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Abstract
We increasingly depend on a variety of data-driven algorithmic systems to assist us in many aspects of life. Search engines
and recommender systems among others are used as sources of information and to help us in making all sort of decisions
from selecting restaurants and books, to choosing friends and careers. This has given rise to important concerns regarding the
fairness of such systems. In this work, we aim at presenting a toolkit of definitions, models and methods used for ensuring
fairness in rankings and recommendations. Our objectives are threefold: (a) to provide a solid framework on a novel, quickly
evolving and impactful domain, (b) to present related methods and put them into perspective and (c) to highlight open
challenges and research paths for future work.
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1 Introduction

Algorithmic systems, driven by large amounts of data, are
increasingly being used in all aspects of society to assist
people in forming opinions and taking decisions. Such algo-
rithmic systems offer enormous opportunities, since they
accelerate scientific discovery in various domains, includ-
ing personalized medicine, smart weather forecasting and
many other fields. They can also automate tasks regarding
simple personal decisions and help in improving our daily
life through personal assistants and recommendations, like
where to eat and what are the news. Moving forward, they
have the potential of transforming society through open gov-
ernment and many more benefits.

Often, such systems are used to assist, or, even replace
human decision making in diverse domains. Examples
include software systems used in school admissions, hous-
ing, pricing of goods and services, credit score estimation,
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job applicant selection and sentencing decisions in courts
and surveillance. This automation raises concerns about how
much we can trust such systems.

A steady stream of studies has shown that decision sup-
port systems can unintentionally both encode existing human
biases and introduce new ones [20]. For example, in image
search, when the query is about doctors or nurses, what is the
percentage of images portraying women that we get in the
result? Evidence shows stereotype exaggeration and system-
atic underrepresentation of women when compared with the
actual percentage, as estimated by theUSBureau of labor and
statistics [50]. Two interesting conclusions from the study
were that people prefer and rate search results higher when
these results are consistent with stereotypes. Another inter-
esting result is that if you shift the representation of gender
in image search results, then the people’s perception about
real-world distribution tends to shift too.

Another well-known example is the COMPAS system,
which is a commercial tool that uses a risk assessment algo-
rithm to predict some categories of future crime. Specifically,
this tool is used in courts in the USA to assist bail and sen-
tencing decisions, and it was found that the false positive rate,
that is, the people who were labeled by the tool as high risk
but did not re-offend, was nearly twice as high for African-
American as for white defendants [1]. This means that many
times the ubiquitous use of decision support systemsmay cre-
ate possible threats of economic loss, social stigmatization
or even loss of liberty. There are many more case studies,
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like the above ones. For example, names that are used by
men and women of color are much more likely to generate
ads related to arrest records [81]. Also using a tool called
Adfisher, it was found that if you set the gender to female,
this will result in getting ads for less high paid jobs1. Or,
in the case of word embeddings the vector that represents
computer programming is closer to men than to women.

Data-driven systems are also being employed by search
and recommendation engines in movie and music platforms,
advertisements, socialmedia and news outlets, among others.
Recent studies report that social media has become the main
source of online news with more than 2.4 billion internet
users, of which nearly 64.5% receive breaking news from
social media instead of traditional sources [63]. Thus, to a
great extent, search and recommendation engines in such
systems play a central role in shaping our experiences and
influencing our perception of the world.

For example, people come to their musical tastes in all
kinds of ways, but how most of us listen to music now offers
specific problems of embedded bias. When a streaming ser-
vice offers music recommendations, it does so by studying
whatmusic has been listened to before. That creates a sugges-
tions loop, amplifying existing bias and reducing diversity. A
recent study analyzed the publicly available listening records
of 330,000 users of one service and showed that female artists
only represented 25% of the music listened to by users. The
study identified that gender fairness is one of the artists’ main
concerns as female artists are not given equal exposure in
music recommendations [29].

Another study led by University of Southern California
on Facebook ad recommendations revealed that the recom-
mendation systemdisproportionately showed certain types of
job ads to men and women [43]. The system was more likely
to present job ads to users if their gender identity reflected
the concentration of that gender in a particular position or
industry. Hence, recommendations amplified existing bias
and created fewer opportunities for people based on their
gender. However, ads may be targeted based on qualifica-
tions, but not on protected categories, based on US law.

In this article, we pay special attention to the concept of
fairness in rankings and recommendations. By fairness, we
typically mean lack of discrimination (bias). Bias may come
from the algorithm, reflecting, for example, commercial or
other preferences of its designers, or even from the actual
data, for example, if a survey contains biased questions, or,
if some specific population is misrepresented in the input
data.

As fairness is an elusive concept, an abundance of defini-
tions and models of fairness have been proposed as well as
several algorithmic approaches for fair rankings and recom-
mendations making the landscape very convoluted. In order

1 https://fairlyaccountable.org/adfisher/.

tomake real progress in building fair-aware systems,we need
to de-mystify what has been done, understand how and when
eachmodel and approach can be used and, finally, distinguish
the research challenges ahead of us.

Therefore,we followa systematic and structured approach
to explain the various sides of and approaches to fairness.
In this survey, we present fairness models for rankings and
recommendations separately from the computational meth-
ods used to enforce them, since many of the computational
methods originally introduced for a specific model are appli-
cable to other models as well. By providing an overview of
the spectrumof differentmodels and computationalmethods,
new ways to combine them may evolve.

We start by presenting fairness models. First, we provide
a birds’ eye view of how notions of fairness in rankings and
recommendations have been formalized. We also present a
taxonomy. Specifically, we distinguish between individual
and group fairness, consumer and producer fairness and
fairness for single and multiple outputs. Then, we present
concrete models and definitions for rankings and recommen-
dations. We highlight their differences and commonalities,
and present how these models fit into our taxonomy.

We describe solutions for fair rankings and recommen-
dations. We organize them into pre-processing approaches
that aim at transforming the data to remove any underlying
bias or discrimination, in-processing approaches that aim at
modifying existing or introducing new algorithms that result
in fair rankings and recommendations and post-processing
approaches that modify the output of the algorithm. Within
each category, we further classify approaches along several
dimensions. We discuss other cases where a system needs
to make decisions and where fairness is also important, and
present open research challenges pertaining to fairness in the
broader context of data management.

To the best of our knowledge, this is the first survey that
provides a toolkit of definitions,models andmethods used for
ensuring fairness in rankings and recommendations. A recent
survey focuses on fairness in ranking [91]. The two surveys
are complementary to each other both in terms of perspective
and in terms of coverage. Fairness is an evasive concept and
integrating it in algorithms and systems is an emerging fast-
changing field. We provide a more technical classification of
recent work, whereas the view in [91] is a socio-technical one
that aims at placing the various approaches to fairness within
a value framework. Content is different as well, since we
also cover recommendations and rank aggregation. Recent
tutorials, with a stricter focus than ours, focusing on concepts
and metrics of fairness and the challenges in applying these
to recommendations and information retrieval, as well as to
scoring methods, are presented, respectively, in [25] and [5,
66]. On the other hand, this article has amuchwider coverage
and depth, presenting a structured survey and comparison of
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methods and models for ensuring fairness in rankings and
recommendations.

The remaining of this survey is organized as follows. Sec-
tion 2 presents the core definitions of fairness, and Sect. 3
reviews definitions of fairness that are applicable specifically
to rankings, recommenders and rank aggregation. Section 4
discusses a distinction of the methods for achieving fairness,
while Sects. 5, 6 and 7 organize and present in detail the pre-,
in- and post-processing methods. Section 8 offers a compar-
ison between the in- and post-processing methods. Section 9
studies how we can verify whether a program is fair. Finally,
Sect. 10 elaborates on critical open issues and challenges for
futurework, and Sect. 11 summarizes the status of the current
research on fairness in ranking and recommender systems.

2 The fairness problem

In this section, we start with an overview of approaches
to modeling fairness and then provide a taxonomy of the
different types of fairness models in ranking and recommen-
dations.

2.1 A general view on fairness

Most approaches to algorithmic fairness interpret fairness
as lack of discrimination [31,32], asking that an algorithm
should not discriminate against its input entities based on
attributes that are not relevant to the task at hand. Such
attributes are called protected, or sensitive, and often include
among others gender, religion, age, sexual orientation and
race.

So far, most work on defining, detecting and removing
unfairness has focused on classification algorithms used in
decision making. In classification algorithms, each input
entity is assigned to one from a set of predefined classes.
In this case, characteristics of the input entities that are not
relevant to the task at hand should not influence the output of
the classifier. For example, the values of protected attributes
should not hinder the assignment of an entity to the positive
class, where the positive class may, for example, correspond
to getting a job, or, being admitted at a school.

In this paper, we focus on ranking and recommendation
algorithms. Given a set of entities, {i1, i2, . . . iN }, a ranking
algorithm produces a ranking r of the entities, where r is
an assignment (mapping) of entities to ranking positions.
Ranking is based on some measure of the relative quality
of the entities for the task at hand. For example, the entities
in the output of a search query are ranked mainly based on
their relevance to the query. In the following, we will also
refer to the measure of quality, as utility. Abstractly, a fair
ranking is one where the assignment of entities to positions

is not unjustifiably influenced by the values of their protected
attributes.

Recommendation systems retrieve interesting items for
users based on their profiles and their history. Depending
on the application and the recommendation system, history
may include explicit user ratings of items, or, selection of
items (e.g., views, clicks). In general, recommenders esti-
mate a score, or, rating, ŝ(u, i) for a user u and an item i
that reflects the preference of user u for item i , or, in other
words, the relevance of item i for user u. Then, a recom-
mendation list I is formed for user u that includes the items
having the highest estimated score for u. These scores can
be seen as the utility scores in the case of recommenders. In
abstract terms, a recommendation is fair, if the values of the
protected attributes of the users, or, the items, do not affect
the outcome of the recommendation.

Onahigh level,we candistinguishbetween twoapproaches
to formalizing fairness [24]:

– Individual fairness definitions are based on the premise
that similar entities should be treated similarly.

– Group fairness definitions group entities based on the
value of one or more protected attributes and ask that all
groups are treated similarly.

To operationalize both approaches to fairness, we need to
define similarity for the input and the output of an algorithm.
For input similarity, we need a means of quantifying similar-
ity of entities in the case of individual fairness, and, a way of
partitioning entities into groups, in the case of group fairness.
For output similarity, for both individual and group fairness,
we need a formal definition of what similar treatment means.

Input similarity For individual fairness, a common approach
to defining input similarity is a distance-based one [24]. Let
V be the set of entities, we assume there is a distance metric
d : V × V → R between each pair of entities, such that the
more dissimilar the entities, the larger their distance. This
metric should be task specific, that is, two entities may be
similar for one task and dissimilar for another. For example,
two individualsmay be considered similar to each other (e.g.,
have similar qualifications) when it comes to being admitted
to college but dissimilar when it comes to receiving a loan.
The metric may be externally imposed, e.g., by a regulatory
body, or externally proposed, e.g., by a civil rights organi-
zation. Ideally, the metric should express the ground truth,
or, the best available approximation of it. Finally, this metric
should be made public and open to discussion and refine-
ment. For group fairness, the challenge lies in determining
how to partition entities into groups.

Output similarity Specifying what it means for entities, or
groups of entities to be treated similarly is an intricate
problem, from both a social and a technical perspective.
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From a social perspective, a fundamental distinction is made
between equity and equality. Simply put, equality refers to
treating entities equally, while equity refers to treating enti-
ties according to their needs, so that they all finally receive the
same output, even when some individuals are disadvantaged.

Note that often blindness, i.e., hiding the values of the
protected attributes, does not suffice to produce fair outputs,
since there may be other proxy attributes correlated with the
protected ones, a case also known as redundant encoding.
Take, for example, a zip code attribute. Zip codes may reveal
sensitive information when the majority of the residents of a
neighborhood belong to a specific ethnic group [45]. In fact,
such considerations have led to making redlining, i.e., the
practice of arbitrary denying or limiting financial services to
specific neighborhoods, illegal in the USA.

Another social-based differentiation can bemade between
disparate treatment and disparate impact. Disparate treat-
ment is the often illegal practice of treating an entity
differently based on its protected attributes.Disparate impact
refers to cases where the output depends on the protected
attributes, even if all entities are treated the same way. The
disparate impact doctrine was solidified in the USA after
[Griggs v. Duke Power Co. 1971] where a high school
diploma was required for unskilled work, excluding appli-
cants of color.

From a technical perspective, how output similarity is
translated into quantifiable measures depends clearly on the
specific type of algorithm. In this paper, we focus on ranking
and recommendation algorithms.

