible path from s to d. The lower bound travel cost
from s to d is defined as LBC(s, d) = minP∈P�

CGl (P).

With the lower bound graph, we are able to determine
the minimum travel cost for any given source and destina-
tion pair, regardless of the departure time. In this paper, we
assume that G suffices the First-In-First-Out (FIFO) prop-
erty, and the moving objects do not wait at any vertex while
traversing along a path. Consider a set M of moving objects
on the time-dependent road network. Following previous
works [5,7], we assume that all moving objects are located
on vertices. Given a query point q, a moving object o ∈ M
on a time-dependent road network, to travel from o to q
departing at time t , the minimum travel cost is calculated
by T FTC(o, q, t). Accordingly, in our work, we study the k
nearest neighbor (kNN) query on time-dependent road net-
work, which is defined as follows.

Definition 6 (Time-Dependent kNN(TD-kNN))Given aquery
point q, a set M of moving objects on a time-dependent
road network G(V , E, F), a departure time t , and an integer
k ≤ |M |, time-dependent kNN returns a subset R ⊆ M of k
moving objects such that ∀oi ∈ M \ R, T FTC(oi , q, t) ≥
T FTC(o j , q, t), ∀o j ∈ R.

3.2 Background knowledge

In this section, we introduce some background knowledge
of H2H index and the framework of GLAD, which are the
foundation of our proposed solution.

3.2.1 H2H index

H2H[28] indexuses tree decomposition to organize the graph
cut information and distance labels to support efficient dis-
tance query on a graph. Specifically, the tree decomposition
maps a graph G = (V, E) (regardless of the edge weight) to
a tree as follows:

Definition 7 (Tree Decomposition [41]) A decomposition
tree of a graph G(V, E), denoted as TG , is a rooted tree in
which each node X ∈ V (TG) is a subset of V (i.e., X ⊆ V)
such that the following three conditions hold:

(1) ∪X∈V X = V;
(2) ∀(u, v) ∈ E , ∃X ⊂ V s.t. u ∈ X and v ∈ X ;
(3) ∀v ∈ V the set {X | v ∈ X} forms a connected subtree

of TG .

For the rest of paper, we use vertex for a vertex in the road
network graph, and node for a node in the TG .We notate T (v)

as the subtree induced by the set {X |v ∈ X} in TG and X(v)

as the root node of T (v). The largest size of X(v) is denoted
as tree-width W , and the tree height is denoted as h.

Definition 8 (Vertex Cut [28])Given a graph G(V, E), a sub-
set of vertices Vc ⊂ V is a vertex cut of G if the deletion of
Vc from G splits G into multiple connected components. A
vertex set Vc is called the vertex cut of vertices u and v if u
and v are in different connected components by the deletion
of Vc from G.
Property 1 Given a graphG(V, E), its decomposition tree TG ,
and an arbitrary node X(u) ∈ V (TG), for any v ∈ X(u)\{u},
X(v) is an ancestor of X(u) in TG .

Property 2 Given a decomposition tree TG for a graph
G(V, E), for any two vertices u and v in V , suppose X(u)

is not an ancestor/decedent of X(v) in TG , let X be the low-
est common ancestor(LCA) of X(u) and X(v) in TG , then X
is a vertex cut of u and v of G.

Based on the above properties, we have that the shortest
path between two vertices must pass through a vertex in a
vertex cut set. And the LCA of two vertices in the decompo-
sition tree is a vertex cut. Hence, the following theorem can
be easily obtained.

Theorem 1 Given a road network G, let C be a vertex cut for
two vertices v and u, we have:

dist(v, u) =min
w∈C dist(v,w) + dist(w, u) (1)
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To speed up the distance query efficiency, H2H pre-
computes the shortest distances between vertex to its ancestor
and stores them in multiple arrays which are defined as fol-
lows.

Definition 9 (Ancestor Array [28]) Given a decomposition
tree TG for a graph G(V, E), for any node X(v) ∈ V (TG),
let {X(w1), X(w2), . . . , X(wl)} be the path from the root
of TG to X(v) in TG , where X(w1) is the root node and
X(wl) = X(v). The ancestor array of X(v), denoted by
X(v).anc is defined as X(v).anc = {w1, w2, . . . , wl}. Here,
we denote X(v).anci as the i-th element in X(v).anc for any
1 ≤ i ≤ l.

Distance Array. The distance array for X(v) is defined
as X(v).dis = {dist(v,w1), dist(v,w2), . . . , dist(v,wl)},
which indicates of distances from v to every vertex in
X(v).anc.
Position Array. The position array for X(v) is defined as
X(v).pos = {p1, p2, . . . , pl}, where pi (1 ≤ i ≤ l) is the
position of wi in X(v).anc, i.e., X(v).ancpi = wi . We sort
the values in X(v).pos in ascending order. And we denote
X(v).posi as the i-th value in X(v).pos for any 1 ≤ i ≤ l.

Given the above distance and position arrays, the distance
query for any two vertices can be computed as follows. We
first calculate the LC A of these two vertices in the decompo-
sition tree and then scan the position and distance arrays to
obtain the minimum accumulative distance from these ver-
tices to the LC A, which is the shortest distance between the
corresponding vertices.

3.2.2 GLAD

GLAD is a grid-based query framework for kNN query on
moving objects in static road network. The basic idea is that
GLAD takes H2H index as a black-box for distance query,
and it partitions the road network into uniform grids to record
the moving objects. When using GLAD index to answer
kNN query, we start from where the query point is located to
explore the grid to obtain the candidate objects, and calcu-
late the distance from each object to the query point by H2H
index. We narrow down the exploration space when more
candidate objects are obtained until the minimum distance
from the next object to explore exceeds the largest distance
from the candidate objects to the query point. Finally, we
refine the kNN results from the retrieved candidate objects.

4 TD-kNN query processing

Compared to the kNN query on the static road network, the
major challenge to answer TD-kNN query is that the travel
cost for any source and destination pair of vertices varies over
time, andwe can only determine the corresponding costwhen

a query is issued. Thus, it is impossible to pre-store some
intermediate kNN results for a certain vertex to accelerate the
query processing, like it does inmany existingworks, e.g., V-
tree [8], TOAIN [5].Moreover, though fastest path queries on
time-dependent road network have been well studied [12], it
is not straightforward to directly apply the existing solutions,
e.g., TD-Dijkstra [27], TD-G-tree [13], to address TD-kNN
query.

In particular, consider the simple TD-Dijkstra algorithm
on the fastest path query. When given a pair of source and
destination vertices s and d on a time-dependent road net-
work G, the TD-Dijkstra algorithm starts from s to explore
G and accumulates the cost based on the weight functions
at the current time visiting a vertex. The algorithm termi-
nates until it reaches d and returns the total cost from s to
d. Note that, unlike the distance-based shortest path query,
even in an undirected graph, the TD-Dijkstra returns differ-
ent costs for the paths from s to d and from d to s, since
the cost varies with the time reaching a vertex. On the other
hand, applying Dijkstra’s algorithm for the kNN query on
the static road network, one can simply start from the query
point and explore the road networkwith a reverse topological
structure until obtaining the top-k objects encountered dur-
ing the exploration. However, in terms of the TD-kNN query,
a similar strategy on TD-Dijkstra is incapable of achieving
the correct results. This is because starting from the query
point to explore the graph can only return the nearest objects
departing from the query point, while based on our definition,
we aim to obtain the objects that can arrive at the query point
with the least travel cost and the travel cost from a query ver-
tex to an object is completely different with the one from the
object to the query under the dynamic weight circumstance.
A similar issue also appears in TD-G-tree.

