
The VLDB Journal (2022) 31:75–99
https://doi.org/10.1007/s00778-021-00692-3

REGULAR PAPER

Leveraging range joins for the computation of overlap joins

Anton Dignös1 ·Michael H. Böhlen2 · Johann Gamper1 · Christian S. Jensen3 · Peter Moser4,5

Received: 14 October 2020 / Revised: 7 June 2021 / Accepted: 1 August 2021 / Published online: 28 August 2021
© The Author(s) 2021

Abstract
Joins are essential and potentially expensive operations in database management systems. When data is associated with time
periods, joins commonly include predicates that require pairs of argument tuples to overlap in order to qualify for the result.
Our goal is to enable built-in systems support for such joins. In particular, we present an approach where overlap joins are
formulated as unions of range joins, which are more general purpose joins compared to overlap joins, i.e., are useful in their
own right, and are supported well by B+-trees. The approach is sufficiently flexible that it also supports joins with additional
equality predicates, as well as open, closed, and half-open time periods over discrete and continuous domains, thus offering
both generality and simplicity, which is important in a system setting.We provide both a stand-alone solution that performs on
par with the state-of-the-art and a DBMS embedded solution that is able to exploit standard indexing and clearly outperforms
existing DBMS solutions that depend on specialized indexing techniques. We offer both analytical and empirical evaluations
of the proposals. The empirical study includes comparisons with pertinent existing proposals and offers detailed insight into
the performance characteristics of the proposals.

Keywords Overlap join · Range join · Temporal join · Interval join · Temporal databases

This work was supported in part by a grant from the Autonomous
Province of Bozen-Bolzano “Research Südtirol/Alto Adige 2019”
through the project ISTeP and by the Innovation Fund Denmark
centre, DIREC.

B Anton Dignös
dignoes@inf.unibz.it

Michael H. Böhlen
boehlen@ifi.uzh.ch

Johann Gamper
gamper@inf.unibz.it

Christian S. Jensen
csj@cs.aau.dk

Peter Moser
p.moser@noi.bz.it

1 Faculty of Computer Science, Free University of
Bozen-Bolzano, Dominikanerplatz 3, 39100 Bozen, Italy

2 Department of Computer Science, University of Zurich,
Binzmühlestrasse 14, 8050 Zurich, Switzerland

3 Department of Computer Science, Aalborg University, Selma
Lagerlöfs Vej 300, 9220 Ålborg, Denmark

4 NOI Techpark Südtirol / Alto Adige, Bolzano, Italy

5 A.- Volta Straße 13/A, 39100 Bozen, Italy

1 Introduction

Temporal support in relational database systems has gained
significant interest during the last years, witnessed by tempo-
ral features in the SQL:2011 standard [5,28,32] as well as by
the numerous database products that offer selected temporal
features, such as IBM DB2 [36], Oracle [31], Teradata [1],
Microsoft SQL Server [30], and PostgreSQL [35].

Joins are frequent and expensive operations in database
systems. Most traditional joins focus on equality constraints
for which efficient evaluation techniques exist, such as hash
join, sort–merge join, or index join. Overlap joins for tem-
poral data are based on inequalities, making them more
demanding to compute efficiently.Not surprisingly, a number
of studies have considered the efficient evaluation of overlap
joins [6,9,12,18,34].

Example 1 Consider a relation emp that records employees
working in a department DNo over a time period P, and a
relation dept that records departments with number DNo and
name DName that are valid over a time period P. Following
the SQL:2011 standard, we use half-open time periods, i.e.,
P = [B, E), where B is included and E is excluded, and
B < E . DNo forms a temporal primary key [21] in dept, i.e.,
no tuples may have the same DNo value and overlapping P

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-021-00692-3&domain=pdf
http://orcid.org/0000-0002-7621-967X
https://orcid.org/0000-0003-3694-9026
https://orcid.org/0000-0002-7128-507X
https://orcid.org/0000-0002-9697-7670

76 A. Dignös et al.

(a)

(b)

Fig. 1 Example relations emp and dept each with a period declaration
over two attributes

value. This allows values associated with departments, e.g.,
the department name, to change over time. The SQL:2011
syntax for specifying the temporal primary key is PRIMARY
KEY (DNo, P WITHOUT OVERLAPS). Similarly, DNo
in emp forms a temporal foreign key that references the
temporal primary key in dept, i.e., for each time point an
entry in dept with the specific DNo is required to exist. The
SQL:2011 syntax for specifying the temporal foreign key
is FOREIGN KEY (DNo, PERIOD P) REFERENCES
dept (DNo, PERIOD P).

Figure 1a shows instances of the two relations. For exam-
ple, the first tuple in emp states that Sam is working in
department 2 from January through May. A graphical rep-
resentation is shown in Fig. 1b, where the time periods are
drawn as horizontal lines.

To retrieve employees together with the name of the
department they work for, an overlap join is used, which
can be expressed as follows in SQL.

SELECT *
FROM emp r, dept s
WHERE r.DNo = s.DNo AND r.P OVERLAPS s.P;

The result of this temporal primary key-foreign key join is
illustrated in Fig. 2 and contains all pairs of tuples that have
the same department and overlapping time periods.

To evaluate the above query, the DBMSs transform the
OVERLAPS predicate as follows [28]:

r.P OVERLAPS s.P ≡
r.B < s.E AND s.B < r.E

This expression is challenging to optimize because it contains
two inequality predicates over four different attributes (two
from each relation). It is very difficult to find an efficient
evaluation mechanisms for such predicates, since each of the
four attributes is only bounded on one side, e.g., for r .B <

Fig. 2 Result of overlap join of emp and dept with equality on depart-
ment number

s.E , r .B only has an upper bound s.E . Database systems do
not offer efficient mechanisms to evaluate joins with such
inequality predicates. Traditional join algorithms based on
hashing are limited to equality predicates, and join algorithms
based on sort–merge or sorted indices are inefficient since no
total order on two independent attributes can be established.

Our goal is to support not just overlap predicates and
equality predicates, but also their combination. This com-
bination corresponds to temporal primary key-foreign key
joins, which generalize conventional primary key-foreign
key joins and occur frequently in databases where tuples are
valid over a time period. We aim for a simple and general
solution that a) facilitates the integration into an actual sys-
tem, b) efficiently supports the combination of overlap and
equality predicates, and c) permits general period boundaries,
including closed, open, and half-open periods over discrete
and continuous domains.

Our solution uses a novel and effective rewriting of the
overlaps predicate into a disjunction of two range predi-
cates1:

r.P OVERLAPS s.P ≡
r.B <= s.B < r.E OR s.B < r.B

< s.E

The new predicate has two salient features. First, the two
range predicates are disjoint, meaning that they do not pro-
duce duplicates in the result and, hence, can be evaluated
independently followed by the (duplicate preserving) union
of the two results. Second, the range predicates can be eval-
uated efficiently using sorting, since in each range predicate
one attribute is lower and upper bounded, e.g., in r .B ≤
s.B < r .E , s.B has a lower and an upper bound to restrict
the search space. Thus, in contrast to predicates that either
only lower bound or only upper bound an attribute, a more
efficient evaluation mechanism for joins with predicates that
both lower and upper bound an attribute can be provided.

We devise a range–merge join algorithm that leverages
these properties and joins a point attribute of one relation
into a period attribute of the other relation. The overlap join
is computed by performing the range join twicewith swapped

1 For concreteness we follow the SQL:2011 standard and assume peri-
ods that are half-open; the predicate for general period boundaries is
given in Sect. 5.

123

Leveraging range joins for the computation of overlap joins 77

input relations (but the same sorting) followed by a union of
the two results. In addition to enabling overlap joins, range
joins are more general than overlap joins and thus have addi-
tional uses. For example, in click streams, range joins can be
used to join users’ IP addresses with the IP address ranges
of countries and states. Similarly, in shipping and packag-
ing applications, they can be used to join package weights
with weight ranges that determine their price. We show that
our overlap join solution based on range joins is as efficient
as state-of-the-art main-memory overlap join algorithms.
Second, we show how the new predicate can be evaluated
efficiently in an existing DMBS, using sorted indices, e.g.,
B+-trees. Further, we show that this solution is more efficient
than join algorithms that rely on complex indexes, such as
the R-tree, quadtree, and the relational interval tree.

Our range join solution is appealing from a systems per-
spective. In particular, in a systems setting where multiple
components, e.g., query optimization, indexing, concurrency
control, and recovery, interact, simplicity and generality of
functionality are crucial since these properties reduce the
overall systems complexity. Our index-based solution lever-
ages existing capabilities ofDBMSs,which is very attractive,
as adding new capabilities is complex and not always possi-
ble.

To summarize, the technical contributions are as follows.

– We provide a new and simple rewriting of the overlaps
predicate that transforms an overlap join into the union
of two independent range joins.

– Our solution supports the combination of the overlaps
predicate with nontemporal equality constraints.

– We provide a strict total order for period boundaries
over discrete and continuous domains and prove its cor-
rectness. This enables support for all common interval
definitions for period timestamps as well as relations
where tuplesmight have period timestampswith different
interval definitions.

– We show how the rewriting can be used to devise an
efficient yet simple main memory algorithm for overlap
joins based on the sort–merge join paradigm.

– We show how to evaluate overlap joins in DBMSs by
taking advantage of B+-trees.

– Anextensive empirical evaluation shows that (a) ourmain
memory algorithm performs on par with the state-of-the-
art stand-alone competitors and that (b) the evaluation
of the overlap join using B+-trees in an existing DBMS
outperforms the state-of-the-art systems competitors.

The rest of the paper is organized as follows. Sect. 2
reviews relatedwork, and Sect. 3 introduces preliminary con-
cepts. Section 4 proceeds to define general period boundaries
and a corresponding strict total order. Section 5 introduces
our newoverlap join transformationwhile taking into account

equality predicates andgeneral periodboundaries. This trans-
formation is used in Sect. 6 to design a simple yet efficient
main memory join algorithm. This section shows how the
new overlap join can be evaluated in an existingDBMS using
B+-tree indices. The results of the experimental evaluation
are discussed in Sect. 7. Section 8 concludes and points to
future work.

2 Related work

We organize the coverage of related work into index-based
techniques that are readily available and can be supported
directly by existing DBMSs, and pure join algorithms for the
overlap join that require modifications to DBMSs in the form
of new data structures or processing algorithms. At the end,
we cover works that are closely related and can benefit from
our approach.

Period timestamps can be represented as “one dimen-
sional” rectangles in a 2D space with the period in one
dimension and a point value in the other dimension. There-
fore, overlap joins can take advantage of the spatial indices
provided by some DBMSs. In the presence of equality
attributes, the equality attribute can be integrated into the
second dimension. Readily available spatial indices are based
on the R-tree [4,20] or Quadtree [17]. For instance, R-tree
indices in PostgreSQL are implemented through the Gener-
alized Search Tree (GiST) [26] index, which has a dedicated
implementation for range types [10]2 that are used to rep-
resent period timestamps. Indices based on the quadtree are
implemented through the space-partitioned GiST (SP-GiST)
[2] index type. Similarly to GiST, a specific implementa-
tion of SP-GiST for range types exists. When retrieving
multiple tuples using an index, clustering is a prominent tech-
nique for increasing access performance. In contrast to sorted
indices, such as B+-trees, clustering techniques for these spa-
tial indices are much less effective.

The relational interval tree by Kriegel et al. [27] is an
access structure for interval data that implements Edelsbrun-
ner’s interval tree [15] on top of a standard DBMS. The
approach uses two B+-trees to index the period timestamps
in a relation, one according to an artificial key and the start
point, and the other according to an artificial key and the end
point. The artificial keys are assigned to period timestamps
such that it is possible to arithmetically determine the set of
keys that may overlap a period timestamp. The additional
start or end point in the index is used to ensure that only
matching period timestamps are retrieved. A query period
is first transformed into two sets of keys, which in a second
step are joined with the corresponding B+-trees using stan-
dard SQL. Join techniques based on the relational interval

2 https://www.postgresql.org/docs/10/static/rangetypes.html.

123

https://www.postgresql.org/docs/10/static/rangetypes.html

78 A. Dignös et al.

tree have been proposed by Enderle et al. [16], including
the Index-Based Loop Join and several partition-based joins
(Up-Down, Down-Down, and Up-Up depending on the tree
traversal). Despite using efficient B+-trees, these joins suf-
fer from substantial overhead (see query and query plan in
Appendix C.2). In particular, the number of index joins is
high (the union of two three-way joins and one two-way
join), and the joins rely on unclustered accesses since they
use two B+-trees per relation and a relation may only be
clustered according to one of these.

Next, we review several recent studies on efficient evalu-
ation algorithms for overlap joins that generally require that
theDBMS is extendedwith new data structures or processing
algorithms.

The timeline index by Kaufmann et al. [22,23] is a main
memory index that, in addition to other operations, supports
joins with overlap predicates. The time line index stores for
each tuple the start and end points in a sorted list. An overlap
join is performed by scanning the index of two relations in
an interleaved fashion, thereby storing tuples where the start
point has been encountered (called active tuples) in a list. The
active tuples are joined with tuples of the other relation that
become active. Tuples are removed from the active tuple list
when their end point is encountered. The bottleneck of this
approach is the linked lists for maintaining the active tuples,
which is expensive and has been shown to be outperformed
by the LEBI join [34], described below, that adopts a gapless
hash map.

