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Abstract
While many techniques for outlier detection have been proposed in the literature, the interpretation of detected outliers is
often left to users. As a result, it is difficult for users to promptly take appropriate actions concerning the detected outliers.
To lessen this difficulty, when outliers are identified, they should be presented together with their explanations. There are
survey papers on outlier detection, but none exists for outlier explanations. To fill this gap, in this paper, we present a survey
on outlier explanations in which meaningful knowledge is mined from anomalous data to explain them. We define different
types of outlier explanations and discuss the challenges in generating each type. We review the existing outlier explanation
techniques and discuss how they address the challenges. We also discuss the applications of outlier explanations and review
the existing methods used to evaluate outlier explanations. Furthermore, we discuss possible future research directions.

Keywords Outlier explanation · Outlier interpretation · Outlier description · Outlier detection · Anomaly analysis

1 Introduction

Hawkins [40] defines an outlier as “an observation which
deviates so much from other observations as to arouse
suspicions that it was generated by a different mecha-
nism.” Outliers are also called anomalies, abnormalities,
aberrations, contaminants, deviants, discordant observations,
exceptions, peculiarities, or surprises in some applications
[4,20]. Outlier detection plays an important role in many
applications. Identified outliers reveal meaningful informa-
tion about abnormal behavior in a system. For example,
using outlier detection algorithms, medical and public health
researchers can identify unusual patient symptoms that canbe
indicative ofmedical errors or unusual outcomes [96].Outlier
detection also finds applications in environmental monitor-
ing [42,56], structural monitoring [14,28], network intrusion
[12,99], and fraud detection [46,98].
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For applications to benefit more from the results of the
outlier detection process, the results should be explainable.
To this end, the process should include two tasks: outlier
detection and outlier explanation. The Merriam-Webster
dictionary defines explanation as “the act or process of
explaining." To explain is “to make known" or “to give the
reason for or cause of" or “to make something plain or under-
standable." In [70], Miller argues that “explainable artificial
intelligence can benefit from existing models of how people
define, generate, select, present, and evaluate explanation.”
In the context of outlier detection, the outlier explanation task
provides guidance for users in investigating detected outliers.

Explanationswill enhance theusers’ understandingof out-
liers and can be used to improve the outlier detection task
further. As a result, explanations can assist outlier mitigation,
which is a process for deciding what to do with the identi-
fied outliers and how to utilize them to improve predictive
models, such as future web traffic for the network location
[95], finance and asset pricing [2], and waterborne applica-
tions [80]. However, a discussion about outlier mitigation
techniques is beyond the scope of this survey paper.

While there are surveys on outlier detection techniques
[8,17,20,43,74,105,107], they mainly focus on the outlier
detection task. To fill this gap, in this paper, we focus on
the outlier explanation task. Specifically, we define different
kinds of outlier explanations (Sect. 2), discuss challenges that
an outlier explanation technique needs to address (Sect. 3),
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and discuss the applications of outlier explanations (Sect. 4).
We then review existing techniques that provide such expla-
nations and how they address the challenges described in
Sect. 3 and summarize the properties of the surveyed tech-
niques (Sects. 5–8). We also review methods that evaluate
outlier explanations (Sect. 9). Finally, we discuss possible
future research directions (Sect. 10).

2 Types of outlier explanations

Different aspects of what constitutes a “good” explana-
tion from a human’s perspective and their implications for
interpretable machine learning have been discussed in the
literature [70,71]. As summarized in [71], there are seven
aspects of human-friendly explanations: (1) explanations are
contrastive, meaning they highlight the most significant dif-
ference between the object of interest and other objects;
(2) explanations are selected, meaning that even if a real-
world event has many causes, people seek only one or two of
these as explanations; (3) explanations focus on the abnor-
mal, meaning humans tend to focus on the uncommon causes
that had low probability yet happened; (4) explanations are
social, meaning the content and nature of the explanations
depend on the target audience; (5) explanations are truthful,
meaning the explanations are valid in reality; (6) good expla-
nations are consistent with prior beliefs of the explainee since
humans incline to disregard information that is irrelevant to
their prior beliefs; and (7) good explanations are general
and probable, meaning explanations are good when they can
explain many events.

In the context of the outlier explanation task, we can group
the above aspects of human-friendly explanations into two
groups: (i) non-evaluative aspects and (ii) evaluative aspects.
The first group, consisting of Aspects (1) to (3), refers to
those aspects associated with the explanations generated by
an outlier explanation algorithm regardless of how the expla-
nations are evaluated, while the second group, consisting of
Aspects (4) to (7), refers to the criteria used to evaluate the
generated explanations.

For example, Aspect (1), explanations are contrastive, is
a non-evaluative aspect because it is possible to ascertain that
a given outlier explanation algorithm generates explanations
that highlight the differences between outliers and inliers
before the explanations are evaluated. A similar thing can be
said about the other two non-evaluative aspects (2) and (3): it
can be shown that an outlier explanation algorithm produces
selected explanations and focuses on the abnormal before
the explanations are evaluated. Using the evaluative aspects,
the explanations can then be evaluated based onwhether they
meet the target audience (Aspect (4)), whether they are accu-
rate (Aspect (5)), whether they are consistent with the prior’s

belief of the users (Aspect (6)), and how many outliers are
covered by the explanations (Aspect (7)).

In this survey, we classify outlier explanations based on
the first group, non-evaluative aspects, into three types: (a)
importance levels of outliers, (b) causal interactions among
outliers, and (c) outlying attributes. We leave the discussion
of the second group, evaluative aspects, to Sect. 9, “Methods
to Evaluate Outlier Explanations.” We now explain why we
have these outlier explanation types and how they connect to
the non-evaluative Aspects (1)–(3).

Importance levels of outliers In real-world applications
[87,97], users often need to examine multiple outliers within
a time constraint; therefore, users need to prioritize effort
on investigating the outliers. The priority is set based on the
importance levels or ranking of the outliers.Without the rank-
ing, users are left with no guidance of where to begin the
investigation. Hence, even though the ranking does not tell
why some objects are deemed anomalous, it tells users which
outliers to investigate first, second, and so on. In other words,
it reveals the position or standing of each object within the
set of outliers by contrasting the priority level among the
outliers. Thus, it is a contrastive explanation (Aspect (1)).

Causal interactions among outliers When examining out-
liers, knowing which outliers cause other outliers can help
users better understand the outliers. Should they need to pre-
vent similar outliers from happening in the future, they can
act on the outliers that cause those outliers to happen. How-
ever, it is possible that the detected outliers are not the only
forces that cause other outliers. Hence, when a causal interac-
tion among outliers is used to explain outliers, it is a selected
explanation (Aspect (2)). It also fits Aspect (3), explanations
focus on the abnormal, as it focuses only on finding outliers’
causes from the set of anomalous data. For example, given
an outlier x that caused an outlier y, users can ask, “Would y
have been a normal object if x had been eliminated?”

Outlying attributes Siddiqui et al. [86] state that the
amount of effort that users need to investigate an outlier is
roughly related to the number of attributes or features associ-
ated with the outlier. In practice, users may have to deal with
hundreds or thousands of attributes. Hence, knowing the out-
lying attributes, which are the attributes that are responsible
for the abnormality of outliers, can reduce the effort spent.
Outlying attributes relate toAspect (1), explanations are con-
trastive, because they highlight features that make outliers
significantly different than inliers. Furthermore, they also fit
Aspect (3), explanations focus on the abnormal, because they
show which features have abnormal values such that the out-
lier detection identifies some objects as anomalies.

In the following subsections, we formally define each type
of outlier explanation.
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2.1 Importance levels of outliers

Two different strategies can be used to convey the level of
importance of outliers: numerical ranking and categorical
ranking of outliers, which we now describe.

2.1.1 Numerical ranking of outliers

A numerical outlier ranking consists in ordering the data
objects based on their outlier scores. The outlier score of an
object is a real-number value generated by an outlier scoring
function. Themore an object is deviated from other objects in
the datasets, the higher its outlier score. We formally define
the outlier scoring function in Definition 1.

Definition 1 (Outlier Score)Given adataset X ={x1,. . ., xN }
and a deviation function h : X → R that computes the
deviation of xi to all the instances in X , the outlier score
of an instance in X is computed by f : X → R such that
for any instances xi , x j ∈ X , h(xi ) > h(x j ) if and only if
f (xi ) > f (x j ).

Adequate numerical ranking systems for outliers should pri-
oritize more deviant data objects over less deviant ones.
Therefore, overall, the strongest outliers are ranked first, and
the normal data is ranked last [83]. We formally describe the
numerical ranking of outliers in Definition 2.

Definition 2 (Numerical Ranking of Outliers) Given a set of
n outliers O = {o1, . . . , on} and an outlier score function
f : O → R that gives an outlier score to each outlier, a
numerical ranking of outliers is a bijective function g : O →
{1, 2, . . . , n} such that for any outliers oi , o j ∈ O , f (oi ) >

f (o j ) if and only if g(oi ) > g(o j ).

For example, in Fig. 1, x1 is deviated from other objects
more than x2; hence, x1’s outlier score is higher than x2’s
( f (x1) > f (x2)). As a result, the outliers’ numerical rank-
ings will rank x1 higher than x2 (g(x1) > g(x2)).

We can see the importance of a numerical ranking of out-
liers in many applications. For example, a numerical ranking

Fig. 1 Example of two outliers in a dataset

of outliers can help system administrators prioritize actions
when an alarm for network intrusion detection is raised.
Viswanathan et al. [97] rank outliers found in a data cen-
ter to minimize the burden of system administrators needing
to handle abnormal behaviors across servers. The scale and
complexity of a data center are much larger than the num-
ber of system administrators, whose time is limited. Often,
the system administrators have to deal with false alarms but
need a way to deal with them quickly to move on to the true
positive. Outlier ranking is a method that helps speed up the
process.

2.1.2 Categorical ranking of outliers

The importance level of outliers is usually described numer-
ically; however, it can also be described categorically.
Outliers can be grouped into different categories based on
some importance-level criteria. The categorization tells users
which outliers should be prioritized, and thus, it represents
a categorical ranking of outliers. We define the categorical
ranking of outliers in Definition 3.

Definition 3 (Categorical Ranking of Outliers) Given a
dataset X = {x1, x2, . . . , xN }, a set of n outliers O =
{o1, . . . , on} ⊆ X , a deviation function h : X → R that
computes the deviation of xi to all the instances in X , and
a finite set of m categories C with a total order ≤C that
corresponds to the levels of importance of the categories, a
categorical ranking of outliers is a function g : O → C such
that for any outliers oi , o j ∈ O , g(oi ) ≤C g(o j ) if and only
if h(oi ) ≤ h(o j ).

For example, Knorr and Ng [50] define the outlier cat-
egories C = {“trivial outlier,” “weak outlier,” “strongest
outlier”} to help gain better insights about the nature of out-
liers. They define an anomalous data point o as the “strongest
outlier” in a subspace A if it meets two criteria: (i) o is not an
outlier in any subspace B ⊂ A, and (ii) no outlier exists in
any subspace B ⊂ A. If o does not satisfy the criteria in (i),
then it is a “weak outlier.” If it does not fit the two criteria,
then it is a “trivial outlier.” The terms “trivial outlier,” “weak
outlier,” and “strongest outlier” are used to separate noise
from meaningful abnormal data [4]. Noise can be ignored
and needs to be removed from the data so that it does not
affect the result of data mining, while further analysis should
be conducted on meaningful outliers. For example, in per-
sonalized medicine, this process is essential as data can be
very noisy due to changes in the laboratory environment or
incomplete objectives of diagnostic decisions [73].

2.2 Causal interactions among outliers

A relationship among outliers can be conveyed as a causal
interaction in which an outlier can lead to the occurrence of
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other outliers. We describe this type of outlier explanation in
Definition 4 based on the outlier causal relationship definition
of Liu et al. [62] and the database causality definition of
Meliou et al. [67].

Definition 4 (Outlier Causal Interactions) Given a set of n
outliers O = {o1, . . . , on} and its corresponding timestamp
set T = {t1, . . . .tn}, an outlier oi is said to have caused an
outlier o j to occur if and only if:

– oi ’s timestamp is older than o j ’s timestamp (ti < t j ), that
is, oi precedes o j .

– a removal of oi from O also removes o j from O .

An example of causal interactions among outliers can be
found in traffic applications, where after examining the traf-
fic anomalies, one can uncover that some anomalies lead to
others [62,100]. For example, studying a set of traffic anoma-
lies in Oklahoma City on Saturday afternoon reveals that a
traffic jam on South East 15th Street at 1:10 pm had a causal
interactionwith a traffic jam on East GrandBoulevard at 1:15
pm. It was because the traffic flow heading from East Grand
Boulevard to South East 15th Street was delayed due to the
traffic congestion in South East 15th Street.

2.3 Outlying attributes of outliers

Outlying attributes of outliers refer to the feature subspace
where outliers are highly deviated from the normal data or,
in other words, they refer to the attributes that contribute the
most to the abnormality of the outliers. This type of outlier
explanation can be the outlying attributes of an individual
outlier or of a group of outliers.

2.3.1 Outlying attributes of an individual outlier

Outlying attributes of an individual outlier refer to the feature
subspace or the subset of attributes responsible for the abnor-
mality of the outlier. There are two major interpretations of
this outlier explanation. Some algorithms [47,86] interpret
it as the smallest subspace where the outlier score is greater
than a threshold (Definition 5), while others [61,68,90] inter-
pret it as the subset of attributes where each member has a
contribution score higher than a threshold (Definition 6).

Definition 5 (Outlying Attributes of an Outlier—Interpre-
tation 1) Given an outlier o, a set of d dimensions D =
{A1, A2, . . . , Ad} where o ∈ A1 × A2 × · · · × Ad , an out-
lier score function f , and an outlier score threshold τ , the
outlying attributes of o is a subspace S ⊆ D such that the
projection of o onto S, denoted as πS(o), has f (πS(o)) > τ

and �S′ ⊆ D | (|S′| < |S|) ∧ ( f (π ′
S(o)) > τ).

Fig. 2 An outlier detected in the 3D space (x, y, z) and projected on the
2D subspace

Definition 6 (Outlying Attributes of an Outlier—Interpre-
tation 2) Given an outlier o, a set of d dimensions D =
{A1, A2, . . . , Ad} where o ∈ A1 × A2 × · · · × Ad , an
attribute’s contribution score function h : D → R that gener-
ates a real-value quantifying the contribution of each attribute
to the abnormality of o, and a contribution score threshold
γ ≥ 0, the outlying attributes of o is a subspace S ⊆ D such
that ∀Ai ∈ S, h(Ai ) > γ .

