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Abstract
Effective query optimization is a core feature of any database management system.While most query optimization techniques
make use of simple metadata, such as cardinalities and other basic statistics, other optimization techniques are based on
more advanced metadata including data dependencies, such as functional, uniqueness, order, or inclusion dependencies. This
survey provides an overview, intuitive descriptions, and classifications of query optimization and execution strategies that are
enabled by data dependencies. We consider the most popular types of data dependencies and focus on optimization strategies
that target the optimization of relational database queries. The survey supports database vendors to identify optimization
opportunities as well as DBMS researchers to find related work and open research questions.

Keywords Query optimization · Query execution · Data dependencies · Data profiling · Unique column combinations ·
Functional dependencies · Order dependencies · Inclusion dependencies · Relational data · SQL

1 Efficient querying with data dependencies

Increasing the performance ofmodern databasemanagement
systems is a major objective of database research. In this
context, research has accelerated the processing of queries
through advances in different areas, such as utilization of
new hardware technologies, improved implementations of
database operators, or sophisticated query planmodifications
as part of the query optimization process. In this survey, we
consider data dependencies and how they can be utilized for
more efficient query processing. More specifically, we pro-
vide a comprehensive survey of methods that exploit data
dependencies during query optimization and execution in
order to process relational database queries faster.

Most of the data dependency-driven methods discussed in
this survey have been known for years, but many of them are
rarely implemented in actual database systems. To make the
techniques more accessible, we present them in a clear and
concise way with intuitive descriptions and links to detailed
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material. A reason for data dependencies not being used in
modern query processing engines might be that the required
data dependencies of a given dataset are often unknown: they
have never been specified, are difficult to discover, and expen-
sive tomaintain.However, the latest developments in the field
of data profiling tackle these issues for various types of data
dependencies and thus increase the feasibility of discover-
ing and thereby the availability of data dependencies [3].
Note that data profiling algorithms discover all valid depen-
dencies in a given dataset instance. In many use cases, it is
important to distinguish semantically meaningful dependen-
cies from accidentally valid, i.e., spurious ones. For query
optimization, however, this distinction of genuine and spuri-
ous dependencies is irrelevant: If a data dependency is valid
it can be used for optimization, regardless of its genuineness.
Thus, query optimization techniques based on discovered
data dependencies becomemoreviable; their implementation
and further research in this area can, therefore, be reconsid-
ered.
ContributionsWith this survey, we give an overview of about
60 query optimization techniques that are based on data
dependencies. We provide brief and intuitive descriptions of
all techniques and classify them into different types of appli-
cation areas, data dependencies, and optimization phases.
Most dependency-driven optimization techniques have been
published or at least mentioned in scientific literature; these
techniques are usually rather sophisticated optimizations.
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Other techniques have not been scientifically published and
constitute more straightforward optimizations. This survey
captures all techniques, regardless of their origin.

No survey has yet been published that provides an
overview of the query optimization techniques based on
functional, uniqueness, order, and inclusion dependencies.
An extensive examination of order and uniqueness proper-
ties in the context of operators of the relational algebra has,
though, been given by Paulley’s dissertation [100]. Our sur-
vey is based in parts on his findings but incorporates many
further and more recent research: We add many additional
optimization techniques as well as additional types of depen-
dencies.We also provide a referencematrix in Table 1, which
summarizes the optimizations for different types of data
dependencies in different areas of application with regard
to the query optimization process.
Focus This survey focusses solely on utilizing data depen-
dencies for effective query optimization and, therefore, does
not consider optimizations that are not related to data depen-
dencies.While we briefly discuss data dependency discovery
algorithms as part of Sect. 3, we do not cover these algo-
rithms thoroughly and refer to [3] for detailed explanations
of the algorithms and data profiling in general. Because this
is not an experimental survey, we do not judge the optimiza-
tions’ effectiveness, ease of application, or relevance in terms
of how likely they get triggered in real-world workloads;
instead, we focus on classifications and intuitive explana-
tions.
Overview The following two sections summarize the foun-
dations in the area of query optimization (Sect. 2) and the
area of data dependencies (Sect. 3); the common terminol-
ogy and technical background are necessary to understand
the techniques and classifications presented thereafter.When
we introduce the four data dependency types considered in
this survey in Sect. 3, we also discuss automatic discovery
and maintenance algorithms of data dependencies, as these
make data dependenciesmore generally available and, hence,
can be seen as an enabler for the dependency-based query
optimization techniques. Section 4 provides an overview and
classifications for the presented optimization techniques in
form of an optimization technique matrix. This matrix serves
as a reference for all of the following descriptions of opti-
mization techniques. Sections 5, 6, 7, and 8, then, describe the
proposed optimizations, including examples where appro-
priate, for all four dependencies. Section 9 discusses further
optimization opportunities before Sect. 10 provides a short
summary of the paper, concluding remarks, open research
questions, and ideas for future work.