To tackle the aforementioned challenges, in this paper, we
extend the framework ofGLAD [6] to handleTD-kNNquery,
which develops a grid and H2H [28] labeling index for kNN
query on moving objects under static road network. Recall
that in GLAD, the road network is partitioned into uniformed
grids, and then, a data structure is maintained to record the
moving objects that fall into the corresponding girds. In addi-
tion, a distance labeling schemeH2H [28] on road network is
integrated for efficient distance query between two vertices.
To answer the kNN query, we start from the grid where the
query point locates and expand the grid from size 1 × 1 to
3×3, 5×5, . . . until the kNNobjects are retrieved.Whenever
an object is found, we invoke the distance scheme H2H to
calculate the exact road network distance between the mov-
ing object and the query location so as to refine the final
kNN results. The remarkable advantage of this framework
is that the update cost of the index for moving objects is
slight, even when the locations of objects are updated very
frequently. Refer to the original paper [6] for more details.
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In our work, we adopt the same paradigm as GLAD for
the TD-kNN query, where we first search for the candidate
objects, followed by travel cost calculation for refinement
of final results. However, the current index structure from
GLAD is considerably insufficient for the time-dependent
scenario since the H2H index can only answer static distance
queries between two vertices. Alternatively, we can replace
the phase of distance query with the time-dependent fastest
travel cost query by applying the TD-Dijkstra algorithm
or the TD-G-tree index. Nevertheless, the computational
cost would be huge, since the time complexity for each
time-dependent fastest travel cost by applying TD-Dijkstra
is at O(|V | · log|V | + |E |) and that by TD-G-tree costs
O(log22k f · |V | · log22|S|) [13]. It should be noted that |S|
here is the interpolation point number in the labels’ functions
so it is much larger than the edge functions’. In this paper, to
improve the efficiency of the travel cost query, we develop a
time-dependentH2H (TD-H2H) index by improving the orig-
inal H2H index to support the time-dependent fastest travel
cost query, which exactly makes up for the deficiency of the
framework in GLAD.

4.1 TD-H2H index structure

In the rest of this paper, we consider a decomposition tree TG
on time-dependent directed graph G. We first give a theorem
derived from the definition of vertex cut.

Theorem 2 Given a time-dependent road network G, let C
be a vertex cut for two vertices v and u, we have:

T FTC(v, u, t) =min
w∈C T FTC(v,w, t)+
T FTC(w, u, t + T FTC(v,w, t))

(2)

Next, we introduce the TD-H2H index, which extends the
H2H to build the labeling index based on time-dependent
road network. Given two adjacent edges, (vi , v j ), (v j , vk),
and their corresponding weight functions f(vi ,v j ), f(v j ,vk ),
we can aggregate their weight functions to derive the weight
function for the path

〈
vi , v j , vk

〉
, denoted by f(vi�vk ), as fol-

lows:

f(vi�vk )(t) =( f(vi ,v j ) ⊕ f(v j ,vk ))(t)

= f(vi ,v j )(t) + f(v j ,vk )(t + f(vi ,v j )(t))

Then, we formally define the aggregated weight function for
given two paths from vi to v j and from v j to vk as follows.
In the rest of this paper, we use both f(v,u) and f(v�u) to
denote the weight function for an edge (v, u).

Definition 10 (Aggregated Weight Function) Given two
paths,

〈
vi , . . . , v j

〉
,

〈
v j , . . . , vk

〉
, and their corresponding

weight functions f(vi�v j ), f(v j�vk ), we define the aggre-
gated weight functions for the concatenated path〈
vi , . . . , v j , . . . , vk

〉
, denoted by f(vi�vk ) as follows.

f(vi�vk )(t) = f ( f(vi�v j ) ⊕ f(v j�vk ))(t)

= f(vi�v j )(t) + f(v j�vk )(t + f(vi�v j )(t))

Min Operation on Weight Functions. Given two different
weight functions regarding the paths with the same source
vi and destination v j

〈
vi , . . . , v j

〉
, denoted by f ′

(vi�v j )
and

f ′′
(vi�v j )

, we define the min operation as follows.

Min{ f ′
(vi�v j )

, f ′′
(vi�v j )

} = min∀t∈[ts ,te]
{ f ′

(vi�v j )
(t), f ′′

(vi�v j )
(t)}

Note that after theMin operation, the newweight function
for a pair of source and destination, e.g., (vi � v j ), might
refer to multiple paths from the source to the destination.
That is, at any time, it always chooses the path with the least
traveling cost.

Example 3 Given two adjacent edges, (v1, v2), (v2, v5) in
Fig. 1, with weight functions f(v1,v2) = {(0, 6), (20, 12),
(40, 12), (60, 6)}, f(v2,v5) = {(0, 12), (20, 6), (40, 6),
(60, 12)}, we have f(v1,v2) ⊕ f(v2,v5)= {(0, 17), (11, 15),
(20, 18), (28, 18), (40, 21), (60, 21)}. Since f(v1,v5) = {(0,
18), (60, 18)}, we have Min{ f(v1,v5), f(v1,v2) ⊕ f(v2,v5)} =
{(0, 17), (11, 15), (20, 18), (60, 18)}. Moreover, from 0 to
20 (v1 � v5) takes path {v1, v2, v5}, and during 20 to 60,
(v1 � v5) indicates the edge (v1, v5).

Based on the above definitions, we introduce the vertex
elimination that preserve the weight functions as follows.

Definition 11 Function Preserved Vertex Elimination.
Given a graph G(V , E, F) and a vertex v ∈ V , the Ver-
tex Elimination operation on v in G is as follows: For every
pair of neighbors (u, w) of v, if (u, v) ∈ E , (v,w) ∈ E
and (u, w) /∈ E , a new edge (u, w) with weight f(u�w) is
inserted. Otherwise, if (u, w) ∈ E , we update the weight
function for (u, w) in the whole time interval T by f(u�w)

= Min{ f(u,w), f(u,v) ⊕ f(v,w)}. Then, v is removed.

Algorithm 1 gives the pseudocode of function preserved
vertex elimination for one vertex on a given graph. Accord-
ingly, we introduce the algorithm of function preserved tree
decomposition, which is similar with the tree decomposition
algorithm in [28]. The pseudocode is shown in Algorithm 2.
In particular, let H be a duplication of G and N (v, H) indi-
cates the neighbors of v in H , which includes all in-neighbors
and out-neighbors. Lines 3-8 iteratively eliminates the vertex
v with the smallest degree in graph H . And for each v, we
create a node X(v) in TG , which is a star containing not only
the vertices {v} ∪ N (v, H), but also the edges (v, u) with
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Algorithm 1: Function Preserved Vertex Elimination
(FPVE)

Input: graph G(V , E, F), a vertex v ∈ V
Output: the function preserved graph H

1 Let N (v) be the neighbors of v in G;
2 H ← G;
3 for all pair of vertices u, w ∈ N (v) do
4 if (u, v) ∈ E and (v,w) ∈ E then
5 if (u, w) /∈ E then
6 insert edge (u, w) with f(u�w) = f(u,v) ⊕ f(v,w);
7 else
8 f(u�w) ← Min{ f(u,w), f(u,v) ⊕ f(v,w)};

9 Return H ;

Algorithm 2: Function Preserved Tree Decomposition
(FPTD)

Input: A time dependent road network G(V , E, F)

Output: Functions Preserved Tree Decomposition TG
1 H ← G; TG ← ∅;
2 Let N (v, H) be the neighbors of v in H ;
3 for i = 1 to |V | do
4 v ← the vertex in H with smallest degree;
5 X(v) ← the star from v to each neighbor u ∈ N (v, H);
6 Create a node X(v) in TG ;
7 H ← FPVE(H , v);
8 π(v) ← i ;

9 for all v ∈ V do
10 if |X(v)| > 1 then
11 u ← the vertex in X(v) \ {v} with smallest π value;
12 Set the parent of X(v) be X(u) in TG ;

13 for all v ∈ V do
14 Sort vertices in X(v) in decreasing order of π values;
15 X(v).φo

i ← f(v,xi ) where xi is the i-th vertex in X(v) for all 1
≤ i ≤ |X(v)|;

16 X(v).φi
i ← f(xi ,v) where xi is the i-th vertex in X(v) for all 1

≤ i ≤ |X(v)|;
17 Return TG ;

weight function f(v,u) for all u ∈ N (v, H). We construct the
tree structure by assigning the parent node for each X(v) in
Lines 9-12. For the sake of efficiency, we sort the vertices
in X(v) in decreasing order of π value, which is assigned to
each vertex in Line 8. Then, in Lines 13-16 we maintain a
data structure X(v).φi

i (resp. X(v).φo
i ) for the weight func-

tions of the edges from the in-neighbor xi to v (resp. from v

to the out-neighbor xi ). Here, we suppose f(v,v) = (0, 0), (60,
0) (t ∈ [0, 60]). Finally, we return TG as the decomposition
tree in Line 17.