An object can be detected as an outlier in the whole
dimension space D; however, the outlier can bewell discrim-
inated from the inliers in the succinct subset S of the original
attributes [24,68]. For example, in Fig. 2, the red point is an
outlier in the 3-dimensional space D = {x, y, z}, but the 2-
dimensional projection shows that S = {x, z} or S = {y, z}
could be the outlying attributes of the red point based onDef-
inition 5. However, suppose the red point has the following
contribution scores for its attributes {x = .1, y = .1, z = .8}
and the contribution score threshold is .2, the red point out-
lying attributes is {z} based on Definition 6.

Now imagine human analysts have to deal with hundreds
or thousands of attributes as in the case of e-commerce or
healthcare systems. Whenever a data point is flagged as
abnormal by an outlier detector, analysts need tomanually go
through the feature space to identify the subset of attributes
responsible for the detection to verify whether the data object
is a trueoutlier.Knowing the subspacewhere anoutlier stands
out can reduce the amount of work/time analysts need to
judge the status of the outlier. In addition, since less time
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is required to examine an outlier, analysts can review more
flagged points during a time period.

2.3.2 Outlying attributes of a group of outliers

Outlying attributes of a group of outliers refer to the subset
of attributes responsible for the abnormality of every outlier
in the group. In other words, it is the feature subspace where
these outliers deviate from normal data in the dataset. We
formally define this concept in Definition 7.

Definition 7 (Outlying Attributes of a Group of Outliers)
Given a set of n outliers O = {oi |1 ≤ i ≤ n}, a set of
d dimensions D = {A1, A2, . . . , Ad} where oi ∈ A1 ×
A2 × · · · × Ad , an outlier score function f , an outlier score
threshold τ , and a function that maps O into k clusters G ,
where eachG ∈ G represents a group of outliers, the outlying
attributes of G is S ⊆ D such that ∀o j ∈ G, f (πS(o j )) > τ ,
where πS(o j ) is a projection of o j onto S.

Similar to the outlying attributes of an individual outlier,
this explanation is practical, especially for high-dimensional
datasets, as examining every subset of their attributes is inef-
ficient and even infeasible. Knowing which attributes are
responsible for a group of outliers can help analysts. Instead
of verifying every single outlier, analysts can verify the outly-
ing attributes of each group of outliers at once. Furthermore,
this explanation helps analysts identify potentially critical,
repeating outliers.

3 Challenges in generating outlier
explanations

We now discuss the challenges in generating each type of
outlier explanation described in Sect. 2.

3.1 Challenges in generating numerical rankings of
outliers

We identify the following challenges when it comes to gen-
erating a numerical ranking of outliers:

(a) Unifying various outlier scores
Outlier detection algorithms generate outlier scores that
vary widely in their scale and range [54,61]. Some outlier
detectors only provide binary values indicating whether
an object is an outlier or an inlier. Some generate outlier
scores in continuous values with various ranges. Further-
more, the same algorithm can produce different ranges
of outlier scores because of the change in data distribu-
tion in the same application [54]. To provide a numerical
ranking of outliers, the scores must be in the same scale

and range. Hence, the explanation task needs to unify the
scores before generating the ranking. Furthermore, the
unified scores should have a clear contrast that differen-
tiates outliers from normal data.

(b) Incorporating user’s feedback to reduce false-positive
rate
The numerical ranking provided by the outlier explana-
tion task helps analysts prioritize their actions. When
analysts are presented with a ranked list of outliers, they
will investigate those outliers according to the given order
[87]. After examining those outliers, analysts give feed-
back on whether each outlier is of interest or is a false
positive outlier. Hence, the challenge is to incorporate
the feedback into the detection and explanation tasks to
reduce the false-positive rate and thus provide a more
accurate ranking system. However, to answer this chal-
lenge, the algorithmused in the detection and explanation
tasksmust be an online version such that it can be updated
without having the entire input available from the start.

3.2 Challenges in generating categorical rankings of
outliers

We elucidate the challenges in generating a categorical rank-
ing of outliers as follows:

(a) Defining the levels of importance criteria
The categorical ranking of outliers can vary from one
application to another application. It can also depend on
the type of outlier detection algorithm used to identify
the outliers. One should define the levels of importance
criteria by taking into account these two aspects. The
criteria determine the number of categories to provide.

(b) Incorporating user’s feedback to reduce misclassified
outliers
Similar to the numerical ranking of outliers, incor-
porating users’ feedback is also necessary to reduce
false positives or misclassified outliers. This challenge
requires an online model so that the feedback can be
included without having to redo the computation from
the beginning.

(c) Selecting an efficient function to map the detected outliers
into each category
Once the importance level criteria are determined, the
next challenge is to define a function to label each outlier
into a category. Knorr & Ng’s technique [50] generates
this explanation by examining the subspaces from the
lower cardinality to the higher one. It requires multiple
passes on the dataset, and thus, it requires a lot of I/Os.
An efficient function shouldminimize the number of I/Os
required when categorizing a set of outliers.
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3.3 Challenges in generating causal interactions
among outliers

We describe the challenges in finding the causal interactions
among outliers as follows:

(a) Availability of outliers’ timestamps
As described in Definition 3, to tell which outlier causes
which outlier to occur, the timestamp information indi-
cating when an outlier occurs must be available. If a
dataset does not have this information, we cannot gener-
ate this outlier explanation.

(b) Defining a data structure to capture the causal interac-
tions among outliers
Even though when the timestamp information is avail-
able, finding the causal interactions among outliers in a
dataset is not a trivial task. One needs to define a data
structure that can capture the causal interactions in such
away that they can be processed efficiently. Liu et al. [62]
use trees, while Xing et al. [100] apply directed acyclic
graphs (DAGs).

3.4 Challenges in generating outlying attributes of
an individual outlier

We identify the following challenges in finding the outlying
attributes of an outlier:

(a) Limiting subspace search
To find a subset of attributes responsible for the out-
lierness of an anomalous object, one can examine all
the possible combinations of attributes and compute the
object’s outlier score in every attribute space; however,
this approach is infeasible when the number of attributes
is large. Some techniques limit the search space byusing a
heuristic approach; however, the approach does not guar-
antee tofind the optimumsubspace,which is the subspace
where the outlier is the most abnormal [47,50]. Instead of
searching the subspace, some techniques [24,68] depend
on the local neighborhood of each outlier to extract its
outlying attributes, and some other techniques [89,90]
use interpretable models to measure the contribution of
each feature/attribute to the abnormality of the object.

(b) Generating readily interpretable output
In layman’s terms, Occam’s Razor principle [16] can be
stated as “the simplest explanation is almost always the
best.” This principle implies that a technique that gen-
erates outlying attributes should minimize the number
of features or attributes included in its output. Some
existing techniques [47,86] generate a list of outlying
attributes, while some other techniques [61,90] list all

the original attributes and their corresponding contribu-
tion scores. The latter requires more effort from users
to set a contribution threshold to determine the outly-
ing attributes. Furthermore, even though some techniques
[47,86] produce a set of outlying attributes, users can
further benefit if the explanation output also includes
the outlying attributes’ values. Of course, the output’s
description should be presented in a human-interpretable
way.

(c) Incorporating user’s prior knowledge about the attributes
Sometimes, analysts already have some knowledge about
which attributes are relevant to anomalous behavior.
Hence, we should take into consideration this prior
knowledge when generating outlying attributes. The
question is how we can quantify such knowledge so
that the outlier explanation algorithm can process it. For
example, if analysts suspect that an attribute Ai is respon-
sible for the abnormality in a dataset, should they use
a real value to weigh Ai? What is the weight value
range? Should they categorize the attributes based on
prior knowledge?

3.5 Challenges in generating outlying attributes of a
group of outliers

The challenges in generating outlying attributes of each indi-
vidual outlier are also applied to a group of outliers as
discussed in Sect. 3.4. In the following, we describe an addi-
tional challenge in generating outlying attributes of a group
of outliers.

(d) Finding discriminative outlying attributes
In order to form groups from a set of outliers, one needs
to discover the similarity among them. An outlier that
shares the same properties with another outlier should
fall into the same group. However, it is possible that an
outlier shares different properties with different outliers.
For example, outlieroi shares the sameoutlying attributes
S1 with outlier o j , but it also shares the outlying attributes
S2 with outlier ok . Should the outlier explanation tech-
nique group oi with o j or ok? Can all three objects be put
into one group? If these outliers are grouped together, can
the outlier explanation technique ensure that the outly-
ing attributes of the group are discriminative and separate
outliers from inliers sufficiently?

4 Applications of outlier explanations

The outlier explanation task is a part of outlier analysis.
Therefore, it is relevant in real-world problemswhere the out-
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lier detection task is applied.However,most published papers
on outlier explanation techniques are generic [10,21,24,25,
44,47,50,51,54,61,64,68,86,87,90]; only a few are designed
for domain-specific applications [62,88,89,97,100,104]. In
this section, we discuss some applications of outlier expla-
nations.

4.1 Intrusion detection

Milenkoski et al. [69] state that “Intrusion detection is a
common cyber security mechanism whose task is to detect
malicious activities in the host or network environments.”
From a computer security perspective, a system/environment
is considered secure if it has the properties of confidential-
ity, integrity, and availability of its data and services. Any
attempts to violate these security properties are considered
as attacks or intrusion. Outlier detection is applicable in the
intrusion detection systems (IDS) because intrusions are dif-
ferent from the expected behaviors of the system [20].

Typically, an IDS needs to deal with a massive volume of
data that arrive in streaming fashion. To stop ongoing attacks,
the detection of malicious activities requires a timely reac-
tion.However, the number of alarms raised canmake analysis
overwhelming for users. Therefore, an outlier explanation
such as a numerical or categorical ranking of outliers is nec-
essary to tell analysts which alerts they need to focus on first.
Notice that an IDS can employ multiple outlier detectors
across servers. Viswanathan et al.’s technique [97] described
in Sect. 5.1.2 provides a way to rank alarms raised by various
detectors in a data center.

An IDS also deals with multidimensional data. For exam-
ple, Avritzer et al. [12] monitor so-called performance
signatures to trigger alerts of five types of security attacks:
denial of service (DOS), SQL injection, man-in-the-middle
(MITM), buffer overflow, and stack overflow. The perfor-
mance signatures employ system usage-based attributes such
as: (i) CPU percentage, (ii) number of active threads, (iii)
interface received bytes per sec, (iv) swap percentage, (v)
number of TCP connections established, (vi) number of TCP
resets, (vii) interface transmitted bytes per second, (viii) vir-
tualmemory usage, (ix)working set in bytes, and (x)memory
percentage. Avritzer et al. assume that “the performance of
the well-behaved system can be measured such that perfor-
mance signatures of several types of attack can be identified.”
This assumption implies thatwhen an alert has an explanation
of the outlying attributes type that alignswith a known attack,
the IDS can inform users of the type of the attack. However,
when the outlying attributes of an alert do not fit any known
attacks, analysts canuse the information to either flag the alert
as a false alarm or investigate it further to define a new type of
attack. Furthermore, a collection of the unknown attacks can
be grouped using XPACS [64] described in Sect. 7.2.4. The

grouping will speed up the analysts’ works on identifying
new types of attacks.

4.2 Fake news detection

Fake news is “news stories that are false: the story itself is
fabricated, with no verifiable facts, sources or quotes” [29]. It
is part of the larger environment of misinformation and dis-
information. According to the Merriam-Webster dictionary,
misinformation is “incorrect or misleading information,”
while disinformation is “false information deliberately and
often covertly spread (as by the planting of rumors) in order
to influence public opinion or obscure the truth.” In recent
years, fake news articles have increased through socialmedia.
It is very concerning, especially during the COVID-19 pan-
demic, because fake news can cost lives [34].

The spreading of fake news can be regarded as an anoma-
lous behavior in social networks [58,101]. Fake news tends
to have poor grammar, contain bad language, and refer to
vague or untraceable sources. In addition, it is often posted
by bogus accounts that use misleading names, images, or
bogus web addresses [34]. These are some factors that social
media users can use to spot fake news. They can also be used
as input features for a fake news detection algorithm. For
example, in [58], Li et al. categorize the factors into four fea-
ture types: (i) text content features, such as number of positive
sentiment words, whether the news contains question marks,
etc.; (ii) propagation features, such as number of comments,
number of likes, and number of retweets; (iii) image fea-
ture indicating whether the image in the article is tampered;
and (iv) user features, which are features related to the users
who publish the news, such as account age, follower–friend
ratio, number of tweets, etc. These features are combined
into a features vector used as input for an autoencoder. An
autoencoder is an unsupervised neural network that has been
used for anomaly detection in other applications [32,63]. The
autoencoder will determine whether a news article is fake or
real. Shareholders (i.e., Twitter watch group) can use this
information to warn people. However, the autoencoder is a
black-box model [37]. In order to build trust, it is crucial to
explain why a news article is flagged fake. Thus, we can use a
decision tree-based explainer (part of EXAD [89]) described
in Sect. 7.1.3 to explain the black-box model. This technique
generates an explanation of the outlying attributes type that
tells which relevant features the autoencoder uses to flag a
fake news article.

4.3 Fraud detection

Fraud detection uncovers malicious or criminal activities
in organizations such as credit card companies, banks,
insurance companies, online auctions, telecommunication
companies, etc. Outlier detection algorithms have been used
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widely for fraud detection, and some survey papers have a
lengthy discussion about them [1,8,20], but can a fraud detec-
tion application benefit from the outlier explanation task?

Fraud detection, for example, credit card fraud detection,
deals with millions of transactions every day, and most are
legitimate transactions. However, it was reported by Javelin
Institute [77] that in 2014, one in six legitimate cardholders
experienced at least one decline because of suspected fraud.
This false-positive detection impacted merchants because
following the decline, the customers reduced their patronage
and even stopped shopping with the merchants where their
cards were declined. To mitigate this situation, most com-
panies have human analysts monitoring all transaction alerts
24/7 [98]. An outlier explanation in the form of rankings of
the alerts can help human analysts prioritize their effort in
this costly operation.

A transaction is represented by a number of attributes,
such as merchant-related attributes (unique id, bank of the
merchant, type of the merchant, country), transaction-related
attributes (amount, timestamp, currency, presence of a cus-
tomer), terminal-related attributes (device type, how data is
input into the terminal, service or not), etc. [98]. Fraud detec-
tion flags a transaction based on those attributes. Therefore,
if an explanation about the outlying attributes of a sus-
pected fraudulent transaction is made available, the analyst
can make the decision faster. Notice that the transaction’s
attributes are a combination of categorical and numerical
attributes. Thus, the outlier explanation techniques, such
as SFE [86] (described in Sect. 7.1.1) and Explainer [52]
(described in Sect. 7.1.3), can be used to provide such an
explanation.