Overall, in the case of ranking, a central issue is the man-
ifestation of position bias, i.e., the fact that people tend to
consider only the items that appear in the top few positions
of a ranking. Even more the attention that items receive, that
is the visibility of the items, is highly skewed with regard
to their position in the list. At a high level, output similarity
in the case of ranking refers to offering similar visibility to
similar items or group of items, that is, placing them at sim-
ilar positions in the ranking, especially when it comes to top
positions.

For recommendations, one approach to defining out-
put fairness is to consider the recommendation problem
as a classification problem where the positive class is the
recommendation list. Another approach is to consider the
recommendation list I as a ranked list r , in which case the
position of each recommended item in the list should also be
taken into account.

We refine individual and group fairness based on the type
of output similarity in the next section.

2.2 A taxonomy of fairness definitions

In the previous section, we distinguished between individ-
ual and group fairness formulations. We will refer to this

distinction of fairness models as the level of fairness. When
it comes to ranking and recommendation systems, besides
different levels, we also have more than one side at which
fairness criteria are applicable. Finally, we differentiate fair-
ness models based on whether the fairness requirements are
applied at a single or atmultiple outputs of an algorithm. The
different dimensions of fairness are summarized in Fig. 1.

Note that the various fairness definitions in this and the
following sections can be used both: (a) as conditions that a
system must satisfy for being fair and (b) as measures of
fairness. For instance, we can measure how much a fair-
ness condition is violated, or, define a condition by setting a
threshold on a fairness measure.

2.2.1 Levels of fairness

We now refine individual and group fairness based on how
output similarity is specified. Seminal research in formalizing
algorithmic fairness has focused on classification algorithms
used in decision making. Such research has been influential
in the study of fairness in other types of algorithms. So, we
refer to such research briefly here and relate it to ranking and
recommendations.

Types of individual fairness One way of formulating indi-
vidual fairness is a distance-based one. Intuitively, given a
distance measure d between two entities and a distance mea-
sure D between the outputs of an algorithm, we would like
the distance between the output of the algorithm for two enti-
ties to be small, when the entities are similar. Let us see a
concrete example from the area of probabilistic classifiers
[24].

Let M be a classifier that maps entities V to outcomes A.
In the case of probabilistic classifiers, these are randomized
mappings from entities to probability distributions over out-
comes. Specifically, to classify an entity v ∈ V , we choose
an outcome a ∈ A according to the distribution M(v). We
say that a classifier is individually fair if the mapping M :
V → Δ(A) satisfies the (D, d)-Lipschitz property, that
is, ∀ v, u ∈ V , D(M(v), M(u)) ≤ d(v, u), where D is a
distance measure between probability distributions and d a
distance metric between entities. In words, the distance D
between probability distributions assigned by the classifier
M should be no greater than the actual distance d between
the entities.

Another form of individual fairness is counterfactual fair-
ness [57]. The intuition in this case is that an output is fair
toward an entity if it is the same in both the actual world and a
counterfactual world where the entity belonged to a different
group. Causal inference is used to formalize this notion of
fairness.

Types of group fairness For simplicity, let us assume two
groups, namely the protected group G+ and the non-
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Fig. 1 Fairness definitions
taxonomy

protected (or, privileged) groupG−. Wewill start by present-
ing statistical approaches commonly used in classification.
Assume that Y is the actual and Ŷ the predicted output of
a binary classifier, that is, Y is the ground truth, and Ŷ the
output of the algorithm. Let 1 be the positive class that leads
to a favorable decision, e.g., someone getting a loan, or being
admitted at a competitive school, and S be the predicted prob-
ability for a certain classification.

Statistical approaches to group fairness can be distin-
guished as [33,84]:

– base rates approaches: that use only the output Ŷ of the
algorithm,

– accuracy approaches: that use both the output Ŷ of the
algorithm and the ground truth Y , and

– calibration approaches: that use the predicted probability
S and the ground truth Y .

In classification, base rate fairness compares the prob-
ability P(Ŷ = 1|v ∈ G+) that an entity v receives the
favorable outcome when v belongs to the protected group
G+ with the corresponding probability P(Ŷ = 1|v ∈ G−)

that v receives the favorable outcome when v belongs to the
non-protected group G−. To compare the two, we may take

their ratio [92], [28]: P(Ŷ=1|v∈G+)

P(Ŷ=1|v∈G−)
or their difference [15]:

1 − (P(Ŷ = 1|v ∈ G+) − P(Ŷ = 1|v ∈ G−)).
Now, in abstract terms, a base rate fairness definition for

ranking may compare the probabilities of items from each
group to appear in similarly good ranking positions, while
for recommendations, the probabilities of them being rec-
ommended.

When the probabilities of a favorable outcome are equal
for the two groups, we have a special type of fairness termed
demographic, or statistical parity. Statistical parity preserves
the input ratio, that is, the demographics of the individuals
receiving a favorable outcome are the same as the demo-
graphics of the underlying population. Statistical parity is a
natural way to model equity: Members of each group have
the same chance of receiving the favorable output.

Base rate fairness ignores the actual output, the outputmay
be fair, but it may not reflect the ground truth. For example,
assume that the classification task is getting or not a job and
the protected attribute is gender. Statistical parity asks for a
specific ratio of women in the positive class, even when there
are not that many women in the input who are well qualified
for the job. Accuracy and calibration look at traditional eval-
uationmeasures and require that the algorithmworks equally
well in terms of prediction errors for both groups.

In classification, accuracy-based fairness warrants that
various types of classification errors (e.g., true positives, false
positives) are equal across groups. Depending on the type of
classification errors considered, the achieved type of fairness
takes different names [40]. For example, the case in which,
we ask that P(Ŷ = 1|Y = 1, v ∈ G+) = P(Ŷ = 1|Y =
1, v ∈ G−) (i.e., the case of equal true positive rate for the
two groups) is called equal opportunity.

Comparing equal opportunity with statistical parity, again
the members of the two groups have the same chance of
getting the favorable outcome, but only when these members
qualify. Thus, equal opportunity is more close to an equality
interpretation of fairness.

In analogy to accuracy, in the case of ranking, the ground
truth is reflected in the utility of the items. Thus, approaches
that take into account utilitywhendefining fairness in ranking
can be seen as accuracy-based ones. In recommendations,
accuracy-based definitions look at the differences between
the actual and the predicted ratings of the items for the two
groups.

Calibration-based fairness considers probabilistic clas-
sifiers that predict a probability for each class [22,53]. In
general, a classification algorithm is considered to be well-
calibrated if: when the algorithm predicts a set of individuals
as havingprobability p of belonging to the positive class, then
approximately a p fraction of this set is actualmembers of the
positive class. In terms of fairness, intuitively, we would like
the classifier to be equally well calibrated for both groups.
An example calibration-based fairness is asking that for any
predicted probability score p in [0, 1], the probability of actu-
ally getting a favorable outcome is equal for both groups, i.e.,
P(Y = 1|S = p, v ∈ G+) = P(Y = 1|S = p, v ∈ G−).
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Group-based measures in general tend to ignore the mer-
its of each individual in the group. Some individuals in a
group may be better for a given task than other individuals
in the group, which is not captured by some group-based
fairness definitions. This issue may lead to two problematic
behaviors, namely, (a) the self-fulfilling prophecy where by
deliberately choosing the less qualified members of the pro-
tected group we aim at building a bad track record for the
group and (b) reverse tokenismwhere by not choosing a well
qualified member of the non-protected group we aim at cre-
ating convincing refutations for themembers of the protected
group that are also not selected.

2.2.2 Multi-sided fairness

In ranking and recommendations, there are at least two sides
involved: the items that are being ranked, or recommended,
and the users that receive the rankings or the recommenda-
tions. We distinguish between producer or item-side fairness
and consumer or user-side fairness. Note that the items that
are being ranked or recommended may be also people, for
example, in case of ranking job applicants, but we call them
items for simplicity.

Producer or item-side fairness focuses on the items that are
being ranked, or recommended. In this case, we would like
similar items or groups of items to be ranked, or, be recom-
mended in a similar way, e.g., to appear in similar positions
in a ranking. This is the main type of fairness, we have dis-
cussed so far. For instance, ifwe consider political orientation
as the protected attribute of an article, we may ask that the
value of this attribute does not affect the ranking of articles
in a search result, or a news feed.

Consumer or user-side fairness focuses on the users who
receive, or consume the data items in a ranking, e.g., a search
result, or a recommendation. In abstract terms, wewould like
similar users, or groups of users, to receive similar rankings
or recommendations. For instance, if gender is the protected
attribute of a user receiving job recommendations, we may
ask that the gender of the user does not influence the job
recommendations that the user receives.

There are cases in which a systemmay require fairness for
both consumers and providers, when, for instance, both the
users and the items belong to protected groups. For example,
assume a rental property business that wishes to treat minor-
ity applicants as a protected class and ensure that they have
access to properties similar to other renters, while at the same
time, wishes to treat minority landlords as a protected class
and ensure that highly qualified tenants are referred to them
at the same rate as to other landlords.

Different types of recommendation systems may call for
specializations of consumer and producer fairness. Such a
case is group recommendation systems. Group recommenda-
tion systems recommend items to groups of users as opposed

to a single user, for example a movie to a group of friends, an
event to an online community, or a excursion to a group of
tourists [4,46]. In this case, we have different types of con-
sumer fairness, since now the consumer is not just a single
user. Another case is bundle and package recommendation
systems that recommend complex items, or sets of items,
instead of just a single item, for example, a set of places to
visit, or courses to attend [86]. In this case, we may have
different types of producer fairness, since now the recom-
mended items are composite. We discuss these special types
of fairness in Sect. 3.3.

We can expand the sides of fairness further by consid-
ering the additional stakeholders that may be involved in a
recommendation system besides the consumers and the pro-
ducers. For example, in a recommendation system, the items
being recommended may belong to different providers. For
instance, in the case of movie recommendations, the movies
may be produced by different studios. In this case, we may
ask for producer fairness with respect to the providers of the
items, instead of the single items. For example, in an online
craft marketplace, we may want to ensure market diversity
and avoid monopoly domination, where the system wishes
to ensure that new entrants to the market get a reasonable
share of recommendations even though they have fewer shop-
pers than established vendors. Note that one way to model
provider fairness is by treating the provider as a protected
attribute of the items.

Other sides of fairness include: (a) fairness for the owners
of the recommendation system, especially when the owners
are different than the producers, and (b) fairness for system
regulators and auditors, for example, data scientists, machine
learning researchers, policymakers and governmental audi-
tors that are using the system for decision making.

2.2.3 Output multiplicity

There may be cases in which it is not feasible to achieve
fairness by considering just a single ranking or a single rec-
ommendation output. Thus, recently, there exist approaches
that propose achieving fairness via a series of outputs. Con-
sider, for example, the case where the same items appear
in the results of multiple search queries, or the same users
receive more than one recommendation. In such cases, we
may ask that an item is not necessarily being treated fairly
in each and every search result but the item is treated fairly
overall in a set of a search results. Similarly, a user may be
treated unfairly in a single recommendation but fairly in a
sequence of recommendations.

Concretely,wedistinguish between single output andmul-
tiple output fairness. In multiple output fairness, we ask for
eventual, or amortized consumer, or producer fairness, i.e.,
we ask that the consumers or producers are treated fairly in a
series of rankings or recommendations as a whole, although
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they may be treated unfairly in one or more single ranking
or recommendation in the series.

Another case is sequential recommenders that suggest
items of interest by modeling the sequential dependencies
over the user–item interactions in a sequence. This means
that the recommender treats the user–item interactions as
a dynamic sequence and takes the sequential dependencies
into account to capture the current and previous user pref-
erences for increasing the quality of recommendations [80].
The system recommends different items at each interaction,
while retaining knowledge from past interactions. Interest-
ingly, due to the multiple user–item interactions in sequential
recommender systems, fairness correction can be performed,
while moving from one interaction to the next.

3 Models of fairness

In the previous section, we presented an overview of fairness
and its various dimensions in ranking and recommendations.
In this section, we present a number of concrete models and
definitions of fairness proposed for ranking, recommenda-
tions and rank aggregation.

3.1 Fairness in rankings

Most approaches to fairness in ranking handle producer fair-
ness, that is, their goal is to ensure that the items being ranked
are treated fairly. In general, ranking fairness asks that simi-
lar items or group of items receive similar visibility, that is,
they appear at similar positions in the ranking. A main issue
is accounting for position bias. Since inWestern cultures, we
read from top to bottom and from left to right, the visibility
of lower-ranked items drops rapidly when compared to the
visibility of higher-ranked ones [8].

We will use the example rankings in Fig. 2. The protected
attribute is color, red is the protected group, and score is the
utility of the item. The ranking on the left (rl ) corresponds to a
ranking based solely on utility, the ranking in the middle (rm)
achieves the highest possible representation of the protected
group in the top positions, while the ranking in the right (rr )
is an intermediate one.