Example 4 Consider the example in Fig. 1. To construct TG ,
we first pick v2, and create a node X(v2) in TG which
contains a star with two edges (v1, v2), (v2, v5) and the
corresponding weight functions as shown in Table 1. We
eliminate v2 by updating edge (v1, v5) with f(v1�v5) =

Min{ f(v1,v5), f(v1,v2)⊕ f(v2,v5)}= {(0, 17), (11, 15), (20, 18),
(60, 18)}. The process stops when all vertices are eliminated.
For node X (v2), after sorting the vertices in X (v2) in decreas-
ing order of their π values, we obtain the order v1, v5, v2.
Thus, we have X(v2).φ

o = { f(v2,v5), f(v2,v2)}, X(v2).φ
i =

{ f(v1,v2), f(v2,v2)}.
Similar to the H2H index that uses arrays to pre-store

distances, in our TD-H2H we maintain the function arrays
for each node in the decomposition tree TG , which is defined
as follows.

Function Arrays. The function arrays for X(v) is defined as
X(v)o. f = ( f(v�w1), f(v�w2), . . . , f(v�wl )) and
X(v)i . f = ( f(w1�v), f(w2�v), ..., f(wl�v)). To explain, the
function array of X(v) is the array for the weight functions
from v to every vertex in X(v).anc and from every vertex
in X(v).anc to v. We use X(v)o. fi to denote the i-th value
in X(v)o. f and X(v)i . fi to denote the i-th value in X(v)i . f
for any 1 ≤ i ≤ l. We have X(v)o. fi = f(v�X(v).anci ) and
X(v)i . fi = f(X(v).anci�v).

In addition, for efficient lookup of weight functions in the
function arrays, we also maintain the position arrays for each
node in the decomposition tree as follows.

Example 5 For the node X(v8) = {v1, v5, v3, v8} with
X(v8).anc = {v4, v1, v5, v3, v8} in Fig. 3, we have the func-
tion arrays as X(v8)

o. f = ( f(v8�v4), f(v8�v1), f(v8�v5),
f(v8�v3), f(v8�v8)) and X(v8)

i . f = ( f(v4�v8), f(v1�v8),

f(v5�v8), f(v3�v8), f(v8�v8)). And the position array for
X(v8).pos = {2, 3, 4, 5} since v1, v5, v3, and v8 are the 2nd ,
3rd, 4th and 5th value in X(v8).anc.

Next, we introduce the algorithm to construct the TD-
H2H index. The main idea to build the TD-H2H index is to

Fig. 3 Tree decomposition TG
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first construct the function preserved tree decomposition TG
and then generate the aforementioned function arrays and
position array for each tree node.

Let G(v) be the union of all the stars for nodes in the path
from X(v) to the root of TG . We have the graph G(v) to be
a supergraph of G(u) for any u ∈ X(v).anc. In this case, we
can reuse the partial label information in X(u) while com-
puting the label for X(v). Hence, we calculate the vertex
labels in a top-down manner in TG . In particular, for any
x j ∈ X(v)\{v}, which is a neighbor of v, we have X(x j )
is an ancestor of X(v) in TG based on Property 1. Thus,
before we calculate the function arrays of v, the weight func-
tion f(x j�X(v).anci ) and f(X(v).anci�x j ) have been obtained.
Moreover, for any x j ∈ X(v), we have f(v�x j ) = X(v).φo

j

and f(x j�v) = X(v).φi
j by Algorithm 2. Thus, we can cal-

culate the function arrays for every vertex with the following
lemma.

Lemma 1 For any 1 ≤ i < |X(v).anc|, we have

X(v)o. fi = Min{X(v)o. fi , X(v).φo
j ⊕ f(x j�X(v).anci )}

X(v)i . fi = Min{X(v)i . fi , f(X(v).anci�x j ) ⊕ X(v).φi
j }

∀ j ∈ [1, |X(v)|), where x j is the j-th vertex in X(v).

According to Lemma 1, to obtain the function arrays, we
need to compute f(x j�X(v).anci ) and f(X(v).anci�x j ) for each
x j ∈ X(v) (1 ≤ i < |X(v).anc|). We consider the following
two case:

– Case1: X(v).pos j > i . In this case, X(X(v).anci ) is an
ancestor of X(x j ) in TG . Thus,we have f(x j�X(v).anci ) =
f(x j�X(x j ).anci ) = X(x j )o. fi and f(X(v).anci�x j ) =
f(X(x j ).anci�x j ) = X(x j )i . fi . Moreover, X(x j )o. fi and
X(x j )i . fi can be directly used as f(x j�X(v).anci ) and
f(X(v).anci�x j ) because of the top-down traversal.

– Case2: X(v).pos j ≤ i . In this case, X(x j ) is an ancestor
of X(X(v).anci ) in TG . Then, we have f(x j�X(v).anci ) =
X(X(v).anci )i . fX(v).pos j and f(X(v).anci�x j ) = X(X(v).

anci )o. fX(v).pos j . Similar with Case 1, X(X(v).anci )o.
fX(v).pos j and X(X(v).anci )i . fX(v).pos j can be directly
used as f(x j�X(v).anci ) and f(X(v).anci�x j ), respectively.

The pseudocode of the algorithm to construct TD-H2H
index is shown in Algorithm 3. First, we initialize the max-
imum and minimum weight functions fmax and fmin in
Line 1. In Line 2, we construct the decomposition tree TG
invoking the Algorithm 2. Lines 3–20 iteratively examine
all nodes X(v) in TG in a top-down manner. In particu-
lar, for each node X(v), we first compute its position array
X(v).pos in Lines 5–6. Then, in the descending order of their
position, Lines 7–18 compute the function arrays X(v)o. fi

Algorithm 3: TD-H2H Index

Input: The time-dependent road network G(V , E, F)

Output: The TD-H2H-Index
1 Initialize fmax = {(0, +∞), (60, +∞)}, fmin = {(0, 0), (60, 0)};
2 TG ← FPTD(G);
3 for all X(v) ∈ V (TG) in a top-down manner do
4 Suppose X(v) = (x1, x2, ..., x|X(v)|);
5 for i = 1 to |X(v)| do
6 X(v).posi ← the position of xi in X(v).anc;

7 for i = 1 to |X(v).anc| − 1 do
8 X(v)o. fi ← fmax ;
9 X(v)i . fi ← fmax ;

10 for j = 1 to |X(v)| − 1 do
11 if X(v).pos j > i then
12 f(x j�X(v).anci ) = X(x j )o. fi ;
13 f(X(v).anci�x j ) = X(x j )i . fi ;
14 else
15 f(x j�X(v).anci ) = X(X(v).anci )i . fX(v).pos j ;
16 f(X(v).anci�x j ) = X(X(v).anci )o. fX(v).pos j ;

17 X(v)o. fi =
Min{X(v)o. fi , X(v).φo

j ⊕ f(x j�X(v).anci )};
18 X(v)i . fi =

Min{X(v)i . fi , f(X(v).anci�x j ) ⊕ X(v).φi
j };

19 X(v)o. f|X(v).anc| = fmin ;
20 X(v)i . f|X(v).anc| = fmin ;

21 Return X(v)o. f , X(v)i . f and X(v).pos for all v ∈ V ;

(resp. X(v)i . fi ) for the weight functions from v to the i-th
ancestor, X(v).anci (resp. from X(v).anci to v). After the
initialization in Lines 7–9, for each element x j (except for
the last one) in X(v), we first compute f(x j�X(v).anci ) and
f(X(v).anci�x j ) based on Lemma 1 and the aforementioned
two cases. Then, we conduct a Min operation on X(v)o. fi
and X(v).φo

j ⊕ f(x j�X(v).anci ) according to Definition 10
in Lines 17–18. In Lines 19–20, we set the last element in
the function array to be fmin since they are the weight func-
tions between v and itself. Finally, we return the function and
position arrays for all nodes as the TD-H2H index in Line
21, which finish the TD-H2H index construction.