4.4 Medical data analysis

Outlier detection plays a vital role in the prediction and diag-
nosis tasks in medical data analysis [33]. It can uncover
important information about patients based on the given
physiological data. The data can be biomedical images such
as X-ray radiography, computed tomography scan (CT), and
magnetic resonance imaging (MRI). These data are used for
detecting bone fractures, certain types of tumors, or tissue
damage. The other kind of data is electrical biomedical sig-
nals, such as the electrocardiogram (ECG) used to monitor
heart’s activities, electroencephalogram (EEG) used to study
brain damage from a head injury, and magnetoencephalog-
raphy (MEG) used to identify abnormal brain conditions.

Explaining outliers detected in medical data is critical to
ensure that practitioners and patients trust the system tomake
accurate predictions or diagnoses. For example, ECG signals
are oftenmangledby artifacts that haveno relation to the heart
functions [59]. The artifacts can be caused by device errors
or by motion. Hence, when an outlier detection is applied on
ECG signals to diagnose a cardiac condition, the categorical

ranking of outliers is necessary to help analysts filter the
artifacts (noise) from real outliers.

Furthermore, ECG signals are extracted into morpholog-
ical and derived features (Li and Boulanger [59] provide a
comprehensive list of these features). These features are used
as inputs to determine whether the heartbeat is regular or
irregular. Therefore, knowing the outlying attributes of each
irregular heart rate will help physicians decide whether the
flag is true or false. Regardless of the type of outlier detec-
tion algorithms used, one can generate outlying attributes
using, for example, Lookout [39] (Sect. 7.1.1), LODI [25]
(Sect. 7.1.2), and COIN [61] (Sect. 7.1.2). Moreover, as deep
learning is becoming popular in medical anomaly detection
[33], the techniques proposed by Song et al. [89] (Sect. 7.1.3)
and Amarasinghe et al. [10] (Sect. 7.1.4) can be helpful to
provide outlying attributes to explain the neural network
decision.

4.5 Structural healthmonitoring

StructuralHealthMonitoring (SHM) is “the process of imple-
menting a damage detection strategy for aerospace, civil or
mechanical engineering infrastructure” [31]. Early detection
of damages, such as cracks and corrosion, can reduce main-
tenance costs and prevent catastrophic events [14]. SHM
combines sensor technologies and digital twins, i.e., vir-
tual representations, to enable continuous observations of
the structures of interest. For example, SHM for civil infras-
tructure (e.g., buildings, bridges, dams) employs hundreds of
sensors monitoring environmental conditions, such as tem-
perature, humidity, and wind speed. It also includes sensors
monitoring structural response, such as acceleration, deflec-
tion, and strain [66].

Outlier detection algorithms have been applied in SHM
[14,66]. For example, Bigoni and Hesthaven [14] employ a
one-class classifier outlier detection algorithm for each sen-
sor so that it is possible to locate the damage on the structure
of interest. They extract damage-sensitive engineering-based
features from the raw signals generated by each sensor and
use them as inputs for the outlier detection algorithm. The
detector will tell whether any subsequent data object belongs
to a group of what is considered as healthy signals (inlier),
or it is an outlier. Should the engineers be provided with the
information of which features are responsible for the detec-
tion of an outlier (the outlying attributes), they can verify the
finding faster and take action to fix the damage.

However, not all outliers indicate a structural fault. For
example, data anomalies can be caused by sensor systemmal-
functions where the sensors can record data, but the recorded
values are inaccurate/incorrect [66]. These data anomalies,
e.g., data loss, spikes, drift, and excessive noise, pose chal-
lenges for data analysis and can render the SHM activity
futile. Hence, grouping the detected outliers based on the
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outlying attributes that they have in common is necessary.
By doing so, the analyst can examine and identify the root
cause of each subset of outliers at once. Grouping outliers
can be done using an algorithm such as the XPACS [64]
algorithm described in Sect. 7.2.4.

5 Techniques to find the importance levels
of outliers

The importance levels of outliers can be defined using the
numerical or categorical ranking of outliers. In this section,
we survey the techniques used to obtain those types of expla-
nations.

5.1 Techniques to find numerical rankings of outliers

Some techniques generate a numerical ranking of outliers
only for a specific outlier detection algorithm, while some
techniques do not depend on any outlier detection algo-
rithms. These two groups of techniques, which we call out-
lier detection model-specific ranking techniques and outlier
detection model-agnostic ranking techniques, respectively,
are described in Sects. 5.1.1–5.1.2. Then, in Sect. 5.1.3, we
discuss the advantages and disadvantages of the techniques
based on the challenges explained in Sect. 3.1.

5.1.1 Outlier detection model-specific ranking techniques

Some of the existing outlier detection algorithms output
binary values that flag whether an instance is an outlier or
an inlier, while others output outlier scores for each instance
[4]. The numerical ranking of outliers is obtained by ordering
the instances in the dataset by their outlier scores. In their sur-
vey of outlier detection methods, Chandola et al. [20] discuss
how the existing outlier detection algorithms compute outlier
scores. SVM-based outlier detection algorithms associate the
outlier score of an instance with the probabilistic prediction
score obtained from a classifier. In neural network-based out-
lier detection, the reconstruction error (the average of the sum
squared errors between the target and neural network output
of an instance) is the outlier score. Rule-based outlier detec-
tion algorithms use the inverse of the confidence associated
with the best rule as the outlier score. Nearest neighbor-based
outlier detection algorithms utilize the inverse of the number
of k nearest neighbors of an instance or the inverse of the
standard deviation of the local densities of the nearest neigh-
bors of an instance as the outlier score. Clustering-based
outlier detection algorithms apply the distance of an instance
to its closest cluster centroid as the outlier score. Paramet-
ric statistics-based outlier detection algorithms adopt several
ways to define the outlier score of an instance, such as the
inverse of the PDF (probability density function) and the dis-

tance of an instance to the estimated mean. They also use the
magnitude of the residual in the regression model in which,
after fitting data into the model, the residual for each test
instance is utilized to determine its outlier score. Histogram-
based methods use the height (frequency) of the bin in which
an object falls as the outlier score.

5.1.2 Outlier detection model-agnostic ranking techniques

Different outlier detection algorithms can generate different
scoring results. Several techniques are proposed to provide
unifiedoutlier scores or improveoutlier detection algorithms’
outlier scores. Those techniques use either (i) regulariza-
tion and normalization, (ii) false-positive rate, (iii) nearest
normal neighbors-based scoring, or (iv) user’s feedback
adaptive scoring, which we now describe.

Regularization and normalization-based scoring Kriegel
et al. [54] propose a framework to unify outlier scores through
regularization and normalization. Their framework aims to
establish enough contrast between outlier and inlier scores
and obtain a rough probability value [0, 1] that defines
an instance’s outlierness. Regularization can be achieved
in three ways: baseline regularization, linear inversion, and
logarithmic inversion. Baseline regularization is applied for
outlier detection methods of which the expected inliers score
(base) is not 0, such as the LOF [18] and LDOF [106] meth-
ods. Linear inversion is used for outlier models that generate
high scores for inliers. Logarithmic inversion is similar to
linear inversion, yet it is for the outlier models that produce
shallow contrast scores between outliers and inliers.

After applying regularization on the outlier scores, the
next step is to apply normalization. The simplest way to do
this is to use simple linear normalization; however, simple
linear normalization does not add any contrast to the distribu-
tion of scores. Kriegel et al. [54] propose statistical scaling to
normalize outlier scores. They suggest applying customized
Gaussian scaling when working on high-dimensional data
or Gamma scaling for low-dimensional datasets. An outlier
score is transformed into a probability value using the cumu-
lative distribution function and Gaussian error function of
outlier scores. The authors define a formula called Gaussian
scaling to estimate the mean and standard deviation, which
are the parameters for the Gaussian error function. The same
thing applies to Gamma scaling. They define a formula to
estimate the Gamma distribution parameters and use these
parameters to transform the outlier score to a probability
value.

False-positive rate-based scoring Viswanathan et al. [97]
define the rankings of outliers in a data center as the rating
of outliers based on the false-positive rate across servers and
metrics. The false-positive rate is the probability that an iden-
tified outlier is not an anomaly. The higher the probability,
the lower the ranking of a particular outlier. They define the
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metrics examined in the data stream and the time-based win-
dow size in which outliers are detected and evaluated during
the detection task. Themetrics in a data center can be the per-
centage of CPU idle time, I/O transfers per second, blocks
read per second, blocks written per second, packets received
per second, and packets sent per second. Each metric is asso-
ciated with an outlier detector referred to as a local detector.
For each time-based window data stream, the local outlier
detectors identify the outliers of each metric.

The authors propose three statistics-basedmethods:Gaus-
sian approximation, Bernoulli approximation, andExtension
of ranking to correlated metrics to obtain the false-positive
rate. Gaussian approximation assumes that each metric is
independent, and the local detector for each timewindow cal-
culates the probability. The Z -score of each metric denoted
as Zk is computed as Zk = Mk (t)−μk

σk
, where Mk(t) is

the value of metric k at time t , μk is the mean of met-
ric k, and σk is the standard deviation of metric k. During
a time window of size W , the local detector collects the
Zk(t − W + 1), Zk(t − W + 2), . . . , Zk(t). Each local
detector calculates the probability of the time window W ,

Pk = c × e−1/2
∑t

j=t−W+1 Z2
j where c is a constant.

During the outlier explanation task, the local outlier detec-
tors send the probability values to the central node to order
them. The lower the probability, the higher the rank given.
Bernoulli approximation also assumes that each metric is
independent. Each local outlier detector calculates the num-
ber of samples (Wk) violating a given threshold (Tk) in a
particular metric k during a time window. Tk represents the
accepted value of an object to be considered as a normal
object. At a time t , the central node receives the probability
of the windows corresponding to t − W + 1 to t (denoted
as t − W + 1 : t) from all the local detectors. It then calcu-
lates the probability of observed events using the equation
Pk = pWk (t−W+1:t)

k (1 − pk)
(W−Wk (t−W+1:t) where pk is

the estimated probability that a particular metric k violates a
given threshold. Extension of ranking to correlated metrics
assumes that themetrics, for example, trafficmetric and CPU
metric, are not independent. It first computes a matrix of cor-
relations between metrics p(Mi , M j ) from the training data.
For each metric Mk , it identifies the set of nearest neighbor
metrics Nk = j : p(Mk, M j ) > p∗ where p∗ is a threshold
for the correlation value which defines the minimum value
required to define twometrics as neighbors. If the correlation
value between two metrics is close to 1, then they are highly
correlated. It then applies linear regression where Mk is a
dependent variable and the other metrics belonging to Nk

are independent variables. It calculates the predicted value
of Mk using the linear regression equation and computes the
residual Rk using the equation: Rk = actual value of Mk -
the predicted value of Mk . Finally, it applies Gaussian or
Bernoulli approximation on Rk to get the ranking.

Nearest normal neighbors-based scoring Liu et al. [61]
propose the COIN algorithm, which takes into account prior
knowledge about attributes contributing to the abnormality
degree and local context of each outlier oi . Local context (Ci )
refers to the nearest normal neighbors of oi based on the L2

norm.COINexpandsoi into a hypothetical outlier class using
the synthetic sampling method to balance the outlier data
with normal data Ci . COIN then segments Ci into different
clusters {Ci,1, Ci,3, . . . , Ci,L} usingK-means or hierarchical
clustering. After finding the local cluster Ci,l of each outlier
in the dataset, COINuses linear classifiers to findhyperplanes
that separate the outlier class and each local cluster Ci,l .
It then computes the score of outlier oi with the formula

d(oi ) =
∑

l |Ci,l |dl (oi )/γi,l
|Ci,l | , where dl(oi ) = |wT

i,loi |/||wi,l ||2,
wi,l is the weight of the hyperplane associated with local
cluster Ci,l , and γi,l is the average distance of each instance
to its closest neighbor in Ci,l .

Two vectors β and p are introduced to incorporate prior
knowledge of attributes. βm implies the relative degree of
significance assigned to attribute am , while pm is the prior
knowledge on the contribution of attribute am in determining
an instance as an outlier. pm = −1 means attribute am tends
to have a small contribution and pm = 1 means the opposite,
whereas pm = 0 means there is no preference. Incorporating
the prior knowledge, the outlier score ofoi with respect toCi,l

is enhanced as dl(oi ) = || |wT
i,l oi |

γi,l ||wi,l ||
w′

i,l
||wi,l || ◦β|| where ◦ repre-

sents the element-wise multiplication, w′
m = min(0, w[m])

if pm = 1 and w′
m = max(0, w[m]) if pm = −1. The

outlier score of oi when prior knowledge is included is

d(oi ) =
∑

l |Ci,l |dl (oi )

|Ci,l | .
User’s feedback adaptive scoring In [87], the authors

propose the generalized linear anomaly detectors (GLADs)
method in which outlier score is defined as a linear function

SC O RE(x;w) = −w · φ(x)

where φ is a feature function that maps instance x to the n-
dimensional weight vector w. One example of the GLADs
family is the isolation forest (IF) [60]. Given a set of vector-
valued instances, IF analyzes the dataset to construct a forest
of randomized decision trees. Trees are constructed recur-
sively, and each node in a tree represents a random feature.
An instance that is different from other instances usually
belongs to a leaf with low depth. IF assigns an outlier score
to an instance x based on its average isolation depth across
the randomized forest. The isolation depth of an instance in
a tree is the depth of the leaf to which it belongs. The outlier
score is the inverse of the average depth. When IF is repre-
sented as GLAD, each node in the trees except the root is
weighted. The outlier score of an instance in a tree is the
negative of the total sum of the weight multiplied by a binary
indicator function. The value of the indicator function is 1
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if the instance belongs to the node; otherwise, it is 0. The
weight w is adjusted anytime the detector receives feedback.