The overlap interval partition (OIP) join algorithm by
Dignös et al. [12] partitions the input relations into groups of
tuples with similar timestamps, thereby maximizing the per-
centage of matching tuples in corresponding partitions. This
yields a robust join algorithm that is not affected by the distri-
bution of the data. The partitioning works both in disk-based
and main-memory settings. The approach does not support
equality predicates in combinationwith the overlap predicate
and has been shown to be outperformed by the approaches
described below.

The lazy endpoint-based interval (LEBI) join algorithm
by Piatov et al. [34] extends the timeline index approach.
Since, for each tuple that becomes active, all active tuples
of the other relation must be scanned, a gapless hash map
is introduced that keeps all active tuples in memory and is
optimized for sequential reads. Additionally, lazy evaluation
is used to minimize the number of scans of the active tuple
map. This solution does not support equality predicates in
combination with the overlap predicate and has been shown
to be outperformed by the solution by Bouros and Mamoulis
[6] described below.

The disjoint interval partitioning (DIP) join algorithm by
Cafagna and Böhlen [9] creates disjoint partitions for each
relation, where all tuples in a partition are temporally dis-
joint. To compute a temporal join, all outer partitions are

sort–merge-joined with each inner partition. Since tuples in a
partition are disjoint, the algorithm is able to avoid expensive
backtracking. This algorithm is only efficient if few tuples in
each input relation overlap since the number of partitions is
proportional to the maximum number of overlapping tuples.

The O2iJoin by Luo et al. [29] performs an overlap join
based on the O2i index, a flat two-level index, where the first
level comprises a sorted array containing each endpoint of the
relation being indexed and the second level contains inverted
lists that approximate the nesting structure of the period
timestamps in the relation. Periods may be stored in more
than one inverted list. An overlap join is performed by scan-
ning one relation in sorted order and joining all tuples using
theO2i index of the other relation. TheO2iJoin ismuchmore
complex to implement than the state-of-the-art approach by
Bouros and Mamoulis [6] that offers comparable runtime.

Bouros and Mamoulis [6] propose a forward-scan (FS)-
based plane sweep algorithm [8] for interval joins together
with two optimizations that reduce the number of com-
parisons. First, a grouping step groups consecutive tuples
of the same relation and allows to produce join results in
batches, which avoids redundant comparisons. Second, a
bucket indexing strategy divides the domain into tiles and
places start points of periods into the corresponding tiles.
This makes it possible to produce the results for all tuples of
a tile that is completely covered by a period without compar-
isons. To further reduce the query time, a parallel evaluation
strategy using a domain-based partitioning of the input rela-
tions is proposed. TheFS algorithmwith grouping and bucket
indexing is shown to outperform previous approaches, such
as the OIP Join [12], the LEBI Join [34] (based on the time-
line index [22,23]), and the DIP Join [9]. The authors further
improve their approach [7] by introducing an enhanced loop
unrolling, a decomposed data layout, a self-join optimiza-
tion where pairs of joining tuples are only reported once, and
parallelization techniques. We modify the overlap predicate,
on which the FS algorithm by Bouros and Mamoulis [6,7] is
based, so that we can split the overlap join into two disjoint
range joins. As a result, we only need to implement a join
algorithm for range joins,which is a smaller andmore general
primitive for aDBMS that canbeused for other purposes.Our
solution computes overlap joins in combination with equal-
ity predicates and supports period timestamps with different
interval definitions over discrete or continuous domains. Our
approach has the same complexity as the FS algorithm,
and our empirical study shows that using the smaller range
join primitive does not sacrifice query performance. Further,
all proposed optimizations (grouping, bucket indexing, and
parallelization) are applicable to our solution. Finally, our
overlap predicate can be computed efficiently using B+-tree
indices in existing systems without altering the DBMS.

The predicates used to formulate the overlap conditions
in the introduction are inequality predicates, and the overlap

123

Leveraging range joins for the computation of overlap joins 79

join can be considered as an inequality join. Khayyat et al.
[24,25] point out that contemporary RDBMSs use nested-
loop joins for such cases. They propose the IEJoin that, for
each relation and join attribute in the inequality, uses a sorted
array to find values satisfying the inequality predicates more
efficiently. To associate the values sorted in different orders
from the same relation with the original tuples, they use
permutation arrays and additional data structures to limit
the search space. Despite the better efficiency than tradi-
tional join algorithms, the complexity of the IEJoin is still
quadratic, i.e.,O(n ·m), where n and m are the cardinalities
of the two input relations.While Khayyat et al. focus on joins
with general inequality predicates, our approach exploits the
additional constraint that the inequalities come from periods,
and thus we can device a rewriting that offers a more effi-
cient execution scheme. Additionally, we support separate
equality predicates in combination with overlap and range
predicates, whereas they rely on traditional hash joins pro-
vided by a DBMS for cases where a join involves a separate
equality predicate.

The temporal alignment framework [11,13] provides effi-
cient support for all temporal relational algebra operations
over period timestamped data, including aggregations and
all forms of join operations. The key idea is to preprocess the
input relations depending on the desired algebra operation
using two primitives to obtain an intermediate relation,where
the tuples are timestamped with the periods of the result
tuples. A nontemporal join over the intermediate relations
with an appropriate equality constraint computes the result
of a temporal join. By reducing temporal operations to their
corresponding nontemporal counterparts, existing indexing
techniques and query optimization techniques can be reused.
This approach and other approaches that rely on SQL rewrit-
ing [1,14] do not provide an efficient mechanism to calculate
overlap or range joins, but instead rely on the DBMS, i.e.,
these approaches benefits from the efficient execution intro-
duced in this paper.

Table 1 summarizes the approaches for the overlap join
with information on implementation(s) used in the exper-
iments, and whether the approach has been shown to be
outperformed by another approach or has been shown to have
the same performance. In our experimental study, we com-
pare our approach with the approaches that have not been
outperformed by others, andwe also extend these approaches
if they do not support equality predicates.

3 Preliminaries

A relational schema is represented as R = (A1, . . . Am),
where the Ai are attributes with domain Ωi . A tuple r over
schema R contains for every Ai a value vi ∈ Ωi . A relation
r over schema R is a finite multi-set of tuples over R. A

relation may contain one or more period attributes, and we
denote a relation as a temporal relation if it contains at least
one period attribute. A period attribute is either composed of
two attributes (according to the SQL:2011 standard) or is a
single attribute (e.g., range types in PostgreSQL). Our goal is
to provide efficient support for temporal database functional-
ity as defined in SQL:2011, butwe do sowithout constraining
the number and type of time dimensions. For notational con-
venience, we use P to refer to the period attribute of interest
and B and E to denote, respectively, its start and end period
boundary. Next, ◦ denotes concatenation of tuples, i.e., for
a tuple r with schema R = (A1, . . . Am) and a tuple s with
schema S = (A′

1, . . . , A
′
k), r ◦ s returns a tuple with schema

(A1, . . . , Am, A′
1, . . . A

′
k) and the corresponding values from

r and s. We use Ov(P1,P2) to denote the overlap predi-
cate between two time periods P1 and P2 that evaluates to
true, iff P1 and P2 contain at least one common point. We
write a < b < c as an abbreviation for a < b ∧ b < c.
For two relations r and s, and a set of common attributes
C = {C1, . . . ,Ck}, we use r.C = s.C to denote the conjunc-
tive equality over all attributes inC. This provides a compact
notation for equality joins without loss of generality since
users can rename attributes. For cases when C is empty, we
define r.C = s.C to be true. We use � to denote the multi-set
union, i.e., the duplicate-preserving union corresponding to
SQL’s UNION ALL.

A range join is an equi-join in which the join predicate
additionally specifies that a value from one relation falls into
the range between two values from the other relation.

Definition 1 (Range Join) Let r and s be relations with
schema R and S, respectively; let C ∈ R ∩ S be the set
of joint attributes; let attributes B ∈ R and E ∈ R represent
a range (or period) in r; and let attribute X ∈ S be an attribute
with the same domain as B and E . Further ≺S∈ {<,≤} and
≺E∈ {<,≤}. A range join between r and s is expressed as:

r��r.C=s.C∧ r.B≺Ss.X≺E r.E s

The comparison operators ≺S∈ {<,≤} and ≺E∈ {<, ≤}
specify whether X can be equal to B and E , respectively.

An overlap join3 is an equi-join inwhich the join predicate
additionally specifies that a period of one relation overlaps
the period of the other relation.

Definition 2 (Overlap Join) Let r and s be temporal relations
with schema R and S, respectively, and let C ⊆ R ∩ S be
the set of joint attributes. The overlap join between r and s
is defined as:

3 We do not use the term temporal join to avoid confusion. We con-
sider joins with the OVERLAPS predicate [28] (as, for example, in
SQL:2011), which, in contrast to temporal joins, do not return the inter-
section of the time periods.

123

80 A. Dignös et al.

Table 1 Summary of
approaches for the overlap join
with information on
implementations and whether
they were shown to be
outperformed by another
approach

Work Implementations Outperformed by

Guttman [4,20] GiST, PGIS, BtGiST –

Finkel and Bentley [17] SPGiST –

Enderle et al. [16] RIT –

Kaufmann et al. [22] TLJoin LEBIJoin

Dignös et al. [12] OIPJoin LEBIJoin

Piatov et al. [34] LEBIJoin bgFS

Cafagna and Böhlen [9] DIP bgFS

Luo et al. [29] O2iJoin bgFS

Bouros and Mamoulis [6] bgFS –

r��Ov(r.P,s.P)
C s = {r ◦ s | r ∈ r ∧ s ∈ s ∧

r .C=s.C ∧ Ov(r .P, s.P)}

A summary of the most important notation is provided in
Table 2.

4 General period boundaries

Period timestamps are frequently represented as half-open
periods of the form [B, E) where B < E . In this section, we
show how to support timestamps that have other boundary
types over discrete or continuous domains.Theperiodbound-
ary types do not have to be fixed at the schema level. Instead,
the boundaries are allowed to bedynamic, i.e., different tuples
in a relation may have period values with different bound-
ary types. This is, for instance, allowed for PostgreSQL range
types [10,35], where different tuplesmay use different period
types selected among [B, E) (default), [B, E], (B, E], and
(B, E). That is, the range data type allows period values with
any combination of period boundary types.

Definition 3 (General periods) Let ΩT be a discrete or
continuous time domain and let ’[’, ’]’, ’(’, and ’)’ be bound-
ary types. A period timestamp is represented by a pair
P = (B, E) where B = (vs, bs) is the start boundary
and E = (ve, be) is the end boundary with vs, ve ∈ ΩT,
bs ∈ {’[’, ’(’}, and be ∈ {’]’, ’)’}.

Thus, a general period is represented by a start boundary
B = (vs, bs) and an end boundary E = (ve, be), each of
which is composed of a boundary value and a boundary type.
The type indicates whether the boundary value is included
(’[’, ’]’) in the period or is excluded (’(’, ’)’). For instance,
the period P = ((3, ’[’), (9, ’)’)) contains all values from 3
(included) to the largest value smaller than 9. In an integer
domain, these are the values from 3 to 8. In the domain of
real values, the period contains infinitely many numbers, and
unlike for an integer domain where (9, ’)’) = 8, the end
time point cannot be explicitly computed or represented. For

brevity, we also write B = ’[3’ for P = ((3, ’[’) and P =
[3, 9) for P = ((3, ’[’), (9, ’)’)).

Example 2 Consider a start boundary B = ’(3’ and an end
boundary E = ’4)’. In an integer domain, we have B > E
since B represents the successor of 3, which is 4, and E
represents the predecessor of 4, which is 3. In the domain of
real numbers, however, B = ’(3’ is smaller than ’4)’ = E .

Similarly, we have ’(2’ = ’[3’ in an integer domain, but
’(2’ < ’[3’ in the domain of real numbers.

Note that typical implementations use flags to indicate
whether a period boundary is a start or an end boundary and
whether it is inclusive or exclusive. For instance, PostgreSQL
uses one flag each.4 Since predicates over period timestamps
compare start and end points, we must establish a total order
among period boundaries. This is straightforward for dis-
crete domains since all boundaries can be given explicitly so
that all periods can be transformed into a uniform represen-
tation. In PostgreSQL, for instance, range types for integers
(int4range) are internally converted to the default representa-
tion [B, E)byusingpredecessors and/or successor functions,
e.g., [3, 4] is converted to [3, 5). Establishing a total order
among period start and end points is more challenging for
continuous domains,where predecessors and successors can-
not be represented explicitly.

We proceed to define an ordering B1 < B2 for general
period boundaries B1 and B2 over continuous domains.

Definition 4 (Binary Relation < on General Period Bound-
aries over Continuous Domains) LetΩT be a totally ordered
continuous domain, and let B1 = (v1, b1) and B2 = (v2, b2)
be two period boundaries with v1, v2 ∈ ΩT and b1, b2 ∈
{’[’, ’]’, ’(’, ’)’}. The binary relation < on period boundaries
B1 < B2 is defined using comparison operators on values of
domain ΩT as follows.