2 Query optimization

Relational database management systems (DBMSs) are usu-
ally queried with SQL in a declarative way. The query engine
of a DBMS, then, transforms these queries into physical
query execution plans. In this process, query optimization
is the task of finding an optimal (or at least very good) phys-
ical execution plan with respect to the plan’s execution time.
It is crucial to find efficient query plans, because the exe-
cution times of different physical plans (that yield identical
results) for the same query can vary by orders of magnitude
[61] and “the runtime system alone could never get that good
performance without an optimizer” [91]. In most systems,
the query optimization process is handled by an interplay
of three main activities: (i) cost-independent transformation
(also referred to as query rewriting), (ii) cardinality and cost
estimation, (iii) and cost-based transformation. In the follow-
ing, we briefly outline how these three components operate
and how the optimization techniques presented in this survey
relate to them. Later, in Sect. 4 we use the three optimization
activities to classify the various dependency-driven optimiza-
tion techniques.

Note that not all systems follow this division explicitly.
Cascades-style optimizers [50], for example, take a combined
approach. The data dependency-based query optimization
rules presented in this paper can still apply to such systems.
Cost-independent transformation describes the process of
rewriting a query into a semantically equivalent but pre-
sumably more efficient query via static, rule-based trans-
formations [101]. The required rules are characterized by
being generally applicable instead of being cost dependent,
that is, they generally1 produce superior, more efficient
query formulations [102]. Examples for such rewrites are
the resolution of views, the removal of DISTINCT clauses
and predicate push-downs. For several rewrites, the pres-
ence of certain data dependencies, such as information on
keys, is a prerequisite to produce semantically equivalent
plans. Hence, many of the dependency-based optimization
techniques presented in this survey address query cost-
independent transformations.
Cardinality and cost estimation serve to estimate the cost
of a query plan a priori. Cost is an indispensable metric
to compare different plan alternatives for cost-based trans-
formations. Via cost models, a query optimizer estimates
the expected cost for a certain query plan and its indi-
vidual operators based on cardinality information, logical
operator specification, and hardware-specific costs [79]. Car-
dinality information is usually derived from statistics, e.g.,
histograms or samples. According to Leis et al. [75], esti-

1 In theory, downstream cost-dependent transformations could produce
more efficient plans based on the unmodified version. This behavior is
unlikely and depends on the concrete system and query.
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mation errors are often responsible for suboptimal plans.
Data dependencies can be applied during cardinality and cost
estimation to obtain more accurate cardinality estimates or
estimates for otherwise missing cardinalities; in this way,
data dependencies serve to mitigate estimation errors.
Cost-based transformation is the process of improving phys-
ical query plans via cost-driven transformations that depend
on the database instance at hand [63]. Based on transfor-
mation rules, the optimizer repeatedly generates different
plan alternatives, then requests estimates for the plans’ costs
from the aforementioned cost models based on concrete car-
dinality information, and finally chooses the most efficient
plan based on these estimated costs. Examples for query
plan optimizations are predicate reordering, the ordering of
join operators, the selection of execution strategies for oper-
ators with different implementations (e.g., hash-, sort-, or
index-based joins), and statistic-based partition pruning. It is
apparent that the success of such plan optimizations strongly
depends on the underlying data, the specific query, and the
query’s parameter values.