Fairness constraints A number of group-based fairness
models for ranking focus on the representation (i.e., number
of items) of the protected group in the top-k position in the
ranking. One such type of group fairness is achieved by con-
straining the number of items from the different groups that
can appear in the top-k positions. Specifically, in the fair-
ness constraints approach [18], given a number of protected
attributes, or, properties, fairness requirements are expressed
by specifying an upper boundUl,k and a lower bound Ll,k on
the number of itemswith property l that are allowed to appear
in the top-k positions of the ranking. For example, in Fig. 2,

the fairness constraint Lred,4 = 2, that requires that there are
at least two items with property red in the top-4 positions, is
satisfied by rankings rm and rr , but not by ranking rl .

Discounted cumulative fairness Another approach looks
at the proportional representation of the items of the protected
group at top-p prefixes of the ranking for various values
of p [87]. The proposed model builds on the discounted
cumulative gain (DCG) measure. DCG is a standard way of
measuring the ranking quality of the top-k items. DCG@k
accumulates the utility, util( j), of each item at position j
from the top position up to position k logarithmically dis-
counted by the position j of the item, thus favoring higher
utility scores at first positions:

DCG@k(r) =
k∑

j=1

util( j)

log2( j + 1)
. (1)

The DCG value is then normalized by the DCG of the perfect
ranking for obtaining NDCG. For example, the DCG values
of the three rankings in Fig. 2 are DCG@10(rl) = 1.81,
DCG@10(rm) = 1.7 and DCG@10(rr ) = 1.77. Clearly, rl
that ranks items solely by utility has the largest DCG value.

Discounted cumulative fairness accumulates the number
of items belonging to the protected group G+ at discrete
positions in the ranking (e.g., at positions p = 5, 10, ...)
and discounts these numbers accordingly, so as to favor the
representation of the protected group at prefixes at higher
positions. Three different definitions based on this general
idea have been provided.

The first one, the normalized discounted difference (r N D)
of a ranking r , measures the difference in the proportion of
the items of the protected group in the top-p prefixes, for
various values of p, and in the overall population:

r N D(r)= 1

opt_r N D

N∑

p=5,10,...

1

log2(p)
| |G

+
1...p|
p

− |G+|
N

|,

(2)

where N is the total number of items, |G+
1...p| is the number

of items of the protected group in the top-p positions and
opt_r N D is the optimal value.

For example, the optimal value in Fig. 2 is the one of
ranking rm , that is, of the ranking with the maximum pos-
sible representation for the protected group, and it is equal
to opt_r N D(r) = 1

log2(5)
| 45 − 4

10 | = 0.93. The rm ranking

which is based on utility has the smallest r N D: r N D(rm)

= 1
0.93 ((

1
log2(5)

| 25 − 4
10 | + 1

log2(10)
| 4
10 − 4

10 |) = 0, while for

rr we have: r N D(rr ) = 1
0.93 ((

1
log2(5)

| 35 − 4
10 |+ 1

log2(10)
| 4
10 −

4
10 |) = 0.5.

A variation, termed normalized discounted ratio, mea-
sures the difference between the proportion of the items of

123



438 E. Pitoura et al.

Fig. 2 Example rankings: a rl is
based solely on utility, b rm is
the optimal ranking in terms of
the representation of the
protected group, c rr is an
intermediate ranking between
the two. Red is the protected
value

the protected group in the top-p positions and the items of
the non-protected group in the top-p positions, for various
values of p. This is achieved by modifying Equation 2 so
that instead of dividing with p, i.e., the total number of items
up to position p, we divide with |G−

1...p| (i.e., the number
of items of the protected group in the top-p positions) and
instead of dividing with N , we divide by |G−|.

Finally, the normalized KL-divergence (r K L) definition
of fairness uses KL-divergence to compute the expectation
of the difference between the membership probability distri-
bution of the protected group at the top-p positions (for p =
5, 10, . . . ) and in the overall population.

Fairness of exposure A problem with the discounted
cumulative approach is the fact that it does not account for
skew in visibility. Counting items at discrete positions does
not fully capture the fact that minimal differences in rele-
vance scores may translate into large differences in visibility
for different groups because of position bias that results in
a large skew in the distribution of exposure. For example,
in Fig. 2, the average utility of the items in rl that belong
to the non-protected group is 0.35, whereas the average util-
ity of the items that belong to the protected group is 0.33.
This gives us a difference of just 0.02. However, if we com-
pute their exposure using DCG (that is, if we discount utility
logarithmically), the exposure for the items in the protected
group is 25% smaller than the exposure for the items in the
non-protected group.

The fairness of exposure approach [77] generalizes the
logarithmic discount, by assigning to each position j in the
ranking a specific value that represents the importance of the
position, i.e., the fraction of users that examine an item at
position j . This is captured using a position discount vector
v, where v j represents the importance of position j . Note that
we can get a logarithmic discount, if we set v j = 1

log2( j+1) .
Rankings are seen as probabilistic. In particular, a ranking
of N items in N positions is modeled as a doubly stochastic
N × N matrix P , where Pi, j is the probability that item i is
ranked at position j .

Given the position discount vector v, the exposure of item
i in ranking P is defined as:

Exposure(i |P) =
N∑

j=1

Pi, jv j . (3)

The exposure of a group G is defined as the average expo-
sure of the items in the group:

Exposure(G|P) = 1

|G|
∑

i∈G
Exposure(i |P). (4)

In analogy to base rate statistical parity in classification,
we get a demographic parity definition of ranking fairness
by asking that the two groups get the same exposure:

Exposure(G+|P)

Exposure(G−|P)
= 1. (5)

Aswith classification,we can also get additional statistical
fairness definitions by taking into account the actual output,
in this case, the utility of the items (e.g., their relevance to a
search query q). This is called disparate treatment constraint
in [77], and it is expressed by asking that the exposure that
the two groups receive is proportional to their average utility:

Exposure(G+|P)

Utility(G+|q)
= Exposure(G−|P)

Utility(G−|q)
. (6)

Yet another definition, termed disparate impact, considers
instead of just the exposure, the impact of a ranking. Impact
is measured using the click-through rate (CTR), where CTR
is estimated as a function of both exposure and relevance.
This definition asks that the impact of the ranking of the two
groups is proportional to their average utility:

CTR(G+|P)

Utility(G+|q)
= CTR(G−|P)

Utility(G−|q)
. (7)
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Afairness of exposure approach has also be taken to define
individual fairness in rankings. Specifically, equity of atten-
tion [11] asks that each item i receives attentionai (i.e., views,
clicks) that is proportional to its utility utili (i.e., relevance
to a given query):

a1
util1

= a2
util2

,∀ i1, i2. (8)

In general, it is unlikely that equity of attention can be
satisfied in any single ranking. For example, multiple items
may be similarly relevant for a given query, yet they obvi-
ously cannot all occupy the same ranking position. This is
the case, for example, with items with ID x329 and x23 in
Fig. 2. To address this, amortized fairness was proposed.
A sequence ρ1 . . . ρm of rankings offers amortized equity
of attention [11], if each item receives cumulative attention
proportional to its cumulative relevance, i.e.,

∑m
l=1 a

l
1∑m

l=1 util
l
1

=
∑m

l=1 a
l
2∑m

l=1 util
l
2

,∀ i1, i2. (9)

In this case, unfairness is defined as the distance between
the attention and utility distributions.

unfairness(ρ1, ..., ρm) =
n∑

i=1

∥∥∥∥∥∥

m∑

j=1

a j
i −

m∑

j=1

util ji

∥∥∥∥∥∥
. (10)

Anormalizedversionof this unfairness definition that con-
siders the number N of items to be ranked and the number
m of rankings in the sequence is proposed in [13]. Formally:

unfairness(ρ1, ..., ρm) = 1

N

1

m

N∑

i=1

∥∥∥∥∥∥

m∑

j=1

a j
i −

m∑

j=1

r j
i

∥∥∥∥∥∥
.

(11)

3.2 Fairness in recommenders

In general, recommendation systems estimate a score, or, rat-
ing, ŝ(u, i) for a user u and an item i that reflects the relevance
of i for u. Then, a recommendation list I is formed for user
u that includes the items having the highest estimated score
for u. A simple approach to defining producer-side (that is,
item-side) fairness for recommendations is to consider the
recommendation problem as a classification problem where
the positive class is the recommendation list. Then, any of
the fairness definitions in Sect. 2.2.1 are readily applicable
to defining producer-side fairness. Yet, another approach to
defining producer-side fairness is to consider the recommen-
dation list I as a ranked list r and apply the various definitions
described in Sect. 3.1.

Next, we present a number of approaches proposed specif-
ically for recommenders and discuss their relationship with
approaches presented for ranking.

Unfairness in predictions Recommendation systems have
been widely applied in several domains to suggest data
items, like movies, jobs and courses. However, since pre-
dictions are based on observed data, they can inherit bias
that may already exist. To handle this issue, measures of
consumer-side unfairness are introduced in [88] that look
into the discrepancy between the prediction behavior for pro-
tected and non-protected users. Specifically, the proposed
accuracy-based fairnessmetrics count the difference between
the predicted and actual scores (i.e., the errors in prediction)
of the data items recommended to users in the protected group
G+ and the items recommended to users in the non-protected
group G−.

Let N be the size of the recommendation list, EG+[ŝ] j
and EG−[ŝ] j be the average predicted score (ŝ) that an item
j receives for the protected users and non-protected users,
respectively, and EG−[ŝ] j EG+[s] j and EG−[s] j be the cor-
responding average actual score (s) of item j . Alternatives
for defining unfairness can be summarized as follows:
Value unfairness (Uval ) counts inconsistencies in estimation
errors across groups, i.e., when one group is given higher or
lower predictions than their true preferences. That is,

Uval = 1

N

n∑

j=1

∣∣ (EG+[ŝ] j − EG+[s] j )

− (EG−[ŝ] j − EG−[s] j )
∣∣. (12)

Value unfairness occurs when one group of users is con-
sistently given higher or lower predictions than their actual
preferences. For example, when considering course recom-
mendations, value unfairness may suggest to male students
engineering courses even when they are not interested in
engineering topics, while female students not being recom-
mended engineering courses even if they are interested in
such topics.

Absolute unfairness (Uabs) counts inconsistencies in abso-
lute estimation errors across user groups. That is,

Uval = 1

n

N∑

j=1

∣∣ |EG+[ŝ] j − EG+[s] j |

− |EG−[ŝ] j − EG−[s] j |
∣∣. (13)

Absolute unfairness is unsigned, so it captures a single statis-
tic representing the quality of prediction for each group.
Underestimation unfairness (Uunder ) counts inconsistencies
in how much the predictions underestimate the true ratings.
That is,
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Uunder = 1

n

N∑

j=1

∣∣ max{0, EG+[s] j − EG+[ŝ] j }

− max{0, EG−[s] j − EG−[ŝ] j }
∣∣. (14)

Underestimation unfairness is important when missing rec-
ommendations aremore critical than extra recommendations.
For instance, underestimation may lead to top students not
being recommended to explore topics they would excel in.
Overestimation unfairness (Uover ) counts inconsistencies in
how much the predictions overestimate the true ratings and
is important when users may be overwhelmed by recommen-
dations. That is,

Uover = 1

n

N∑

j=1

∣∣ max{0, EG+[ŝ] j − EG+[s] j }

− max{0, EG−[ŝ] j − EG−[s] j },
∣∣. (15)

Finally, non-parity unfairness (Upar ) counts the absolute dif-
ference between the overall average ratings of protected users
and non-protected users. That is,

Upar = ∣∣ EG+[ŝ] − EG−[ŝ] ∣∣. (16)

Calibrated recommendationsAcalibration-based approach
to producer-side fairness is proposed in [78]. A classification
algorithm is considered to be well calibrated if the predicted
proportions of the groups in the various classes agree with
their actual proportions in the input data. In analogy, the goal
of a calibrated recommendation algorithm is to reflect the
interests of a user in the recommendations, and with their
appropriate proportions. Intuitively, the proportion of the dif-
ferent groups of items in a recommendation list should be
similar with their corresponding proportions in the history of
the user. As an example, consider movies as the items to be
recommended and genre as the protected attribute.

For quantifying the degree of calibration of a list of recom-
mended movies, with respect to the user’s history of played
movies, this approach considers twodistributions of the genre
z for each movie i , p(z|i). Specifically, p(z|u) is the distri-
bution over genres z of the set of movies in the history of the
user u:

p(z|u) =
∑

i∈H wu,i · p(z|i)∑
i∈H wu,i

, (17)

where H is the set of movies played by user u in the past and
wu,i is the weight of movie i reflecting how recently it was
played by u.