GLADs uses online convex optimization (OCO) [85] to
find the optimumweight (w) that canminimize the regret/loss
function for a given period. The algorithm initializes the reg-
ularization parameter η and the prior weight vectorw0 that is
also used to initialize θ1. At each time t , the algorithm selects
a new weight wt , which is the member of the convex set that
has theminimumEuclidian distancewith θt . It then selects an
instance xt that has the maximum outlier score based on the
weight wt . OCO receives feedback yt from the user; yt = 1
if the user marks instance xt as an outlier and yt = −1 if xt is
marked as an inlier. xt is then removed from the dataset and yt

is used to define the loss function ft . The new value of θt+1 is
then computed by subtracting the regularized-weighted gra-
dient descent of the loss function from θt , (θt+1 = ηδ ft (wt )).
The authors suggest two types of loss function: linear loss
and log-likelihood loss function. Linear loss function is
defined as fr (wt ) = −yt SC O RE(xt ;wt ) = ytwtφ(xt ).
The log-likelihood loss function is defined as fr (wt ) =
−ytwt log(exp(SC O RE(xt , w))/Z), where Z is a normal-
izing constant.

5.1.3 Discussion of the surveyed techniques on a numerical
ranking of outliers

We now discuss the aspects of the techniques surveyed in
Sect. 5.1.1 and Sect. 5.1.2 based on the challenges described
in Sect. 3.1.

– Challenge (3.1.a): Unifying various outlier scores
Three outlier detection model-agnostic ranking tech-
niques address this challenge. The technique proposed by
Kriegel et al. [54] and Liu et al. (COIN) [61] unifies the
outlier scores by transforming them into values ranging
from 0 to 1 that represent the probability of an instance
of being an outlier. When an object’s score is closer to
1, then it is considered an outlier. Contrary, Viswanathan
et al.’s [97] unified score represents the probability of an
instance of being an inlier.However, these techniques still
depend on the user’s expertise to determine the threshold
when the score’s gapbetween theoutliers and the inliers is
narrow. This threshold is essential to avoid false-positive
outliers included in the ranking. The technique proposed
byKriegel et al. [54] increases the score contrast between
outlier and inlier objects.

– Challenge (3.1.b): Incorporating user’s feedback
GLADs [87] is the only technique that can update the
outlier scores based on the user’s feedback; hence, it
allows users to be proactive in determining the numer-
ical ranking of outliers. However, it only quantifies the
user’s feedback of whether an object is a true outlier or

not. It does not accept the input indicating whether an
outlier is more abnormal than other outliers.

In Table 1, we summarize the techniques for generating a
numerical ranking of outliers based on the model of the out-
lier detection algorithm, how they create the outlier scores,
and the challenges they address.

5.2 Techniques to find categorical rankings of
outliers

To the best of our knowledge, the technique proposed in [50]
is thefirst and theonly techniqueproviding categorical outlier
rankings. We first describe the technique and then discuss
how it addresses the challenges explained in Sect. 3.2.

To explain why an object is an outlier in a multidimen-
sional dataset, Knorr andNg [50] propose to find the attribute
spaces in which there is an outlier and label the outlier as
strongest, weak, or trivial outlier. Figure 3 shows an illustra-
tion of strongest, weak, and trivial outliers in the 3D space
{A, B, C}. P1 and P5 are non-trivial outliers in the subspace
AB because they are not outliers in subspace A or subspace
B. They are also the strongest outliers in AB because there
is no other anomalous point in the subspace A or B. P20 is
a weak outlier in the subspace AC because there is another
outlier point P11 in the subspace C. P11 is a trivial outlier in
the subspace AC because it is also an outlier in the subspace
C.

The authors use two distance-based outlier detection algo-
rithms, CELL and NL, reported in [49]. CELL is optimum
to find outliers if the number of dimensions is four or less;
otherwise, they suggest using NL. To explain the strongest
andweak outliers, they use four different techniques: Up Lat-
tice (naïve algorithm), Jump Lattice with Drilldown, Jump
Lattice with Path Relationship, and Jump Lattice with Semi-
Lattice.

Both Up Lattice and Jump Lattice with Drilldown insert
any subset of the attribute set into a queue in ascending order.
For example, when the dataset has three attributes (A, B, and
C), then the subspaces A, B, C, AB, AC, BC, and ABC will
enter the queue in the corresponding order. Using a bottom-
up strategy, Up Lattice starts to examine outliers from the
minimum cardinality of the attribute subset. However, there
is a slight possibility to find outliers in this minimum sub-
dimension space. Jump Lattice with Drilldown is designed to
enable jumping to the intermediate subspace. The jumping
lessens the amount of effort wasted. If there is no informa-
tion about the best number of attribute subsets (k) to call the
Drilldown procedure, then k is set to 3.

The Up Lattice and Jump Lattice with Drilldown algo-
rithms require examining each node one at a time and take a
lot of I/O operations. Therefore, Knorr and Ng design Jump
Lattice with Path Relationship to enable grouping multiple
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Fig. 3 Illustration of strong, weak, and trivial outliers when examining
3 attributes, A, B, and C

nodes. For example, the nodes {A, B, C}, {B, C}, and {C} are
considered having a path relationship, and thus, the algorithm
can scan them at the same time.Moreover, Jump Lattice with
Semi-Lattice Relationship processes all the subspaces simul-
taneously. For example, the nodes {A, B, C}, {A, B}, {A, C},
{B, C}, {A}, {B}, and {C} satisfy a Semi-Lattice Relation-
ship, and thus, the algorithm can examine all of these seven
spaces at the same time. The experimental evaluation shows
that Jump Lattice with Path Relationship and Semi-Lattice
have significantly lower runtime than the other approaches.

We now discuss the aspects of the Knorr andNg technique
based on the challenges discussed in Sect. 3.2.

– Challenge (3.2.a): Defining the levels of importance cri-
teria
Knorr and Ng apply subspace-based criteria to determine
the levels of importance of outliers and categorize each
outlier as “trivial,” “weak,” or “strongest” one. The cri-
teria suit their illustration of the categorical ranking of
outliers for 1995–1996 National Hockey League play-
ers’ statistics, which is the only dataset evaluated in the
paper [50]. Even though they use only one example, this
approach can be used in different applications. However,
one should note that the levels of importance criteria can
be different depending on the application.

– Challenge (3.2.b): Incorporating user’s feedback
Knorr andNg’s technique does not address this challenge.

– Challenge (3.2.c): Selecting an efficient function to map
the detected outliers into each category
To map an outlier into one of the three categories, Knorr
and Ng’s technique examines subsets of attributes (sub-
spaces) using the bottom-up approach. Although their
Jump Lattice with Path Relationship algorithm can scan
multiple subspaces simultaneously, it still requires multi-
ple passes on data. They recommend examining only the
subspace of 1, 2, and 3 attributes, yet it still gives O(n3)

subspaces to examine, where n is the total number of
attributes.
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6 Techniques to find causal interactions
among outliers

Two techniques discover causal interactions among outliers:
the outlier tree and directed acyclic graph (DAG) approaches.
These two techniques are both for outlier detection model-
specific outlier explanations, meaning they are only applied
for a specific outlier detection algorithm. They are also
domain-specific to spatial-temporal traffic data. We describe
the outlier tree approach in Sect. 6.1 and the DAG approach
in Sect. 6.2. In Sect. 6.3, we discuss the aspects of these
techniques based on the challenges explained in Sect. 3.3.

6.1 Outlier tree

Liu et al. [62] propose the STOTree algorithm, depicted in
Fig. 4, to find the causal interactions of outliers in spatial-
temporal traffic data. They model a city as a directed graph
using a Connected Component Labeling method, in which
each node in the graph represents a region. There is a link
connecting one node to another node if there is at least one
moving object from the origin node heading to the destination
node. They define an outlier as “a link whose non-spatial and
non-temporal attributes are very different from the values
of its spatial-temporal neighbor.” The non-spatial and non-
temporal attributes consist of (1) #obj : the number ofmoving
objects using that link at a given time bin, (2) Pcto: the ratio
of the number of objects going out from the origin node using
that link over the total number of objects going out from the
origin node, and (3) Pctd : the ratio of the number of objects
coming into the destination node using that link over the total
number of objects coming into the destination node.

A time frame is divided into q time intervals (time bins).At
every given time bin, each link is related to an attribute vector
of three properties

−→
fi j < #obj, Pcto, Pctd >. Every com-

bination of < #obj, Pcto, Pctd > is treated as a data point.
A data point that represents a link is a spatial outlier when
itsMahalanobis distance [65] is relatively extreme compared
to other data points. Time frames are neighbors when they
take place at the same time on consecutive days or at the
same days in consecutive weeks. The minimum Euclidean
distance between a given time frame and its neighbors’
time frames is considered as a non-spatial-temporal attribute

called minDistort. Links that have the extreme minDistort
are then considered as temporal outliers.

A link detected as a temporal and spatial outlier is called
a spatial-temporal outlier (STO). Causality trees are con-
structed to reveal the causal relationships between the STOs.
The root of a causality tree contains the first origin node. Each
non-leaf child node represents both the destination region of a
link taken from the previous time frame and the origin region
of some links for the next consecutive time frame. Each level
of the tree denotes the next consecutive time frame; there-
fore, the deeper the causality tree, the further we can see the
relationship between an STO and other STOs.

We can discover frequent outlier sub-trees by examining
the causality trees. Frequent outlier sub-trees reveal repeated
anomalies and give an insight into existing problems in a traf-
fic network. Finding the frequent outlier sub-trees is inspired
by the idea of finding frequent item-sets [5,6,78]. The algo-
rithm finds all single nodes from the causality trees whose
support surpasses a predefined threshold. The selected single
nodes are then used to form candidates of frequent sub-trees.
The algorithm increases the frequency of a candidate by one
every time it matches with a causality tree.

6.2 Directed acyclic graph (DAG) approach

Xing et al. [100] propose a framework that uses anomalous
DAG to find causal interactions among outliers in spatial-
temporal traffic data. The framework first builds a region-
based traffic network using a grid-based approach [79]. It
then computes the spatial-temporal feature of each TOD (a
connection from an origin region to a destination region in a
time interval of a day). The spatial-temporal feature of TOD
is similar to

−→
fi j < #obj, Pcto, Pctd > in the STOTree

technique described in Sect. 6.1. The framework then obtains
the spatial-temporal density of each TOD based on its k-
nearest neighbors. An anomalous TOD (ATOD) is a TOD
that has a small density value. The framework inputs the
set of ATODs into a depth-first search-based algorithm to
build anomalousDAGs.When anATODhas been visited, the
pruning step is executed. This algorithm finds outlier causal
relationships by extracting the connected anomalous DAGs
using so-called multi-cause analysis.

Fig. 4 Steps to find the causal
interactions of outliers in spatial
temporal traffic data
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6.3 Discussion of the surveyed techniques on causal
interactions among outliers

We now discuss the aspects of the Outlier Tree technique 6.1
and theDAG technique 6.2 based on the challenges explained
in Sect. 3.3.

– Challenge (3.3.a): Availability of outliers’ timestamps
Both techniques are specific for spatial-temporal data
where timestamps of the outliers are available.

– Challenge (3.3.b): Defining a data structure to capture
the causal interactions among outliers
Both techniques rely on so-called spatial-temporal fea-
tures to define what objects are considered as outliers.
Even though these techniques are used for trajectory
traffic data, it is possible to use them for other spatial-
temporal data as long as we can define similar spatial-
temporal features. The Outlier Tree approach (STOTree)
captures the causal interactions among outliers using
a tree data structure, while the DAG approach builds
graphs to obtain the explanations. The time complexity
of STOTree is quadratic in the number of outliers in each
time frame, while DAG’s time complexity is lower than
that of STOTree because of its pruning step [100].

7 Techniques to find outlying attributes of
outliers

The outlying attributes of outliers can be a subset of attributes
responsible for the abnormality of an individual outlier or a
group of outliers.We describe the techniques providing these
types of explanations in this section.

7.1 Outlying attributes of an individual outlier

Some of the techniques for finding the feature subspace con-
tributing most to the abnormality of an individual outlier are
outlier detection model-agnostic, and some are specific to
the outlier detection model. These techniques fall into the
following categories: (i) subspace search-based, (ii) local
neighborhood-based, (iii) decision tree-based, (iv) layer-
wise relevance propagation (LRP), (v) entropy-based reward,
and (vi) game theory-based. We describe the techniques in
Sects. 7.1.1–7.1.6. The discussion on how the techniques
address the challenges explained in Sect. 3.4 is given in
Sect. 7.1.7.

7.1.1 Subspace search-based techniques

The techniques in the subspace search-based category find
the outlying attributes of each individual outlier by searching

subspaces. To avoid examining all the possible subsets of
attributes/features, two methodologies are introduced:

– heuristic subspace search
This methodology limits the subspace search using a
heuristic process that is not guaranteed to find an optimal
subspace yet sufficient enough. It includes a bottom-up
beam search that finds the outlying attributes by first
examining a single attribute and then proceeding to the
higher-dimension subspace.

– branch-and-bound subspace search
This methodology finds the optimal outlying attributes
by building a tree whose nodes represent the subset of
attributes. In the worst case, it requires exploring all pos-
sible permutations of the subspace.

We now describe some techniques for the aforementioned
methodologies.

Heuristic Subspace Search Given a multidimensional
dataset, an object identified as an outlier in a subspace can be
an inlier in another subspace. The first technique proposed to
find the subset of attributes contributing themost to the abnor-
mality of an object is the same as the technique that generates
the categorical ranking of outliers described in Sect. 5.2. The
proposed algorithm works by detecting outliers in the sub-
sets of attributes with lower cardinality and then examining
higher cardinality. The process to find the outlying subspace
of an outlier follows the heuristic process of finding where
the outlier stands out as the strongest outlier. If the algorithm
finds an object O as an outlier in the 3D subspace (A, B, C)
and O is not an outlier in any of the subspaces (A, B, C, AB,
AC, and AB), then O is called the strongest outlier in ABC.
Here, we find ABC as the outlying attributes of O. Thus,
identifying the strongest outlier also means finding the out-
lying attributes of the outlier. This technique can be applied
only to distance-based outliers.

Refout [47] randomly draws subspaces of dimensionality
d1 without replacement and adds them into the subspace pool
P1 until ‖P1‖ reaches a threshold. It then applies an outlier
detectionmodel to all the subspaces in P1. Refout normalizes
the outlier scores so that they are comparable among differ-
ent subspaces. It saves the normalized scores of each object
in every subspace. It ranks all objects according to their max-
imum outlier scores over all the subspaces in P1. The top m
ranked objects are then considered for subspace refinement,
where Refout extracts a set of outlier scores from them. The
algorithm uses the scores as inputs for a function that obtains
a refined subspace for each object. The function performs a
bottom-up beam search to find a subspace of length d2.