Data dependency information can be applied also in the
cost-based transformation phase to generate more efficient
plans. A table scan operation, for instance, usually scans the
entire table sequentially. With the information that the data
is sorted and in-memory, however, the optimizer can instruct
the execution engine to execute it as a binary search; and,
with functional dependency information, it can substitute the
scan attributes with other attributes that are potentially more
efficient to scan. Please note that some of the techniques pre-
sented in this survey might require the extension of existing
operators or even the implementation of alternative opera-
tors, such as binary scans, early-aborting joins, or caching
subquery executions.

3 Data dependencies

Data dependencies usually provide information about mul-
tiple attributes, sometimes even across different relations,
and how they relate to each other. The four most popular
types of data dependencies for query optimization according
to the number of optimizations that use data dependencies
are unique column combinations, functional dependencies,
order dependencies, and inclusion dependencies. In this sec-
tion, we give a brief overview of these four types of data
dependencies and provide their formal definitions. Tradi-
tionally, data dependencies stem from data modeling and
schemadesign, e.g., 3NF synthesis, orBCNFdecomposition,
but data profiling identifies data dependencies from the data
themselves, independently of such processes. Because the
discovery of data dependencies (of any type) is NP-complete
[5] and sometimes even W[2]- to W[3]-complete [35], min-
ing data dependencies is challenging. For this reason, we also

provide pointers to the most recent automatic discovery and
maintenance algorithms, which in practice are sufficiently
fast to be useful in the context of query optimization on real-
world datasets. An introductory overview of data profiling
techniques can be found in [5], while a comprehensive sur-
vey is given in [3].

3.1 Unique column combinations (UCCs)

A unique column combination is a set of attributes whose
projection on some relational instance has no duplicate
entry—all entries are unique [53]. Thus, UCCs function-
ally determine all other attributes and, hence, are sometimes
denoted as candidate keys [104].

Examples for UCCs are the combined attributes first-
name, lastname, address, date-of-birth in a person table,
or an auto-incremented id column that is by its definition a
UCC. It is worth noting that most relational database man-
agement systems recommend the existence of at least one
key per relation, i.e., for such systems, we can expect at least
one UCC in every relational instance that can potentially be
utilized to optimize queries.

In query optimization, UCCs serve to avoid unneces-
sary duplicate eliminations, i.e., DISTINCT calls, obtain
improved cardinality estimations, and optimize joins.

Due to the relevanceof keys in the relationalmodel, unique
columncombinations are an old andwell-established concept
in database theory [78].

Definition 1 (Unique column combination) Given a rela-
tional instance r over a relation R, we formally say that
a column combination X ⊆ R is unique (UCC) for R, iff
∀ri , r j ∈ R, i �= j : ri [X ] �= r j [X ]. A UCC is said to be
minimal, if no subset of that UCC exists for which the above
constraint also holds; hence, ∀X ′ ⊂ X : ∃ri , r j ∈ R, i �= j :
ri [X ] = r j [X ].

Origin of UCCs In general, there are four ways to intro-
duce uniqueness in relational databases: (i) Database users
and applications can explicitly produce uniqueness when
processing existing data by utilizing SQL’s DISTINCT
operation; other SQL clauses, such as EXCEPT, UNION,
INTERSECT, or GROUP BY may also create uniqueness
during query execution if they remove duplicate values. In
such cases, query optimizers can infer that the data will be
unique at a certain point of the query plan. (ii) Most rela-
tional database systems allow specifying unique constraints
via SQL DDL, such as UNIQUE or KEY that automatically
enforce uniqueness on certain attributes or attribute sets. (iii)
Columns or column combinations can be unique by their
very nature, such as UUIDs in computer systems or pass-
port_number for the citizens of a particular country. (iv)
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UCCs can occur by chance,2 especially for column combi-
nations containing many columns.
Discovery and maintenance of UCCs Unique column com-
binations, especially minimal ones, are neither obvious nor
simple to determine, as UCC discovery is a problem in
O(2m) for datasets with m attributes [5,77]. Therefore, effi-
cient, automatic UCC discovery algorithms exist, which can
serve these unique column combinations to a query opti-
mizer. Examples of such algorithms are Ducc [53], and
HPIValid [13]. With the incremental profiling algorithm
Swan [4], unique column combinations can be incremen-
tally maintained.