In turn, q(z|u) is the distribution over genres z of the list
of movies recommended to u:

q(z|u) =
∑

i∈I wr(i) · p(z|i)∑
i∈I wr(i)

, (18)

where I is the set of recommended movies and wr (i) is the
weight of movie i due to its rank r(i) in the recommendation
list.

To compare these distributions, several methods can
be used, like, for example, the Kullback–Leibler (KL)-
divergence that is employed as a calibration metric.

CKL(p, q) =
∑

z

p(z|u) log(p(z|u)/q̃(z|u)), (19)

where p(z|u) is the target distribution and q̃(z|u) = (1 −
α)q(z|u) − α p(z|u) ≈ q(z|u) with small α > 0 is used to
handle the fact that KL-divergence diverge for q(z|u) = 0 and
p(z|u) > 0. KL-divergence ensures that the genres that the
user rarely played will also be reflected in the recommended
list with their corresponding proportions; namely, it is sen-
sitive to small discrepancies between distributions, it favors
more uniform and less extreme distributions, and in the case
of perfect calibration, its value is 0.

Pairwise fairness Instead of looking at the scores that the
items receive, pairwise fairness looks at the relative posi-
tion of pairs of items in a recommendation list. The pairwise
approach proposed in [10] is an accuracy-based one where
the positive class includes the items that receive positive feed-
back from the user, such as clicks, high ratings or increased
user engagement (e.g., dwell time). For simplicity, in the fol-
lowing we will assume only click-based feedback.

Let r(u, j) be 1 if user u clicked on item j and 0 otherwise.
Assume that r̂(u, j) is the predicted probability that u clicks
on j and g a monotonic ranking function on r̂(u, j). Let I
be the set of items, and G+ and G− the group of protected
and non-protected items, respectively. Pairwise accuracy is
based on the probability that a clicked item is ranked above
another unclicked item, for the same user:

P(g(r̂(u, j)) > g(r̂(u, j ′)) | r(u, j) > r(u, j ′), j, j ′ ∈ I ).

(20)

For succinctness, let cu( j, j ′) = 1[g(r̂(u, j)) > g(r̂(u, j ′)].
The main idea is to ask that the two groups G+ and G− have
similar pairwise accuracy. Specifically, we achieve pairwise
fairness if:

P(cu( j, j
′)|r(u, j) > r(u, j ′), j ∈ G+), j ′ ∈ I

= P(cu( j, j
′)|r(u, j) > r(u, j ′), j ∈ G−, j ′ ∈ I ). (21)

This work also considers actual engagement by conditioning
that the items have been engaged with the same amount.

We can also distinguish between intra- and inter-group
fairness. Intra-group pairwise fairness is achieved if the like-
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lihood of a clicked item being ranked above another relevant
unclicked item from the same group is the same independent
of the group, i.e., when both j and j ′ in Eq. 21 belong to
the same group, Inter-group pairwise fairness is achieved if
the likelihood of a clicked item being ranked above another
relevant unclicked item from the opposite group is the same
independent of the group, i.e., j and j ′ in Eq. 21 belong to
opposite groups.

3.3 Fairness in rank aggregation

In addition to the efforts that focus on fairness in single rank-
ings and recommendations, the problem of fairness in rank
aggregation has also emerged. This problem arises when
a number of ranked outputs are produced, and we need to
aggregate these outputs in order to construct a new ranked
consensus output. Typically, the problem of fair rank aggre-
gation is largely unexplored. Only recently, some works
study how to mitigate any bias introduced during the aggre-
gation phase. This is done, mainly, under the umbrella of
group recommendations, where instead of an individual user
requesting recommendations from the system, the request is
made by a group of users.

As an example, consider a group of friends that wants to
watch a movie and each member in the group has his or her
own likes and dislikes. The system needs to properly balance
all users preferences and offer to the group a list of movies
that has a degree of relevance to each member. The typical
way for doing so is to apply a ranking or recommendation
method to each member individually and then aggregate the
separate lists into one for the group [64,72]. For the aggre-
gation phase, intuitively, for each movie, we can calculate
the average score across all users in the group preference
scores for the movie (average approach). As an alternative,
we can use the minimum function rather than the average
one (least misery approach), or even we can focus on how
to ensure fairness by attempting to minimize the feeling of
dissatisfaction within group members.

Next, we present a fairness model for the general rank
aggregation problem, and additional models defined for
group recommendations.

Top-k parity [55] formalizes the fair rank aggregation
problem as a constrained optimization problem. Specifically,
given a set of rankings, the fair rank aggregation problem
returns the closest ranking to the given set of rankings that
satisfies a particular fairness criterion.

Given that each data item has a protected attribute that
partitions the dataset in m, m ≥ 2, disjoint groups G =
{G1, . . . ,Gm}, this work uses as a fairness criterion a general
formulation of statistical parity for rankings that considers
the top-k prefix of the rankings, namely the top-k parity.
Formally, given a ranking of n data items belonging to mutu-
ally exclusive groups Gi ∈ G, and 0 ≤ k ≤ n, the ranking

satisfies top-k parity if the following condition is met for all,
Gi ,G j ∈ G, i 	= j :

P(ρ(x) ≤ k|x ∈ Gi ) = P(ρ(x) ≤ k|x ∈ G j ), (22)

where ρ(x) denotes the position of the data item x in the
ranking.

Dissatisfaction fairness For counting fairness, a measure
of quantifying the satisfaction, or utility, of each user in a
group given a list of recommendations for this group, can
be used, namely by checking how relevant the recommended
items are to each user [59]. Formally, given a user u in a group
G and a set I of N items recommended to G, the individual
utility util(u, I ) of the items I for u can be defined as the
average items utility, normalized in [0, 1], with respect to
their relevance for u, rel(u, i):

util(u, I ) =
∑

i∈I rel(u, i)

N × relmax
, (23)

where relmax denotes the maximum value rel(u, i) can take.
In turn, the overall satisfaction of users about the group
recommendation quality, or group utility, is estimated via
aggregating all the individual utilities. This is called social
welfare, SW (G, I ), and is defined as:

SW (G, I ) =
∑

u∈G util(u, I )

|G| . (24)

Then, for estimating fairness, we need to compare the util-
ities of the users in the group. Intuitively, for example, a list
thatminimizes the dissatisfaction of any user in the group can
be considered as the most fair. In this sense, fairness enforces
the least misery principle among users utilities, emphasizing
the gap between the least and highest utilities of the group
members. Following this concept, fairness can be defined as:

F(G, I ) = min{util(u, I ),∀u ∈ G}. (25)

Similarly, fairness can encourage the group members to
achieve close utilities between each other using variance:

F(G, I ) = 1 − Variance({util(u, I ),∀u ∈ G}). (26)

Pareto optimal fairness Instead of computing users’ indi-
vidual utility for a list of recommendations by summing up
the relevance scores of all items in the list [59], the item
positions in the recommendation list can be considered [73].
Specifically, the solution for making fair group recommen-
dations is based on the notion of Pareto optimality, which
means that an item i is Pareto optimal for a group if there
exists no other item j that ranks higher according to all users
in the group, i.e., there is no item j that dominates item i .
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N-level Pareto optimal, in turn, is a direct extension that con-
tains items dominated by at most N − 1 other items, and is
used for identifying the N best items to recommend. Such
a set of items is fair by definition, since it contains the top
choices for each user in the group.

Fairness in package-to-group recommendations Given a
groupG, an approach to fair package-to-group recommenda-
tions is to recommend toG a package of items P , by requiring
that for each user u in G, at least one item high in u’s prefer-
ences is included in P [76]. Even if such a resulting package
is not the best overall, it is fair, since there exists at least one
item in P that satisfies each user in G.

Specifically, twodifferent aspects of fairness are examined
[76]: (a) fairness proportionality, ensuring that each user finds
a sufficient number of items in the package that he/she likes
compared to items not in the package and (b) fairness envy-
freeness, ensuring that for each user there are a sufficient
number of items in the package that he/she likes more than
other users do. Formally:

m-proportionality. For a group G of users and a package
P , the m-proportionality of P for G is defined as:

Fprop(G, P) = |GP |
|G| , (27)

where Gp ⊆ G is the set of users in G for which P is m-
proportional. In turn, P ism-proportional to a user u, if there
exist at least m items in P , such that each one is ranked in
the top-δ% of the preferences of u over all items in I , for an
input parameter δ.

m-envy-freeness. For a group of users G and a package P ,
the m-envy-freeness of P for G is defined as:

Fef (G, P) = |Gef |
|G| , (28)

where Gef ⊆ G is the set of users in G for which P is
m-envy-free. In turn, P is m-envy-free for a user u, if u is
envy-free for at leastm items in P , i.e., each item’s rel(u, i) is
in the top-δ%of the preferences in the set {rel(v, i) : v ∈ G}.

Sequential hybrid aggregation An approach for fair
sequential group recommenders targets two independent
objectives [80]. The first one considers the group as an entity
and aims at offering the best possible results, by maximizing
the overall group satisfaction over a sequence of recommen-
dations. The satisfaction of each user ui in a group G for
the group recommendation Gr j received at the j th round of
recommendations is computed by comparing the quality of
recommendations that ui receives as a member of the group
over the quality of recommendations ui would have received
as an individual. Given the list Aui , j with the top-N items
for ui , the user’s satisfaction is calculated based on the group
recommendation list, i.e., for every item in Gr j , we sum the
utility scores as they appear in each user’s Aui , j , over the

ideal case for the user, by sum the utility scores of the top-N
items in Aui , j . Formally:

sat(ui ,Gr j ) =
∑

dz∈Gr j util j (ui , dz)∑
dz∈Aui , j

util j (ui , dz)
. (29)

The second objective considers the group members inde-
pendently and aims to behave as fairly as possible toward
all members, by minimizing the variance between the user
satisfaction scores. Intuitively, this variance represents the
potential disagreement between the users in the group. For-
mally, the disagreement is defined as:

groupDis(G,GR) =
max
ui∈G

satO(ui ,GR) − min
ui∈G

satO(ui ,GR), (30)

where satO(ui ,GR) is the overall satisfaction of ui for a
sequence GR of recommendations defined as the average of
the satisfaction scores after each round. That is, group dis-
agreement is the difference in the overall satisfaction scores
between the most satisfied and the least satisfied user in the
group. When this measure takes low values, the group mem-
bers are all satisfied to the same degree.

3.4 Summary

In short, we can categorize the various definitions of fairness
used in rankings, recommendations and rank aggregation
methods based on the Level and Side of fairness, and their
Output Multiplicity. Specifically, regarding Level, fairness
can be distinguished between individual and group fair-
ness. The Side dimension considers consumer and producer
fairness, while the Output Multiplicity dimension considers
single and multiple outputs.

Table 1 presents a summary of the various definitions
of fairness. We make several observations. Specifically, we
observe that these fairness definitions are based on one of
the following criteria: (a) position of item in the ranking or
recommendation list, (b) item utility, (c) prediction error, (d)
rating and (e) number of items. User satisfaction is defined
through item utility. In rankings, fairness is typically defined
for the items to be ranked, matching all existing definitions to
producer fairness. Except equity of attention, the definitions
are group based, and to position bias, they use constraints on
the proportion of items in the top positions, or are based on
the idea of providing exposure proportional to utility. In rec-
ommenders, all definitions are group based. In this case, the
distinction between consumer fairness and producer fairness
makes more sense, given that they focus on either the indi-
viduals that receive a recommendation or the individuals that
are recommended. Nevertheless, most existing works target
consumer fairness.
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Table 1 Fairness definitions taxonomy in rankings, recommenders and rank aggregation

Individual Group Consumer Producer Single Multiple Criterion

Rankings

Fairness constraints [18] Position

Discounted cumulative fairness [87] Position

Fairness of exposure [77] Position/utility

Equity of attention [11] Position/utility

Recommenders

Calibrated recommendations [78] Number of items

Value/absolute unfairness [88] Error on predictions

Under/Overestimation unfairness [88] Error in ratings

Non-parity unfairness [88] Ratings

Rank Aggregation

Top-k parity [55] Position

Dissatisfaction fairness [59] User satisfaction

Pareto optimal fairness [73] Position

Proportionality fairness [76] Number of items

Envy-freeness fairness [76] Number of items

Sequential hybrid aggregation [80] User satisfaction

In rank aggregation, only recently, and mainly for group
recommenders, fairness is considered when we need to
aggregate a number of ranked outputs in order to produce
a new ranked consensus output. Specifically, for group rec-
ommenders, the goal is to evaluate if the system takes into
consideration the individual preferences of each single user
in the group, making all approaches in the research liter-
ature to target at individual and consumer fairness. Only
recently, there are few approaches that focus on another form
of fairness that is applicable when we consider a sequence of
rankings, or recommendations, instead of just a single one.