Example 6 Consider the decomposition tree TG as shown in
Fig. 3 for the graph in Fig. 1. For vertex v6, we have X(v6)

= {v4, v5, v7, v6}, X(v6).φ
o = { f(v6,v7), f(v6,v6)}, X(v6).φ

i =
{ f(v4,v6), f(v5,v6), f(v6,v6)} and X(v6).anc = {v4, v1, v5, v3,
v8, v7, v6}. Then, we can get X(v6).pos = {1, 3, 6, 7}.
Next, consider the computation of X(v6)

o. f5, i.e., the weight
function for (v6 � v8). Suppose the function arrays for
all ancestors of X(v6) in TG have been computed. Based
on Lemma 1, we have X(v6)

o. f5 = f(v6,v7) ⊕ f(v7�v8).
To compute f(v7�v8), since X(v6).pos3 = 6 > 5, we con-
sider case 1. Therefore, we can derive that f(v7�v8) =
X((X(v6).anc6)o. f5)) = X(v7)

o. f5 = {(0, 20), (60, 20)},
and f(v6,v7) = X(v6).φ

o
3 ={(0, 6), (20, 12), (40, 6), (60, 6)}.

Consequently, we can get X(v6)
o. f5 = {(0, 26), (20, 32),
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(40, 26), (60, 26)}. Similarly, for X(v6)
i . f3, i.e., the weight

function for (v5 � v6), we can get that X(v6)
i . f3 =

Min( f(v5,v6), f(v5�v4) ⊕ f(v4,v6)). And we have f(v5,v6) =
X(v6).φ

i
2, and f(v4,v6) = X(v6).φ

i
1. Then, to compute

f(v5�v4), since X(v6).pos1 = 1 < 3, we consider case 2.
Hence, we get f(v5�v4) = X(v5)

o. f1, and X(v6)
i . f3 =

Min( f(v5,v6), f(v5�v4) ⊕ f(v4,v6)) = {(0, 12), (20, 24), (60,
12)}.
Time Complexity Analysis. Consider the time complex-
ity of Algorithm 2 for the tree decomposition. Firstly for
the function preserved tree node formation (lines 3-8), each
vertex takes O(W 2 · |S|) time to form new edges, and the
time to order vertices costs O(|V | · log|V |), so it takes
O(|V |(W 2 · |S| + log|V |)). Regarding the tree formation
(lines 9-12), it takes O(|V | ·W ) time to find the parent from
each node’s W vertices to form the tree. The sorting organi-
zation (lines 13-16) takes O(|V |W logW ) time. Therefore,
Algorithm 2 takes O(|V |(W 2 · |S| + log|V |) time. As for
Algorithm 3, it takes O(|V | · W · h · |S|) time to compute
the labels. Because W ≤ h − 1, the total time complexity of
TD-H2H construction is O(|V |(W · h · |S| + log|V |)).
Space Complexity Analysis. Our TD-H2H index structure
mainly consists of the PositionArray andFunctionArray. For
each node X(v) in TG , X(v).pos is a subset of X(v).anc,
whose size is no larger than h, where h denotes the height
of the decomposition tree. And X(v). f stores all the time-
dependent functions between v and the nodes in X(v).anc.
Therefore, the space complexity of TD-H2H index is at
O(|V | · h · |S|).

4.2 Answering TD-kNN query

After the index construction, in this section, we introduce
the algorithm to answer the TD-kNN query. Recall that in
GLAD, the H2H index is served as the distance oracle for
any pair of vertices in the graph. Similarly, in our solution,
we compute the time-dependent fastest travel cost during
TD-kNN query processing using the TD-H2H index. Con-
sequently, let us first introduce the algorithm to compute the
time-dependent fastest travel cost for any given pair of ver-
tices.

4.2.1 Time-dependent fastest travel cost query

Given a pair of source and destination vertices s and d on
G(V , E, F), a departure time t , and the TD-H2H index, the
major process to answer the time-dependent fastest travel
cost query is to find out the LC A of X(s) and X(d) in the
decomposition tree TG , and then calculate the result based
on its function arrays. The underlying rationale can be given
by the following theorem.

Algorithm 4: Time-dependent Fastest Travel Cost
(TFTC)

Input: G(V , E, F), a source s, a destination d, time t and the
H2H-Index

Output: T FTC(s, d, t)
1 XL ← the LC A of X(s) and X(d) in TG ;
2 r ← +∞;
3 for all i ∈ XL .pos do
4 tmp ←

X(s)o. fXL .posi (t) + X(d)i . fXL .posi (t + X(s)o. fXL .posi (t));
5 if tmp < r then
6 r ← tmp

7 Return r ;

Theorem 3 Given a pair of source and destination vertices
s, d, the decomposition tree TG of a road network G, and the
corresponding TD-H2H index, let XL be the LC A of X(s)
and X(d) in TG, we have:

T FTC(s, d, t) = Mini∈XL .pos{X(s)o. fXL .posi (t)

+ X(d)i . fXL .posi (t + X(s)o. fXL .posi (t))}
(3)

Proof According to the definition of TD-H2H index, suppose
XL = {w1, w2, . . . , wl} sorted in ascending order of their
positions in XL .anc. Thus,wehave T FTC(s, XL .anci , t)=
T FTC(s, X(s).anci , t) for any1 ≤ i ≤ |XL .anc|. Basedon
Theorem 1, we can get T FTC(s, d, t) =Minv∈XL { f(s�v)(t)
+ f(v�d)(t + f(s�v)(t))}. As X(s) and X(d) are the dece-
dents of XL in TG , we have T FTC(s, d, t) = Minv∈XL

{ f(s�v)(t) + f(v�d)(t + f(s�v)(t))} = Mini∈XL .pos

{ f(s�XL .anci )(t) + f(XL .anci�d)

(t + f(s�XL .anci )(t))} = Mini∈XL .pos{ f(s�X(s).anci )(t) +
f(X(d).anci�d)(t + f(s�X(s).anci )(t))} = Mini∈XL .pos

{X(s)o. fXL .posi (t)+X(d)i . fXL .posi (t+X(s)o. fXL .posi (t))}.
Thus, we finish the proof of this theorem. ��

Based on Theorem 3, we can simply scan the function
arrays X(s)o. f and X(d)i . f to find the weight functions
f(s�X(x).anc) and f(X(d).anc�d), respectively, and calculate
the travel cost with Equation 3. Algorithm 4 shows the pseu-
docode for computing the time-dependent fastest travel cost.
In particular, we apply the same method in [28] to calcu-
late the LC A in constant time. Then compute the cost based
on Theorem 3. We give an example to show how the query
process as follows.

Example 7 Consider the example in Fig. 1. Given a query
T FTC(v7, v0, 20), with a partial TD-H2H index as shown
in Fig. 4, we first get LCA(v7, v0) = X(v8) in TG . Since
X(v8).pos = {2, 3, 4, 5}, we have T FTC(v7, v0, 20) =
Min{X(v7)

o. f2(20) + X(v0)
i . f2(20 + X(v7)

o. f2(20)),
X(v7)

o. f3(20) + X(v0)
i . f3(20 + X(v7)

o. f3(20)), X(v7)
o.

f4(20)+ X(v0)
i . f4(20+ X(v7)

o. f4(20)), X(v7)
o. f5(20)+
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Fig. 4 Query processing for T FTC(v7, v0, 20)

X(v0)
i . f5(20 + X(v7)

o. f5(20))} = Min{39 + 56, 25 +
72, 8 + 43, 20 + 12} = 32. Thus, the fastest travel time
from v7 to v0 departing at 20 is 32.