4 https://github.com/postgres/postgres/blob/REL_10_STABLE/src/include/utils/
rangetypes.h.

123

https://github.com/postgres/postgres/blob/REL_10_STABLE/src/include/utils/rangetypes.h
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/include/utils/rangetypes.h

Leveraging range joins for the computation of overlap joins 81

Table 2 Frequently used
notation

Notation Description

r, s Input relations

z Result relation

r , s, z Tuples of relations r, s and z

C Set of attributes used for equality conditions

P Period attribute

B, E Start and end boundary of P

� Duplicate preserving union

≺ Comparison operator < or ≤
a ≺S b ≺E c Range predicate with comparison operators ≺S and ≺E

Ov(P1,P2) Overlap predicate

B1< B2≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 < v2 if b1 = ’[’ ∧ b2 = ’[’

v1 < v2 if b1 = ’[’ ∧ b2 = ’]’

v1 ≤ v2 if b1 = ’[’ ∧ b2 = ’(’

v1 < v2 if b1 = ’[’ ∧ b2 = ’)’

v1 < v2 if b1 = ’]’ ∧ b2 = ’[’

v1 < v2 if b1 = ’]’ ∧ b2 = ’]’

v1 ≤ v2 if b1 = ’]’ ∧ b2 = ’(’

v1 < v2 if b1 = ’]’ ∧ b2 = ’)’

v1 < v2 if b1 = ’(’ ∧ b2 = ’[’

v1 < v2 if b1 = ’(’ ∧ b2 = ’]’

v1 < v2 if b1 = ’(’ ∧ b2 = ’(’

v1 < v2 if b1 = ’(’ ∧ b2 = ’)’

v1 ≤ v2 if b1 = ’)’ ∧ b2 = ’[’

v1 ≤ v2 if b1 = ’)’ ∧ b2 = ’]’

v1 ≤ v2 if b1 = ’)’ ∧ b2 = ’(’

v1 < v2 if b1 = ’)’ ∧ b2 = ’)’

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

The other comparison operators are defined accordingly,
i.e., B1 > B2 ≡ B2 < B1, B1 ≤ B2 ≡ ¬(B2 < B1),
B1 ≥ B2 ≡ ¬(B1 < B2), and B1 = B2 ≡ ¬(B1 < B2) ∧
¬(B2 < B1).

Example 3 Consider again the period boundaries X = ’(3’
and Y = ’4)’, represented as (vx , bx) = (3, ’(’) and
(vx , bx) = (4, ’)’), respectively.

– To evaluate X < Y , Case 12 applies: X < Y ≡ vx <

vy ≡ 3 < 4 ≡ true. For an integer domain (cf. Defini-
tion 5), we have X < Y ≡ vx + 1 < vy − 1 ≡ 3 + 1 <

4 − 1 ≡ 4 < 3 ≡ false.
– To evaluate X > Y , Case 15 applies: X > Y ≡ Y < X ≡

vy ≤ vx ≡ 4 ≤ 3 ≡ false. For a discrete integer domain
in Definition 5, this evaluates to Y < X ≡ vy − 1 ≤
vx ≡ 4 − 1 ≤ 3 ≡ 3 ≤ 3 ≡ true.

Lemma 1 (Strict Total Order over Continuous Domains) The
binary relation < in Definition 4 imposes a total order on
period boundaries over their continuous linearly ordered
domain.

The proof for Lemma 1 is provided in Appendix A.1.
In the following, whenever we compare period boundaries

for continuous domains,we assume the comparisonoperators
<, >, ≤, ≥, and = as stated in Definition 4 and Lemma 1.
For discrete domains we use Definition 5 Appendix B.

5 Overlap join as a union of two range joins

5.1 A new rewriting of the overlaps predicate

We rewrite the overlaps predicate, Ov(r .P, s.P) ≡ r .B ≤
s.E∧s.B ≤ r .E , into a disjunction of two termswith disjoint
results (see Sect. 5.2) so that they can be computed indepen-
dently without producing duplicates. This forms the basis for
the efficient join algorithms in Sects. 6.1 and 6.2.

Lemma 2 Assume two tuples r and s, each with a general
period attribute P = (B, E) with starting boundary B =
(vs, bs) and ending boundary E = (ve, be), where bs ∈
{’[’, ’(’}, be ∈ {’]’, ’)’}, and B ≤ E. The overlaps predicate
for general boundaries can be expressed as:

Ov(r .P, s.P) ≡
(r .B ≤ s.B ≤ r .E) ∨ (s.B < r .B ≤ s.E),

where < and ≤ are defined according to Definition 4.

The proof for Lemma 2 is provided in Appendix A.2.
In settings where the period type enforces particular

boundary types, including [., .], [., .) (used by SQL:2011),
(., .], and (., .), and all tuples use these boundary types,
equivalent overlap predicates are provided in Lemma 7 in
Appendix B.

123

82 A. Dignös et al.

5.2 Analysis

First, we prove that the two terms in the disjunction of the
overlaps predicate in Lemma 2 are disjoint. That is, both
terms cannot be true for a pair of tuples.

Lemma 3 Given two tuples r and s, each with a period
attribute P = (B, E). The two terms r .B ≤ s.B ≤ r .E
and s.B < r .B ≤ s.E are disjoint.

Proof We have to show that the conjunction of the two terms
is not satisfiable, i.e., the expression r .B ≤ s.B ≤ r .E ∧
s.B < r .B ≤ s.E is unsatisfiable. This is the case since
r .B ≤ s.B and s.B < r .B lead to a contradiction. ��

Lemma 3 forms the basis for evaluating the two terms
r .B ≤ s.B ≤ r .E and s.B < r .B ≤ s.E of the over-
laps predicate independently. Since the terms are disjoint,
the corresponding result sets are disjoint and can be com-
bined to obtain the overlaps join result without introducing
duplicates.

Note that an equality predicate can be distributed to the
two terms of the overlaps predicate in Lemma 2. This is
important since overlap joins often include equality predi-
cates (cf. Definition 2).

Theorem 1 summarizes the above results and shows that
the overlap join between two relations with period times-
tamped tuples can be computed by two independent range
joins between a time period and a time boundary, followed
by a union with no need for duplicate removal.

Theorem 1 Let r and s be relations, each with a period
attribute P = [B, E), and let � denote duplicate preserv-
ing union (SQL’s UNION ALL). The overlap join can be
expressed as the union of two range joins:

r��Ov(r.P,s.P)
C s ≡ r��r.C=s.C∧r.B≤s.B≤r.E s �

r��r.C=s.C∧s.B<r.B≤s.E s

Proof The proof follows directly from Lemmas 2 and 3 and
the distributivity of conjunctions over disjunctions. ��

6 Evaluation of overlap joins

6.1 A sort–merge-based algorithm

6.1.1 Approach

Our approach to compute overlap joins is based on range
joins. Thus, we proceed to provide an efficient algorithm for
computing range joins (cf. Definition 1) based on the sort–
merge paradigm.

The range–merge join (RMJ) algorithm is shown in Algo-
rithm 1. It takes two sorted input relations, relation r, with

start point B and endpoint E , and relation s, with attribute
X . In addition, it takes optional equality attributes C and
two comparison operators that include or exclude the start
and/or end time point in the range join (cf.Definition 1). Input
relation r must be sorted according to equality attributes C
and start time B, i.e., (C, B), and input relation s must be
sorted according to equality attributesC and attribute X , i.e.,
(C, X). The algorithm first reads the first tuple from each
relation. Then, as long as the two relations have not yet been
fully read, one of the following steps is executed: skip outer,
joinmatch, or skip inner. Skip outer (lines 3–5) applies if the
equality attributes C are smaller in r than in s. In this case,
the current tuple r is skipped. If C = {}, this step is never
executed since we assume r .C = s.C is true. Join match
(lines 6–12) applies if the equality predicates C match and
the start time of r is smaller than (or equal to) the value of
attribute X of s, which might produce result tuples. We mark
the position of the current tuple in s, as it may alsomatch sub-
sequent tuples in r. Then, the while-loop produces outputs
for all subsequent tuples in s that satisfy the join predicate
with r . When all matches for tuple r are produced, the next
tuple in r is retrieved, and the position in s is set back to
the marker. Skip inner (lines 13–14) applies if the equality
attributes C of the current tuple r in r exceed those in s or if
they are equal and the value of attribute X of s is smaller than
the start time point in r . In these cases, we skip the current
tuple in s and move to the next.

Algorithm 1: RMJ(r, s,C, B,≺S, X ,≺E, E, O)

Input: Relation r sorted by (C, B)

Relation s sorted by (C, X)

Equality attributes C
Start point B in r
Comparison operator ≺S∈ {<,≤} for B and X
Attribute X in s
Comparison operator ≺E∈ {<,≤} for X and E
End point E in r
Output schema O

Output: Result of r��r.C=s.C∧r.B≺Ss.X≺E r.E s.

1 r ← first(r);
2 s ← first(s);
3 while r �= ω ∧ s �= ω do
4 if r .C < s.C then
5 r ← next(r); // skip outer

6 else if r .C = s.C ∧ r .B ≺S s.X then
7 marked ← s; // mark

8 while s �= ω ∧ r .C = s.C ∧ s.X ≺E r .E do
9 output r and s according to schema O;

10 s ← next(s);

11 r ← next(r); // end of matches for outer

12 s ← marked; // backtrack inner

13 else
14 s ← next(s); // skip inner

123

Leveraging range joins for the computation of overlap joins 83

We can now use the RMJ algorithm to compute the over-
lap join according to Theorem 1 as follows, where R is the
schema of relation r, S is the schema of relation s, and we
use the start and end time point of one relation and the start
point B as attribute X of the other relation.

1. Sort r and s by (C, B)

2. Compute:

RMJ (r, s, C, B, ≤, B, ≤, E , R ◦ S) �
RMJ (s, r, C, B, <, B, ≤, E , R ◦ S)

Note that while for the overlap predicate, we have four
attributes, i.e., start (B) and end (E) time points of both input
relations, in each of the range predicates, we only have three,
i.e., start and end time point of one relation and start of
the other relation. Since we reverse the input in the second
range join, overall all four attributes are used in the execution
scheme, and recall from Theorem 1 that all result tuples of
the range joins are part of the result of the overlap join.

Example 4 The overlap join from Example 1 can be com-
puted as follows. First, we sort both input relations by
(DNo, B). Second, we combine the result of RMJ(emp,

dept, {DNo}, B,≤, B,≤, E, R◦S) and RMJ(dept, emp,

{DNo}, B,<, B,≤, E, R◦S),where R= (EName,DNo, B,

E) and S = (DName,DNo, B, E) are the schemas of the two
relations, respectively.

Figure 3a illustrates the processing of the first range–
merge join. For the first tuple e1 in sorted order from relation
emp, relation dept is scanned in sorted order from the begin-
ning. Tuples e1 and d1 have the same department value, but
the start of e1 is not smaller or equal to the start of d1; thus,
d1 is skipped in line 14 (indicated by “-”). Next, tuple d2 is
checked. This time, the department value of e1 is smaller than
that of d2, so e1 is skipped in line 5 (indicated by “x”), and
tuple e2 is fetched. This tuple is skipped for the same reason,
and tuple e3 is retrieved that is checked with the current inner
tuple d2. They have the same department, and the start time of
e3 is smaller than or equal to the start time of d2 (note that we
use≤ for the start time). Tuple d2 is marked, and since it falls
within the period of e3, an output is produced (indicated by
“�”), and the inner relation is advanced to tuple d3 (lines 7–
10). Tuple d3 has the same department, but its start does not
fall within e3’s period. Thus, the next outer tuple e4 is fetched
(indicated by “⊥”), and the inner relation is restored to tuple
d2. Tuples e4 and d2 have the same department, but the start
of d2 is before the start of e4, and d2 is skipped. Next, d3 is
fetched. Itmatches e4. Then tuple d3 ismarked, and the end of
the inner relation is reached. The outer relation is advanced,
and the inner relation is restored to tuple d3. Since the outer
relation’s end is reached, the algorithm terminates. Overall,
this yields two result tuples: (e3, d2) and (e4, d3).

(a)

(b)

Fig. 3 Range–merge joins for our running example: � indicates a
match, ⊥ the end of matches, - an inner skip, and x an outer skip

Other than swapping the two input relations, the process-
ing of the second range–merge joinRMJ(dept, emp, {DNo},
B,<, B,≤, E, R◦S) is very similar and is illustrated in
Fig. 3b. The main difference is that the comparison operator
< is used for the start time instead of ≤. Thus, for instance,
for tuple d2, the inner tuple e3 is skipped, which avoids a
duplicated result for (e3, d2) that has already been produced
in the previous range–merge join.

6.1.2 Complexity

Lemma 4 ((Join Time) The complexity of the overlap join
using RMJ isO(n · log n+m · logm+ z), where n and m are
the cardinalities of the two input relations and z is the result
size.