In what follows, we will study how these models and def-
initions of fairness are applied to algorithms.

4 Methods for achieving fairness

Taking a cross-type view, we present in this section a tax-
onomy to organize and place related works into perspective.
Specifically, while in Fig. 3a we show the traditional way
that results in ranked outputs, in Fig. 3b, we present the
various options and the general distinction of the methods
for generating fair ranked outputs and recommendations.
Namely, these methods are distinguished into the following
categories:

– Pre-processing methods aim at transforming the data to
remove any underlying bias or discrimination. Typically,
such methods are application agnostic, and consider bias

in the training data (which they try to mitigate). Bias
in the data may be produced due to the data collection
process (for example, based on decisions about the pieces
of data we collect or not, or what assumptions we make
for the missing values), or even when using data in a
different way than intended during collection.

– In-processingmethods aimatmodifying existing or intro-
ducing new algorithms that result in fair rankings and
recommendations, e.g., by removing bias and discrimi-
nation during the model training process. Typically, such
methods targets at learning a model with no bias, while
considering fairness during the training of a model, for
example, by incorporating changes into the objective
function of an algorithm by a fairness term or impos-
ing fairness constraints, without offering any guarantees
about fairness on the ranked outputs.

– Post-processing methods modify the output of the algo-
rithm. Typically, such methods can only treat the ranking
or recommendation algorithm as a black box without any
ability to modify it and to improve fairness they re-rank
the data items of the output. Naturally, in post-processing
methods, fairness comes at the cost of accuracy, since by
definition the methods transform the optimal output. On
the other hand, a clear advantage of the post-processing
methods is that they offer ranked outputs that are easy to
understand, when comparing their outputs with the out-
puts before any application of a post-processing fairness
method.
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Fig. 3 The general distinction
of the methods for ensuring fair
ranked outputs

Next, we will use this taxonomy to organize and present
the related works that we describe in the following sections.

5 Pre-processingmethods

Bias in the underlying data on which systems are trained
can take two forms. Bias in the rows of the data exists
when there are not enough representative individuals from
minority groups. For example, according to a Reuters article
[23],Amazon’s experimental automated system to review job
applicants’ resumes showed a significant gender bias toward
male candidates over females that was due to historical dis-
crimination in the training data.

Bias in the columns is when features are biased (corre-
lated) with sensitive attributes. For example, zip code tends
to predict race due to a history of segregation [44]. Direct
discrimination occurs when protected attributes are used
explicitly in making decisions (i.e., disparate treatment).
More pervasive nowadays is indirect discrimination, inwhich
protected attributes are not used but reliance on variables cor-
relatedwith them leads to significantly different outcomes for
different groups, also known as disparate impact.

To address bias and avoid discrimination, several methods
have been proposed for pre-processing data. Many of these
methods are studied in the context of classification, while
a few have been proposed in the context of recommender
systems.

5.1 Suppression

To tackle bias in the data, a naïve approach used in practice
is to simply omit the protected attribute (say, race or gender)
when training the classifier [48].

Simply excluding a protected variable is insufficient to
avoid discriminatory predictions, as any included variables
that are correlated with the protected variables still con-
tain information about the protected characteristic, and the
classifier still learns the discrimination reflected in the train-
ing data. For example, answers to personality tests identify
people with disabilities [85]. Word embeddings trained on
GoogleNews articles exhibit female/male gender stereotypes

Fig. 4 Job application example [48]

[12]. To tackle such dependencies, one can further find the
attributes that correlate most with the sensitive attribute and
remove these as well.

5.2 Class relabeling

This approach, also known as massaging [48], changes the
labels of some objects in the dataset in order to remove the
discrimination from the input data. A good selection ofwhich
labels to change is essential. The idea is to consider a sub-
set of data from the minority group as promotion candidates,
and change their class label. Similarly, a subset of the major-
ity group is chosen as demotion candidates. To select the
best candidates for relabeling, a ranker is used that ranks the
objects based on their probability of having positive labels.
For example, a naïve Bayesian classifier can be used for both
ranking and learning [47,48]. Then, the top-k minority, for
promotion, objects and the bottom-k majority, for demotion,
objects are chosen. The number k of pairs needed to bemodi-
fied tomake a dataset D discrimination-free can be calculated
as follows.

Let us assume as before two groups, namely, the protected
group G+ and the non-protected (or, privileged) group G−.
If we modify k objects from each group, the resulting dis-
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crimination will be:

p− − k

|G−| − p+ + k

|G+| = disc(D) − k(
1

|G+| + 1

|G−| ) =

disc(D) − (k
|D|

|G−||G+| ). (31)

To reach zero discrimination, the number of modifications
needed is:

k = disc(D) × |G−| × |G+|
|D| , (32)

where p+ (p−) are the number of positive objects that
belong to the minority group (majority group). Discrimina-
tion disc(D) in D is the probability of being in the positive
class between the objects in the minority group versus those
in the majority group.

For example, consider the dataset in Fig. 4. This dataset
contains the Sex, Ethnicity and Highest Degree for ten job
applicants, the Job Type they applied for and the outcome of
the selection procedure, Class. We want to learn a classifier
to predict the class of objects for which the predictions are
non-discriminatory toward females. We can rank the objects
by their positive class probability given by a Naïve Bayes
classification model. Figure 5 shows an extra column that
gives the probability that each applicant belongs to the posi-
tive class. In the second step, we arrange the data separately
for female applicants with class − in descending order and
for male applicants with class + in ascending order with
respect to their positive class probability. The ordered pro-
motion and demotion candidates are given in Fig. 6. To reach
zero discrimination, the number of modifications needed is:

k = disc(D) × |GF − | × |GM + |
|D| = 0.4 × 5 × 5

10
= 1.

(33)

We relabel the highest scoring femalewith a negative label
and the lowest scoring male with a positive label. Then, the
discrimination becomes zero. The resulting dataset will be
used for training a classifier.

The problem of classificationwithout discriminationw.r.t.
a sensitive attribute is a multi-objective optimization prob-
lem. Lowering the discrimination will result in lowering the
accuracy and vice versa.

5.3 Reweighing

The previous approach is rather intrusive as it changes the
labels of the objects. Instead of that, weights can be assigned
to the objects to compensate for the bias [48]. The idea is
to assign lower weights to objects that have been deprived

Fig. 5 Job applications with positive class probability

Fig. 6 Promotion and demotion candidates

or favored. Then, the weights can be used directly in any
method based on frequency counts.

A frequently used family of analytical methods are
groupedunderpropensity scorematching [41]. Suchmethods
model the probability of each object or group receiving the
treatment and use these predicted probabilities or “propen-
sities” to make up for the confounding of the treatment with
the other variables of interest and balance the data.

A simple probability-based reweighingmethod is the fol-
lowing [48]. Let us consider the sensitive attribute S. Then,
every object x will be assigned a weight:

w(x) = Pexp(S = x(S) ∧ class = x(class))

Pobs(S = x(S) ∧ class = x(class))
, (34)

i.e., the weight of an object will be the expected probability
to see an instance with its sensitive attribute value and class
given independence, divided by its observed probability.

For example, consider the dataset in Fig. 4. If the dataset
is unbiased, then the sensitive attribute S (i.e., sex in our
example) and the class are statistically independent. Then,
the expected probability for females to be promoted would
be: Pexp(sex = F∧class = +) = 0.5∗0.6 = 0.3. In reality,
however, the observed probability based on the dataset is
P(sex = F ∧ class = +) = 0.2. Hence, one can use a
re-weighting factor w(x) = 0.3/0.2 = 1.5 to balance the
bias in the dataset.

Entropy balancing aims at covariate balance in data for
binary classification [39]. It relies on a maximum entropy
reweighting scheme that calibrates individual weights so that
the reweighed groups satisfy a set of balance constraints that
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are imposed on the sample moments of the covariate distri-
butions. The balance constraints ensure that the reweighed
groups match exactly on the specified moments adjusting
in this way inequalities in representation. The generated
weights can be passed to any standard classifier.

Adaptive Sensitive Reweighing uses a convex model to
estimate distributions of underlying labels with which to
adapt weights [54]. It assumes that there exists an (unobserv-
able) underlying set of class labels corresponding to training
samples that, if predicted, would yield unbiased classifica-
tionwith respect to a fairness objective. It searches for sample
weights that make weighted training on the original dataset
also train toward those labels, without explicitly observing
them.

More specifically, consider a binary probabilistic classi-
fier, which produces probability estimates P̂(Y = yi ) =
1 − P̂(Y 	= yi ). For training samples i with features xi
and class labels yi , there exist underlying (i.e., unobservable)
class labels ỹi that yield estimated labels ŷi which conform to
designated fairness and accuracy trade-offs. The training goal
is tominimize bothweighted error on observed labels and the
distance between weighted observed labels and unweighed
underlying labels:

min
∑

i

wi P̂(ŷi 	= yi ), (35)

min
∑

i

(wi P̂(ŷi 	= yi ) − P̂(ŷi 	= ỹi ))
2. (36)

To simultaneously adjust training weights alongside clas-
sifier training, a classifier-agnostic iterative approach is
proposed: First, a classifier is fully trained based on uniform
weights, and then, the method appropriately readjusts those
weights. This process is repeated until convergence.

5.4 Data transformation

A common theme is the importance of balancing discrimina-
tion control against utility of the processed data. This can be
formulated as an optimization problem for producing prepro-
cessing transformations that trade-off discrimination control,
data utility and individual distortion [67]. Assuming S is
the one or more protected (sensitive) variables, X denotes
other non-protected variables and Y is an outcome random
variable. The goal is to determine a randomized mapping
P ˆX ,Y |X ,Y ,S that transforms both the training data and the test
data. The mapping should satisfy three properties.

– Discrimination Control. The first objective is to limit
the dependence of the transformed outcome Ŷ on the
protected variables S, which requires the conditional dis-
tribution PŶ |S to be close to a target distribution PYT for
all values of S.

– Distortion Control. The mapping P ˆX ,Y |X ,Y ,S should sat-
isfy distortion constraints to reduce or avoid certain large
changes (e.g., a very low credit score being mapped to a
very high credit score).

– Utility Preservation. The distribution of (X̂ , Ŷ ) should
be statistically close to the distribution of (X , Y ). This
is to ensure that a model learned from the transformed
data (when averaged over the protected variables S) is not
too different from one learned from the original data. For
example, a bank’ s existing policy for approving loans
does not change much when learnt over the transformed
data.

5.5 Database repair

Handling bias in the data can be considered a database repair
problem. One approach is to remove information about the
protected variables from the set of covariates to be used in
predictive models [28,61]. A test for disparate impact based
on how well the protected class can be predicted from the
other attributes and a data repair algorithm for numerical
attributes have been proposed [28]. The algorithm “strongly
preserves rank,” which means it changes the data in such a
way that predicting the class is still possible. A chain of con-
ditional models can be used for both protecting and adjusting
variables of arbitrary type [61]. This framework allows for an
arbitrary number of variables to be adjusted and for each of
these variables and the protected variables to be continuous
or discrete.

Another data repair approach is based on measuring the
discriminatory causal influence of the protected attribute on
the outcome of an algorithm. This approach removes dis-
crimination by repairing the training data in order to remove
the effect of any discriminatory causal relationship between
the protected attribute and classifier predictions [74]. This
work introduced the notion of interventional fairness, which
ensures that the protected attribute does not affect the output
of the algorithm in any configuration of the system obtained
by fixing other variables at some arbitrary values. The sys-
tem repairs the input data by inserting or removing tuples,
changing the empirical probability distribution to remove the
influence of the protected attribute on the outcome through
any causal pathway that includes inadmissible attributes, i.e.
attributes that should not influence the protected attribute.

5.6 Data augmentation

A different approach is augment the training data with addi-
tional data [71]. This framework starts from an existing
matrix factorization recommender system that has already
been trained with some input (ratings) data, and adds new
users who provide ratings of existing items. The new users’
ratings, called antidote data, are chosen so as to improve
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a socially relevant property of the recommendations that
are provided to the original users. The proposed framework
includes measures of both individual and group unfairness.

5.7 Summary of pre-processingmethods

Table 2 summarizes pre-processing approaches to fairness
based on whether they focus on bias in rows or columns, the
level of fairness (individual or group) and the algorithm that
will use the pre-processed data.

Many of the pre-processing methods are studied in the
context of classification/ranking. Suppression is a simple,
brute-force approach that does not depend on the algorithm.
On the downside, the algorithm may still learn the discrim-
ination from correlated attributes. Trying to remove these
attributes as well can seriously hurt the value of the dataset.