Complexity Analysis. The time cost of TFTC query based
on the TD-H2H index is mainly caused by the LC A query
for two nodes in the decomposition tree TG and the retrieval
of the function arrays. According to [28], the computational
cost for the LC A query is at O(1). Since we have that the
largest size of X(v) in the decomposition tree is bounded by
the width of the tree. Thus, the total computational cost of
the TFTC query is bounded by O(W ), where W is the tree
width.

4.2.2 TD-kNN query

Next, we introduce the algorithm to answer TD-kNN query.
As aforementioned, our framework is similar to that inGLAD
while replacing theH2H indexwith the TD-H2H index. Nev-
ertheless, to further improve the query efficiency, in ourwork,
we propose two pruning strategies as follows.

Lower-bound Cost Pruning. Based on Definition 5, we
observe that if the lower bound travel cost from an object oa
to the query point q is larger than the exact time-dependent
fastest travel cost from another object ob to q, then oa can be
pruned by ob regardless of departure time.

Observation 1 Given two objects oa, ob, a departure time t,
and a query point q, if LBC(oa, q) > T FTC(ob, q, t), then
we have T FTC(oa, q, t ′) > T FTC(ob, q, t) ∀t ′ ∈ [ts, te].

Motivated by this observation, in our work, we build an
H2H index on the lower bound graph (Ref. Definition 4).
Then, after retrieving the first k candidate objects with the
corresponding T FTC values, during the further exploration
to discover other objects, we can first calculate the lower
bound travel cost for them based on the H2H index, to see
whether they can be pruned by the k-th candidate object we
have found. In this way, unnecessary computation of time-
dependent travel cost for some objects can be avoided, which
can significantly show in Sect. 6.

LabelPruning.Recall that according toTheorem3, the com-
putation of time-dependent fastest travel cost for two vertices

s, d actually contains two portions: the travel cost from s to
the label in its LC A nodes in the decomposition tree, and
the cost from this label to d. We observe that if two objects
pass through the same label, we can omit the second part
of computation for one of the labels based on the following
observation.

Observation 2 Given two objects oa and ob, a query point
q with a departure time t, let v be a common label of
them, i.e., v ∈ LC A(X(oa), X(q)) ∩ LC A(X(ob), X(q)).
If T TC(oa, v, t) > T TC(ob, v, t), based on the FIFO prop-
erty,wehave T TC(oa, v, t)+T TC(v, q, (t+T TC(oa, v, t)))
> T TC(ob, v, t) + T TC(v, q, (t + T TC(ob, v, t))). Note
that T TC is calculated by the aggregated weight functions
as shown in Theorem 3.

Consequently, consider an object o f , which has been
filtered (this object will never appear in the result set). Sup-
pose that we have another object oc to be examined and we
get v ∈ LC A(X(o f ), X(q)) ∩ LC A(X(oc), X(q)), with
T TC(oc, v, t) > T TC(o f , v, t), then based on Observa-
tion 2 we can omit the computation of T TC(v, q, (t +
T TC(oc, v, t)) since the total cost must be larger than that of
o f . Motivated by this, during query processing, we maintain
a buffer for each vertex v to record the smallest travel cost
from all the current filtered objects to v at the query time,
i.e., minoi∈O f T TC(oi , v, t), where O f is the set of objects
being filtered at the current stage of query processing. During
query processing, we check this buffer to see whether we can
avoid the second part of computation for some objects. And
we update this data structure after the examination of each
candidate object.

Example 8 Consider the example in Fig. 5, we assume
that v1 and v2 are the common labels in LCA(o1, q),
LCA(o2, q) and LCA(o3, q). Suppose that o1 and o2 have
been filtered and we have T TC(o1, v1, t) = 20 and
T TC(o2, v1, t) = 10. Then, we set the buffer value for
v1.cost as 10. Given T TC(o3, v1, t) = 20, which is larger
than v1.cost , we can omit the computation of T TC(v1, q, t+
T TC(o3, v1, t)). Similarly, given T TC(o3, v2, t) = 15, we
can omit T TC(v2, q, t + T TC(o3, v2, t)).

Query Algorithm. The pseudo-code of the TD-kNN query
algorithm is shown in Algorithm 5. We start from the grid of

Fig. 5 Label pruning
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Algorithm 5: TD-kNN

Input: Road network G(V , E, F), query point q, departure time
t , grid index L , lower bound cost scheme LBC , TD-H2H
index

Output: TD-kNN of q
1 Let h be the grid containing q, H ← φ, NH ← h;
2 Let C be the candidate set of the kNN queries;
3 Let UB be the upper bound of the travel time of the k-th nearest
neighbor to q and initially set to +∞;

4 Let LB ← 0 and T (o, q) denotes the current travel cost from
object o to q, T (o, q) ← +∞;

5 ∀v ∈ V , v.c ← +∞;
6 while UB > LB do
7 let L(NH) be the set of objects in NH ;
8 foreach o ∈ L(NH) do
9 if C .si ze() < k then

10 C ← o;

11 else
12 Let Tk be the k-th largest travel cost of objects in C ;
13 if LBC(o, q) ≤ Tk then
14 foreach v ∈ LC A(o, q) do
15 if T TC(o, v, t) ≤ v.c then
16 tmp ← T TC(o, v, t) + T TC(v, q, t +

T TC(o, v, t));
17 T (o, q) ← min{T (o, q), tmp};
18 if T (o, q) < Tk then
19 C ← o, update Tk ;

20 else
21 foreach v ∈ LC A(o, q) do
22 v.c ← min{v.c, T TC(o, v, t)});

23 H ← H ∪ NH , UB ← Tk ;
24 Let NH be the set of grids that are neighbors of H but

excluding the grids in H ;
25 Let DL be the minimum Euclidean distance from q to the

edge of NH , LB ← DL/speedmax ;

26 return top−k objects in C with fastest travel time;

size 1 × 1, and then gradually expanding the grid to 3 × 3,
5 × 5,…until the kNN candidates are found. Then, during
the further exploration, we set an lower-bound cost to be the
cost travel from the boundary of explored grid to the query
point with the maximum speed admitted for the whole road
network. Lines 1–5 illustrate the initialization of this algo-
rithm. We maintain a set C to record the candidate objects,
and a set H for the grids to explore. Let NH to be neighbor
grids surrounding H , and initially set to be {h}, which is the
grid where q is located. We useUB to indicate upper-bound
cost of the k-th nearest neighbor to q and LB as the lower-
bound as aforementioned. For each object o, we maintain a
T (o, q) to denote the current travel cost from o to q, and for
each vertex v, we use v.c to indicate the buffer for the small-
est cost from all the current filtered objects to v. Then, we
start the iteration to explore the grid and retrieve candidate
objects. At the beginning of each iteration, we check whether

the current upper-bound value has exceed the lower-bound,
and later we update both to narrow down the gap of them to
accelerate the convergence. In Lines 7–10, we calculate the
travel cost of all moving objects in NH to the query loca-
tion q using TD-H2H index, and add these objects to the
candidate set C until we get k objects. Let Tk be the k-th
largest cost among those in C . In Line 13, we calculate the
lower bound cost LBC(o, q)with the H2H index, and check
whether LBC(o, q) is larger than Tk . If so, we can prune this
object based on Observation 1. Otherwise, in Lines 14–17,
for each v ∈ LC A(o, q), we first calculate the travel cost
T TC(o, v, t) and check v.c to see whether we can omit the
further computation based on Observation 2. Alternatively,
in Lines 18–22, we calculate the exact travel cost for this
object and update C and Tk accordingly. After this iteration,
in Lines 23–25, we update H to include the grids in NH and
update NH by exploring the next surrounding grids. And we
update the upper-bound and lower-bound cost based on the
current results. At the end, we return the top-k objects with
the fastest travel cost in C as the TD-kNN query answer.