Proof The first step is to sort both relations. Assuming the
size of relation r is n and the size of relation s ism, this results
inO(n·log n+m ·logm). Thenwe have to add the complexity
of the RMJ algorithm (cf. Algorithm 1) that is composed of
three conditions. Each condition advances the current tuple
pointer of one relation by one, resulting in O(n + m). The
while loop in lines 8–10 produces result tuples. Assumingwe
have z result tuples, the loop is executedO(z) times. In total,
wegetO(n·log n+m·logm)+O(n+m)+O(m+n)+O(z) =
O(n · log n + m · logm + z). ��

6.1.3 Considerations for a system implementation

We proceed to cover considerations related to the system
implementation of RMJ in PostgreSQL.

A key strength of our approach is the generality and
the simplicity of integration into a database system, where
implementation and maintenance of code come at a cost. To
integrate RMJ into PostgreSQL we had to implement a sort–
merge-based algorithm for range joins (Algorithm 1) that
is similar to the traditional equality-based sort–merge join

123

84 A. Dignös et al.

already present in these systems. This provides support for
range joins as well as overlap joins. PostgreSQL implemen-
tations for sorting, reuse of sort orders, as well as exploiting
sort orders of available indices to avoid sorting could be lever-
aged directly. Since the infrastructure for query rewriting and
equivalence rules are mature core parts of these systems, the
overlap join is a transformation of the overlap query expres-
sion into a query expressionwith two range joins (Theorem1)
that seamlessly fits into the existing query processing archi-
tecture.

Another crucial feature in a system implementation, in
particular for a database optimizer, is cost estimates. Cost
estimates for sorting as well as cardinality estimates for input
and output over predicates are already available in these sys-
tems. The only missing estimates are cost estimates for the
range–merge join (Algorithm 1). Database systems estimate
the cost of execution algorithms based on their CPU and IO
costs, and they mostly differentiate three cost factors: the
CPU cost for attribute comparisons; the cost of sequential
access to the data; and the cost of random access to the data.

Assuming that relations are not arbitrarily skewed, and
that each tuple in r produces at least one result tuple, simple
CPU (number of attribute comparisons) and IO (number of
sequential and random accesses) cost functions are as fol-
lows:

c_cpu(RMJ(r , s)) =(|r| + |s|) · |C| +
(|r| + |s|) · (|C| + 1) +
(|z|) · (|C| + 1)

c_io(RMJ(r , s)) =|r| · seq access +
|r| · rand access +
|z| · seq access

|s| · seq access

In terms of CPU costs, the first term considers the attribute
comparisons when tuples in the outer relation r or inner
relation s are skipped after producing join results (line 4 in
Algorithm 1), the second term considers the attribute com-
parisonswhen outer and inner relation have the same equality
attributes (line 6 inAlgorithm 1), and the third term considers
the attribute comparisons needed to produce the result.

In terms of IO costs, the first term considers the sequen-
tial reading of the outer relation r (line 5 in Algorithm 1),
the second term considers the backtracking in the inner rela-
tion s (line 12 in Algorithm 1), the third term considers the
sequential reading of s to produce the result, and the last term
considers the sequential reading of s for skipping tuples in s
when they will no longer produce a result.

More advanced cost estimates are based on the cardinality
estimates for the predicates (lines 4, 6, and 8 in Algorithm 1)
and are part of future work.

6.2 Index-based evaluation for standard dbmss

6.2.1 Approach

Databasemanagement systems rely heavily on sorted indices
for efficient query processing. One of the most important of
such indices is the B-tree [3,33]. DBMS implementations
usually use B+-tree variants, where (in contrast to traditional
B-trees) all keys reside in leave nodes, and the intermediate
nodes form an index structure on the leaf nodes. To support
efficient range searches, leaf nodes are connected by pointers.

While the approach in Sect. 6.1 requires to alter a DBMS
and implement a new sort–merge-based algorithm for range
joins, in this section, we show how, thanks to the transforma-
tion covered in Sect. 5, an overlap join can be formulated that
can be evaluated efficiently in existing DBMSs, such as Post-
greSQL or Oracle, using B+-trees. Typically, index-based
joins are only used for very selective joins. However, for the
overlap predicate, there are no efficient alternatives because
traditional hash or sorted merge joins are inapplicable. For
simplicity and in accordance with the SQL:2011 standard,
we use static half-open periods of type P = [B, E) in the
following. For general boundaries, we refer to Appendix C.1.

Lemma 5 An SQL:2011 overlap join query between two
relations r and s with equality constraints over attributes
C = {C1, . . . ,Ck},i.e.,

SELECT *
FROM r, s
WHERE r.C1 = s.C1 AND ...

AND r.Ck = s.Ck
AND r.P OVERLAPS s.P;

is equivalent to the following SQL query:

SELECT *
FROM r, s
WHERE r.C1 = s.C1 AND ... AND r.Ck = s.Ck

AND r.B <= s.B AND s.B < r.E
UNION ALL
SELECT *
FROM r, s
WHERE r.C1 = s.C1 AND ... AND r.Ck = s.Ck

AND s.B < r.B AND r.B < s.E;

Proof The proof follows directly from Theorem 1 with the
static predicate from Lemma 7 (case P = [vs, ve)). ��

The SQL query is composed of the union of two range
joins, each of which can be evaluated efficiently using stan-
dard indexing technologies available in database systems.

Example 5 By applying Lemma 5, the overlap join in our
running example can be rewritten as follows:

SELECT *
FROM emp r, dept s
WHERE r.DNo = s.DNo

AND r.B <= s.B AND s.B < r.E
UNION ALL

123

Leveraging range joins for the computation of overlap joins 85

Fig. 4 Query plan for the new rewriting approach with B+-trees

SELECT *
FROM emp r, dept s
WHERE r.DNo = s. DNo

AND s.B < r.B AND r.B < s.E;

Figure 4 shows the PostgreSQL query plan if both relations
have a B+-tree index on the combined key DNo and the
tuple’s start time: index e_idx for relation emp and index
t_idx for relation dept. Each join of the query plan scans
the outer relation and, for each tuple, applies a range scan on
the inner relation using the index.A similar query planwould,
for instance, be generated by Oracle DB, where the corre-
sponding query plan terms are a NESTED LOOP between a
TABLE ACCESS FULL and an INDEX RANGE SCAN.

We use this example to illustrate how theB+-trees are used
for the computation of the two range joins. Figure 5 shows
the B+-trees for the two relations together with the index
lookups that are indicated by colored lines. For this example,
we use the tuple identifiers (e1, …) from Fig. 3; and for
simplicity, we use binary trees, where left descendants store
keys that are smaller than or equal to (≤) a node’s key, and
the right descendants store keys that are larger than (>) a
node’s key. Consider now the first join from the query plan
in Fig. 4, where the outer relation emp with the four tuples
e1, e2, e3, and e4 is scanned sequentially. For each tuple, the
search path in the B+-tree is indicated by a colored line in
Fig. 5a. For instance, for tuple e3 = (Sam, 2, [1, 6)) (blue
line), we have to find all tuples in relationdeptwithDNo = 2
and start time between 1 (included) and 6 (excluded). This
is achieved by identifying the first leaf node with key larger
than or equal to (2, 1) and then following the leaf pointer until
a node with a key larger than or equal to (2, 6) occurs. All
tuples encountered at the leaf level contribute to the result.
Similarly, Fig. 5b shows the setting for the second join of the
query plan, where dept is scanned sequentially and, for each
of the three tuples d1, d2, and d3, the index on emp is used
to retrieve matching tuples.

Observe that the query processing here is very similar
to the range–merge join described in the previous section.
The essential difference is that the range–merge join finds
the first matching tuple in the sort order using skipping and
backtracking,whereaswith the index, the firstmatching tuple
is found by navigating through the levels of the index. The

(a)

(b)

Fig. 5 Index joins for our running example

indices required for the range joins may seem specific to this
particular join, but as we find in the experimental study, index
creation is very efficient and thus may still be beneficial for
the purpose of a single join. In addition, such an index is
also beneficial to queries retrieving histories. For instance,
in our example, such an index can be used to retrieve the
history of changes or all employees of a department given its
department number, since the department number is a prefix
of the index.

The above rewriting of the overlap join, which is based
on the new formulation of the overlaps predicate, is the
first approach to processing the overlap join in DBMSs that
requires only B+-tree indices, without any need for auxiliary
tables, functions, or data structures.

6.2.2 Complexity

In this section, we analyze the complexity of our approach.

Lemma 6 ((Join Time) The time complexity of the overlap
join using B+-trees is O(n · logm +m · log n + z), where n
and m are the cardinalities of the two input relations and z
is the result size.

Proof We have two independent joins (cf. Fig. 4).
Assuming that one of these joins is between relations with

x and y tuples, we have: A scan of the relation with x tuples
and O(x) index scans that each traverses the B+-tree on
the relation with y tuples once. The height of the B+-tree
is O(log y), and the total is O(x · log y).

123

86 A. Dignös et al.

Both joins scan a total of O(z) leaf pages to retrieve
O(z) result tuples, and the UNION ALL corresponding to
an append has linear complexity O(z).

By substitution and summing up, we have:O(n · logm +
m · log n + z). ��

7 Experimental evaluation

We proceed to evaluate the proposed predicate transforma-
tion that enables the computation of overlap joins using
general purpose range joins. First, we compare our approach
based on range–merge joins from Sect. 6.1 to the state-of-
the-art stand-alone overlap join algorithm. Then, we study
the computation of overlap joins in DBMSs using our index-
based technique presented in Sect. 6.2.

7.1 Setup and datasets

The experiments were run on a machine with an Intel Xeon
CPU X5550 with four cores @ 2.67GHz, 8192KB of cache,
50GB RAM, and a 64-bit Ubuntu SMP GNU/Linux with
kernel version 3.13.0-117-generic. All stand-alone solutions
were implemented in C by the same author and com-
piled with gcc version 4.8.4 using the following flags: -O3
-march=native -DNDEBUG -std=c99 -D_GNU_
SOURCE -Wall. The tuples used in the experiments con-
tain a start time point and an end time point, as well as two
other data attributes, one of which is used for equality pred-
icates. Each result tuple is counted and undergoes a binary
XOR operation on the period’s start point [6,34] and data
attributes. The result of the XOR is written to a referenced
memory location to simulate a workload. This ensures that
the C compiler cannot eliminate portions of the code. For
the experiments with a standard DBMS, we use PostgreSQL
10.1 with its default configuration. To measure the execution
times of queries, we use EXPLAIN (ANALYZE, TIMING
FALSE), which reports the total execution time, excluding
the time for sending the result to the client application. This
provides a fair comparison for all approaches, since the pro-
duced result is the same in all cases. In the experiments,
we use integers for the time domain, since one competi-
tor (RIT) requires a discrete domain; and we use integers
for the equality attributes, since some competitors (GiST,
SPGiST, and PGIS) only support numerical values. For the
other approaches, the experiments with other data types (e.g.,
floats or strings) are slower due to more expensive compari-
son operations, but the general trend remains the same.

The experiments use synthetic and real-world datasets.We
use synthetic datasets to be able to vary a single parameter
of the data distribution and keep all other parameters con-
stant. The default parameter values for the synthetic dataset
are summarized in Table 3. As the default, we use relations

Table 3 Default parameter values for synthetic data

Parameter Default value

Number of tuples 10 M

Domain [1,100 M]

Distribution of start points Uniform

Distribution of period durations Zipf with θ = 1.7

Maximum duration of periods 1 M

Equality attributes uniform 10

with 10 M tuples, a time domain of [1, 108], and uniformly
distributed start points of periods from the time domain. The
period durations are Zipfian distributed with skew parameter
θ = 1.7 and maximum duration 106. Low values of θ yield
longer periods, and high values yield shorter periods. For
the experiments with equality predicates, the default is 10
distinct uniformly distributed values. As workloads for the
synthetic dataset, we perform overlap joins with and without
equality constraints.

The following three real-world datasets and workloads
are used in the experiments, where we use the same dataset
for both input relations, as is done in previous work. The
incumbent dataset [19] records the history of assignments of
employees to departments over a 16-year period at the gran-
ularity of days with 83, 857 tuples and 583 departments. On
average, a department has around 140 employees assigned
with a minimum of 1, a maximum of 2251, and standard
deviation of 251. As a workload, we compute the employees
that work in the same department at the same time, i.e., an
overlap join with equality on the department attribute. The
flight dataset contains 684, 838 tuples, each recording the
actual time period of a flight from a departure airport (FAP)
to a destination airport (DAP). The data ranges over 1 month,
has a granularity of minutes, and contains 365 departure and
365 destination airports. On average, 1876 flights started at a
given airport, with a minimum of 4, a maximum of 34, 961,
and standard deviation of 4, 502. As a workload, we compute
the airplanes that are in transit at the same time and have the
same destination airport. The webkit dataset [37] records the
history of files in the svn repository of the Webkit project
over a 13-year period at a granularity of seconds. The dataset
captures 1, 547, 419 file changes for 483, 724 different files
and 142, 903 revisions. The valid time represents the periods
when a file was not changed. On average, 41 files are created
within the same revision, with a minimum of 1, a maximum
of 46, 153, and standard deviation of 4, 491. As a workload,
we compute the evolution of files (files existing at the same
time) that were initially created in the same revision. The dis-
tributions of time periods on the time line and their durations
are shown in Fig. 6.