The class relabeling approachworkswith different rankers
(e.g., a naive Bayes classifier, or nearest-neighbor classifier).
However, its objective is to lower the discrimination, which
will result in lowering the accuracy and vice versa. Finding
the right balance is challenging. Moreover, it is intrusive as
it changes the dataset.

The reweighingmethods are parameter-free as they do not
rely on a ranker. Hence, they canworkwith any ranking algo-
rithm as long as they leverage frequencies. Adaptive sensitive
reweighing has an additional classification overhead since it
simultaneously adjusts training weights alongside classifier
training through an iterative approach which is repeated until
convergence.

Data transformation methods work with different classi-
fiers, but they can be applied only on numerical datasets and
they modify the data.

The aforementioned approaches modify the training data,
explicitly (e.g., by suppressing attributes or changing class
labels) or implicitly, e.g., by adding weights. Data augmen-
tation leaves the training data as is and just augment it with
additional data. One data augmentationmethod has been pro-
posed in the context of recommender system and in particular
for matrix factorization. This approach has studied both indi-
vidual and group fairness [71]. In general, group fairness is
easier to track and handle.

There is an abundance of machine learning algorithms
used in practice for search and recommendations (and in
general) dictating a clear need for a future systematic study
of the relationship between dataset features, algorithms and
pre-processing performance.

6 In-processingmethods

In-processingmethods for achieving fairness in rankings and
recommendations focus on modifying existing or introduc-
ing new models or algorithms. In this section, we survey in a

unified way these methods, by distinguishing between learn-
ing approaches and approaches using preference functions.

6.1 Learning approaches

For both rankings and recommenders, learning approaches
typically use machine learning to construct ranking models,
most often using a set of labeled training data as input. In
general, the rankingmodel ranks unseen lists in away similar
to the ranking of the training data. The overall goal is to
learn a model that minimizes a loss function that captures the
distance between the learned and the input ranking.

Various approaches exist, varying on the form of train-
ing data and the type of loss function [60]. In the point-wise
approach (e.g., [21]), the training data are (item, relevance-
score) pairs for each query. In this case, learning can be seen
as a regression problem where given an item and a query,
the goal is to predict the score of the item. In the pair-wise
approach, the training data are pairs of items where the first
item is more relevant than the second item for a given query
[14,30]. In this case, learning can be seen as a binary classifi-
cation problem where given two items, the classifier decides
whether the first item is better than the second one. Finally,
in the list-wise approach (e.g., [16]), the input consists of a
query and a list of items ordered by their relevance to the
query. Note that the loss function takes many different forms
depending on the approach. For example, in the pair-wise
approach, loss may be computed as the average number of
inversions in a ranked output.

In the following, we present a number of approaches
toward making the ranking models fair. Note that the pro-
posed approaches can be adopted to work for different types
of input data and loss functions.

6.1.1 Adding regularization terms

A general in-processing approach to achieving fairness is
by adding regularization terms to the loss function of the
learningmodel. These regularization terms expressmeasures
of unfairness that the model must minimize in addition to the
minimization of the original loss function. Depending on the
form of the training data, the loss function and the measure
of fairness, different instantiations of this general approach
are possible.

The DELTR approach [90] extends the ListNet [16] learn-
ing to rank framework. ListNet is a list-wise framework
where the training set consists of a query q and a list of items
ordered by their relevance to q. ListNet learns a ranking func-
tion f that minimizes a loss function LLN that measures the
extent to which the ordering r̂ of items induced by f for a
query differs from the ordering r that the items appear in
the training set for this query. The loss function LDELTR of
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Table 2 Pre-processing methods

Bias in rows Bias in columns Fairness Algorithm

Suppression [48] Group Any

Class relabeling [47,48] Group Ranker

Reweighing [39,48,54] Group/individual Ranker

Data transformation [67] group/ individual Ranker

Data repair [28,61,74] Group Ranker

Data augmentation [71] Group/ individual Matrix factorization

DELTR is:

LDELTR(r(q), r̂(q)) = LLN (r(q), r̂(q))

+ λUnfairness(r̂(q)). (37)

LDELTR extends the original loss function LLN of ListNet
with a term that imposes a fairness constraint. Parameter λ

controls the trade-off between ranking utility (i.e., distance
from input ranking r captured by the original loss function)
and fairness.

Exposure is used as a measure of unfairness in the pro-
duced output. Specifically:

Unfairness(r(q)) = max{0,Exposure(G+|r(q)

−Exposure(G−|r(q))2. (38)

Using the squared hinge loss makes the loss function dif-
ferentiable. Also, the model prefers rankings in which the
exposure of the protected group is not less than the exposure
of the non-protected group but not vice versa.

A regularization approach is also taken for recommender
systems in [49]. Let U and I denote random variables for
the users and items, respectively, and R denote a random
variable for the recommendation output. Let also S be the
sensitive attribute, that is, information to be ignored in the
recommendation process, like the gender of a user or the
popularity of an item. The goal in this case is to achieve
recommendation, or statistical, independence. This means
to include no information about the sensitive feature that
influences the outcome, as well as recommendations should
satisfy a recommendation independence constraint.

The core of this regularization approach is included in
Equation 39 that adopts a regularizer imposing a constraint
of independence, while training the recommendation model.

∑

D

loss(ri , r(xi , yi , si )) − η · ind(R, S) + λ · reg(θ), (39)

where η is the independence parameter that controls the bal-
ance between independence and accuracy and ind is the

independence term, i.e., the regularizer to constrain indepen-
dence; the larger value indicates that recommendations and
sensitive values are more independent. Loss is the empirical
loss, while λ is the regularization parameter and θ is the L2
regularizer. Several alternatives can be used for the indepen-
dence term, like, for example, the mutual information with
histogram models or normal distributions, or by exploiting
distance measures as in the case of distribution matching
using the Bhattacharyya distance.

6.1.2 Learning via variational autoencoders

Variational autoencoders (VAE) are proposed as the state-of-
the-art for the collaborative filtering task in recommenders.
With a multinomial likelihood generative model and a con-
trolled regularization parameter, it is possible to estimate
normal distribution parameters in themiddle layer of anMLP,
that enriches the rating data representation and outperforms
previous neural network-based approaches [58]. The situa-
tion requires drawing samples from the inferred distributions
in order to propagate values to the decoder, but it is not a triv-
ial task to take gradients when having a sampling step. The
re-parameterization trick [52] is to re-parameterize the sam-
pled values by incorporating a normal distributed noise, so
the gradient can back-propagate through the sampled vari-
able during the training.

Instead of using only the re-parameterization trick during
the training phase, the noise variable can be incorporated in
the test phase ofVAEaswell [13], in order to enhance fairness
in the ranking order of recommendations (using as definition
of fairness, Eq. 10). Themotivation here is that different noise
distributions directly affect the rankings, depending on how
frequently the latent values vary around the mean inside the
interval defined by the variance. Specifically, it is experimen-
tally shown that the noisy effect of the Gaussian and uniform
distributions varies the output scores when having the same
data as input, while unfairness is reduced despite of a small
decrease in the quality of the ranking. The higher the variance
of the new component, the greater the effect in the predicted
scores and consequently in the ranking order.
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6.1.3 Learning fair representations

Themain idea in this approach is to learn a fair representation
of the input data and use it for the task at hand. Previous
work in fair classification used this idea to achieve fairness
by introducing an intermediate level Z between the input
space X that represents individuals and the output space Y
that represents classification outcomes [92]. Z should be a
fair representation of X that best encodes X and obfuscates
any information about membership in the protected group.
Specifically, Z is modeled as a multinomial random variable
of size k where each of the k values represents a prototype
(cluster) in the space of X .

The goal is to learn Z such that tominimize a loss function
L:

L = λx Lx + λz Lz + λy L y, (40)

where the first term, Lx , refers to the quality of the encod-
ing, i.e., expresses the requirement that the distance from
points in X to their representation in Z should be small, the
second term, Lz , refers to fairness, and the last term, Ly ,
refers to accuracy, i.e., the prediction based on the repre-
sentation should be accurate. Parameters λx , λy and λz are
hyper-parameters that control the trade-off among these three
objectives.

One can enforce different forms of fairness by appropri-
ately defining the Lz objective. Statistical parity is used in
[92] captured by the following objective:

Pr(z = k|x ∈ G+) = Pr(z = k|x ∈ G−), ∀ k, (41)

that is, the probability that a random element that belongs to
the protected group of X maps to a particular prototype of Z
is equal to the probability that a random element that belongs
to the non-protected group of X maps to the same prototype.

The fair representation approach has also been used for
fair ranking instead of classification. This was achieved by
modifying the last objective Ly in Equation 40 to represent
accuracy in the case of ranking as opposed to accuracy in
classification [87]. The modified objective asks that the dis-
tance between the ground-truth ranking and the estimated
ranking is small.

6.2 Linear preference functions

In some applications, items are ranked based on a score that is
aweighted linear combination of the values of their attributes.
Specifically, let i be an item with d scoring attributes,
i[1] . . . i[d]. A linear ranking function f uses aweight vector
w = (w1, . . . wd), to compute a utility (goodness) score for
each item i , f (i) = ∑d

j=1 w j i[ j].

In this case, fairness is formulated as the following prob-
lem. Given function f with weight vector w = (w1, . . . wd),
find a function f ∗ withweight vectorw∗ = (w∗

1, . . . w
∗
d), such

that, f ∗ produces a fair ranking and its weights are as close to
the weights of the original f as possible, i.e., cosine(w,w∗)
is minimized [6].

6.3 Constraint optimization for rank aggregation

For fairness-preserving rank aggregation, [55] presents a
solution that balances aggregation accuracy with fairness,
using a pairwise rank representation. In this case, a rank-
ing is represented as a set of pairwise comparisons between
data items. Then, for two rankings, the number of pairs with
items that do not have the same order in the two rankings
expresses their Kendall tau distance [51]. Overall, given a set
of rankings, the ranking with the minimum average Kendall
tau distance to the rankings in the set is known as theKemeny
optimal rank aggregation.

Consider the case where we have data items from two
different groups, G+ and G−. The pairs in their Cartesian
product can be divided into three subsets: pairs containing
items from G+, pairs containing items from G− and pairs
containing one item from G+ and one item from G−. Then,
RparG+(ρ) computes the probability, for a ranking ρ, that
an item from group G+ is ranked above an item from group
G−:

RparG+(ρ) = P(xi <ρ x j |xi ∈ G+, x j ∈ G−). (42)

Following from this, the pairwise formulation of statisti-
cal parity for two groups is defined as: Given a ranking ρ,
consisting of data items that belong to mutually exclusive
groups G+, G−, ρ satisfies pairwise statistical parity if the
following condition is met:

RparG+(ρ) = RparG−(ρ). (43)

A linear integer programming solution with parity con-
straint is offered for aggregating many rankings, while
producing a fair consensus. For achieving better efficiency,
a branch-and-bound fairness-aware ranking algorithm is
designed that integrates a rank parity-preserving heuristic.

In Sect. 8,we summarize the in-processingmethods, along
with the post-processing ones, highlighting the advantages of
each category.

7 Post-processingmethods

Post-processing approaches are agnostic to the ranking or
the recommendation algorithm. Typically, they take as input
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a ranking r and a specification of the required form of fair-
ness and produce a new ranking r̂ that satisfies the fairness
requirements and respects the initial ranking, to the extent
possible.

7.1 Fairness as a generative process

Let us consider a simple case of group parity, where we ask
that a specific proportion p, 0 ≤ p ≤ 1, of the items at the
top k positions in the ranking belong to the protected group.

Given p and a ranking r , the generative process intro-
duced in [87] creates a ranking r̂ by: (a) initializing r̂ to the
empty list and (b) incrementally adding items to r̂ . Specifi-
cally, for each position j in r , a Bernoulli trial is performed
with p. If the trial succeeds, we select the best available,
i.e., most highly ranked in r , item from the protected group.
Otherwise, we select the best available item from the non-
protected group. An example is shown in Fig. 2. The ranking
rl in the left is the original ranking based on the utility score of
the items. The middle ranking rm corresponds to the extreme
case of p = 1 where all members of the protected group are
placed in the top positions, while the ranking tr on the right
corresponds to p = 0.5.

The produced ranking r̂ satisfies the in-group monotonic-
ity constraints. This means that, within each group, the items
are ordered with decreasing qualifications. It is also shown
that under some assumptions, the ranking also maximizes
the utility expressed as the average score of the items in the
top-k positions [89].

A statistical test for this generative model is proposed in
[89]. Specifically, given that at a specific position we have
seen a specific number of items from each group, an one-
tailed Binomial test is used to compare the null hypotheses
that the ranking was generated using the model with param-
eter p∗ = p, or with p∗ < p, which would mean that the
protected group is represented less than desired.