The search starts from one-dimensional candidates. In
each iteration, it computes the quality of the subspace can-
didate, i.e., the p-values expressing how well the subspace
candidate separates the outlier score population and ranks
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it. It keeps a list of all candidates ranked by their quali-
ties but only uses the high-quality candidates to construct
higher-dimensional candidates. The search stops when it is
not possible to form a higher-dimensional candidate. If the
number of features in the final candidate S

′
is less than d2, the

attribute of the candidates in the list will be added to the final
candidate until ‖S

′ ‖ = d2. S
′
is then added to the refined sub-

space pool P2. Finally, it applies the outlier detection model
to all the subspaces in P2 on all objects in the dataset. It out-
puts the outlier score for each object in the dataset and the
subspace in P2 where the object has the highest outlier score.

Lookout [39] provides outlying attributes of eachoutlier as
a set of so-called focus plots. A focus plot is a 2-dimensional
scatter plot of all data points where the x-axis and y-axis rep-
resent a pair of attributes. Lookout needs the complete dataset
consisting of inliers and outliers and the set of all possible
pairs of attributes P as inputs. The algorithm constructs an
isolation forest (iforest) model [60] for each pair of attributes
p in P using the complete dataset. It uses the iforest mod-
els to recompute the outlier scores of every outlier. Lookout
records the outlier scores of each outlier on p. It then runs
lazy greedy heuristics [57] to find the set of n focus plots that
maximize the total maximum outlier scores of outliers rep-
resented through the n plots. The outlying attributes of each
individual outlier are the focus plots where it has the highest
outlier score.

Branch and Bound Subspace Search Siddiqui et al. [86]
study the problem of computing and evaluating sequential
feature explanations (SFE) for density-based outliers. An
SFE is generated for every outlier by estimating the probabil-
ity density function f (x) (PDF). Given a set of N data points
x1, x2, . . . , xN in d dimensions, the probability density-
based anomaly detector ranks the data points according to
their joint PDF values. A data point having the lowest joint
PDF value is given the highest outlier score by the detector.
Note that PDF-based detectors use a threshold to determine
an object as an outlier. The threshold is derived from a func-
tion parameterized by a percentile value α. Given a dataset
projection on a subset of attributes E , the threshold func-
tion τ(E, α) can generate different threshold values when it
applies to different E .

The SFE objective function is defined as the minimum
number of attributes that must be disclosed to the analysts
so that they can confidently judge a detected point as a true
anomaly. Formally, given an SFE E , the smallest prefix S P
is defined as the smallest number of attributes in E such that
a detected data point x having the PDF value less than a
threshold generated by the function τ(E, α). This definition
is written as: S P(x, E, α) = min{k : f (xEk ) < τ(E, α)}.
The SFEobjective is then defined as finding E thatminimizes
the expected value of S P denoted by E S P with respect to a
prior p(α). Since the true value of the percentile parameter α
is unknown, the authors use a discrete distribution over α that

assigns p(α) to realistically small values. Mathematically,
E S P(x, E) = ∑

α S P(x, E, α)p(α), and the objective of
SFE is arg minE E S P(x, E).

The authors propose four greedy-based approaches to find
the outlying attributes (the reader can refer to the original
paper for these approaches). They also propose an algorithm
based on a branch and bound search tree to optimize E S P .
This algorithm starts by creating an empty root with d chil-
dren nodes, representing every attribute of a data point x .
It stores those nodes in a priority queue. Each node has an
upper bound value computed from the joint PDF of x’s pro-
jection on the subset of attributes represented by the node.
A node in the priority queue is expanded in each iteration
when it has the smallest upper bound value. Each child node
is added to the priority queue if its lower bound value is
smaller than the current smallest upper bound; otherwise, it
is pruned. The lower bound is computed as

∑
a t̂α p(α)where

t̂α = min( j : j ≤ i, f (xE j ) < τ j (E, α) ∪ i), f (xE j ) is the
joint PDF value of a data point x in the SFE E of length j , and
τ j (E, α) is the threshold value of a given percentile value α.
The iteration stops when the priority queue is empty, or the
number of nodes expanded reaches the maximum threshold.

7.1.2 Local neighborhood-based techniques

Several techniques depend on the local neighborhood of the
outlier to derive its outlying attributes. LODI [25] is an algo-
rithm that finds an optimal 1-dimensional subspace to rank
and interpret local outliers in multidimensional datasets. For
each instance in the dataset, LODI heuristically selects the
optimal set of nearest neighbors (referred to as the neigh-
boring set) with the maximum information potential using
quadratic entropy. Each instance in the dataset is a vector
in a D-dimensional space, where each dimension represents
an attribute fi . After selecting the neighboring set for each
instance, LODI trains a binary classifier to find an opti-
mal 1-dimensional subspace w that maximally separates an
instance from its neighboring set.

LODI ranks all instances based on the relative difference
between the statistical distance of each instance and that of
its neighboring set along the direction of its optimal sub-
space. The algorithm selects the top M instances with the
highest ranking as outliers. For each outlier, the projection
of its neighboring set over w is the linear combination of its
original attributes f1 to fD . The absolute coefficients within
the eigenvector w correspond to the weights of the original
attributes. A user-defined parameter λ(0, 1) is used to select
the top d absolute coefficients inw for each outlier. Note that
d << D and each outlier is associated with a small set of
attributes f1 to fd . The attributes with large corresponding
weights inw are the most important ones to identify outliers.
LODI provides explanations for entropy-based outliers.
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Similar to LODI, Micenková et al. [68] propose a local
neighborhood-based outlier explanation. For a detected out-
lier x in the dataset, the technique first simulates n artificial
instances, oversampled from the normal distribution centered
on x . These instances are the outlier class. It then creates an
inlier class by subsampling n instances from the inliers in
the dataset. It trains a binary classifier to separate the outlier
class from the inlier class. Then, it applies a standard attribute
selection technique to determine the so-called explanatory
subspace for the corresponding outlier. The explanatory sub-
space of an outlier is an attribute subset where the outlier
has the highest deviation from other points, and at the same
time, the dimensionality in the subspace is low. We can use
this technique for outliers detected by an arbitrary outlier
detection algorithm (outlier detection model-agnostic).

LGOP [24] focuses on identifying and interpreting local
outliers using a graph-based model to capture the local
geometry. LOGP builds a global graph by finding k near-
est neighbors of every object in the dataset. Two objects xi

and x j have a nonnegative weighted edge if xi is among the
k nearest neighbors of x j and vice versa. The weight reflects
how similar xi and x j are. If the points are identical, the
weight is close to 1, while if they are very dissimilar, the
weight is close to 0.

For each data instance xi , LGOP extracts from the global
graph a neighboring subgraph Xi (a D × k matrix), which
comprises the vertices corresponding to the k nearest neigh-
bors of xi . LGOP then maps data points in every neighboring
subgraph to a lower-dimensional space and, at the same time,
preserves the local geometrical structure. It applies a sin-
gular value decomposition (SVD) of Xi for the mapping.
LGOP uses the matrix resulted from the SVD computation
for eigendecomposition. Since eigenvalues and eigenvectors
are going in pairs, the first eigenvector corresponding to the
largest eigenvalue is used to find the discriminative features
by ordering the absolute values of the leading eigenvector
decreasingly. The difference in coefficients between relevant
and irrelevant features is expected to be larger, at least by
a factor of two, than most of the differences between two
ordered relevant features.

COIN [61] also finds outlying attributes of each outlier
based on its local neighborhood. COIN is agnostic to outlier
detection models. Given a dataset X consisting of inliers and
outliers identified by an arbitrary outlier detector, COIN first
identifies the local context Ci of each outlier oi . The local
context Ci refers to the nearest normal neighbors of oi based
on the L2 norm. It also expands oi into a hypothetical outlier
class Oi using the synthetic sampling method to balance the
outlier data with the inlier Ci data.

COIN segments Ci into different clusters {Ci,1, Ci,2, . . . ,

Ci,L} using K-means clustering or hierarchical clustering. It
adopts prediction strength to determine the number of clus-
ters of Ci . Any cluster Ci,l having the number of members

less than 3% of the total number of Ci members, is ignored
in the training phase, in which outlier and inlier classes are
trained using support vector machine (SVM) [23] to find the
optimumweightswi,l that maximize the margin between the
outlier class and the local context Ci,l . The length of the vec-
tor weight wi,l is equal to the number of attributes of the
dataset such that every element in the wi,l corresponds to an
attribute am . The significance of attribute am for each Ci,l

is described as si,l(am) = |wi,l [m]|/γ m
i,l , where |wi,l [m]| is

the absolute value of the element in vector wi,l at index m
and γ m

i,l is the average distance along the m axis between
an instance in Ci,l and its nearest neighbors. The value of
si,l(am) is used to compute the significance of attributes am

for each outlier oi that is defined as si (am) =
∑

l |Ci,l |si,l (am)

|Ci,l | .
The attributes with the large si (am) values are considered as
the outlying attributes of the outlier oi .

7.1.3 Decision tree-based techniques

We can obtain outlying attributes of an individual outlier
from decision trees. We now describe the techniques in this
category.

Kopp et al. [52] introduce Explainer, an algorithm to
develop sapling random forests (SRF), an ensemble of
specifically trained binary classification trees. SRF explains
outliers detected by any arbitrary anomaly detector. The
approach splits the dataset into two disjoint sets Xa and Xn ,
containing anomalous and normal samples accordingly. For
each anomaly xa , the approach selects a training set con-
sisting of the anomaly as one class and a randomly chosen
subset of the normal samples as the other class. The size of
the training set depends on the user input. Explainer gen-
erates multiple training sets for each anomaly by repeating
the sampling process for the other class. It uses the train-
ing sets to train multiple binary decision trees or saplings to
classify each anomaly. The sampling growth stops when the
leaf containing xa is pure or if the height is over a threshold.
This threshold is estimated from the average heights of single
samplings trained per anomaly.

Saplings/decision trees for each anomaly xa are used
to derive decision rules from the splitting conditions and
attribute thresholds at each node on the path from the root
to the leaf containing xa . The following conjunction (c) of
these rules is used to explain xa : c = (x j1 > 1) ∧ (x j2 >

1) ∧ · · · ∧ (x jd > d) where x j1, . . . , x jd are features
and 1, . . . , d are feature thresholds used in the split-
ting conditions of the saplings. For anomalies with multiple
saplings, the algorithmaggregates conjunctions of these rules
by grouping the rules of the attribute set. Thus, unlike other
algorithms, SRF produces rules containing the most impor-
tant and discriminative attributes for detecting outliers. The
typical height of the saplings in SRF is 1-3. Thus, the length
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of the association rules derived from these saplings is short,
leading to compact and intuitive explanations of anomalies.
Finally, the outlying attributes are the features included in
the conjunction form of the SRF.

EXAD [89] identifies the outlying attributes of the out-
liers detected using a neural network (LSTM/Autoencoder).
EXAD uses deep learning because it addresses feature engi-
neering and anomaly detection in the same mechanism. It
approximates the neural network using a decision tree to pro-
vide explanations about outliers. An explanation is formed
by the paths starting from the tree’s root leading to the leaves
marked as outliers. The final explanation is presented as a
disjunctive normal form (DNF) of atomic predicates of the
form (v o c)where v is a feature, c is a constant, and o is one of
the operators {<,≤,=,≥,>}. Here the outlying attributes
are the features included in the DNF. If another object in the
test set satisfies the condition in the DNF, then the object is
labeled an outlier. Thus, EXAD can use the explanation to
predict future outliers.

7.1.4 Layer-wise relevance propagation (LRP) techniques

Amarasinghe et al. [10] propose a technique focusing on
predicting outliers using a depth neural network (DNN) and
provides explanations about features relevant in making the
prediction. Before deploying the DNN model to predict out-
liers in data streams, they build it offline using some training
sets. The DNNmodel is trained for multi-class classification
where some of the classes represent the anomalous category.

During the offline training phase, the relevance of each
input feature to the DNN prediction on each class is com-
puted using layer-wise relevance propagation (LRP). LRP
uses backward propagation to calculate the relevance of each
dimension of the data point in every layer. It starts from the
output layer (the highest layer), hidden layer, and all the way
to the input layer (the lowest layer). In other words, the rele-
vance of the lower layer is computed based on the relevance
of the higher layer. The features’ relevance scores of each
class are calculated by summing all the feature relevance
scores of the data points belonging to the class in the input
layer and dividing it by the number of the class members.

Keep in mind that LRP is done during the DNN training
phase.When the deployed DNNmodel classifies a data point
as an outlier, the outlying attributes of the data point are
derived from the relevant features of the anomalous class
where the outlier is classified.

7.1.5 Entropy-based reward techniques

To find outlying attributes of each outlier, Exstream [104]
applies an entropy-based distance function to measure the
reward for every feature and ranks it based on the reward.
This algorithm provides explanations for user annotated out-

liers in complex events monitoring (CEP). Consider a stream
producer generating events ofmultiple types. Each event type
follows a schema consisting of a set of attributes, including
a time-stamp attribute. CEP receives event streams continu-
ously and monitors the events using user-defined queries.

Users can interact with the CEP monitoring system
through the provided visualizations. The visualization usu-
ally shows the time stampon theX-axis and one of the derived
event’s attributes on theY -axis. Each visualization represents
a partition which is the result of a user-defined query moni-
tored by aHadoop job. Users can drag and draw rectangles on
the visualization to annotate the abnormal interval (IA) and
the regular interval (IR) that demonstrate the normal behav-
ior. Given the IA and IR, Exstream generates the relevant
attributes/features of the abnormal behavior from the events
during the IA and IR.

Exstream assumes that the CEP system archives the raw
data streams. Exstream computes the reward for every single
feature using a distance-based function that measures the
difference between the feature’s values in the IA and IR. It
then ranks the features based on their rewards. Sharp changes
between successive features in the ranking indicate that the
features that rank below the sharp drops are not significant for
explanations. The insignificant features are filtered out. The
algorithm identifies and purges the so-called false-positive
features that demonstrate similar behavior in other partitions
without abnormal indication. It searches the archived streams
to find similar partitions. Such partitions should be the results
generated by the same query and monitored by the same
Hadoop program on the same dataset. The retrieval is fast
because Exstream maintains a record of partitions. Once it
discovers the related partitions, it aligns the annotated region
IA and IR to each partition on temporal-based or point-based.
It selects the alignments in which two partitions have the
slightest relative difference. Alignments map the annotation
to all related partitions.