Complexity Analysis.The time complexity for the TD-kNN
query is based on two parts: the cost of grid expansion and
the cost TFTC query for each object. Though we propose
several pruning strategies, at the worst case, for each object
we need to compute both the TTC and TFTC query, each
of which is bounded by O(W ) as analyzed in Sect. 4.2.1.
Thus, the overall computational cost for the TFTC part is
bounded by O(W |Mavg|), where |Mavg| denotes the average
number of objects retrieved during query processing. Note
that in the worst case, |Mavg| could be up to |M |, which
is the total number of objects. As for the grid expansion,
the cost is bounded by the number of objects to retrieve,
which is dominated by the TFTC part. Consequently, the
time complexity for our TD-kNN query is at O(W |Mavg|).
In contrast, the time complexity of TD-kNN query for TD-
Dijkstra and TD-G-tree is at O(|Mavg|(|V | · log|V | + |E |))
and O(|Mavg|(log22k f · |V | · log22|S|)), respectively.

5 Extension on TD-kNN query

Applications of TD-kNN query can be found in the taxi-
hailing service, where each moving object represents a taxi
running on the road network. When a user proposes a taxi
request, the system finds the k nearest taxis and assigns one
of them to serve the user based on some specific strategies.
In this case, we consider all the moving objects available
to serve. However, in practice, some of the taxis might
have been occupied by existing users, and these occupied
objects might arrive at their destinations soon so that they
could also approach the query point in a short time. In [42],
the authors propose the Approachable k Nearest Neighbor
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(AkNN) query, which takes into consideration of both occu-
pied and unoccupied moving objects, e.g., taxi. We give such
objects a specific definition as follows.

Definition 12 (Conditional Moving Object) We define the
conditional moving object oc on the time-dependent road
network as a tuple, i.e., oc = (pc, pd , c), where pc (resp.
pd ) indicates the current (resp. the imminent destination)
location of this moving object, and c represents the condi-
tion (occupied/non-occupied). We have c = 1 to represent
“occupied” and c = 0 for “non-occupied” condition. Note
that pc = pd if c = 0.

Given a set of non-occupied/occupied moving objects Mc

and a query point on the time-dependent road network, we
aim to return the k nearest objects those can earliest response
to the request after they finish their current journey (arrive
at the destinations). These objects are regarded as the immi-
nent approachable candidates to serve the requests. Thus, we
calculate the travel cost from a conditional moving object
to the query point by summarizing the cost from its current
location to its coming destination and the cost from its com-
ing destination to the query point. Formally, we define the
time-dependent approachable kNN as follows.

Definition 13 (Time-dependent Approachable kNN (TD-
AkNN)) Given a query point q, a set Mc of moving objects
on a time-dependent road network G(V , E, F), a departure
time t , and an integer k ≤ |Mc|, time-dependent approach-
able kNN returns a subset R ⊆ Mc of k moving objects
such that for all oci ∈ Mc \ R, T FTC(oci .pc, o

c
i .pd , t) +

T FTC(oci .pd , q, (t + T FTC(oci .pc, o
c
i .pd , t))) ≥ T FTC

(ocj .pc, o
c
j .pd , t)+T FTC(ocj .pd , q, (t+T FTC(ocj .pc, o

c
j .

pd , t))) for any ocj ∈ R.

To address theTD-AkNNquery,we adopt the same frame-
work like the one for the TD-kNN query. Note that in this
case, eachmoving object contains two locations. In ourwork,
we maintain the grid index only based on the destination
location. Moreover, we regard the time-dependent fast travel
cost computation based on the TD-H2H index as a black-box.
Particularly, the pseudo-code of the algorithm for TD-AkNN
query is shown in Algorithm 6. Lines 1–4 illustrates the same
initialization as the ones for the TD-kNN Algorithm 5. We
also maintain a setC to hold candidate objects. In Lines 6–9,
for the object oc with oc.pd ∈ NH , we calculate the travel
cost of path {oc.pc, oc.pd , q} with TD-H2H index, and add
them to C until we get k candidate objects. Then, we set the
k-th largest travel cost among the objects in the candidate set
C as Tk in Line 11. In Line 12, before we calculate the fastest
travel cost from oc to q, we first calculate the lower bound
cost of path {oc.pc, oc.pd , q}. If the lower bound cost is larger
than Tk , we do not need to calculate the travel cost for oc. Oth-
erwise, in Line 13, we calculate the travel cost tmp of path

Algorithm 6: Grid-base TD-AkNN

Input: Road network G(V , E, F), lower bound cost scheme
LBC , query point q, grid index L , query time t

Output: TD-AkNN of q
1 Let h be the grid containing q, H ← φ, NH ← h;
2 Let C be the candidate set of the kNN queries;
3 Let UB be the upper bound of the travel time of the k-th nearest
neighbor to q and initially set to +∞;

4 Let LB ← 0;
5 while UB > LB do
6 Let L(NH) be the set of objects in NH ;
7 foreach oc.pd ∈ L(NH) do
8 if C.size() < k then
9 C ← oc;

10 else
11 Let Tk be the k-th largest travel cost of objects in C ;
12 if LBC(oc.pc, oc.pd ) + LBC(oc.pd , q) ≤ Tk then
13 tmp ← T FTC(oc.pc, oc.pd , t) +

T FTC(oc.pd , q, t + T FTC(oc.pc, oc.pd , t));
14 if tmp < Tk then
15 C ← oc, Update Tk ;

16 H ← H ∪ NH , UB ← Tk ;
17 Let NH be the set of grids that are neighbors of H but

excluding the grids in H ;
18 Let DL be the minimum Euclidean distance from q to the

edge of NH , LB ← DL/speedmax ;

19 Return top−k objects in C with fastest travel time;

{oc.pc, oc.pd , q}. If tmp is smaller than Tk , which means
oc can be a candidate object, then we update the candidate
set C and Tk accordingly in Lines 14-15. After that, we use
the same method as that in TD-kNN to update H ,UB, NH ,
and LB. Finally, we return the top-k objects with the fastest
travel cost in C as the TD-AkNN query answer.

Complexity Analysis. Since Algorithm 6 searches the
objects in a similar way to Algorithm 5, they have the same
time complexity, which is O(W |Mavg|). However, the cal-
culation of the lower bound cost and TFTC of each moving
object needs to be done twice for the TD-AkNN query due
to the occupancy, so the query time will be longer than per-
forming a TD-kNN query.

6 Experimental study

In this section, we present the experimental study to show
the performance of our proposed solutions for the time-
dependent k nearest neighbor queries. We first introduce the
experimental setting, followed by the results with various
parameter settings.

6.1 Experimental settings

Datasets: We conduct our experiments on real road net-
work from New York city (NY) and Beijing city (BJ). To
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(a) (b) (c) (d)

Fig. 6 Performance of index construction

Table 2 Parameter settings Parameter Description Values

k Input parameter of kNN 10, 20, 30, 40, 50

|M | Number of moving objects 1, 2, 3, 4, 5(× 10000)

L Length of each grid(m) 500, 1000, 1500, 2000, 2500

p Number of interpolation points 2, 3, 4, 5, 6

θ Proportion of occupied moving objects 0%, 30%, 60%, 90%

evaluate the scalability of our algorithms, we extract three
sub-networks from NY, following the same idea in TOAIN
[5]. Specifically, we gradually expand the road network from
the center of New York city to get a certain number of ver-
tices and the corresponding edges. We denote these three
sub-networks as NY1, NY2, and NY3. Table 3 shows the
sizes of vertices and edges for different datasets, and NY is
the default dataset. The height and width of the decompo-
sition tree of these datasets are also shown in Table 3. It is
worth noting that although NY and BJ have similar numbers
of vertices, the distribution of vertices in BJ is much denser.
As a result, the height and width of the decomposition tree
are larger than those of NY, which is in line with the results
in [31].