While UCCs are a special case of functional dependen-
cies, which we discuss below, specialized UCC discovery
algorithms are more efficient. Thus, we discuss the use in
query optimization separately.

3.2 Functional dependencies (FDs)

Real-world data often follow semantics according to which
values in certain attributes functionally determine values
in other attributes. Hence, functional dependencies indicate
relationships between database attributes [27]. An FD is a
statement X → Y , expressing that any two records in a rela-
tional instance r that have the same values in the attributes
X ⊆ R also have the same values in the attributes Y ∈ R;
the attributes in X functionally determine the attributes in Y .

For example, for a relation with address data, the func-
tional dependency city, street address → zip code could
hold; another relation about planets should feature the func-
tional dependency diameter → circumference.

This dependency is a popular property, because it serves
many use cases, including schema normalization, consis-
tency checking, and data exploration. In query optimization,
one can use FDs mainly to remove unnecessary attributes
in various SQL operations and to improve cardinality esti-
mates by transferring these estimates via FDs between sets
of attributes.

Definition 2 (Functional dependency) A functional depen-
dency (FD) X → A of a relation R holds in a relational
instance r over R, iff ∀s, t ∈ r : s[X ] = t[X ] ⇒
s[A] = t[A]. The left-hand-side (LHS) attributes X are
called determinant and the right-hand-side (RHS) attribute
A is called dependent. Multiple FDs with the same determi-
nant attributes X can be grouped andwritten as X → Y , with
Y = ⋃

Ai .

Some FDs have special properties. An FD X → A is
calledminimal if no attribute B ∈ X exists such that X \B →
2 In this context, chance means that dependencies do not origin from
data modeling or semantics, but occur rather randomly due to a large
value codomain.

A is still a valid FD. An FD is called non-trivial if A /∈
X . Although minimality and non-triviality play an important
role in data profiling, these two properties have no special
meaning for query optimization.

A UCC X ⊆ R induces FDs on all attributes that are
not part of the UCC: ∀A ∈ R \ X : X → A. Thus, all
optimizations that we introduce for functional dependencies
later on are also applicable to unique column combinations.
Origin of FDs In general, functional dependencies exist by
the very nature of the underlying data: they represent real-
world constraints, semantic relationships, and physical laws
that are reflected in the data. Functional dependencies can
also be artificially introduced to datasets, e.g., with surrogate
keys, which by definition functionally determine all other
attributes. In addition, after filtering a relation with an equal-
ity predicate on A, the FD X → A holds for every X [100,
p. 68]. Paulley explains how scalar functions can generate
FDs and discusses for all relational operators which FDs are
valid on their output, given a set of FDs on their input [100,
pp. 71–104]. Very many further FDs exist coincidentally on
a given dataset. While they carry no semantic meaning, they
can nevertheless be exploited by query optimization tech-
niques.
Discovery and maintenance of FDs Functional dependen-
cies are usually not provided with the data and determining
them manually is hard. More specifically, the FD discovery
problem is in O(2m · (m2 )2) for m attribute sized datasets
[5,77]. Therefore, a variety of automatic FD discovery algo-
rithms, such as Tane [55], Fdep [41], and HyFD [95] have
been proposed. The surveys by Liu et al. [77] and Papen-
brock et al. [98] present and compare different FD profiling
techniques from both a theoretical and a practical perspec-
tive, respectively. To discover FDs incrementally or maintain
the FDs of a dynamic dataset over time, various incremental
profiling algorithms exist [20,107,120].

3.3 Order dependencies (ODs)

An order dependency (OD) is a statement of the form X �→
Y3 specifying that ordering a relational instance r by the
attribute list X ⊂ R also orders r by the attributes Y ⊂ R.
Given an OD, we thus know how order decisions on certain
attributes propagate to orders of other attributes; this knowl-
edge can be used to optimize order decisions.

To give an intuition, in a date table, the OD month �→
quarter holds, but the inverse OD quarter �→ month is not
valid. Another typical example is salary �→ taxrate. One
can find many ODs in real-world datasets. For example, the
ncvoter4 dataset and data from a real-world ERP system con-

3 Bold symbols X indicate lists, whereas standard symbols X indicate
sets.
4 North Carolina election data: www.ncsbe.gov/Data.