123

Leveraging range joins for the computation of overlap joins 87

(a)

(b)

(c)

Fig. 6 Distribution of start time points and distribution of durations for
the real-world datasets in % of the domain (histograms with 200 bins)

For the comparison with previous work that does not
support equality predicates in combinationwith overlappred-
icates, we additionally report the experimental results for the
workload on the real-world datasets without equality con-
straints, i.e., we compute a temporal Cartesian product.

We distinguish between stand-alone join algorithms that
run in main memory and standard DBMS solutions that
run inside a DBMS. The approaches that are compared are
described with the respective experiments.

7.2 Stand-alone join algorithms

In the first set of experiments, we compare the proposed over-
lap join using range joins to the state-of-the-art approach
bgFS [6].

7.2.1 Compared approaches

bgFS is the most recently proposed state-of-the-art competi-
tor [6], a forward scan-based plane sweep algorithm with
two optimizations, namely grouping and bucket indexing.
The algorithm is similar to our approach based on range–

merge joins, but needs only a single pass over the data. To
achieve a fair comparison, we extend bgFS to support also
equality predicates by integrating the equality attribute into
the sort order (similar to our approach), which allows to skip
attributes with different equality attributes in a sort–merge
fashion (cf. lines 4, 5, 8, and 9 in Algorithm 1).

OMJ is our overlap join, which computes the union of two
range–merge joins (RMJ) as shown in Sect. 6.1. To achieve
a fair comparison, we include the same optimization tech-
niques grouping and bucket indexing, as used in bgFS, into
our RMJ.

7.2.2 Runtime evaluation

In this set of experiments, we are interested in examining
how the overhead of our solution based on two more general
purpose range joins compares to bgFS, which is specifically
tailored for the overlap join, but requires only one join over
the input relations.

First, we use the synthetic dataset and vary various param-
eters. The runtime results for the overlap joinwithout equality
predicates are shown in Fig. 7. For each experiment, we also
report the number of result tuples. In Fig. 7a, we vary the
number of tuples of the inner relation s from 10 to 200 M,
while keeping the size of the outer relation r at the default
value of 10 M tuples. In Fig. 7b, the sizes of both input
relations vary from 10 to 100 M; and in Fig. 7c, the dura-
tion of period timestamps varies, which is controlled by the
skew parameter θ of the ZIPF distribution. A low value of
θ yields longer period timestamps, and a high value yields
shorter period timestamps. The main observation is that the
algorithms have comparable runtimes in all settings.

The main difference between the two approaches is in the
order they scan and process the data. The bgFS approach
scans both input relations in an interleaved fashion, thereby
performing join matches and backtracking on the respective
other relation. TheRMJ approach performs two joins. In each
join, one relation is scanned sequentially, and scanning and
backtracking is performed only on the other relation. This
improves data locality: the CPU cache can be utilized fully
to store tuples of the single backtracking relation. This com-
pensates for having to perform two joins. Whenever bgFS
alternates between input relations, due to the start time point
of the current tuple of one relation becoming smaller than
the start time point of the current tuple in the other relation,
it starts scanning for join matches in the other relation. This
alternation between scans of the two relations results in the
scanned tuples competing for CPU cache storage whenever
a switch between the relations occurs. Tuples from one rela-
tion that were placed in the cache may be needed later on
when backtracking is performed, but they may have been
removed from the cache due to a scan of the other relation.
The RMJ approach only scans one relation at a time, so the

123

88 A. Dignös et al.

(a)

(b)

(c)

Fig. 7 Overlap join without equality predicates on synthetic datasets

CPU cache can be devoted exclusively to storing tuples from
that relation. This can be observed for data with longer time
periods, where in contrast to smaller time period durations,
larger jumps in the backtracking need to be performed. For
instance, in Fig. 7c, the difference between bgFS and OMJ
becomes even smaller with longer time periods.

For the real-world datasets in Fig. 8, we obtain a similar
picture. Since the runtimes for the three datasets are very dif-
ferent, the bar chart shows percentages instead of absolute
values, where bgFS corresponds to 100%; additionally, the
absolute values are shown in the plot. The large runtime of
the overlap join on the webkit dataset is due to its output
of 556, 428 million result tuples, i.e., approx. 23% of the
Cartesian product. As a reference, a single CPU instruction
per output tuple on our 2.67 GHz machine increases the run-
time by 160 s in total. We can observe that OMJ, which is
based on two general purpose range joins, is as efficient as the
state-of-the-art algorithm. Also for the real-world datasets,
we observe the effect of data locality of RMJ as compared
to bgFS that performs backtracking on both relations at the
same time. For the datasets with very small time period dura-
tions (cf. Fig. 6), bgFS is slightly more efficient, while for
thewebkit dataset that containsmore tupleswith longer dura-
tions, OMJ is more efficient.

Fig. 8 Overlap join without equality predicates on real-world datasets

(a)

(b)

(c)

Fig. 9 Overlap join with equality predicates on synthetic datasets

We repeated the experiments for the casewhen the overlap
join includes equality predicates. The results for the synthetic
datasets and using different parameter settings are shown
in Fig. 9, while the results for the real-world datasets are
shown in Fig. 10. We see that in the presence of equality
attributes, our technique based on rangemerge joins is able to
provide the same performance as the state-of-the-art overlap
join algorithm.

The main conclusion from the above experiments is that
the proposed OMJ algorithm is as efficient as the state-of-
the-art algorithm bgFS, although OMJ performs two scans
over the data, whereas bgFS scans the input relations only
once. From a database implementation perspective, OMJ has

123

Leveraging range joins for the computation of overlap joins 89

Fig. 10 Overlap join with equality predicates on real-world datasets

the advantage that only a range–merge join (RMJ) needs to
be implemented that is more general purpose, while the OMJ
can be implemented as an execution strategy or equivalence
rule that uses range joins.

7.3 Approaches for standard DBMSs

In this section, we analyze the evaluation of overlap joins
in existing DBMSs using the SQL query in Lemma 5 and
indexing techniques that are available in DBMSs. For all
experiments, we use PostgreSQL.

7.3.1 Compared approaches

OMJi is our approach with a B+-tree on each relation (cf.
Lemma 5 in Sect. 6.2.1). For a fair comparison with the other
approaches,we use a user-defined data type5 over range types
for the start and end time points instead of scalar values.
This data type for range boundaries and its sort order6 also
need to consider inclusion/exclusion for each comparison
(cf. Sect. 4). The data type and its associated comparison
functions have been implemented as an external dynam-
ically linked C library in PostgreSQL. This incurs some
overhead compared to using simple scalar values and is only
introduced to enable a fair comparison, since other indices
covered (except RIT and PGIS) also work on PostgreSQL
range types.7 For the clustered experiments we cluster the
relation based on the created B+-tree.

RIT is the RI-Tree Up-Down Join [16] based on the rela-
tional interval tree [27]. It uses one index table and two
B+-trees for each input relation. We extended this approach
to handle equality predicates by prepending the equality
attributes to the index tables and including the equality into
the queries. For the experiments with clustered indices, we
cluster the index tables according to one of the indices.

5 https://www.postgresql.org/docs/10/static/sql-createtype.html.
6 https://www.postgresql.org/docs/10/static/sql-createopclass.html.
7 https://www.postgresql.org/docs/10/static/rangetypes.html.

GiST is a one-dimensional R-tree implementation for
range types in PostgreSQL using GiST.8 [26]. The index
supports multi-key indexing but no scalar attributes for the
equality predicate. In the experiments with equality predi-
cates, we transform the equality attribute into a range type of
duration 1, index it together with the time period, and use an
additional overlap predicate for join processing. This index
type also supports clustering.

BtGiST is the PostgreSQL extension btree_gist,9

which is very similar toGiST, but additionally supports scalar
attributes and equality predicates. This approach is only used
in experiments with equality predicates, since it is the same
as GiST when no equality predicate is used. Also this index
type supports clustering.

PGIS is an R-tree implementation for 2D rectangle
geometries of PostGIS 2.5 using PostgresSQL’s GiST.10 We
use one dimension of the rectangles for the time dimension
and the other for the equality predicate. For fair compari-
son, and since we are not interested in general geometries,
we use the less expensive overlaps predicate && instead of
ST_Intersects. Specifically, && uses bounding boxes,
and we avoid recalculation of the overlap for the geometry
in the bounding box. This index also supports clustering.

SPGiST is a quadtree implementation for range types in
PostgreSQL using SP-GiST.11 This index transforms periods
into two-dimensional points that are then indexed. Post-
greSQL in some cases chooses the index on the smaller
relation, which results in higher query times. Thus, we cre-
ate the index separately on the two relations and report the
smaller runtime. The index does not support multi-keys, so
for the experiments with equality predicates, we use 2D
boxes,12 which are then transformed into four-dimensional
points and indexed by a quadtree.Currently, SPGiSTdoes not
support clustering. For the sake of comparison on clustered
data, wemodify this approach such that it can use index-only
scans. This approach for the clustered experiments does not
fetch the data from the relation but only provides the joined
time periods of the data that are found directly in the index. To
ensure that no data is fetched, we perform a VACUUM opera-
tion before the query, which ensures that no data is accessed
and also check that Heap Fetches (accesses to the data
relation) is 0.

8 https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/
adt/rangetypes_gist.c.
9 https://www.postgresql.org/docs/10/static/rangetypes.html#RANGETYPES-
CONSTRAINT.
10 https://github.com/postgis/postgis/blob/svn-2.5/postgis/gserialized_gist_2d.c.
11 https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/
adt/rangetypes_spgist.c.
12 https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/
adt/geo_spgist.c.

123

https://www.postgresql.org/docs/10/static/sql-createtype.html
https://www.postgresql.org/docs/10/static/sql-createopclass.html
https://www.postgresql.org/docs/10/static/rangetypes.html
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/rangetypes_gist.c
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/rangetypes_gist.c
https://www.postgresql.org/docs/10/static/rangetypes.html#RANGETYPES-CONSTRAINT
https://www.postgresql.org/docs/10/static/rangetypes.html#RANGETYPES-CONSTRAINT
https://github.com/postgis/postgis/blob/svn-2.5/postgis/gserialized_gist_2d.c
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/rangetypes_spgist.c
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/rangetypes_spgist.c
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/geo_spgist.c
https://github.com/postgres/postgres/blob/REL_10_STABLE/src/backend/utils/adt/geo_spgist.c

90 A. Dignös et al.

The SQL statements for creating indices and queries as
well as the corresponding query plans for all approaches are
reported in Appendix C.

7.3.2 Runtime for different indexing techniques

Overlap JoinWithout Equality Predicates. In the next exper-
iment, with results shown in Fig. 11, we analyze the behavior
of different indexing techniques. The outer relation r con-
tains 10 M tuples, and the size of the inner relation s varies
from 1 to 100M tuples. All other parameters are kept at their
default values. RIT and GiST are by far the slowest. OMJi

is faster than SPGiST, although it also needs to scan the
larger relation, while SPGiST can use the smaller as the outer
relation and retrieve matching tuples from the larger relation
using the index.When one relation is approximately 15 times
larger than the other, SPGiST becomes slightly faster than
OMJi. When the relations are clustered, OMJi is much faster
than SPGiST. Recall that for the clustered experiments, since
SPGiST clustering is not supported, the number reported is
only the time for an index only scan, i.e., the time needed to
fetch the actual data is not reported. We also investigated the
space consumption and creation time for the indices of the
different approaches and provide the numbers for the default
parameters (cf. Table 3). OMJi requires two indices of size
214MB each, for a total of 428MB. GiST requires one index
of size 458MB, SPGiST requires 609MB, and PGIS requires
589 MB. The total index creation time is 35 s for OMJi, 6
min for GiST, 2 min for SPGiST, and 4 min for PGIS. RIT,
needing more than an hour for index creation and requir-
ing an index space of 850 MB, is by far the slowest and most
space-consuming approach. This is due to the iterative calcu-
lations (for which we use PostgreSQL’s procedural language
PL/pgSQL) and additional tables (for which we use SQL)
that need to be created. We also experimented with noninte-
ger data types. We use the datasets with default parameters
and divide the start and end time by 1000 to measure the
overhead of continuous domains for the same result size. For
GiST and SPGiST, we use ranges of numerics, i.e., Post-
greSQL’s arbitrary precision numbers, and obtain runtimes
that increase by 94% and 100%, respectively, due to themore
expensive comparison operations and larger (variable) size
data type as compared to integers. For our approach, we use
scalars instead of range types for this experiment to also be
able to include the overhead caused by the float (double pre-
cision, but constant 8 byte size) data type that is not supported
by range types. The runtime increases by 25% as compared
to using integers when using arbitrary precision numerics;
and for the float data type, the overhead is 4%. The overhead
of range types, that also need to consider the boundaries, as
compared to scalars for the same data type is around 20%.