Exstream uses hierarchical clustering to label the inter-
vals in the related partitions. If a period is placed in the same
cluster as the annotated anomaly, it is labeled an outlier. It
then recomputes the entropy-based distance for each feature
left and filters out the false-positive ones. It uses pairwise
correlation to identify similar features. Each feature is rep-
resented as a node. Two nodes are connected when their
pairwise correlation exceeds a threshold. Connected nodes
are considered as a cluster, and Exstream selects one node
from each cluster. Once it makes the final selection, it uses
the conjunctive normal form (CNF) to connect the selected
features. The value boundaries of the selected features during
the abnormal interval (IA) are used as constants in the CNF,
for example, f eature1 > 10 ∧ f eature5 < 5. The CNF
represents the complete explanations. Furthermore, when a
future event stream satisfies the condition of the CNF, it can
be classified as an anomalous event.
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7.1.6 Game theory-based techniques

Takeshi [90] proposes a technique using the Shapley val-
ues of the reconstruction errors of PCA to explain outliers
detected using PCA. The Shapley value is a method from
game theory to distribute the gain of a game to the play-
ers. In the context of PCA-based anomaly detection, a gain
is an outlier score, which is the reconstruction error of the
PCA, and a player is a feature used by the model. In order
to compute the contribution of a feature, the algorithm needs
the following inputs: the principal component matrix W, the
observation noise variance, a data point x, a target feature’s
index i, and the total number of Monte Carlo iterations.

The algorithm approximates the Shapley value of an indi-
vidual feature usingMonte Carlo approximation. The feature
i’s Shapley value is initially set to 0. In every iteration, an
order of feature indices D is drawn randomly from the set
of permutations of (1, . . . , d) where d is the total number
of features. The algorithm computes the Shapley value of
the current iteration by subtracting the value function of the
set of feature indices that precede i in the order D from the
value function of the set of feature indices that precede i in
the order D union i. It then divides the Shapley value of the
current iteration by the total number of iterations and adds
the result into the feature i ’s Shapley value. It considers the
features whose Shapley values are higher than a threshold as
the outlying attributes of x.

7.1.7 Discussion of the surveyed techniques on outlying
attributes of an individual outlier

We now discuss the aspects of the techniques presented
in Sects. 7.1.1–7.1.7 based on the challenges explained in
Sect. 3.4.

– Challenge (3.4.a): Limiting subspace search
Searching the subspace (Sect. 7.1.1) to find the optimum
subset of attributes responsible for the abnormality of
outliers is anNP-hard problem [86]. Knorr andNg’s tech-
nique [50] and Refout [47] apply some heuristics to find
relevant subspaces that represent the outlying attributes
for an individual outlier; however, they do not guarantee
to find the optimum subspace (among all subspaces, in
that subspace, the outlier is the most abnormal). On the
other hand, Lookout [39] uses a submodular objective
to quantify the explanation quality and guarantees find-
ing the optimum 2-dimensional subspace. The algorithm
scales linearly with the number of input outliers. SFE
[86] adopts four greedy-based approaches and a branch-
and-bound approach to find the outlying attributes. In all
the approaches, SFE needs multiple scans of the entire
dataset in order to compute the joint PDF for a single
outlier object. SFE’s branch-and-bound approach prunes

the search space, and it is aimed to find the optimum
subspace. Nevertheless, their experiments show that the
greedy approach is preferred because it is less com-
putationally intensive and yields similar results to the
branch-and-bound approach in actual evaluations. Other
techniques presented in Sects. 7.1.2–7.1.7 do not rely on
the subspace search. However, they do deal with some
overhead. For example, for every single outlier, COIN
[61] requires finding so-called local context and train-
ing classifiers based on it in order to find the outlying
attributes.

– Challenge (3.4.b): Generating readily interpretable out-
put
Most of the subspace search-based techniques described
in Sect. 7.1.1 produce a set of original attributes rele-
vant to the abnormality of each outlier. However, they
do not include the attributes’ values that characterize the
outlier. Lookout [39] provides pictorial explanations. It
shows scatterplots of 2-dimension subspace where users
can easily tell whether each outlier is isolated from other
objects.
The local-neighborhood-based techniques (Sect. 7.1.2),
the layer-wise relevance propagation (LRP) technique
(Sect. 7.1.4), and the game theory-based technique
(Sect. 7.1.7) generate real number values associated with
each original attribute. The values represent the contri-
bution of each attribute to the abnormality of an outlier
where the non-contributing attributes are supposed to
have zero or minimal values. This kind of output requires
users to define a threshold to limit the number of attributes
of nonzero weight they want to examine further.
The decision tree-based techniques (Sect. 7.1.3) and the
entropy-based reward technique (Sect. 7.1.5) use the dis-
junctive normal form (DNF) or conjunctive normal form
(CNF) to represent the outlying attributes of an outlier.
This kind of output does not require users to specify a
threshold; however, users’ efforts to verify the result are
equivalent to the number of rules in the DNF/CNF.

– Challenge (3.4.c): Incorporating user’s prior knowledge
about the attributes
COIN [61] (Sect. 7.1.2) is the only technique that
addresses this challenge. It allows the user to set a prior
knowledge of feature importance by assigning a prior
value pm ∈ {−1, 0, 1} to each attribute. If the user
expects an outlier to have a small value on an attribute
am , then its corresponding pm = −1, pm = 1 means the
opposite, while pm = 0 means no expectation. The value
of each pm is then incorporated into the computation of
the attribute’s contribution score.

In Table 2, we summarize the outlier explanation tech-
niques that find the subset of attributes responsible for the
abnormality of an individual outlier based on the following
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aspects: (i) the outlier detection model supported, (ii) the
main methodology used, (iii) the type of output generated,
(iv) the data type supported, (v) whether the explanations
can be used to predict future outliers, and (vi) the challenges
addressed.

7.2 Techniques to find outlying attributes of a group
of outliers

Finding the outlying attributes of a group of outliers is
basically finding the similarity among outliers. We survey
the techniques proposed for this type of outlier explana-
tion in this section. The main methodologies used by these
techniques to generate the explanations can be summa-
rized as: (i) Apriori-based, (ii) Graph-based, (iii) Attribute
reduction-based, and (iv) Subspace clustering-based. They
are described in Sects. 7.2.1–7.2.4. The discussion on how
the techniques address the challenges explained in Sect. 3.5
is given in Sect. 7.2.5.

7.2.1 Apriori-based

Chen et al. [21] propose an algorithm to find outlying
attributes in distance-based outliers. They first identify out-
liers in multidimensional spaces using the distance-based
outlier detection algorithm proposed in [49]. Then, they
group the detected outliers based on the times they were
observed (G1 to Gn for n observed times. Each group Gi

has a different number of outliers). For each group of out-
liers (Gi ), the algorithm generates a knowledge set using the
Mine-Knowledge Set algorithm, which resembles the apri-
ori association rule mining algorithm [6]. A knowledge set
is a minimum subspace in which an object is detected as
a non-trivial outlier (an outlier is non-trivial in an attribute
set Ap if it is not an outlier in a proper subset of Ap [50]).
Before generating knowledge sets, the algorithm assumes
that the users have categorized data attributes into three types:
identification (I), indication (C), and observation (O). Iden-
tification attributes are the attributes that together uniquely
identify each object in the dataset. Indication attributes are
the attributes whose values are used to calculate the category
and behavior rate. Observation attributes are the attributes
used to group objects based on the time the objects were
observed.

The construction of knowledge sets is based on indication
attributes. Each outlier found in an observation can have sev-
eral knowledge sets. Any pair of outlier groups {Gi , G j} is
considered categorically similar if the number of outliers in
Gi sharing the same knowledge sets with the outliers in G j

exceeds some predefined threshold. Thus, categorical sim-
ilarity indicates a high percentage of common categories
of outliers between Gi and G j . Any pair of outlier groups
{Gi , G j} is considered behaviorally similar if the number of

categorically similar outliers in Gi and G j lying very close
to each other exceeds some predefined threshold. Any pair
of outlier groups {Gi−1, Gi} are similar if they are both
categorically and behaviorally similar. Thus, n groups of
outliers (G1, G2, . . . , Gn) are similar if every two consec-
utive groups are similar. The groups that are categorically
and behaviorally similar are considered as one big group.
The outlying attributes of this big group are the knowledge
sets that make the members categorically similar.

7.2.2 Graph-based

Silveira and Diot [88] suggest URCA that narrows down
the flows that trigger an outlier detection algorithm. URCA
flags alarms in a given time bin to find the root causes of the
anomalous bin. A flow is a set of packets that share the same
attributes. The attributes of a flow consist of source IP, source
port, source AS, previous AS, input router interfaces, output
router interfaces, next AS, destination AS, destination IP,
and destination port. This method consists of the following
steps: (i) identify flows that are primarily responsible for the
anomalies in a time bin; (ii) build undirected graphs that char-
acterize the isolated flows; and (iii) classify the graphs from
Step ii using hierarchical clustering on labeled root cause
events.

URCA uses an algorithm called partition-reduce to group
alarm-triggering flows based on their attribute values. It sets
the grouped flows as inputs to a function that generates
scores for each group. It then sorts those groups of flows
in ascending order based on their scores. If the value of the
first minimum score is less than a threshold t and the value
of the second minimum score is greater than a threshold T,
then the algorithm will return the first group as a subset of
flows, which has contributed to an anomaly; otherwise, it will
return the whole groups of flows. T is a threshold to flag a
bin as an anomalous bin, while t is a threshold to evaluate
how low the anomaly scores should be for a group of flows
to be considered normal.

URCA repeatedly executes the partition-reduce algorithm
for each attribute of flows. It uses the isolated flows gener-
ated by the partition-reduce algorithm to build graphs. Each
node in the graphs represents an attribute flow and its value.
The edges on the graphs describe how the flows go from the
source hosts to the destination hosts. Graphs with a simi-
lar structure tend to be caused by the same event. The root
cause events could be: (i) unknown, (ii) large file transfers,
(iii) routing changes, (iv) port scans, (v) network scans, (vii)
gap/failures, and (viii) DoS attacks. The root cause events
are labeled based on 22 coordinates: the average flow size in
packets, the average packets’ size in bytes, the entropy of the
distribution of packets per attribute value of the flows, and
the percentage of attribute values in the entire link traffic that
also appear in the root cause traffic.Using the assumption that

123



A survey on outlier explanations 997

similar types of events would produce similar graph struc-
tures, the authors use hierarchical clustering [45] to build a
taxonomy tree where similar anomalies are nested in sub-
trees, and each leaf node corresponds to an anomaly. When
there is an unknown anomaly, the algorithm will find sub-
trees that contain the siblings of the anomaly based on its
coordinates. It considers the outliers nested under the same
subtree as a group. Since each node in the graph represents an
attribute, one can traverse each node in a graph correspond-
ing to a group of outliers to get the outlying attributes of the
group.

7.2.3 Attribute reduction-based

Huang and Yang [44] propose a technique to find sets of
attributes having most of the detected outliers. The pro-
posed method consists of (i) identifying outliers in the total
attribute space (the outlier detection task), (ii) finding the
Knowledge Attribute Subspace (KAS), which is the set of
attributes where an identified object has abnormal values,
and (iii) detecting the key KAS (KKAS), which is the sets of
attributes having a high percentage of outliers. The algorithm
to find KAS is similar to the method to find the knowledge
set proposed in [21], which we described in the apriori-based
outlying attributes technique in Sect. 7.2.1.

In order to find KKAS, the algorithm computes the out-
lying partition similarity, which is the sum of the weighted
percentages of the cardinality of outliers found in aKAScom-
pared to the cardinality of outliers found in the full attribute
space. The outlying partition similarity for each KAS is cal-
culated using the following equation:

outlying partition similarity = w1 fsup + w2 fcon + w3 finc

where fsup = card(X Os∩X Od )
card(X Os∪X Od )

, fcon = card(X Os∩X Od )
card(X Os

,

fsup = card(X Os∩X Od )
card(X Od )

, w1, w2, w3 are weights defined by
the user, card(X Od) is the cardinality of outliers detected
in the full attribute space, card(X Os) is the cardinality of
outliers detected in a given KAS, card(X Os ∪ X Od) is the
cardinality of outliers found both in a given KAS and in the
full attribute space, and card(X Os ∩ X Od) is the cardinality
of outliers found in a given KAS or in the full attribute space.

The concept of maximum outlying partition is based on
the fact that if an object is an outlier in the entire attribute
space, its projection in a subspace is not always an outlier
and vice versa. The algorithm determines the Key Knowl-
edge Attribute Subspace (KKAS) by finding the maximum
outlying partition similarity among KAS. KKAS is the set of
attributes that contains most of the outliers. In other words,
KKAS is the outlying attributes for the group representing
most of the detected outliers.

7.2.4 Subspace clustering-based

We now describe XPACS [64], whose goal is to cluster out-
liers in an arbitrary subspace. By finding the clusters, it also
finds the outlying attributes for each cluster. XPACS finds the
groups/clusters of outliers following three steps. Step 1 is to
apply subspace clustering to groupoutliers into a set of hyper-
rectangles. In an attribute subset of length k, a hyper-rectangle
Rhas k sideswhere each side represents a value interval/range
of an attribute. The subspace clustering starts by initializing
candidates of hyper-rectangles R in 1-dimension using ker-
nel density estimation (KDE). Outliers can be concentrated
inmore than one interval in each attribute, meaning that there
could be more than one candidate hyper-rectangle in every
attribute. In order to find the multiple intervals in an individ-
ual attribute, the subspace clustering-based algorithm varies
the quantile thresholds.

The algorithm progresses level by level. If a candidate
hyper-rectangle in k-dimension meets the mass threshold,
which is the minimum number of outliers required to form
a cluster, it will be examined further; otherwise, it will be
discarded.XPACS then checks the candidate hyper-rectangle
R to see whether the number of normal points included is
less than the maximum number of inliers allowed. If yes, it
includes R in the set of pure hyper-rectangles in k-dimension
denoted as Rk

pure; otherwise, XPACS includes R in a non-

pure set denoted asRk¬pure. The algorithm joins all candidate

hyper-rectangles in Rk
pure into the set of hyper-rectangles

denoted by R. It generates the next candidates of hyper-
rectangles in k+1-dimension by joining Rk

pure and Rk¬pure.

Two hyper-rectangles in k-dimension (Rk
a and Rk

b) can form
a candidate of hyper-rectangle in k+1-dimension if they both
have the same interval (side) in k-1 attributes.