123

www.ncsbe.gov/Data


Data dependencies for query optimization: a survey 5

tain many order dependencies. Order dependencies play an
important role in query optimization, because many rela-
tional operators use sorting or exploit already sorted data
for their execution. More specifically, ODs help in selecting
suitable operator implementations and support finding good
query plans. They can also be used to, for instance, effectively
rewrite, remove, or inject ORDER BY clauses.

Ginsburg and Hull were the first to formally introduce the
concept of order dependencies [46,47]. In this paper, we use
the notation of Szlichta et al. [114].

Definition 3 (Order dependency) For two lists of attributes
X and Y of a relation R, the order dependency (OD) X �→ Y
holds in relation instance r over R, iff ∀s, t ∈ r : s[X] �
t[X] ⇒ s[Y ] � t[Y ].

Note that the comparison operator � compares the X and
Y values attribute-wise, i.e., lexicographically via≤with the
first attribute in each list being the most significant one. Fol-
lowing SQL semantics, the comparison is data-type specific,
which means that it is numerical for numbers and lexico-
graphical for strings. In principle, ODs support different
comparators including ≺, �, =, �, and � as well as combi-
nations of these comparators. An ODwith the comparator=,
for example, is equivalent to a functional dependency [114]
and ∀s, t ∈ r : s[X] � t[X] ⇒ s[Y ] � t[Y ] means that an
ascending X order implies a descending Y order. While the
optimizations presented in this paper are often extendable to
other comparator types, we assume the comparator to be �
(

��−→), if not stated differently. Please note that � induces a
total ordering.
Origin of ODs There are three ways to introduce order in
relational data (order decisions): First, users can explicitly
create order by specifying an ORDER BY clause; second,
some database operations produce ordered results as a side-
effect of their implementation, e.g., sort-merge joins or sort-
based aggregates; third, data can also be naturally ordered
by, for instance, timestamp or auto-incremented surrogate
key attributes during data ingestion.
Discovery and maintenance of ODs The discovery prob-
lem for ODs (in set-based notation) is in O(2m) with m
being the number of attributes in the dataset [116]. How-
ever, automatic discovery algorithms, such as FastOD by
Szlichta et al. [116], are efficient in practice, because they
use clever search space pruning and most ODs in real-world
datasets actually appear relatively early in the discovery pro-
cess. Similar to the other types of data dependencies, the
incremental discovery has also been studied for ODs. For
example, a recent incremental discovery algorithm for point-
wise ODs is IncPOD [118].

3.4 Inclusion dependencies (INDs)

If all values in the projection of some attribute combination X
also occur in the projection of some attribute combination Y
(of the same or a different relation), then an inclusion depen-
dency exists between X andY . If, furthermore, the referenced
attribute combination is a key, i.e., a UCC, for its relation,
the inclusiondependency is a foreign-key candidate—inother
words, INDs are prerequisites for a foreign-key relationships.
For example, the three inclusion dependencies

click.website ⊆ website.url

sales.item ⊆ items.id

{ship.lname, ship.bdate} ⊆ {addr.name, addr.dob}

might represent foreign-key relationships. Such inclusion
dependencies can be used in data integration and data linkage
scenarios to connect tables across multiple data sources by
suggesting join paths. Inclusion dependencies are, however,
also useful if they do not describe foreign-key relationships.
The inclusion dependency nails.supplier⊆ screws.supplier,
for example, asserts that all nail suppliers also supply screws
without supplier being a key in screws. Such general INDs
can be used for data exploration and, as we will show in this
section, query optimization.

Our formal definition of inclusion dependencies follows
the syntax of Casanova et al. [21] and De Marchi [80]:

Definition 4 (Inclusion dependency) An inclusion depen-
dency (IND) Ri [X] ⊆ R j [Y ] is valid for the two relational
instances ri and r j of schemata Ri and R j and the attribute
lists X and Y with cardinalities n = |X| = |Y | iff
∀ti ∈ ri , ∃t j ∈ r j : ti [X] = t j [Y ]. We write X ⊆ Y or
Ri .X ⊆ R j .Y if it is clear from the context that an IND is
meant; in these cases, the projection is implicit.