In Fig. 12, we vary the sizes of both relations from 1 to
50 M. The performances of RIT and GiST degenerate very

(a) (b)

Fig. 11 Overlap join without equality predicates for the synthetic
dataset

(a) (b)

Fig. 12 Overlap join without equality predicates on synthetic dataset,
varying number of tuples of both relations

(a) (b)

Fig. 13 Overlap join for synthetic data, varying θ of the Zipf distribu-
tion for the period duration

quickly, SPGiST is more efficient, but OMJi is by far the best
approach. In particular for the clustered case, OMJi beats
SPGiST by almost an order of magnitude.

The next experiment, with results shown in Fig. 13, ana-
lyzes the impact of the durations of the tuples’ timestamps.
For this, we vary the parameter θ of the Zipf distribution for
the timestamp duration: smaller values of θ produce many
long tuples, and larger values of θ produce shorter tuples.We
can observe that for smaller values of θ (i.e., longer times-
tamps), the result size is much larger since many more tuples
overlap. Again, OMJi is the fastest approach. GiST is the
slowest for small values of θ , but it outperforms RIT for
larger values.

123

Leveraging range joins for the computation of overlap joins 91

(a) (b)

Fig. 14 Overlap join for synthetic data by varying the cardinality of the
inner relation

Overlap Join With Equality Predicates. We proceed to
analyze the overlap join with additional equality predicates.
Our approach and the relational interval tree do not have
any restriction on the type of equality attribute. GiST and
SPGiST, on the other hand, only support numerical values.
For GiST, we use a multi-key attribute composed of two
range types, one for the period timestamp and one of dura-
tion 1 for the equality attribute. For SPGiST, we use a type
box (rectangles) in a similar way.

In the first experiment, we vary the number of tuples of the
inner relation s. The number of distinct values for the equal-
ity attributes is set to the default 10. The results are shown
in Fig. 14. All approaches turn out to be faster when addi-
tional equality attributes are used. The gap betweenOMJi and
SPGiST is larger than in the case without equality attributes
(cf. Fig. 11). Also for the case of equality predicates, we
investigated the space consumption and index construction
time for the different approaches and provide the numbers
for the default parameters (cf. Table 3). OMJi requires two
indices of size 301 MB each, for a total of 602 MB. GiST
requires one index of size 680 MB, SPGiST needs 733 MB,
PGIS needs 518 MB, and BtGiST needs 560 MB. In terms
of index creation time, OMJi takes 37 s for both indices and
is by far the fastest approach. The other approaches require
several minutes. More specifically, GiST takes 7 minutes,
SPGiST takes 2 minutes, PGIS takes 4 minutes, and BtGiST
takes 10 minutes. Also in this case, RIT takes more than an
hour and needs 1.2GB of disk space.

In Fig. 15, we show the results when varying the cardinal-
ity of both relations from 1 to 100 M tuples. OMJi is by far
the fastest. In particular, for the clustered case, it outperforms
the other approaches bymore than an order ofmagnitude. All
other approaches degenerate quickly.

Impact of Equality Predicates. To analyze the impact of
the selectivity of the equality predicate, we vary the number
of distinct values for the equality attributes from 5 to 100—
Fig. 16 reports the findings. All approaches benefit from a
more selective equality predicate, which is mainly due to
the smaller output. None of the competitors has an increased

(a) (b)

Fig. 15 Overlap join with equality predicates for synthetic data by
varying the cardinality of both relations

(a) (b)

(c)

Fig. 16 Overlap join with equality predicate for synthetic data by vary-
ing the number of distinct equality attributes

gain that is sufficient to outperform OMJi. As a comparison,
a hash join (faster than a merge join for this case) requires
almost 6 h for 1000 distinct values in the equality attributes,
which is much more selective than the up to 100 we report
here.

The experiment in Fig. 17 shows the effect of the number
of equality predicates on the performance. To ensure that the
runtime is unaffected by the size of the output, we ensure that
all joins have the same result size. This is done by using the
same values for all attributes that are involved in the equality
predicates. For OMJi and RIT, adding an additional equality
predicate to the join simply implies adding the attribute in
the equality predicate to the index. For the GiST approach, a
new range type attribute is added to the index since the index
supports multi-key attributes. For PGIS, the dimensionality
of the index is increased by one, e.g., one equality predicate
and the period timestamp yield a 2D index. PGIS only sup-
ports structures up to 3D, so we can only compare to these.
SPGiST does not support multi-key attributes, and there is
no 3D structure. Thus, we can only show the result for one
equality predicate.

123

92 A. Dignös et al.

(a) (b)

Fig. 17 Overlap join with equality predicates for synthetic data by
varying the number of equality predicates

(a) (b)

Fig. 18 Overlap join with equality on the department attribute for the
incumbent dataset

For PGIS with two equality predicates, we stopped the
execution of the query after it ran for several days. We then
reduced the number of input tuples for this approach and
performed a join between two relations with 1 M tuples each
instead of 10M tuples. Even for this smaller input, PGIS took
more than two days to compute the query with two equality
predicates.

Real-World Datasets We proceed to report on experiments
with real-world datasets. Since RIT took much longer than
all other approaches we omit it from the plots and provide
the numbers in the text. Additionally, we provide the runtime
of the fastest equi join (hash join or merge join) that exploit
the equality predicate and then filter out the matches that do
not overlap.

We first consider the incumbent dataset. The results are
shown in Fig. 18, and the number of result tuples is about
10 M. RIT is by far the slowest, taking 115 and 113 s for the
nonclustered and clustered case, respectively. For better visi-
bility, we omit it from the plot. A hash join took 11.5 s. OMJi

is fastest for the nonclustered and clustered case. With this
dataset, SPGiST is slightly slower thanGiST for the nonclus-
tered case. Recall that due do no clustering mechanism for
SPGiST for the clustered case, we only provide the numbers
of an index-only join that does not fetch the full data.

Next, results for the flight dataset are shown in Fig. 19,
where the number of result tuples is 66 M. For this dataset,
RIT took about 14 minutes, with almost no difference
between the nonclustered and clustered cases. A hash join
took 30 min. OMJi is the fastest approach in both cases.

(a) (b)

Fig. 19 Overlap join on FAP-DAP for the flight dataset

(a) (b)

Fig. 20 Overlap join on files created at the same time for the webkit
dataset

Finally, the results for the experiments with the webkit
dataset are shown in Fig. 20, where the result encompasses
2056 M tuples. Also for this dataset, OMJi is the fastest
approach. A sort–merge join (faster than hash join for this
dataset) took 30 min, and RIT took almost 12 h.

We alsomeasured the index creation time for our approach
for these datasets. The total creation time for both B+-tree
indices is 180 ms for incumbent, 2.4 s for flight, and 5.4 s
for webkit. Hence, our approach when including the creation
time for both B+-tree indices in the join remains faster than
the other approacheswith indices already available. This sug-
gests that even creating the indices for the purpose of the join
is beneficial.

7.3.3 Buffer management

In the next experiment in Fig. 21, we analyze the buffer man-
agement by measuring the number of pages that are fetched
from the buffer and from disk using PostgreSQL’s EXPLAIN
(ANALYZE, BUFFERS) feature.We are particularly inter-
ested in understanding to which extent clustering the data
helps reduce disk accesses. The buffer size is set to its default
value of 128 MB. We keep the size of the outer relation r at
10 M tuples and vary the number of tuples in the inner rela-
tion s from 1 to 100 M. Figure 21a shows the number of
pages fetched during the join from the buffer, disk, and in
total when none of the two relations is clustered according
to the index. We can see that the numbers of disk fetches
and buffer fetches are very similar. As a reference, our rela-

123

Leveraging range joins for the computation of overlap joins 93

(a)

(c) (d)

(b)

Fig. 21 Page access (buffer access and disk access) for the entire join

tionwith 10M tuples consists of 63,695 pages (497MB), and
our relation with 100M consists of 636,950 pages (4.97GB).
Figure 21b shows the result when both relations are clustered
according to the index. We can observe that the number of
disk accesses is very low (1.7 M when s contains 100 M
tuples) and that almost all accesses can be served by the
buffer (even with a small buffer of 128 MB). Figure 21c, d
shows the result when only relation r or only relation s is
clustered according to its index. As expected, the impact of
clustering on the number of disk fetches is higher when the
larger relation is clustered. This is because the index scans
on that relation dominate the disk accesses.

To gain further insight, we measure the number of page
accesses separately for the two range joins, which are evalu-
ated as index nested loop joins (cf. Fig. 4). Figure 22 shows
the result for the first join with a sequential scan on r and an
index scan on s. We can observe from Fig. 22b that cluster-
ing both relations substantially reduces the number of disk
fetches as well as the total number of page accesses when
compared to the case where none of the two relations is clus-
tered as shown in Fig. 22a. Figure 22c shows the result when
only relation r is clustered and then scanned sequentially.
While the total number of page accesses is the same as for
the nonclustered case, the number of disk accesses is reduced,
although r is read only once. The reason is that by clustering
r (i.e., sorting the relation physically on the start time), con-
secutive tuples in r match similar tuples in s. Hence, many
pages of the index and the relation that are needed for con-
secutive tuples in r remain in the buffer. Figure 22d shows
the result when clustering only relation s, on which the index
scan is performed. We can observe that compared to cluster-
ing r, the numbers of disk and buffer accesses are reduced.
The reason is that consecutive tuples fetched from the index

(a) (b)

(c) (d)

Fig. 22 Page access for the first range join of the overlap join

reside in the same disk page and can be read together. Nei-
ther of the individual clusterings achieves the reduction of
disk accesses achieved when both relations are clustered.
This indicates that clustering both relations has a synergetic
effect, i.e., clustering r reduces disk accesses and clustering
s further reduces disk accesses as well as the total number of
buffer accesses.

Figure 23 analyzes the number of page accesses for the
second range join that performs a sequential scan on s and an
index scan on r. The number of page accesses is higher com-
pared to the first join in Fig. 22 since relation s is larger than
relation r. However, the main insight is the same: clustering
has a huge impact on the number of disk fetches, resulting in
very efficient buffer management.

The result of the overlap join in Fig. 21 is the sum of the
two range joins in Figs. 22 and 23.

7.4 Summary

In summary, our approaches based on range joins offer state-
of-the-art performance for computing the overlap join. In
particular, our stand-alone join technique, OMJ, that is based
on applying the RMJ algorithm twice is on par with the state-
of-the-art in all cases, while RMJ is a more general-purpose,
primitive operator for a database system. Our index-based
approach, OMJi, outperforms the previous state-of-the-art
indexing approaches for the overlap join that are available
in current DBMSs in almost all settings. The only exception
is settings where one relation contains very few tuples. Tra-
ditional join algorithms based on equality, such as hash and
sort–merge joins, are not competitive for the overlap join as
they exclusively rely on the equality predicate, which may

123

94 A. Dignös et al.

(a) (b)

(c) (d)

Fig. 23 Page accesses for the second range join of the overlap join

not be selective for historical data.When the data is clustered,
OMJi enables very effective buffer management out of the
box and outperforms the other approaches by up to an order
of magnitude.

8 Conclusion and research directions

We provide a new approach to computing overlap joins as
the union of two disjoint range joins. We show how to sup-
port relations where tuples are associated with periods that
have different period boundary types, and we show how the
overlap join approach can support separate, additional equal-
ity conditions as needed for primary key/foreign key joins
in temporal databases. These two aspects have been largely
ignored in previouswork.We provide two execution schemes
for the overlap join, one that processes tuples in sort–merge
fashion and one that uses sorted indices and that can be
embedded readily into a DBMS. We show that the proposed
sort–merge-based algorithm offers performance on par with
the state-of-the-art and, being a smaller primitive, can also
evaluate range queries. The DBMS-based evaluation scheme
substantially outperforms proposals based on more complex
indexing techniques available in some DBMSs.

Several pertinent directions for future work exist. First, it
is of interest to develop cost and cardinality estimation tech-
niques for the proposed rewriting. This is a prerequisite for
achievingmore accurate DBMS query optimization. Second,
complete integration of the range–merge join approach into
PostgreSQL is an important next step. Third, it is of inter-
est to extend the proposed rewriting of the overlap join to
support multiple time dimensions.

Funding Open access funding provided by Libera Università di
Bolzano within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Proofs

A.1 Proof for Lemma 1

Proof The proof proceeds by considering B1 < B2 for each
of the 16 boundary combinations. In the first step, we trans-
form period boundaries into symbolic values that may or
may not be representable. In the second step, we transform
the binary relation< on symbolic values into binary relations
on values that are representable. We prove that in all cases,
we get the order stated in Definition 4.