Queries: We randomly choose 10,000 vertices as the query
points, and randomly select a departure time for each of them
within the whole time range of [0,1440]. In particular, for the
number of interpolation points, the default value is 4, which
are (x1, y1), (x2, y2), (x3, y3), (x4, y4). Next we will intro-
duce how to generate the piecewise linear weight function for
each edge. Ideally, the weight functions could be extracted

Table 3 Real-world maps and tree parameters

Dataset # Vertices # Edges h W

NY1 32527 90710 237 91

NY2 66581 184464 340 120

NY3 134064 396182 457 136

NY 264346 733846 504 141

BJ 265348 688962 716 320

from a set of trajectories. However, since we do not have
the corresponding trajectory data, we manually simulate the
weight functions based on common sense of the road con-
dition. Firstly, we set the x coordinate of the interpolation
points as follows: x1 = 0, x4 = 1440, x2 ∈ [510, 570), and
x3 ∈ [990, 1070), where x2 and x3 are randomly selected
from the corresponding range. As for the y coordinate, we
set three levels of speed values with sp1 = 1000m/minute,
sp2 ∈ [500, 900]m/minute, and sp3 ∈ [300, 750]m/minute.
Then, for each edge (u, v), let l(u, v) be the length of this
edge. We set yi = l(u, v)/spi , for 1 ≤ i ≤ 3, and y4 = y3.
The intuition is that during mid-night, the traffic flow is
smooth and the vehicle usually can have free flow speed,
while during day time there could be some deduction due to
the increase of traffic flow. Table 2 shows all the parameter
settings in our experimental study, where the default values
are marked in bold.

Methods: As discussed in Sect. 4, there is no existing solu-
tions for TD-kNN query. But our proposed framework for
both TD-kNN and TD-AkNN can be easily integrated with
any existing time-dependent fastest travel cost (TFTC) query
algorithm. In order to evaluate the efficiency of the designed
framework as well as the superiority of our proposed TD-
H2H index, we apply the same framework to incorporate
the TD-G-tree index and TD-Dijkstra algorithm as our com-
petitive solutions. We simply denote these algorithms as
TD-H2H, TD-G-tree, and TD-Dijkstra, respectively. In other
words, the above three algorithms use the same framework
but invoke different TFTC query algorithms to calculate the
time-dependent travel cost from an object to the query point.
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Fig. 7 TFTC query with different road network distance

Implementation details: All algorithms1 are implemented
in C++ and compiled with GNNGCCwith full optimization.
The codes executes on an Intel(R) Xeon(R) W-2245 CPU
@3.2GHz with 250GB RAM under Linux (Ubuntu 18.04
LTS, 64bit).

6.2 Experimental results

6.2.1 Index construction

We first compare the performance of the proposed TD-H2H
index with the existing TD-G-tree under different datasets
and different numbers of interpolation points for the weight
functions. Recall that the construction of the TD-H2H index
involves tree decomposition of the graph, calculating the
time-dependent weight functions between each vertex in the
decomposition tree and its ancestors, and storing them in an
array of weight functions. By contrast, the TD-G-tree index
involves partitioning the graph into a balanced tree structure,
calculating the weight functions between boundary vertices
and between the non-boundary vertices and boundary ver-
tices, and storing these functions in matrices on the non-leaf
nodes and leaf nodes in the tree. Figure 6 shows the exper-
imental result of index construction in comparison with the
TD-G-tree. As we can see, TD-H2H needs more space for
weigh functions than TD-G-tree, while taking less time to
construct the index at all settings. The index size of TD-H2H
is about 3 times that of TD-G-tree, and this is because TD-
H2H maintains the weight function array for every vertex,
while TD-G-tree only stores them for a small set of vertices,
e.g., the boundary vertices. However, with improved storage
andmemory hardware, an index size at about 30GB is accept-
able for a whole NY road network. Since TD-H2H computes
theweight functions in a top-downmanner, it reuses the exist-
ing information to reduce the overall computational cost.

Effect of network size. It is obvious that the index size and
construction time will increase as the road network becomes

1 The source code, data, and/or other artifacts have beenmade available
at https://github.com/jiajia4487/TD-H2H-kNN.

larger, as shown in Fig. 6a and b. The size of TD-G-tree grows
more slowly than TD-H2H, because its boundary vertices do
not increase dramatically with the growth of network size,
while the index size of our TD-H2H increases faster since
the more vertices, the heavier weight functions required. The
index construction efficiency of TD-H2H is less affected by
the size of the network compared with the TD-G-tree, which
also benefits from the re-usage of partial information from
the ancestors of a node in the decomposition tree. In addi-
tion, the index for BJ road network requires larger space and
more construction time compared to NY, though they have
the similar number of vertices. This is mainly because the
topological structure in BJ road network is more complex
than that of NY, resulting in larger height and width in the
decomposition tree as illustrated in Table 3.

Effect of the number of interpolation points.As illustrated
in Fig. 6c and d, the index size and construction time of both
indices increase as the size of interpolation points increases.
That is because the number of the interpolation points of the
aggregated weight function of a path will increase exponen-
tially when aggregatingmore weight functions, whichmakes
sense, and the impact for both indices is similar to the sce-
nario of varying map size.

6.2.2 Fastest travel cost query processing

As introduced in Sects. 4.2 and 5, the TFTC query will be
invoked multiple times in order to answer a TD-kNN or
TD-AkNNquery. Thus conduct a set of performance compar-
isons among the proposed TD-H2H index and the existing
TD-G-tree index and TD-Dijkstra algorithm in supporting
the TFTC query.

Effect of the source-destination distance. We randomly
generate 100K pairs of source and destination points under
NY dataset, and set the departure time randomly. The TFTC
query is issued for each pair, and the corresponding response
time is recorded. Then, the shortest road network distances
of these 100K pairs on the road network are calculated,
respectively, and divided into 4 intervals by distances, i.e.,
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(a) (b)

Fig. 8 TFTC query processing time

Table 4 Pruning power varying k

k 10 20 30 40 50

P1 (NY) 72.5% 70.9% 70.2% 69.8% 69.4%

P2 (NY) 66.5% 70.3% 72.6% 73.7% 74.4%

P1 (BJ) 24.2% 16.9% 15.2% 15.9% 12.4%

P2 (BJ) 25.2% 22.9% 27.9% 30.2% 32.5%

(0, 4, 8, 12) × 105m. Figure 7 shows the query time distri-
bution for different solutions, where each point indicates the
query time of one request. As we can see, with the increase
in road network distance, the query time of TD-Dijkstra
increases dramatically. This is because TD-Dijkstra expands
the graph from the source point until it reaches the destina-
tion, whose query efficiency is naturally related to distance.
TD-G-tree showsmore stable performance thanTD-Dijkstra,
because it skips a large number of unnecessary vertices. Nev-
ertheless, when the two points are far away, and their least
common ancestor (LCA) is close to the root node, the number
of boundary points that need to be verified increases, which
will also lead to a deduction of efficiency. As for the TD-
H2H index, its efficiency depends more on the size of the
array in the LCA, which is related to the contraction order
of this LCA rather than the distance. Consequently, it is least
affected by the distance, which means our solution is more
robust to the TD-kNN query with various underlying road
network distances.

(a) (b)

Fig. 9 Query processing with two pruning strategies

Effect of network size andnumberof interpolationpoints.
Figure 8 illustrates the average running time for answer-
ing TFTC query of three algorithms under different datasets
and different numbers of interpolation points for each edge.
It can be seen that when the network size increases, the
query response time of the three algorithms all increase.
TD-Dijkstra increases the fastest because in a larger road net-
work, the source and destination point might be farther , and
more vertices need to be traversed. As for TD-G-tree and TD-
H2H, a larger network indicates a deeper decomposition tree,
and the growth of boundary points (in TD-G-tree) and asso-
ciated vertices (in TD-H2H) in LCA will increase the query
time. In terms of the interpolation points, the aggregated
weight functions pre-computed for the matrices in TD-G-
tree and the arrays in TD-H2Hwill increase greatly, resulting
in a longer lookup time when calculating the travel cost. In
contrast, TD-Dijkstra does not concatenate the weight func-
tions but directly calculates the arrival time while exploring
each edge. Hence, the increased lookup time is less, so it is
less affected by the number of interpolation points. As we
can see, the TD-H2H always beats the other two solutions in
orders of magnitude.