7.2 Fair ranking as a constraint optimization
problem

Another post-processing approach formulates the problem of
producing a fair ranking r̂ as an optimization problem. Let
F be a fairness measure for rankings and letU be a measure
of the utility of a ranking for a particular task, for example,
let U (r |q) be the relevance of ranking r for a given query q.
There are two general ways of formulating an optimization
problem involving fairness F(r) and utilityU (r |q), namely:

– (maxFcoU) maximizing fairness subject to a constraint
in utility,

– (maxUcoF) maximizing utility subject to a constraint in
fairness.

In the maxFcoU formulation, the underlying idea is to
produce a ranking that is as fair as possible while remaining
relevant to q (e.g., [11]). For example, we ask for the most
fair ranking r̂ among all rankings such that r̂ also satisfies a
utility constraint, e.g., the loss in utility with regards to the
original ranking r remains below a given threshold θ :

r̂ = argmaxr̂ F(r̂)

s.t., distance(U (r |q),U (r̂ |q)) ≤ θ.

Alternatively, in the maxUcoF formulation, we look for the
ranking that has the maximum possible utility among all
rankings whose fairness is sufficient (e.g., [11], [77]). For
example, the approach proposed in [77] produces a ranking
r such that:

r = argmaxr U (r |Q) s.t. r is fair.
We characterize such maxUcoF approaches as post-

processing, since they assume that the utility of each item is
known, or can be estimated. Thus, implicitly there is an orig-
inal, non-fair ranking in which the items are ordered solely
by their utility. Then, given these individual utilities, a new
ranking is produced that also satisfies a fairness constraint.

In general, the complexity of both the maxFcoU and
maxUcoF optimization problems depends on the type of
the utility and fairness functions, and the form of the con-
straints. In some cases, the optimization problems can be
solved using linear integer programming (ILP), e.g., [11], or,
in some special cases using a dynamic programming algo-
rithm, e.g., [18].

Constraints can be also used for producing fair recom-
mendation packages of items for groups of users [76]. The
intuition of the method is to greedily construct a package
P , by adding in rounds to P the item that satisfies the
largest number of non-satisfied users. Specifically, given that
satG(P) denotes the users inG that are satisfied by P , at each
round, the goal is to maximize:

fG(P, i) = |satG(P ∪ i)\satG(P)|. (44)

When considering fairness proportionality (Equation 28),
satG(i) contains the users for which item i belongs in their
top-δ% most preferable items. For envy-freeness fairness
(Eq. 27), satG(i) contains the users that are envy-free for
the item i . That is, P is fair for a user u (m-proportional, or
m-envy-free), if there are at least m items i in P , such that,
u ∈ satG(i).

This method is generalized to include constraints that
restrict the set of candidate packages that can be recom-
mended to a group of users. Two types of constraints are
discussed, namely category and distance constraints. In sim-
ple words, with category constraints, when selecting an item
from a specific category, we remove the items of this cate-
gory from the candidate set. With distance constraints, we
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consider as candidate items only the items that when added
to the existing solution satisfy the specific input distance con-
straints.

7.3 Fairness via calibrationmethods

Calibration methods suggest to re-rank a list of items as a
post-processing step. Equation 19 (in Sect. 3.2) quantifies
the degree of calibration for recommender’s outputs based
on specific metrics [78].

To determine the optimal set I ∗ of N recommended
items— movies in the suggested scenario—the maximum
marginal relevance function [17] is used:

I ∗ = argmaxI ,|I |=N (1 − λ) · s(I ) − λ · CKL(p, q(I )), (45)

whereλ ∈ [0, 1] determines the trade-off between the predic-
tion scores s(i) of the movies i ∈ I , with s(I ) = ∑

i∈I s(i),
and the calibration metric (Equation 19). Namely, the trade-
off between accuracy and calibration is controlled by λ.
Greedily, the method starts with an empty set, and iteratively
adds one movie at a time, namely the movie that maximizes
Eq. 45.

In a similarway, for group recommendations, the best sug-
gestions I for a group G should maximize the social welfare
SW (G, I ) (Eq. 24) and fairness F(G, I ) (Eqs. 25 and 26 ),
using the scheme [59]:

λ · SW (G, I ) + (1 − λ) · F(G, I ). (46)

A greedy solution is to select an item that, when added
to the current recommendation list, achieves the highest fair-
ness F(G, I ).More time-efficient alternatives are offered via
integer programming techniques.

When considering the notion of Pareto optimality for
group recommendations, a simple heuristic can be used to
compile and approximately identify the list of the top-N rec-
ommendations for a group [73]: Specifically, given N ′, where
N ′ > N is the largest number of items the system can recom-
mend for an individual user, the method proceeds as follows:
(a) It requests the top-N ′ recommendations for each user in
the group, (b) it takes their union, and (c) it identifies the
N -level Pareto optimal items among the items in the union.

7.4 Fairness in multiple outputs

When providing rankings or recommendations, users typi-
cally pay more attention to the first positions, and attention
wears off for items in lower positions in the ranking. In a
situation where the greatest estimated probabilities are quite
close or equal to each other, the algorithm needs to arrange
them in a proper order and necessarily present high scores
in high positions. This promotes an unfair result that can be

mitigated in the long term, by changing the position of items
in sequential rounds of rankings or recommendations.

In the case of rankings, one approach [11] is to require that
ranked items receive attention that is proportional to their
utility in a sequence of rankings (Eq. 9). This way, the unfair
position one item appears in a single ranking can be compen-
sated in the next rankings when it changes position, and the
whole session contemplates long-term fairness. However, the
act of reducing unfairness implies reduction in the ranking
quality, due to the perturbation of the utility-based rankings.
The trade-off between ranking quality and fairness is formu-
lated as a constrained optimization problem [11] targeting at
minimizing unfairness subject to constraints on quality (i.e.,
lower-bound the minimum acceptable quality).

Specifically, for a sequence ρ1 . . . ρm of rankings where
the items are ordered by the utility score, inducing zero qual-
ity loss, the aim is at reordering them into ρ1∗ . . . ρm∗, to
minimize the distance between the attention (A) and utility
(U ) distributions with constraints on the NDCG-quality loss
in each ranking. Formally:

min
∑

i

|Ai −Ui |, (47)

subject to NDCG-quality@k(ρ j , ρ j∗) ≥ θ, j = 1, . . . ,m,
where Ai and Ui denote the cumulative attention and utility
scores that the item i gained across all rankings.

Consider a different scenario, where a group of users
interacts with a recommender multiple times [80]. When fol-
lowing traditional methods for group recommendations, like
the average aggregation method and the least misery one,
the degree of satisfaction for each user in the group (e.g.,
Equation 29), cannot be good enough for all users in the
group, leading to cases in which almost none of the reported
items are of interest to some users in the group. That is, the
recommender system is unfair to these users, and unfairness
continues throughout a number of recommendations rounds.
To overcome the drawbacks of the average and the least mis-
ery aggregation methods, and capitalize on their advantages,
an aggregation method, called sequential hybrid aggregation
method, offers a weighted combination of them [80]. Specif-
ically:

score(G, dz, j) = (1 − α j ) ∗ avgScore(G, dz, j)

+α j ∗ leastScore(G, dz, j). (48)

For a group G, avgScore(G, dz, j) returns the score of
the item dz as it is computed by the average aggregation
method during round j , and least Score(G, dz, j) returns the
least satisfied user’s score of dz at round j . To self-regulate
the value of α between 0 and 1, so as to more effectively
describe the consensus of the group, α is set dynamically in
each iteration by subtracting the minimum satisfaction score
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Table 3 In- and post-processing methods

Level of fairness Side of fairness Output multiplicity
Individual Group Consumer Producer Single Multiple

In-processing methods

Adding regularization terms [49,90] [49,90] [49,90]

Learning fair representations [92] [92] [92]

Learning with VAEs [13] [13] [13]

Linear preference functions [6] [6] [6]

Constraint optimization for rank aggregation [55] [55] [55]

Post-processing methods

Fairness as a generative process [87,89] [87,89] [87,89]

Fairness as a constraint optimization problem [11,76] [18,77] [76] [11,18,77] [18,76,77] [11]

Fairness with calibration methods [59,73] [78] [59,73] [78] [59,73,78]

Fairness in multiple rounds [11,80] [80] [11] [11,80]

of the group members in the previous iteration, from the
maximum score:

α j = max
u∈G sat(u,Gr j−1)

−min
u∈G sat(u,Gr j−1), (49)

where sat(u,Gr j−1) defines the satisfaction of user u for the
group recommendations Gr j−1 at round j − 1.

The dynamic calculations of α counteract the individual
drawbacks of the average and least misery method. Intu-
itively, if the group members are equally satisfied at the
last round, then α takes low values, and the aggregation will
closely follow that of average,where everyone is treated as an
equal. On the other hand, if one group member is extremely
unsatisfied in a specific round, then α takes a high value and
promotes that member’s preferences on the next round.

Next, we summarize both the in-processing and post-
processing methods and provide their advantages.

8 Summary of in- and post-processing
methods

In this section, we summarize the in-processing and post-
processing approaches for achieving fairness. Overall, there
exist methods that have been proposed in the context of
rankings, recommender systems, as well as for the rank
aggregation problem. Table 3 organizes the methods based
on (a) the level of fairness, namely individual or group, (b)
the side of fairness, namely consumer or producer, and (c) the
output multiplicity, namely if a method focuses on a single
output or multiple outputs.

In general, all existing learning and linear preference
functions in-processing approaches target group and pro-
ducer fairness.Most approaches consider a single outputwith

the recent exception of [13] using VAEs that considers multi-
ple outputs. Typically, the approaches in this category extend
the objective function that they use by including a fairness,
or unfairness, term. The target is to find the best balance
between the accuracy objective and fairness objective of the
optimization problem that a particular approach applies.

Regarding the post-processing approaches, we observe
that there exist works focusing on all different options of
fairness definitions. As in the pre-processing case, post-
processing methods treat the algorithms for producing rank-
ings and recommendations as black boxes, without changing
their inner workings. This means that any post-processing
approach receives as input a ranked output and re-ranks the
data items in this output to improve fairness, respecting the
initial ranked output, to the extent possible.

Typically, in-processing approaches manage to offer bet-
ter trade-offs between fairness and accuracy, compared to
the post-processing methods, since they naturally identify
this balance via the objective function they use. However,
at the same time, they cannot offer any guarantees about
fairness in the output rankings and recommendations, since
fairness is considered only during the training phase. When
considering post-processing approaches, it is important to
note that they can lead to unpredictable losses in accuracy,
since they treat the algorithms for producing rankings and
recommendations as black boxes. This is especially true for
pre-processing methods as well. On the positive side, post-
processingmethods offer outputs that are easy to understand,
when comparing their outputs with the outputs before any
application of a post-processing fairness method, and realize
that they offer a fairer output.

Recently, [92] combines both pre-processing and in-
processing strategies by jointly learning a fair representation
of the data and the classifier parameters. This approach has
two main limitations: (a) It leads to a non-convex optimiza-
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tion problem and does not guarantee optimality and (b) the
accuracy of the classifier depends on the dimension of the fair
representation, which needs to be chosen rather arbitrarily.

9 Verifying fairness

In the previous sections, we studied methods for achieving
fairness. Both pre-processing and post-processing methods
treat the recommendation or ranking algorithm as a black box
and try to address fairness in the input or the output of the
algorithm, respectively. In particular, post-processing meth-
ods assume that we already know that we have an algorithm
that creates discrimination in its output and try to mitigate
that. The question that naturally arises is how we can verify
whether a program is fair in the first place.

Program fairness verification aims at analyzing a given
decision-making program and constructing a proof of its
fairness or unfairness—just as a traditional static program
verifier would prove correctness of a program with respect
to, for example, lack of divisions by zero. However, there are
several challenges: (a) what class of decision-making pro-
grams the program model will capture, (b) what the input to
the program is, (c) how to describe what it means for the pro-
gram to be fair and (d) how to fully automate the verification
process.

One simple approach is to take a decision-makingprogram
P and a dataset as input [34]. Using a concrete dataset sim-
plifies the verification problem, but it also raises questions
of whether the dataset is representative for the population
for which we are trying to prove fairness. An alternative
approach would be to use a population model M as input,
which can be a probabilistic model that defines a joint prob-
ability distribution on the inputs of P [2]. Then, we need to
definewhen andwhy a program is fair or unfair. If wewant to
prove group fairness—for example, that the algorithm is just
as likely to hire aminority applicant (m) as it is for other, non-
minority applicants we could define a post-condition like the
following [2]:

Pr [P(v) = true|vs = m]
Pr [P(v) = true|vs 	= m] > 1 − ε.