1st step: We use the symbolic notation v− for v), v for
v] and [v, and v+ for (v. For continuous domains, v− is
smaller than v by an infinitely small amount and cannot be
represented explicitly. Similarly, v+ is larger than v by an
infinitely small amount and cannot be represented explicitly.
Replacing boundary types with v− and v+, we get:

B1< B2≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 < v2 if b1 = ’[’ ∧ b2 = ’[’

v1 < v2 if b1 = ’[’ ∧ b2 = ’]’

v1 < v+
2 if b1 = ’[’ ∧ b2 = ’(’

v1 < v−
2 if b1 = ’[’ ∧ b2 = ’)’

v1 < v2 if b1 = ’]’ ∧ b2 = ’[’

v1 < v2 if b1 = ’]’ ∧ b2 = ’]’

v1 < v+
2 if b1 = ’]’ ∧ b2 = ’(’

v1 < v−
2 if b1 = ’]’ ∧ b2 = ’)’

v+
1 < v2 if b1 = ’(’ ∧ b2 = ’[’

v+
1 < v2 if b1 = ’(’ ∧ b2 = ’]’

v+
1 < v+

2 if b1 = ’(’ ∧ b2 = ’(’

v+
1 < v−

2 if b1 = ’(’ ∧ b2 = ’)’

v−
1 < v2 if b1 = ’)’ ∧ b2 = ’[’

v−
1 < v2 if b1 = ’)’ ∧ b2 = ’]’

v−
1 < v+

2 if b1 = ’)’ ∧ b2 = ’(’

v−
1 < v−

2 if b1 = ’)’ ∧ b2 = ’)’

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Leveraging range joins for the computation of overlap joins 95

For a continuous domain, we have the time line order

〈. . . , v − ε, . . . , v−, v, v+, . . . , v + ε, . . .〉,

where, for a representable precision of ε, only v − ε, v, and
v + ε can be represented, while v− and v+ cannot.

2nd step: We show that after the transformation to repre-
sentable values, we get the order given in Definition 4.

– Cases 1, 6, 11, and 16: Since the two boundary types are
equal (e.g., B1 = (v1 and B2 = (v2), we trivially get
B1 < B2 ≡ v1 < v2.

– Cases 2 and5: Since for closed boundary types the bound-
aries are the values vi (i.e., [vi = vi and v j] = v j), we
trivially get B1 < B2 ≡ v1 < v2.

– Cases 3 and 7: Since the largest number smaller than v+
2

is v2, we transform v1 < v+
2 to v1 ≤ v2.

– Cases 13 and 14: Since the smallest number larger than
v−
1 is v1, we transform v−

1 < v2 to v1 ≤ v2.
– Cases 4 and 8: Since the smallest representable value
larger or equal to v−

2 is v2, we transform v1 < v−
2 to

v1 < v2.
– Cases 9 and 10: Since the largest representable value
smaller or equal to v+

1 is v1, we transform v+
1 < v2 to

v1 < v2.
– Case 12: Using Case 4 from above, we transform v+

1 <

v−
2 to v+

1 < v2. Next, using Case 9 from above, we trans-
form v+

1 < v2 to v1 < v2.
– Case 15: Using Case 3 from above, we transform v−

1 <

v+
2 to v−

1 ≤ v2. Next, since the smallest or equal repre-
sentable value that is larger or equal to v−

1 is v1, we get
v1 ≤ v2.

��

A.2 Proof for Lemma 2

Proof We show that the new predicate is equivalent to
the overlaps predicate. We start with the predicate from
Lemma 2:

(r .B ≤ s.B ≤ r .E) ∨ (s.B < r .B ≤ s.E)

We transform it into a binary form:

r .B ≤ s.B ∧ s.B ≤ r .E ∨ s.B < r .B ∧ r .B ≤ s.E

We then apply De Morgan’s law to each of the two terms
of the disjunction:

¬(r .B > s.B ∨ s.B > r .E) ∨ ¬(s.B ≥ r .B ∨ r .B > s.E)

Next, we apply De Morgan’s law to the entire expression:

¬(
(r .B > s.B ∨ s.B > r .E) ∧ (s.B ≥ r .B ∨ r .B > s.E)

)

Then we distribute disjunction over conjunction:

¬((r .B > s.B ∧ s.B ≥ r .B) ∨ (r .B > s.B ∧ r .B > s.E) ∨
(s.B > r .E ∧ s.B ≥ r .B) ∨ (s.B > r .E ∧ r .B > s.E))

The first disjunct, r .B > s.B∧s.B ≥ r .B, is unsatisfiable
and hence can be removed. The second disjunct, r .B > s.B∧
r .B > s.E , is equivalent to r .B > s.E , which implies r .B >

s.B since by definition, s.B ≤ s.E . The third disjunct, s.B >

r .E ∧ s.B ≥ r .B, can be replaced by s.B > r .E . The fourth
disjunct can be removed because we now have r .B > s.E ∨
s.B > r .E ∨ (s.B > r .E ∧ r .B > s.E) ≡ r .B > s.E ∨
s.B > r .E due to the equivalence a ∨ b ∨ (b ∧ a) ≡ a ∨ b.

This yields

¬(r .B > s.E ∨ s.B > r .E) ≡ r .B ≤ s.E ∧ s.B ≤ r .E

��

B Period boundaries of discrete domains and
static periods

For completeness, we provide the total order over period
boundaries for discrete domains. For discrete domains, it is
sufficient to express the boundaries (v, ’[’) and (v, ’]’) on the
time line as v, while (v, ’)’) and (v, ’(’) are expressed as the
predecessor (v − 1) and successor (v + 1) of v, respectively.
For simplicity and unification with previous approaches, we
apply the equivalences v1 < v2 + 1 ≡ v1 ≤ v2, v1 − 1 <

v2 ≡ v1 ≤ v2, v1 − 1 < v2 − 1 ≡ v1 < v2, and v1 + 1 <

v2 + 1 ≡ v1 < v2.

Definition 5 (Strict Total Order - Discrete Domains) Let
ΩT be a discrete domain, and let B1 = (v1, b1) and
B2 = (v2, b2) be period boundaries with v1, v2 ∈ ΩT and
b1, b2 ∈ {’[’, ’]’, ’(’, ’)’}. Further, let v − 1 and v + 1 be
the predecessor and successor of v, respectively. The total
order on period boundaries B1 = (v1, b1) < (v2, b2) = B2

is defined as follows:

123

96 A. Dignös et al.

B1< B2≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1 < v2 if b1 = ’[’ ∧ b2 = ’[’

v1 < v2 if b1 = ’[’ ∧ b2 = ’]’

v1 ≤ v2 if b1 = ’[’ ∧ b2 = ’(’

v1 < v2 − 1 if b1 = ’[’ ∧ b2 = ’)’

v1 < v2 if b1 = ’]’ ∧ b2 = ’[’

v1 < v2 if b1 = ’]’ ∧ b2 = ’]’

v1 ≤ v2 if b1 = ’]’ ∧ b2 = ’(’

v1 < v2 − 1 if b1 = ’]’ ∧ b2 = ’)’

v1 + 1 < v2 if b1 = ’(’ ∧ b2 = ’[’

v1 + 1 < v2 if b1 = ’(’ ∧ b2 = ’]’

v1 < v2 if b1 = ’(’ ∧ b2 = ’(’

v1 + 1 < v2 − 1 if b1 = ’(’ ∧ b2 = ’)’

v1 ≤ v2 if b1 = ’)’ ∧ b2 = ’[’

v1 ≤v2 if b1 = ’)’ ∧ b2 = ’]’

v1 − 1 ≤ v2 if b1 = ’)’ ∧ b2 = ’(’

v1 < v2 if b1 = ’)’ ∧ b2 = ’)’

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)
(14)
(15)
(16)

The other comparison operators are defined accordingly, i.e.,
B1 > B2 ≡ B2 < B1, B1 ≤ B2 ≡ ¬(B2 < B1), B1 ≥ B2 ≡
¬(B1 < B2), and B1 = B2 ≡ ¬(B1 < B2) ∧ ¬(B2 < B1).

When considering relationswhere all tuples have the same
period type, but not necessarily only of the form [vs, ve), we
can use Definition 4, Definition 5, and Lemma 2 to derive
overlap predicates that are specific to that type. The time
domain can be discrete or continuous, and we use a function
p(.) to unify both in a single formula.

Lemma 7 Let two tuples r and s be given, each with a
nonempty period attributeP of the form [vs, ve)with vs < ve,
[vs, ve] with vs ≤ ve, (vs, ve] with vs < ve, or (vs, ve) with
p(vs) < ve over a discrete or continuous domain.

Furthermore, let p : ΩT → ΩT be the following function:

p(v) =
{

v − 1 ΩT is discrete

v ΩT is continuous

The overlap predicate can be expressed as follows:

Ov(r .P, s.P) ≡
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(r .vs ≤ s.vs < r .ve) ∨ (s.vs < r .vs < s.ve) if P = [vs , ve)
(r .vs ≤ s.vs < r .ve) ∨ (s.vs < r .vs < s.ve) if P = (vs , ve]
(r .vs ≤ s.vs ≤ r .ve) ∨ (s.vs < r .vs ≤ s.ve) if P = [vs , ve]
(r .vs ≤ s.vs < p(r .ve)) ∨

(s.vs < r .vs < p(s.ve)) if P = (vs , ve)

Note that for the first three static period definitions, the
overlap predicate is the same for continuous and discrete
domains. For the last period definition (’(.,.)’), there is dif-
ference, and we use function p(v) to encode this difference.

Proof The proof follows directly from Lemma 2 and trans-
forming comparisons on general period boundaries into
comparisons of period values using Definition 4 for con-
tinuous domains or Definition 5 for discrete domains. For
instance, for the case P = [vs, ve), the transformation is the
same for continuous and discrete domains, and we have:

(r .B ≤ s.B ≤ r .E)∨(s.B < r .B ≤ s.E) ≡
(
(r .vs , ’[’) ≤ (s.vs , ’[’) ≤ (r .ve, ’)’)

)∨
(
(s.vs , ’[’) < (r .vs , ’[’) ≤ (s.ve, ’)’)

)

We transform the first comparison (r .vs, ’[’) ≤ (s.vs, ’[’)
into ¬(

(s.vs, ’[’) < (r .vs, ’[’
)
and apply Case 1 of Defini-

tion 4, resulting in ¬(s.vs < r .vs) and thus r .vs ≤ s.vs . The
second comparison (s.vs, ’[’) ≤ (r .ve, ’)’) is transformed
into ¬(

(r .ve, ’)’) < (s.vs, ’[’)
)
. Next, applying Case 13

of Definition 4, we get ¬(r .ve ≤ s.vs) and thus s.vs <

r .ve. For the third comparison (s.vs, ’[’) < (r .vs, ’[’), we
apply Case 1 and get s.vs < r .vs . The fourth comparison
(r .vs, ’[’) ≤ (s.ve, ’)’) is transformed similarly to compar-
ison 2 (with reversed tuples), and we get r .vs < s.ve. The
final predicate results in:

(r .vs ≤ s.vs < r .ve) ∨ (s.vs < r .vs < s.ve) for P = [vs, ve)

The proofs for the other cases follow the same procedure.
��

C SQL for approaches in standard DBMS

Here we report the SQL statements for PostgreSQL used for
indexing and querying for all approaches compared in the
experiments in Sect. 7.3. In all cases, unless stated otherwise,
we perform an overlap join between relations R and S on
period attribute (of type range type) P. For the overlap join
with equality predicates, we use an additional attribute g.

C.1 OMJi

We first consider the rewriting approach from Sect. 6.2. For a
fair comparison with other approaches adopting range types,
we implemented two user-defined functions lrb and urb
that extract a user-defined period boundary data type (value
and inclusive/exclusive bound) from a range type, and we
define their corresponding comparison operators according
to Definitions 4 and 5.
Indexing:

CREATE INDEX r_idx ON R(g, lrb(P));
CREATE INDEX s_idx ON S(g, lrb(P));

Query and query plan:

123

Leveraging range joins for the computation of overlap joins 97

SELECT *
FROM R, S
WHERE R.g=S.g AND lrb(R.P) <= lrb(S.P)

AND lrb(S.P) <= urb(R.P)
UNION ALL
SELECT *
FROM R, S
WHERE R.g=S.g AND lrb(S.P) < lrb(R.P)

AND lrb(R.P) <= urb(S.P)

QUERY PLAN
--
Append

-> Nested Loop
-> Seq Scan on r
-> Index Scan using s_idx on s

Index Cond: ((g = r.g) AND (lrb(r.P) <= lrb(P))
AND (lrb(P) <= urb(r.P)))

-> Nested Loop
-> Seq Scan on s s_1
-> Index Scan using r_idx on r r_1

Index Cond: ((g = s_1.g) AND (lrb(s_1.P) < lrb(P))
AND (lrb(P) <= urb(s_1.P)))

C.2 RIT

Next, we consider the RI-Tree Up-Down Join [16]. For this
approach, we use two additional tables with already com-
puted fork nodes for each tuple r_rit_fn and s_rit_fn
instead of computing the function each time it is needed, and
we index these tables. Similarly, we use tables rit_leftq
and rit_rightq with pre-computed left and right queries
of fork nodes instead of using more expensive user-defined
functions. Additionally, since range boundaries would sub-
stantially increase the domain of fork nodes (inclusive and
exclusive), we exclusively use static integer boundaries [ts,
te] for this approach. When no equality condition exists, g
is omitted from the indexing and querying.
Indexing:

CREATE INDEX r_loweridx ON r_rit_fn(fn, g, ts);

CREATE INDEX r_upperidx ON r_rit_fn(fn, g, te);