Note that the dependent (X) and referenced (Y ) part
denote attribute lists for INDs, i.e., their attribute order may
differ from the attribute order in R and they may contain
repeated attributes. By removing attributes with the same
indices from the lists X and Y , we can derive generalizations
X ′ ⊆ Y ′ with X ′ ⊂ X and Y ′ ⊂ Y from a valid IND X ⊆ Y
that are also valid. This is important for query optimization,
because a query might not contain all attributes of a known
IND but a subset that also forms a valid IND.
Origin of INDs Relational databases contain INDs, because
data models representing real-world data often rely on
relationships between tables, and INDs are a prerequisite
for foreign-key relationships. Most DBMS implementations
allow users to specify foreign keys, e.g., via SQL’sFOREIGN
KEY X REFERENCES Y,which can also specify thebehav-
ior if a tuple isnull in one of the key’s attributes via MATCH
(FULL|PARTIAL|SIMPLE).
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Discovery and maintenance of INDs Inclusion dependen-
cies are different from the previously mentioned types of
dependencies as they can span across multiple relations,
the attribute order in the dependency does matter, and the
position of value combinations within the sets of left- and
right-hand-side value combinations does not matter. For
this reason, their discovery is in O(2m · m!) with m! being
a simplification [5,77]; it is even one of only few real-
worldW [3]-complete problems [14] and, hence, particularly
hard. Nevertheless, many data profiling algorithms, such as
BINDER [97] or SINDY [73], are able to discover INDs
in most relational datasets, as experimentally surveyed in
[37]. Themaintenance of INDs for dynamic datasets is possi-
ble with incremental discovery algorithms, such as S- INDD
[109].

3.5 Data dependency properties

Dynamic datasets change through inserts, updates, and
deletes of records and values. For this reason,wehave already
referenced some first incremental and dynamic data profil-
ing algorithms that are able to maintain the knowledge about
valid data dependencies over time. Up-to-dateness is, how-
ever, only one of many properties of data dependencies. We
briefly discuss other properties and their relevance for query
optimization.
MinimalityAll state-of-the-art data profiling algorithmsmine
only minimal (or maximal) data dependencies, because the
sets of all valid dependencies are usually extremely large.
Query optimizers, however, might require non-minimal (or
non-maximal) dependencies, which is why these dependen-
cies need to be inferred from discovered dependency sets.
Fortunately, data dependencies follow certain axiomatiza-
tions that enable the simple generation of further depen-
dencies. Functional dependencies, for example, follow Arm-
strong’s axioms (reflexivity, augmentation, and transitivity
[7]) that generate additional, also valid FDs from existing
FDs. Inferring non-minimal (or non-maximal) dependen-
cies from complete sets of minimal/maximal dependencies
is particularly simple, because augmentation is sufficient to
generate every possible valid dependency: Given a complete
set of minimal data dependencies �, a desired valid but non-
minimal UCC X or FD X → Y can easily be inferred from
� by searching for subsets of X , similar as proposed in [96];
for ODs X �→ Y , we can remove common prefixes in X
and Y to test for minimal valid ODs in �; and for INDs
X ⊆ Y , � needs to be a complete set of maximal depen-
dencies and we can extend it with valid superlists of X . In
all four cases, no transitive checks are necessary, because
if dependencies derived via transitive extensions are valid,
they (or some minimal/maximal version of them) are guar-
anteed to be included in � as well. So if � is complete and
the desired dependency is true, the described lookups will

retrieve at least one minimal/maximal specialization. Orga-
nizing the dependencies in prefix-trees, as proposed in [41],
makes these lookups efficient. For query optimization, this
means that a desired dependency might not be directly avail-
able but needs to be inferred on the fly from minimal data
dependencies.
Completeness If the set of available data dependencies �

is not a complete set of minimal/maximal dependencies,
it might be necessary to pre-calculate the closure over all
dependency-specific axioms, minimize the result and con-
struct an index. This needs to be done in a preprocessing
step prior to any query optimization, because the first two
steps are known to be expensive, NP-complete tasks. After-
ward, we can efficiently retrieve the required dependencies at
query time via efficient subset and superset lookups. Despite
the existence of dependency maintenance algorithms, pre-
processing techniques, and on-the-fly dependency inference
methods, these activities are sometimes still not affordable
with regard to performance, which is why all three activities
remain ongoing research areas.