The verifier then will prove or disprove that P is fair for
the given population.

In general, proving group fairness is easier: The verifica-
tion process reduces to computing the probability of a number
of events with respect to the program and the population
model. However, proving individual fairness requires more
complex reasoning involving multiple runs of the program, a
notoriously hard problem.Moreover, in the case of a negative
result, the verifier should provide the users with a proof of
unfairness. Depending on the fairness definition, producing

a human readable proof might be challenging as the argu-
ment might involve multiple and potentially infinite inputs.
For example, for group fairness, it might be challenging to
explain why the program outputs true on 40% of theminority
inputs and on 70% of the majority inputs. Overall, program
fairness verification is a difficult, and less investigated, topic.

Adifferent approach is tomake fairness afirst-class citizen
in programming. In fairness-aware programming [3], devel-
opers can state fairness expectations natively in their code
and have a run-time system monitor decision-making and
report violations of fairness. This approach is analogous to
the notion of assertions in modern programming languages.
For instance, the developer might assert that x > 0, indicat-
ing that they expect the value of x to be positive at a certain
point in the code. The difficulty, however, is that fairness def-
initions are typically probabilistic, and therefore, detecting
their violation cannot be done through a single execution as
in traditional assertions. Instead, we have tomonitor the deci-
sions made by the procedure and then, using statistical tools,
infer that a fairness property does not hold with reasonably
high confidence.

For example, consider a movie recommendation system,
where user data have been used to train a recommender that,
given a user profile, recommends a single movie [3]. Sup-
pose that the recommender was constructed with the goal of
ensuring that male users are not isolated from movies with a
strong female lead. Then, the developer may add the follow-
ing specification to their recommender code:

@spec(pr( f emaleLead(r)|s = male) > 0.2).

The above specification ensures that for male users, the
procedure recommends a movie with a female lead at least
20% of the time.

To determine that a procedure f satisfies a fairness speci-
fication φ, we need to maintain statistics over the inputs and
outputs of the procedure f as it is being applied. Specifically,
we compile the specification φ into run-time monitoring
code that executes every time f is applied, storing aggre-
gate results of every probability event appearing in φ. In the
earlier example with movie recommendation, the monitor-
ing code would maintain the number of times the procedure
returned true for a movie with a female lead. Again, a big
challenge is checking individual fairness. In this case, the
run-time system has to remember all decisions made explic-
itly, so as to compare new decisions with past ones.

10 Open challenges

In this paper, we have just begun to realize the need for
fairness in particular fields, namely in rankings and rec-
ommender systems. Next, we highlight a few critical open
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issues and challenges for future work, which aim to support
advanced services for making accountable complex rankings
and recommender systems.

A codification of definitions. As described in Sects. 2 and
3, there is not a universal definition for expressing fairness
in rankings and recommenders. Instead, the list of potential
definitions is very long.

Specifically, just for fairness alone, there exist a plethora
of different definitions. Some of them are not even compat-
ible, in the sense that there is no method that can satisfy all
of them simultaneously, except in highly constrained special
cases [53]. Furthermore, there is also a need to make explicit
the correspondence between these definitions and the inter-
pretation of bias or diversity, that each of them materializes.
The limitations of each definition, the compatibility among
them, the incurred trade-offs, the domain of applicability,
assumptions and parameters are not well understood yet.

Moreover, it is interesting to see how the general pub-
lic views fairness in decision making. By testing people’s
perception of different fairness definitions, we can under-
stand definitions of fairness that are appropriate for particular
contexts [37], [69]. One such attempt investigates which def-
initions people perceive to be the fairest in the context of loan
decisions [75], and whether fairness perceptions change with
the addition of sensitive information (i.e., race of the loan
applicants).

Lack of data. Amajor challenge is that the available data are
often limited [7]. Thisway, any analysis is donewith data that
has been acquired independently, through a process onwhich
the data scientist has limited control. Collectingmore data for
analysis is challenging andwill help to discovermore types of
biases on it. In the long run, one could envision benchmarks
for measuring the societal impact of an algorithm along the
lines of the TPC benchmark2 for database performance.

A unified approach for the data pipeline. One limitation of
the current work is that fairness has been studied for specific
tasks in isolation, withmost current work in fairness focusing
on the classification task with the goal of non-discrimination.
However, there is a need to consider fairness along the whole
data pipeline [79]. This includes pre-processing steps, such as
data selection, acquisition, cleaning, filtering and integration.
Pre-processing for removing bias can be viewed as the action
of repairing, e.g., by replacing, modifying or deleting data
that cause bias. This pipeline also includes post-processing
steps, such as data representation, data visualization and
user interfaces. For example, how results are presented can
introduce bias, and this is why we need to understand the
implications for fairness.

2 http://www.tpc.org/information/benchmarks.asp.

Lack of evaluation tools. Besides coming up with the correct
way of defining fairness in rankings and recommenders, there
is also a need for tools for investigating bias and evaluating
the quality of a dataset, an algorithm or a system. There are
some first attempts, such as IBM’s AI Fairness 3603 and Ten-
sor Flow’s Fairness Indicators4. However, both of them focus
mainly on statistical group measures of fairness in classifi-
cation. Concepts, like context and provenance, are important
and can be directly considered in designing such tools.

In this direction, we also need efficient ways for measur-
ing fairness and monitoring its evolution over time. Previous
research in stream processing and incrementally maintaining
statistics may be relevant here.

Perhaps, the most pending question is how to quantify the
long-term impact of enforcingmethods that target at ensuring
fairness. Would they work in favor of the social good, or
would they backfire in ways that we cannot predict?

Lack of real applications of fairness. While a lot of work is
done in a research setting, we still do not see many actual
applications and their results. There are many challenges in
making algorithms and systems fairer in the real world. A
company, for example, needs to consider its business metrics
(e.g., click-through rate, purchases) and make sure that these
are not affected. For example, how to design algorithms that
take into account all these different objectives is challenging.

An example of a real application of fairness is found in
LinkedIn [35], where they developed a fair framework and
they applied it to LinkedIn Talent Search. Online A/B tests
showed considerable improvement in the fairness metrics
without a significant impact on the business metrics, which
paved the way for deployment to LinkedIn users worldwide.

A multi-level architecture of value systems and algorithms.
A problem intrinsic to the definition of all fairness defini-
tions in rankings and recommenders is the fact that they
attempt to quantify philosophical, legal, often elusive and
even controversial notions of justice and social good. Com-
plexity is aggregated when notions that reflect value systems
and beliefs interact with the mechanisms for implementing
them. In the very least, there should be a clear distinction
between what constitutes a belief and what is the mecha-
nism, or measure, for codifying this belief. From a technical
point of view, we should then be able to focus on assessing
whether a proposed measure is an appropriate codification
of a given belief as opposed to assessing the belief itself.

This calls for developing different levels of abstractions
andmappings between them.This is somehow reminiscent of
howdata independence is supported in databasemanagement
systems by the three-level architecturewith the physical, con-
ceptual and external level and the mappings between these

3 https://aif360.mybluemix.net/.
4 https://www.tensorflow.org/tfx/guide/fairness_indicators.
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levels [70]. At the lower level, we could have beliefs and
value systems and at the higher level fairness definitions.
Intermediate levels could be used to support transformations
for getting from the lower to the higher level.

Relating algorithmic fairness with other notions of fair-
ness in systems. The focus of this survey is on fairness
in decision-making processes and in particular on rankings
and recommendation systems used in this context. However,
there are several other cases where a system needs to make
decisions, and where fairness is also important. In particular,
there are several problems more familiar to the data manage-
ment community, such as resource allocation and scheduling,
where fairness has been studied. We present here represen-
tative examples.

For instance, an approach is presented in [56] for cache
allocation where fairness is based on Pareto efficiency and
sharing incentives. A multiple resource allocation approach
is introduced in [36] that generalizes max–min fairness to
multiple resource types, where max–min fairness in this con-
text refers to maximizing the minimum allocation received
by a user in the system. Another notion of fairness, termed
proportionate progress, is proposed in [9] for the periodic
scheduling problem where weighted resources are allocated
to tasks for specific time units in each interval. In propor-
tionate progress fairness, each task is scheduled resources
according to its importance (i.e., its weight). Finally, for
scheduling, in [38], fairness means that the workload sched-
uler performs in a way that no query starves for resources.

Another notion of fairness, for a different problem, namely
the chairman selection problem, is proposed in [82]. In the
chairman selection problem, a set of states want to form a
union and select a chairman for each year. Fairness in this
context refers to guaranteeing a small discrepancy for the
number of chairmen representing each state, so that all states
are satisfied.

Clearly, fairness concerns have emerged in various con-
texts through the years. Providing a unified view of all these
different notions of fairness and the computational methods
used to enforce them is an open problem and an opportu-
nity. How to embed models and algorithms for fairness into
any system that involves any type of decision making is also
open. Of course, new models and algorithms may be needed
in different contexts, where the principles of fairness may
be different. What works well for a recommendation prob-
lem may not work well for a query optimizer or resource
sharing in cloud computing. However, this unified view will
potentially provide new insights and opportunities for cross-
fertilization.

Fairness in other domains. In this paper, we have focused on
ranking and recommendation algorithms. Many more algo-
rithms are being revisited under the lens of fairness. Two
such examples are clustering and ranking in networks. For

instance, fair clustering adopts a parity definition of fairness
and asks that each group must have approximately equal rep-
resentation in every cluster [19]. For the link analysis problem
in networks, fair algorithms are introduced in [83] that use a
parity-based definition of fairness and apply constraints on
the proportion of Pagerank allocated to the members of each
group of nodes in the network.

Algorithmic fairness is a fast changing field. It is an open
challenge to provide fairness measures and definitions for
all kinds of algorithms and use them in evaluating such
algorithms, in analogy of, say response time, for measuring
performance [68].

Recently, the concept of fairness has also been studied
in different domains and for covering different needs. We
discuss two such domains, labor market and social match-
ing. For instance, previous research examines labor market
cases under fairness concerns and shows the relevance of
such concerns on economic outcomes, especially when con-
sidering employment contracts over time [27]. Recently, in
the same domain, the work in [42] pinpoints the persistence
of racial inequalities and designs solutions with respect to a
dynamic reputational model of the labor market, highlight-
ing the results from groups divergent accesses to resources.
Other recent work examines the fairness of online job mar-
ketplaces in terms of ranking job applicants [26]. Instead of
partitioning the individuals in predefined groups, the authors
seek to find a partitioning of the individuals based on their
protected attributes that exhibits the highest unfairness.

For the problem of professional social matching, conven-
tional mechanisms, such as optimizing for similarity and
triadic closure, are studied in [65] and shown to involve risks
of strengthening the homophily bias and echo chambering.
For the problem of team assembly, the work in [62] designs
fairness-aware solutions when multidisciplinary teams need
to be formed and allocated to work on different projects with
requirements on members’ skills.

The application of models and mechanisms of algorith-
mic fairness in a variety of domains that involve social and
economic activities, such as in labor market, social matching
and team formation, opens a lot of opportunities for fruitful
interdisciplinary work.

11 Conclusions

Ranking and recommender systems have several applica-
tions, such as hiring, lending and college admissions, where
the notion of fairness is very important since decision mak-
ing is involved.We have only begun to understand the nature,
representation and variety of the several definitions of fair-
ness and the appropriate methods for ensuring it.

In this article, we follow a systematic and structured
approach to explain the various sides of and approaches
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to fairness. First, we lay the ground by presenting general
fairness definitions. Then, we zoom in on models and defini-
tions for rankings, recommendations and the problem of rank
aggregation. We organize them in a taxonomy and highlight
their differences and commonalities. This analysis naturally
leads to a number of open questions such as: (a) How do
fairness definitions fare? (b) Which definition is suitable for
which context? (c) How do people perceive fairness in dif-
ferent contexts? (d) What does it mean to be fair after all? Is
there a unified way to be able to judge whether an outcome
or an algorithm is fair?

We move on to describing solutions for fair rankings
and recommendations. We organize the approaches to tackle
unfairness or ensure a fairer outcome into pre-, in- and post-
processing approaches. Within each category, we further
classify them along several dimensions. It is still very early
to say which one works best for which context. There is no
evaluation that puts them all under the same lens, and there
are generally not conclusive results as to which fare better.
It may be the case that a combination of methods should be
applied, e.g., combining pre-processing and in-processing
steps. This is also an open question as different efforts have
adapted a single angle in the problem.

While the focus of this survey is on fairness in rankings
and recommendation systems, we discuss several other cases
where a system needs to make decisions and fairness is also
important, and how we can verify whether a program is fair.
Finally, we discuss open research challenges pertaining to
fairness in the broader context of data management and on
designing, building, managing and evaluating fair data sys-
tems and applications.
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