CREATE INDEX s_loweridx ON s_rit_fn(fn, g, ts);

CREATE INDEX s_upperidx ON s_rit_fn(fn, g, te);

Query and query plan:

SELECT r.g, r.ts, r.te, s.g, s.ts, s.te

FROM rit_leftq q, r_rit_fn r, s_rit_fn s

WHERE r.fn = q.fn AND s.fn BETWEEN q.ts AND q.te

AND r.g=s.g AND r.ts <= s.te

UNION ALL

SELECT r.g, r.ts, r.te, s.g, s.ts, s.te

FROM rit_rightq q, r_rit_fn r, s_rit_fn s

WHERE r.fn = q.fn AND s.fn BETWEEN q.ts AND q.te

AND r.g=s.g AND r.te >= s.ts

UNION ALL

SELECT r.g, r.ts, r.te, s.g, s.ts, s.te

FROM r_rit_fn r, s_rit_fn s

WHERE r.fn = s.fn AND r.g=s.g;

QUERY PLAN
--
Append

-> Nested Loop
-> Nested Loop

-> Seq Scan on rit_leftq q
-> Index Scan using r_upperidx on r_rit_fn r

Index Cond: (fn = q.fn)
-> Index Scan using s_upperidx on s_rit_fn s

Index Cond: ((fn >= q.ts) AND (fn <= q.te)
AND (r.ts <= te))

-> Nested Loop
-> Nested Loop

-> Seq Scan on rit_rightq q_1
-> Index Scan using r_upperidx on r_rit_fn r_1

Index Cond: (fn = q_1.fn)
-> Index Scan using s_loweridx on s_rit_fn s_1

Index Cond: ((fn >= q_1.ts) AND (fn <= q_1.te)
AND (r_1.te >= ts))

-> Nested Loop
-> Seq Scan on r_rit_fn r_2
-> Index Scan using s_upperidx on s_rit_fn s_2

Index Cond: (fn = r_2.fn)

C.3 GiST

Next, we consider the standard PostgreSQL approach for
indexing and querying range types using the general inverted
search tree (GiST). This approach allows multiple range
types, so the equality attribute g is transformed and indexed
as a range type of duration 1. When no equality condition
exists, g is omitted from indexing and querying.
Indexing:

CREATE INDEX s_idx ON S USING
GIST (int4range(g, g+1), P);

Query and query plan:

SELECT *
FROM r, s
WHERE int4range(r.g, r.g+1) && s.g

AND r.P && s.P;

QUERY PLAN
--
Nested Loop

-> Seq Scan on r
-> Index Scan using s_idx on s

Index Cond: ((int4range(r.g, (r.g + 1))
&& int4range(g, (g + 1)))

AND (r.p && p))

C.4 BtGiST

We proceed to consider the PostgreSQL approach for index-
ing and querying range types using the btree_gist
extension. Unlike the standard GiST, this approach allows
additional equality attributes. When no equality condition
exists, this approach is the same as GiST.
Indexing:

CREATE INDEX s_idx ON S USING GIST (g, P);

Query and query plan:

SELECT *
FROM R, S
WHERE R.g = S.g AND R.P && S.P;

123

98 A. Dignös et al.

QUERY PLAN
--
Nested Loop

-> Seq Scan on r
-> Index Scan using s_idx on s

Index Cond: ((g = r.g) AND (r.p && p))

C.5 PGIS

Next, we consider the R-tree implementation for 2D rect-
angle geometries of PostGIS 2.5. One dimension of the 2D
rectangle is used for the time dimension, and the other is used
for the equality predicate. For this approach, we create two
new relations R_b and S_b that contain an attribute box of
type geometry (2D box) encoding the time dimension and
the equality predicate. When no equality condition exists, g
is set to 1 for all tuples, since PostGIS does not support a
period data type, but only 2D boxes.
Indexing:

CREATE INDEX s_b_idx ON S_b USING GIST (box);

Query and query plan:

SELECT *
FROM R_b r, S_b s
WHERE r.box && s.box;

QUERY PLAN
--
Nested Loop

-> Seq Scan on r_b r
-> Index Scan using s_b_idx on s_b s

Index Cond: (r.box && box)

C.6 SPGiST

Finally, we cover the standard PostgreSQL approach for
indexing andquerying range types using the space partitioned
general inverted search tree (SP-GiST). As for PGIS, we use
tables R_b and S_b that contain 2D rectangles of type box
that encode the equality predicate and the time dimension.
When no equality condition exists, this indexing mechanism
supports range types that can be used directly, similarly to
GiST.
Indexing:

CREATE INDEX s_b_idx ON S_b USING SPGIST (box);

Query and query plan:

SELECT R.*, s.b
FROM R_b r, S_b s
WHERE r.box && s.box;

QUERY PLAN
--
Nested Loop

-> Seq Scan on r_b r
-> Index Scan using s_b_idx on s_b s

Index Cond: (r.box && box)

References

1. Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chiman-
chode, J., Pakala, S.P.: Temporal query processing in teradata. In:

Proceedings of the 16th International Conference on Extending
Database Technology, EDBT 2013, pp. 573–578 (2013)

2. Aref, W.G., Ilyas, I.F.: SP-GiST: an extensible database index for
supporting space partitioning trees. J. Intell. Inf. Syst. 17(2–3),
215–240 (2001)

3. Bayer,R.,McCreight, E.M.:Organization andmaintenance of large
ordered indices. Acta Inf. 1, 173–189 (1972)

4. Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The r*-tree:
an efficient and robust access method for points and rectangles. In:
Proceedings of the 1990 ACM SIGMOD International Conference
onManagement of Data, SIGMOD1990, pp. 322–331. ACMPress
(1990)

5. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data
management - an overview. In: Business Intelligence and Big Data,
volume 324 of Lecture Notes in Business Information Processing,
pp. 51–83. Springer (2018)

6. Bouros, P., Mamoulis, N.: A forward scan based plane sweep algo-
rithm for parallel interval joins. PVLDB 10(11), 1346–1357 (2017)

7. Bouros, P., Mamoulis, N., Tsitsigkos, D., Terrovitis, M.: In-
memory interval joins. The VLDB J. (to appear), https://pbour.
github.io/docs/vldbj20b.pdf (2020)

8. Brinkhoff, T.,Kriegel,H., Seeger, B.: Efficient processing of spatial
joins using r-trees. In: Proceedings of the 1993 ACM SIGMOD
International Conference onManagement of Data, SIGMOD1993,
pp. 237–246. ACM Press (1993)

9. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J.
26(3), 447–466 (2017)

10. Davis, J.: Temporal data management in postgresql: past, present,
and future. https://doi.org/10.5446/19033. PGCon 2012 (2012)

11. Dignös, A., Böhlen, M.H., Gamper, J.: Temporal alignment. In:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, pp 433–444. ACM (2012)

12. Dignös, A., Böhlen, M.H., Gamper, J.: Overlap interval partition
join. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2014, pp. 1459–1470
(2014)

13. Dignös, A., Böhlen, M.H., Gamper, J., Jensen, C.S.: Extending
the kernel of a relational DBMS with comprehensive support
for sequenced temporal queries. ACM Trans. Database Syst.,
41(4):26:1–26:46 (2016)

14. Dignös, A., Glavic, B., Niu, X., Gamper, J., Böhlen, M.H.: Snap-
shot semantics for temporalmultiset relations. Proc.VLDBEndow.
12(6), 639–652 (2019)

15. Edelsbrunner, H.: Dynamic Rectangle Intersection Searching.
Institute for Information Processing Report 47. Technical Univer-
sity of Graz, Austria (1980)

16. Enderle, J., Hampel,M., Seidl, T.: Joining interval data in relational
databases. In: Proceedings of the ACM SIGMOD International
Conference onManagement of Data, SIGMOD 2004, pp. 683–694
(2004)

17. Finkel, R.A., Bentley, J.L.: Quad trees: a data structure for retrieval
on composite keys. Acta Inf. 4, 1–9 (1974)

18. Gao, D., Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Join operations
in temporal databases. VLDB J. 14(1), 2–29 (2005)

19. Gendrano, J.A.G., Shah, R., Snodgrass, R.T., Yang, J.: University
information system (UIS) dataset. TimeCenter CD-1 (1998)

20. Guttman, A.: R-trees: a dynamic index structure for spatial search-
ing. In: Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD 1984, pp. 47–57.
ACM Press (1984)

21. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: Extending existing
dependency theory to temporal databases. IEEE Trans. Knowl.
Data Eng. 8(4), 563–582 (1996)

22. Kaufmann, M., Manjili, A.A., Vagenas, P., Fischer, P.M., Koss-
mann, D., Färber, F., May, N.: Timeline index: a unified data
structure for processing queries on temporal data in SAP HANA.

123

https://pbour.github.io/docs/vldbj20b.pdf
https://pbour.github.io/docs/vldbj20b.pdf
https://doi.org/10.5446/19033

Leveraging range joins for the computation of overlap joins 99

In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2013, pp. 1173–1184 (2013)

23. Kaufmann, M., Vagenas, P., Fischer, P.M., Kossmann, D., Färber,
F.: Comprehensive and interactive temporal query processing with
SAP HANA. PVLDB 6(12), 1210–1213 (2013)

24. Khayyat, Z., Lucia,W., Singh,M.,Ouzzani,M., Papotti, P.,Quiané-
Ruiz, J., Tang, N., Kalnis, P.: Lightning fast and space efficient
inequality joins. Proc. VLDB Endow. 8(13), 2074–2085 (2015)

25. Khayyat, Z., Lucia,W., Singh,M.,Ouzzani,M., Papotti, P.,Quiané-
Ruiz, J., Tang, N., Kalnis, P.: Fast and scalable inequality joins.
VLDB J. 26(1), 125–150 (2017)

26. Kornacker, M.: Access methods for next-generation database sys-
tems. Ph.D. thesis,University ofCalifornia,Berkeley.AAI9994590
(2000)

27. Kriegel, H., Pötke, M., Seidl, T.: Managing intervals efficiently in
object-relational databases. In: Proceedings of 26th International
Conference on Very Large Data Bases, VLDB 2000, pp. 407–418
(2000)

28. Kulkarni, K.G., Michels, J.: Temporal features in SQL: 2011. SIG-
MOD Record 41(3), 34–43 (2012)

29. Luo, J., Shi, S., Yang, G., Wang, H., Li, J.: O2ijoin: an efficient
index-based algorithm for overlap interval join. J. Comput. Sci.
Technol. 33(5), 1023–1038 (2018)

30. Microsoft. SQL Server 2016 - temporal tables. https://docs.
microsoft.com/en-us/sql/relational-databases/tables/temporal-
tables (2016)

31. Oracle. Database development guide - temporal validity support.
https://docs.oracle.com/database/121/ADFNS/adfns_design.
htm#ADFNS967 (2016)

32. Petkovic, D.: Modern temporal data models: strengths and weak-
nesses. In: Beyond Databases, Architectures and Structures—11th
International Conference, BDAS 2015, Ustroń, Poland, May 26–
29, 2015, Proceedings, volume 521 of Communications in Com-
puter and Information Science, pp. 136–146. Springer (2015)

33. Petrov, A.: Algorithms behind modern storage systems. Commun.
ACM 61(8), 38–44 (2018)

34. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for
modern hardware. In: Proceedings of the 32nd IEEE International
Conference on Data Engineering, ICDE 2016, pp. 1098–1109
(2016)

35. PostgreSQL. Documentation manual PostgreSQL - range types.
https://www.postgresql.org/docs/10/static/rangetypes.html (2018)

36. Saracco, C., Nicola, M., Gandhi, L.: A matter of time: Temporal
datamanagement in db210. http://www.ibm.com/developerworks/
data/library/techarticle/dm-1204db2temporaldata/dm-
1204db2temporaldata-pdf.pdf (2012)

37. WebKit open source project. http://www.webkit.org (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
https://www.postgresql.org/docs/10/static/rangetypes.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.webkit.org

	Leveraging range joins for the computation of overlap joins
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 General period boundaries
	5 Overlap join as a union of two range joins
	5.1 A new rewriting of the overlaps predicate
	5.2 Analysis

	6 Evaluation of overlap joins
	6.1 A sort–merge-based algorithm
	6.1.1 Approach
	6.1.2 Complexity
	6.1.3 Considerations for a system implementation

	6.2 Index-based evaluation for standard dbmss
	6.2.1 Approach
	6.2.2 Complexity

	7 Experimental evaluation
	7.1 Setup and datasets
	7.2 Stand-alone join algorithms
	7.2.1 Compared approaches
	7.2.2 Runtime evaluation

	7.3 Approaches for standard DBMSs
	7.3.1 Compared approaches
	7.3.2 Runtime for different indexing techniques
	7.3.3 Buffer management

	7.4 Summary

	8 Conclusion and research directions
	A Proofs
	A.1 Proof for Lemma 1
	A.2 Proof for Lemma 2

	B Period boundaries of discrete domains and static periods
	C SQL for approaches in standard DBMS
	C.1 OMJi
	C.2 RIT
	C.3 GiST
	C.4 BtGiST
	C.5 PGIS
	C.6 SPGiST

	References