6.2.3 Effectiveness of pruning strategies

We evaluate the effectiveness of the pruning strategies based
on Observation 1 and 2, and we denote these two strategies
as P1 and P2, respectively. We first conduct a case study to
see how well these two pruning strategies work. In partic-
ular, we perform 100K queries and keep track of both the
numbers of objects that have been visited and the numbers
of TTC computations of each query processing for evalu-
ating the pruning power of P1 and P2, respectively. That is
because P1 helps to filter those unpromising objects, while
P2 helps to omit the second part of computation for some
vertices in an LCA of the examined object and query point.
For each setting, we conduct the same set of queries twice
and record the sizes of traversed objects and calculated TTC,
respectively, so that we can obtain the pruning power. For-
mally, we define the number of objects visited with (resp.
without) pruning as Op (Onp). Then, the pruning power is
calculated by (Onp − Op)/Op for P1. And the number of
TTC computations is used instead of the number of objects
visited in the calculations for P2. Table 4 shows the results of
pruning power while varying k under the maps of New York
and Beijing, where P1 means we only apply the first strategy.

As we can see from the interesting results, as the value
of k grows, the trends of the pruning power of P1 and P2
are opposite under both road networks. However, the perfor-
mance of P1 and P2 is very different regarding different road
networks. As described in Sect. 4.2.2, if the lower bound cost
of the object is larger than Tk , it can be pruned safely, where
Tk represents the cost of the k-th moving object found so far.
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(a) (b) (c) (d)

Fig. 10 TD-kNN query processing on NY dataset

(a) (b) (c)

Fig. 11 TD-kNN query processing on BJ dataset

Obviously, a smaller value of Tk means that more objects
can be filtered out. As k increases, it needs to search larger
space to obtainfinal results and then Tk increases accordingly.
Hence, the pruning power of P1 becomes weaker. Regard-
ing P2, with more objects to verify, we might find more
objects sharing the same LCA. Therefore, as k increases,
the pruning power of P2 turns out to be stronger. As for the
performance of the pruning power under different road net-
works, it is closely related to the properties of road networks.
As mentioned in Table 3, although both road networks have
a similar number of vertices, the lengths of road segments in
BJ are generally shorter than those in NY. Since the length of
the road segment is taken into account when generating the
time-dependent functions, the change in the travel time of
the shorter road segment is smaller. Therefore, when utiliz-
ing the lower bound of travel time for pruning by P1, fewer
edges can be filtered out in BJ, so the performance of P1 is
worse than that in NY as shown in Table 4. P2 also performs
worse in BJ, since the decomposition tree of BJ has a larger
width, so that there are fewer vertices passing through the
same LCA.

Next, we evaluate the combination of the pruning power
by reporting the query processing time with or without the
pruning strategies. Figure 9 shows the results varying the
value of k. As we can see, the query time without pruning

nearest doubles that with pruning for TD-kNN, and the prun-
ing advantage is more significant in answering TD-AkNN.

6.2.4 Efficiency of TD-kNN query

We compare the TD-kNN query efficiency of three solutions
by varying four different parameter, i.e., k, object size |M |,
gird length L , and network size. Figures 10 and 11 show the
results of four sets of experiment on the maps of NY and
BJ, respectively, each of which is the average query time
over 100K queries. For all settings, our solution achieves
2-3 orders of magnitude faster than the TD-G-tree and TD-
Dijkstra.

From Fig. 10a, we can see that the query time increases
as k increases for all solutions, as the larger k indicates more
exploring space to retrieve moving objects, thus higher com-
putational cost. As for the object size, the query time of all
algorithms decrease slightly, as shown in Fig. 10b. This trend
is similar to the impact of the road network distance on the
TFTC query. The underlying intuition is that the increase
of |M | leads to a higher density of moving objects. Thus, k
objects can be found quicker, and the exploration space from
the query point to its kNN is smaller. As illustrated in Fig.
10c, L has little impact on the query time of all algorithms
for TD-kNN query. Intuitively, the smaller L , the more grid
levels need to be explored, and vice versa. However, bene-
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(a) (b) (c)

(d) (e)

Fig. 12 TD-AkNN query processing on NY dataset

(a) (b) (c) (d)

Fig. 13 TD-AkNN query processing on BJ dataset

fiting from the pruning strategies, the influence of L reduce
for retrieving the candidate objects. In terms of network size,
when the network becomes larger, the query time increases
very slightly for three solutions as illustrated in Fig. 10d.
The size of network is closely related to the height and width
of both tree structures generated by TD-G-tree and TD-H2H,
thus increasing the overall query time. The TD-Dijkstra algo-
rithm is very sensitive to the exploration space. With larger
network and randomly generated query, there could be some
queries requiring larger exploration space, thus resulting in
higher computational cost.

As it can be seen from Fig. 11, the effect of the three
parameters on all three algorithms for TD-kNN query is sim-
ilar under the road network of BJ to that of NY. Specifically,
the query time of all solutions on BJ also increases as k

increases. Meanwhile, L has little impact on the query time
of all algorithms. As for M , our algorithm tends to be sta-
ble when M increase, while the other two solutions go down
slightly. Overall, TD-H2H is 2–3 orders of magnitude faster
than TD-G-tree and TD-Dijkstra in nearly all settings, which
verifies the scalability and robustness of our proposed algo-
rithm.

6.2.5 Efficiency of TD-AkNN query

Next,we evaluate the efficiency of theTD-AkNNquery. Sim-
ilar to the ones for the TD-kNNquery,we consider the impact
of different parameters. Except for the aforementioned four
parameters, in the TD-AkNN query, we have one more set
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of experiment that varies the proportion of occupied objects,
i.e., θ .

Figure 12 shows the performance results for the TD-
AkNN query with three solutions under the dataset of NY.
Remarkably, our solution is always superior to the competi-
tors in 3-4 orders of magnitude in all settings. The impacts
of k, |L|, and network size are similar to the ones for the
TD-kNN query, which shows the robustness of our design
framework and the proposed TD-H2H. Differently, the query
time of TD-AkNN of three algorithms is very little affected
by |M | on both of the maps, as shown in Fig. 12b. The reason
is that although the destination of the occupied object is closer
to the query point, its current location might be far away.
Thus, the impact of object density has little correlation with
the road network distance from object to query point. As for
θ , Fig. 12e illustrates the query time of the three algorithms
under different occupancy rates. For an occupied moving
object, to calculate the travel cost to the query point, both the
travel time from its current location to its destination and this
destination to the query point need to be calculated. Conse-
quently, when we increase the number of occupied moving
objects, the overall computational cost increases accordingly.

We also conduct the experimental study of TD-AkNN on
the roadnetworkofBJ for the three algorithms, and the results
are illustrated in Fig. 13. It can be seen that the query time of
all solutions increases with the value of k and θ , while it is
not greatly affected by |M | and |L|. Similarly, our proposed
TD-H2H still performs well in BJ road network, achieving
3-4 orders of magnitude faster against the TD-G-tree and
TD-Dijkstra algorithms.

7 Conclusion

In this paper, we present a comprehensive study on TD-
kNN queries, which aims to return k moving objects that can
fastest arrive at a given query location departing at time t .
We develop an efficient framework derived from the GLAD
that includes a novel TD-H2H index for fastest travel cost
computation and two pruning strategies to speed up TD-
kNN query. We further extend our solution to address the
TD-AkNN, where both occupied and non-occupied moving
objects are considered. Extensive experiments on the real-
world road network show that our solution is several orders
of magnitude faster than the competitors.
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