Step 2 of the algorithm refines the set of rectangles found
in Step 1 into a set of axis-aligned hyper-ellipsoid called
pack. A pack is defined as a set of data points (mostly out-
liers) whose squared distance from the center is equal to or
less than 1. Formally, a pack formed in an attribute subset of
length k is defined as pk = {x‖(x −ck)M−1

k (x −ck)}, where
ck represents the center of the hyper-ellipsoid, and Mk is a
diagonal matrix of k × k size. When a hyper-rectangle R is
transformed into a hyper-ellipsoid (pack), the goals are to:
(i) keep the outliers that are already in R denoted as xi , (ii)
exclude normal data points denoted as xl , and (iii) include
more outliers that are not in R denoted as x j . A pack found in
an attribute subset of length k is represented by a conjunction
of k attribute rules where each rule is an attribute value inter-
val (cz − radiusz, cz + radiusz). They can be used to predict
future outliers.

The same outliers can be covered bymultiple packs gener-
ated in Step 2. Hence in Step 3, the goal is to find packs that
describe outliers in the dataset as briefly as possible while
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avoiding packs that cover largely overlapping groups of out-
liers or contain too many inliers. Step 3 uses the random
greedy algorithm by Buchbinder et al. [19] to select a subset
of packs that yields the fewest bits. Recall that each pack is
a group of outliers; therefore, the outlying attributes of the
pack are the attributes used in the pack’s conjunction repre-
sentation.

7.2.5 Discussion of the surveyed techniques on outlying
attributes of a group of outliers

We now discuss the aspects of the techniques presented
in Sects. 7.2.1–7.2.4 based on the challenges explained in
Sect. 3.5.

– Challenge (3.5.a): Limiting subspace search
XPACS [64] (Sect. 7.2.4) is the only technique that
employs subspace search to group outliers. It limits the
search by pruning some subspaces that do not meet the
mass threshold.

– Challenge (3.5.b): Generating readily interpretable out-
put
XPACS [64] (Sect. 7.2.4) uses the conjunctive normal
form (CNF) to represent each group of outliers and uses
a greedy approach to determine the shortest CNF. CNF
is considered as an interpretable machine learning output
[38]. It is easier to understand by users than the graph
form by URCA [88] (Sect. 7.2.2 )

– Challenge (3.5.c): Incorporating user’s prior knowledge
about the attributes
Only Chen et al.’s technique [21] (Sect. 7.2.1) requires
users to define three categories of dataset’s attributes: the
attributes used to identify anobject fromother objects, the
attributes used to indicate the normal/abnormal behavior,
and the attributes used to observe the behavior. This tech-
nique incorporates the user’s prior knowledge; however,
it only provides a general setting to find outliers’ groups.
It does not include prior knowledge about a particular
group.

– Challenge (3.5.d): Finding discriminative outlying attri-
butes
In all the techniques described in Sects. 7.2.1-7.2.4, a
subset of attributes can cover multiple groups of outliers.
Chen et al.’s technique [21] (Sect. 7.2.1), URCA [88]
(Sect. 7.2.2), and XPACS [64] (Sect. 7.2.4) distinguish
the groups based on their corresponding attributes’ val-
ues; however, only URCA and XPACS use the obtained
groups’ information to predict future outliers. Further-
more, XPACS ensures that no normal instances fit within
the packs (outlier groups).

We summarize the outlier explanation techniques that find
the outlying attributes of a group of outliers in Table 3. The Ta
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summary is based on the following aspects: (i) the outlier
detection model supported, (ii) the main methodology used,
(iii) the type of output generated, (iv) the data type supported,
(v) whether the explanations can be used to predict future
outliers, and (vi) the challenges addressed.

8 Summary of properties of the surveyed
outlier explanation techniques

We summarize the properties of the surveyed outlier expla-
nation techniques in Table 4. The checkmark symbol (�)
indicates whether a technique satisfies the criteria listed in
the corresponding columns. The columns in this table repre-
sent the following:

1. the name of the proposed techniques (if it is available);
2. the referenced papers;
3. whether the technique is outlier detection model-

agnostic, meaning it can explain outliers detected by any
outlier detection model;

4. whether the technique is for domain-specific applica-
tions;

5. the types of outlier explanations produced: (i) a numer-
ical ranking of outliers, (ii) a categorical ranking of
outliers, (iii) causal interactions among outliers, (iv) out-
lying attributes of an individual outlier, and (v) outlying
attributes of a group of outliers;

6. whether the technique includes some prior knowledge
about the data set;

7. whether the technique incorporates feedback fromusers;
8. whether the technique can be applied in stream environ-

ments;
9. whether the technique exploits parallel processing;

10. whether the technique applies to distributed systems;
11. whether the source code is shared publicly for repro-

ducibility.

At this point, readers are familiar with Items 1–5 in the
list above. However, before we review the content of Table 4,
we will first discuss why we include Items 6–10. One of
the challenges in finding the outlying attributes of outliers in
Sect. 3.5 is incorporating the user’s prior knowledge about the
attributes. We notice that some techniques for outlier expla-
nation types allow users to include some prior knowledge
about the datasets (Item 6). In addition, some techniques can
improve the quality of their outputs by taking into account
feedback from users (Item 7).

We include whether the technique is applied in stream
environments (Item 8) because many emerging applica-
tions generate infinite sequences of data called data streams.
Researchers and practitioners have applied outlier detection
algorithms in data stream applications such as network traf-

fic monitoring [13], financial transactions [7], environmental
sensors [76,103], and Internet of Things (IoT) devices [22].

Processing data streams is different from processing batch
or static data due to the characteristics of data streams. Sadik
& Gruenwald [82] discuss the following general characteris-
tics of data streams: (i) transiency: the importance of a data
point is decaying over time, (ii) notion of time: each data
point has a temporal context, (iii) notion of infinity: number
of data points is infinite such that only a small percentage of
data can be stored in memory, (iv) arrival rate: data points
are continuously coming with a fixed or dynamic high arrival
rate such that real-time processing is needed, (v) concept
drift: the underlying distribution of incoming data can change
over time, (vi) uncertainty: the unreliability of the data
points (missing or out-of-date data points, the attribute val-
ues cannot be measured with sufficient confidence, the lack
of complete semantics, etc.), and (vii) multi-dimensionality.
In addition, they also discuss the following characteristics
of multiple data streams: (viii) cross-correlation: data from
multiple streams can be cross-correlated even though their
values are not close to one another, (ix) asynchronous data
points: data sources can be independent of one another, and
thus, they can generate data points with different arrival rates,
(x) dynamic relationship among data points from multiple
streams because of concept drift, and (xi) heterogeneous
schema: streams from multiple sources can have a different
schema. We need to take these characteristics into consider-
ation when designing outlier explanation algorithms for data
streams.

Parallel processing is crucial as we deal with Big Data
[11,93]. Big data is characterized by a large volume, remark-
able velocity, variety of data formats gathered from multiple
sources, and uncertainty. We can accelerate outlier expla-
nations on Big Data using parallelism, achieved by running
the outlier explanation task on numerous computing cores
[30,53]. Thus, we include parallelism in Item 9.

As many applications deal with ever-growing data, dis-
tributed systems provide a solution to handle increas-
ing application demands [11]. The distributed computing
paradigm allows applications to get large-scale computation
by combining many computer units via fast, reliable net-
works in a more affordable way than a supercomputer. It also
allows resource sharing among users in a transparent man-
ner. Some algorithms have been proposed to detect outliers
in distributed systems [9,35,41]; hence, including distributed
systems as a property of outlier explanation techniques (Item
10) is necessary.

Now, we summarize Table 4. We can see that some of the
authors do not name their proposed techniques, so we mark
their names as ‘_’. Some techniques can only be applied
using specific outlier detection algorithms (outlier detection
model-specific). Some can generate explanations for outliers
detected by any outlier detector (outlier detection model-
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agnostic). The majority of the techniques are for general
applications, and only a few are for domain-specific appli-
cations: spatial-temporal traffic, data center, and network
monitoring. The majority of the techniques provide outly-
ing attributes for an individual outlier. Furthermore, most of
the surveyed techniques generate one type of outlier expla-
nation. Only one technique [61] provides both the numerical
ranking of outliers and outlying attributes of each outlier.
Another technique [50] provides a categorical ranking of
outliers and outlying attributes of each outlier. Two tech-
niques [21,61] include prior knowledge of the dataset. Only
one technique [87] incorporates feedback from users to gen-
erate outlier explanations. Three techniques [89,97,104] are
for data streams. Two techniques [39,64] can be applied in
parallel. Four techniques [87,89,97,104] are applicable in
distributed systems. Finally, there are only four of these sur-
veyed techniques [39,61,64,87], the source codes of which
are shared publicly.

9 Methods to evaluate outlier explanations

In this section, we describe how the surveyed outlier explana-
tion techniques address the evaluative aspects of explanations
(Sect. 9.1). Then, as the ground truth of outlier explanations
are needed in order to evaluate them, we survey methods that
are proposed to generate the ground truth (Sect. 9.2).

9.1 Evaluative aspects of outlier explanations

Evaluating outlier explanations is a non-trivial task. In
Sect. 2, we discussed that we could view four aspects
of human-friendly explanations [71] as evaluative aspects.
Those aspects are used to assess the performance of the
explanations generated by the outlier explanation algorithms.
As discussed in Sect. 2, there are four evaluative aspects.
First, Aspect (4), explanations are social, implies that the
explanations should meet the needs of the users investigat-
ing the outliers. Next, Aspect (5), explanations are truthful,
infers that the explanations should reflect high accuracy.
Then,Aspect (6), good explanations are consistent with prior
beliefs of the explainee, suggests the explanations should be
coherent with the user’s prior opinion about the detected out-
liers. Finally, Aspect (7), good explanations are general and
probable, relates to the percentage of the current and future
outliers that the task can explain. However, these aspects are
abstract metrics; one needs to quantify themwhen evaluating
the results of the outlier explanation task. We describe how
the surveyed techniques address these aspects in the follow-
ing.

When evaluating the numerical ranking of outliers,
Kriegel et al. [54], Viswanathan et al. [97], Liu et al. [61], and
Siddiqui et al. [87] focus only on Aspect (5). They use ROC

AUC, accuracy rate, AUC, and the number of true anoma-
lies placed in the top ranking as metrics, respectively. Next,
Knorr and Ng’s technique [50], which is the only surveyed
technique discussing the categorical ranking of outliers, does
not evaluate any of the aspects. Instead, they focus on the I/O
performance, such as the minimum number of I/Os saved
and the maximum number of times a data page has to be read
when computing the categories of outliers.

Liu et al. [62] and Xing et al. [100] evaluate the causal
interactions among outliers based on Aspect (5). They use
real-world traffic data, and they conclude that the outlier
causal relationship discovered by their algorithms coincides
with the causal events in real life. However, they do not report
the exact numbers of the matched causal events.

When evaluating the outlying attributes of an individual
outlier, Dang et al. [25] conclude that the interpretation form
over outliers is intuitive and meaningful based on the fea-
ture visualization over the top 5 outliers found. However,
this claim is not quantified. In [24], Dang et al. evaluate
Aspect (5) by showingwhether the outlying attributes are cor-
rectly identified using image data sets where pixels/locations
of anomalous images are recognized by human eyes. Fur-
thermore, they use visualization to compare the outlying
attributes with the actual ones. Micenková et al. [68] use
Jaccard Index and Precision to assess the accuracy rate of
the explanation task’s outputs (Aspect (5)). Keller et al. [47]
use the outlying attributes to improve detection. Hence, the
quality of the outlying attributes affects the quality of the out-
lier detection measured using the AUC metric (Aspect (5)).
Kopp et al. [52] measure Aspect (5) using accuracy and aver-
age silhouette. Zhang and He [104] measure the consistency
between ground truth and the generated outlying attributes
using F-measure (Aspect (5)). They also use F-measure to
quantify the predictive power (Aspect (7)). Liu et al. [61]
use image datasets and real-world datasets with ground truth
to assess Aspect (5) using ROC AUC. Amarasinghe et al.
[10] conduct experiments on one data set (NSL-KDD) and
conclude that the generated outlying attributes are consistent
with the commonly known factors of DoS attacks. This eval-
uation is based on Aspect (5); however, it is very limited.
Gupta et al. [39] deal with Aspect (5) by using the so-called
incrimination score. Siddiqui et al. [86] evaluate Aspect (5)
using the minimum number of attributes required by analysts
to accept that a detected outlier is a true positive.

When assessing the outlying attributes of a group of
outliers, Chen et al. [21] and Huang & Yang [44] focus
only on the execution time. Silveira and Diot [88] apply
manually labeled anomalies and anomaly injection to eval-
uate accuracy (Aspect (5) of their classification algorithm,
which includes discovering the outlying attributes. Macha
and Akoglu [64] evaluate Aspect (5) using image datasets
and digit data set to compareXPACS’ outlying attributeswith
what human eyes can recognize as abnormal pixels. They
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also measure the interpretability of XPACS’s outputs based
on the number of groups generated, the average length of
the groups’ descriptions (rules), the average fraction of nor-
mal points included in the groups’ descriptions, the average
interval width of the groups’ descriptions, and the detection
performance (AUPRC) which is related to Aspect (7).

In summary, most of the surveyed techniques address
Aspect (5), explanations are truthful. None of the surveyed
techniques addresses Aspect (4), explanations are social,
and Aspect (6), good explanations are consistent with prior
beliefs of the explainee. Only two techniques address Aspect
(7), good explanations are general and probable.

9.2 Methods to generate outlier explanation ground
truth

Ideally, when evaluating outlier explanations, we need a
benchmark with ground truth to verify that the explana-
tions provided are correct and can be used to understand
the detected outliers. However, often the ground truth about
the knowledge of outliers (especially outlying attributes) is
neither available in real-world datasets nor publicly avail-
able. Thus, we need to make some adjustments to verify the
results. From the studies we have surveyed, three primary
methods are used to generate the ground truth: (i) modifying
real-world datasets, (ii) generating synthetic datasets from
scratch, and (iii) simulating analysts.We describe these three
methods in Sects. 9.2.1–9.2.3 and discuss their advantages
and disadvantages in Sect. 9.2.4.

9.2.1 Modifying real-world datasets

Liu et al. [61] state that the ground truth of outlying attributes
in real-world datasets is not available. To verify that the
attributes identified by their algorithm, COIN, are indeed
outlying, they use a real-world dataset, append M noise
attributes to all the data instances in the dataset and assume
that all the original attributes are outlying attributes and noise
attributes are not. COIN chooses the local context of an out-
lier from 8% of the outlier’s nearest neighbors.

To avoid overlap between the outlier class and the inlier
classes, the authors set the radius of the synthetic sampling
for building the outlier class as half of the distance from
the outlier point to the inlier classes. They determine the
hyperparameters in the SVM model through validation by
randomly selecting some samples from the outlier class and
inlier classes for the validation. They report the precision,
recall, and F1-score for accuracy. They incorporate prior
knowledge of the practicalmeaning of attributes and evaluate
their proposed method with two sets of experiments. Exper-
iment 1 assumes that all the original attributes are equally
relevant to the problem of interest while appending some
simulated attributes to each instance. Experiment 2 presumes

that the original attributes are not equally relevant to the prob-
lem of interest. Liu et al. set the ground truth score as 1 for
each true outlier and 0 for each inlier to evaluate the outlier
ranking. They randomly generate a sample of an equal num-
ber of inliers and outliers and feed them into the explainers
(COIN and baseline methods). For each query instance, the
explainers estimate the outlier score and rank the instances
in descending order based on their scores. They use the area
under the curve (AUC) as the evaluation metric for the rank-
ing.

Micenková et al. [68] adjust a real-world dataset that is not
primarily an outlier detection dataset by selecting all data
of one class to be inliers and then one instance from each
remaining class to be an outlier. The data do not have the
ground truth of the outlying attributes. They run the Local
Outlier Factor (LOF) [18] algorithm exhaustively on all pos-
sible subspace projections of the data to verify that their
method indeed finds the explanatory subspaces. They nor-
malize the outlier scores generated by LOF to overcome the
dimensionality bias. Then, they create a ranking of subspaces
for each outlier and select the top subspace as a reference to
compare with the results of their proposed technique. They
also use a KDDCup 99 dataset [94] to validate that their pro-
posed method finds meaningful explanations. Since there are
too many anomalies in the dataset, they first remove identi-
cal attacks and then choose 3500 anomalies such that all
attack types are covered. Then, they derive the explanations
for those anomalies using LARS-lasso [91]. They group the
attacks by their types and compare their derived explana-
tions. Assuming that the same attributes can often explain
the attacks of the same kind, they build a 2D histogram of the
occurrences of each attribute in the explanations of attacks
of a specific type. The rows in the histogram represent the
dataset’s attributes, and the columns represent the types of
attacks. They normalize the values of each column by the
number of attacks of that type. Thus, we can see whether all
attacks of a specific type (column) have a particular attribute
(row) in their explanation from the histogram.

Dang et al. [25] evaluate their proposed method LODI
using the datasets: Ionosphere, Image segmentation, and
Vowel from the UCI Machine Learning Repository [94].
Instead of adding artificial outliers to the dataset, they reduce
the number of points in several dataset classes and treat them
as hidden outliers. They provide feature visualization of the
top-5 ranked outliers returned by the LODI algorithm from
every dataset. The x-axis of the plot represents the index
of the attributes, while the y-axis represents their degree of
importance. They compare LODI with SOD [55] which is
not designed directly for outlier explanations. SOD uncovers
the axis-parallel subspaces that can be used to select outliers’
relevant attributes.
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9.2.2 Generating synthetic datasets from scratch

Chen et al. [21] do not use a real-world dataset but instead
conduct an empirical analysis on anomalous patterns using
synthetic data. They determine the size of a knowledge set
using a Poisson distribution and randomly assign attributes
to the knowledge set. Recall that the knowledge set is the
minimum subset of attributes in which an object is detected
as a non-trivial outlier. They generate the data points for the
features that are not in the knowledge sets using a uniform
distribution. Furthermore, they create a small fraction of the
data points within the subspaces consisting of the potential
knowledge sets to smoothen the overall distribution of the
data points.

Dang et al. [25] generate three synthetic datasets; each
consists of 50K points generated from multivariate normal
distributions. They vary the number of attributes from 15–
50 in each dataset. They randomly select the mean of each
attribute from {10, 20, 30, 40, 50} and set the variance to
be either 10 or 100. They vary 1%, 2%, 5%, and 10% of
the whole data as the number of randomly generated out-
liers within the range of the data space. They also set the
percentages of the large variance to be 40%, 50%, and 60%.
The intuition is that when the dataset has more attributes
with higher variance, the dimensionality of the subspaces in
which an outlier can be identified will be narrowed down
due to the wide overlapping of outliers and inliers pro-
jected on the attributes with large variance. Conversely, when
more attributes have smaller variance, the number of relevant
attributes used to explain each outlier increases.

9.2.3 Simulating analysts

Most of the surveyed techniques do not involve expert users
in evaluating their proposed strategies. However, Siddiqui
et al. [87] evaluate the outlier ranking produced by GLAD,
using six benchmark datasets based on audit logs generated
during the attack campaigns carried out by a red team as
part of the DARPA Transparent Computing program [26]. In
their experiments, the outlier ranking was reported to the red
team that later released a description of each attack scenario,
which outlined the key entities and events. The descriptions
tell whether each entity and event are part of the attack or not.
The authors use the descriptions to produce a ground truth
encoding of the attacks. They then use the ground truth to
evaluate their algorithm and simulate feedback provided by
a system analyst.

Siddiqui et al. [86] construct a simulated analyst to
evaluate their proposed technique, SFE. They model the
simulated analyst as a conditional distribution of the inlier
class given a data point and a subset of attributes. The
analyst, which is a classifier, is formulated as a function

A(x, S) = P(normal|xS) where x is a data point, S is a
subspace, and xS is the value of x on S. It returns the proba-
bility of point x being normal considering only the attributes
specified by the subset S. When the classifier identifies the
data points correctly given the attribute ordering (the attribute
subset basedonSFE), itmeans theSFE is correct. The authors
use Regularized Random Forests (RRFs) [27] as the classi-
fier for the analyst model. They first construct a training set
of inliers and outlier classes over the points from a classifica-
tion or regression dataset. Then, they train one RRF for each
possible subset of attributes (up to some maximum size) and
use tenfold cross-validation to tune the RRF regularization
parameters.

9.2.4 Discussion on the ground truth generation methods

We now discuss the advantages and disadvantages of the
ground truth generation methods described in Sects. 9.2.1–
9.2.3.

Modifying real-world datasets This approach allows
us to evaluate outlier explanation techniques on a real-
world dataset without ground truth. However, adding noise
attributes and treating all the original attributes in the dataset
as outlying ones [61] has a pitfall. What if some of the origi-
nal attributes are not relevant to the outliers’ abnormality? If
the outlier explanation algorithms do not include those irrele-
vant original attributes in their outputs, the presumed ground
truth will lower the reported accuracy of the algorithms.

Modifying classification datasets and then running an out-
lier detection algorithm in all possible subspaces to determine
outlying ground truth are possible when the total number
of attributes is small. However, when dealing with high-
dimensional data, the computation is time-consuming. It
requires running the outlier detection for

∑d
k=1 C(d, k) =

∑d
k=1

d!
k!(d−k)! times, where d is the total number of attributes

and k is the cardinality of the attribute subset. Suppose we
have a dataset of 10 or 15 attributes, then we need to run
the outlier detector 1,023 or 32,767 times, respectively, on
the dataset to generate the ground truth. We can speed up
the computation if we run the detector on every subspace in
parallel. Also, using this approach, we rely on the quality of
the outlier detection algorithm [72].

Generating synthetic datasets from scratch When apply-
ing this approach, we do not need to worry about the
limitation of modifying real-world datasets. We can specify
which attribute subset has a high percentage of abnormal data
points; therefore, searching all possible subsets is unneces-
sary. However, we need to vary the type of data distribution
and its parameters when evaluating the outlier explanation
performance.

Simulating analysts Employing a human analyst seems
ideal for evaluating the outlier explanation accuracy; how-
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ever, not every researcher has this privilege. Applying
classifiers as simulated analysts allows researchers to val-
idate their proposed outlier explanation techniques. While
the reported accuracy depends on the quality of the classi-
fiers, we need to note that classifiers have their own biases
and limitations. For example, the decision tree classifier is
sensitive to overfitting when it is trained on small datasets.
The support vector machine (SVM) classifier works well in
small datasets, yet it can be slow for large datasets. It is
also sensitive to the hyperparameters and the kernel selec-
tion.

10 Conclusion and research directions

In this paper, we have defined three categories of outlier
explanations: (i) importance level of outliers, (ii) causal
interactions among outliers, and (iii) outlying attributes of
outliers. Furthermore, the importance level of outliers is
classified into the numerical ranking of outliers and the
categorical ranking of outliers. We also distinguished the
outlying attributes of an individual outlier from the outly-
ing attributes of a group of outliers. With these explanations,
users can gain a better understanding of their data gener-
ally and outliers particularly. Thus, they can take appropriate
actions based on their applications.

We identified challenges related to the generation of each
outlier explanation category in Sect. 3. We reviewed the
existing techniques in Sects. 5–7 and discussed whether they
address the challenges. None of the techniques proposed for
the numerical ranking of outliers addresses all the challenges
(Sect. 5.1.3 and Table 1). The only surveyed technique for the
categorical ranking of outliers covers two out of three chal-
lenges with some limitations (Sect. 5.2). Two techniques for
finding causal interactions among outliers deal with all its
challenges (Sect. 6.3). Most of the techniques for outlying
attributes of an individual outlier only address one of the
challenges (Sect. 7.1.7 and Table 2). None of the techniques
for finding outlying attributes of a group of outliers satisfies
all three challenges.

Most of the techniques focus on the outlying attributes
of an individual outlier and provide only one type of out-
lier explanation. However, some applications, like irregular
heartbeat detection [59] and structural health monitoring
(SHM) [14,66], can benefit frommore than one type of expla-
nation. Irregular heartbeat detection can benefit from the
categorical ranking of irregular heartbeats (outliers) and the
outlying attributes of each irregular heartbeat. SHMcanben-
efit from the outlying attributes of each outlier because some
anomalies can be caused by sensor system malfunctions but
not actual faults on the structure [66]; SHM can also benefit
from the causal interactions among outliers because certain
kinds of damage can lead to other damages, for example,

cracks in building walls can trigger other cracks. How-
ever, since many real-world applications are time-sensitive,
it might not be feasible to run two different algorithms to pro-
duce two types of outlier explanations because they are likely
to repeat some works, for example, scanning or preprocess-
ing the dataset; instead, it is possible to save work by having
a single algorithm generate multiple types of explanations.
For this reason, additional research to develop techniques that
can provide multiple types of outlier explanations is needed.

Further study is needed to incorporate prior knowledge
about the application domain and use the user’s feedback to
improve outlier explanations. Only two surveyed techniques
apply prior knowledge, and one technique includes the user’s
feedback. To include humans in the loop, applying the active
learning (AL) approach can be a way to go. AL is commonly
used in rare class classification [3] since it is expensive to
manually label all testing data to identify the rare class. In
AL, the domain expert is queried to label a subset of the
available data samples using an iterative approach. AL has
been applied for outlier detection [81], and it is promising to
use for the outlier explanation task.

In pursuit of real-time analysis in applications where data
arrive in streaming fashion, e.g., network intrusion detection,
credit card fraud detection, and structural health monitoring,
the ability to efficiently perform computations is necessary.
Outlier explanation in Big Data applications can be done
fasterwhenusingparallel architectures likemulti-coreCPUs,
GPUs [36], and distributed systems like Spark [102]. Par-
allel algorithms have many performance benefits, but their
design is non-trivial because each parallel architecture has its
specific research challenges. Furthermore, porting existing
serial algorithms in a naïve manner that does not address the
research challenges of these architectures can bring signifi-
cant performance penalties. Among the issues of multi-core
CPUs are the efficient uses of shared caches, load balanc-
ing among cores, false sharing of caches, etc. Besides the
issues just mentioned, GPUs also have a small memory space
[75], are connected to the computer through a low through-
put PCIe bus, and deal with global memory coalescing, etc.
[48]. Finally, distributed architectures like Spark deal with,
in addition to the issues of multi-core algorithms, the issue of
data partitioning across nodes, minimizing inter-node com-
munication, etc. Despite the potential performance benefits
of algorithms designed for these architectures, only two of
the surveyed techniques are designed for multi-core CPUs,
none is designed for GPUs and four for distributed systems;
therefore, more research on parallel outlier explanation algo-
rithms is needed.

Real-time outlier detection in data streams is a growing
research area [15,92], but only three of the surveyed outlier
explanation techniques are designed for streaming environ-
ments. However, those techniques do not address some of the
characteristics of data streams, such as concept drift and data

123



A survey on outlier explanations 1005

uncertainty. The data distribution in data streams changes
over time due to the changes in environments, trends, etc.
[82]. As a result, what is considered as an outlier at a certain
period of time can be regarded as an inlier in other period of
time. Hence, the outlier explanation techniques should adapt
according to the concept drift. Furthermore, data sources in
stream applications, i.e., wireless sensor networks (WSN),
are vulnerable to external events [66,82]. This vulnerability
causes data uncertainty where some attributes’ values cannot
be measured with complete confidence or where data points
are missing or out of date. The uncertainty will affect the out-
put of the outlier explanation algorithm. For example, when
the algorithm depends on the local neighborhood of the out-
liers [61], the explanation can be wrong because the actual
neighbors are out of date.

Moreover, in multiple-source data streams, data from dif-
ferent sources can be cross-correlated [82]. For example,
data streams generated by WSN in harsh environments, i.e.,
underground oil, forest, and volcanic sites, have attribute
correlations, temporal correlation, and spatial correlation
[84]. Attribute correlation is the dependency between various
attributes, e.g., a sudden rise of temperature is characterized
by a sudden drop in humidity. Temporal correlations mean
the measured data at a current time is also dependent on
past measurements. Spatial correlations imply that the data
measurement on a particular sensor node is related to the data
measurement of its neighboring nodes (cross-correlation). In
this case, outlier explanation algorithms should capture all
the correlations to arrive at proper explanations. However,
none of the surveyed techniques addresses this trait.

We also reviewed how the surveyed techniques addressed
the evaluative aspects of outlier explanations and concluded
that most of the techniques focus on Aspect (5), explanations
are truthful. Ideally, to verify whether the proposed outlier
explanation techniques provide correct explanations about
outliers, we need benchmark datasets with ground truth con-
cerning which data points are outliers and their explanations.
However, the ground truth is not always available in real-
world datasets. Thus, we also reviewed some methods used
to generate outlier explanation ground truth. We classified
the existing ground truth generations into three groups: (i)
modifying real-world datasets, (ii) generating synthetic data,
and (iii) simulating analysts. Furthermore, we discussed the
advantages and disadvantages of each group.

Finally, it is possible to produce outlier explanations by
examining the relationships between outliers identified from
one dataset and external data references. However, to the best
of our knowledge, no current work automatically discusses
how to generate outlier explanations with additional data ref-
erences. Future research on this topic is needed.
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