Regardless of these considerations, some missing depen-
dencies might not be inferable if the discovery and/or
maintenance process is not complete. For this reason, a query
optimizer will, in practice, need to deal with incomplete data
dependency sets. Although missing out on a valid but not
retrievable dependency is a lost optimization opportunity, it
has no negative consequences. Incompleteness is, therefore,
no issue for query optimization—the optimizer simply uses
what is available with the lookup effort it can afford.
Approximation Approximate, partial and relaxed depen-
dencies are ones that are not valid for the entire dataset
[19,54]. They are produced by approximate (and usually
more efficient) discovery algorithms and arise from exact
dependencies on dynamic datasets if the exact dependen-
cies are not maintained. When used for query optimization,
approximate dependencies can cause incomplete and incor-
rect results. Hence, they are in general not usable for query
optimization unless they are implemented in approximate
query processing systems [89], other data structures com-
pensate their optimization mistakes [70], or they are used
only for cardinality and cost estimation optimizations (see
Table 1).
Conditions Data dependencies are sometimes tied to condi-
tions that limit their scope. A conditional dependency [15]
holds on only a particular subset of tuples for which a spe-
cific condition is true. Such dependencies can be used for
query optimization in the same way as unconditional depen-
dencies if the query’s selection condition (WHERE clause) is
at least as strict as the condition of the dependencies. In sum-
mary, all query optimization techniques surveyed in thiswork
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Data dependencies for query optimization: a survey 7

require a set of exact5 data dependencies (or constraints) as
input, regardless of whether these constraints are given by
the schema or have been discovered from the data.
Null-semantics Relational database systems often use null
values to indicate missing information. The comparison of
null values, i.e., null = null evaluates to unknown
[28], which is sometimes effectively treated as true or
false in SQL. For instance, DISTINCT, GROUP BY, and
ORDER BY statements as well as set operations evaluate
null = null to true while WHERE selections and JOIN
statements evaluate tounknownwhich, in turn, does not sat-
isfy the predicate. So whenever a dataset may contain null
values and we use a data dependency for query optimization,
then this dependency needs to be true under the same null
semantics as the SQL operator that is being optimized. For
example, a DISTINCT can be removed only with a UCC
that uses null = null semantics and a JOIN-removing
IND needs to use null �= null. Because we can config-
ure the null semantics in most data profiling algorithms,
both semantics are technically available and the optimizer
can pick the required ones. Unfortunately, null semantics
are hardly considered in the surveyed literature, which is
why we add this information where it is relevant in this sur-
vey. To shorten the individual discussions, we define that,
if not stated otherwise, all required data dependencies use
the null = null semantics, which is not only the most
commonly required interpretation but also the default con-
figuration for most dependency discovery and maintenance
algorithms.

Note that both semantics null = null and null !=
null are practical null interpretations. While this prac-
tical interpretation is very useful for our objective of query
optimization, a more accurate interpretation of null val-
ues for data dependencies is actually no information [8], so
that the validity of a dependency depends on whether we
can find a substitution for all null values that makes the
dependency true (possible world) or we find that any substi-
tution of all null values makes the dependency true (certain
world) [71,72]. Albeit interesting for schema design, seman-
tic reasoning, and many other use cases, possible and certain
world interpretations are not relevant for the surveyed query
optimization techniques.

4 Classification of dependency-driven query
optimization techniques

This section provides an overview of all optimizations that
are explained in detail in Sects. 5, 6, 7, and 8. The optimiza-
tion technique matrix in Table 1 shows which dependencies

5 Optimizations applied during cardinality and cost estimation can also
utilize approximate dependencies.

enable a particular optimization and which query optimiza-
tion activity is affected by each optimization. More specif-
ically, the matrix classifies all dependency-driven query
optimization techniques with respect to three dimensions:

i. Dependency type: In many query optimization scenar-
ios, a new type of dependency is made available to the
query optimizer by, for instance, recent developments
in the area of dependency discovery and maintenance.
The question then is how these data dependencies can
be utilized. For this reason, we chose the dependency
type—UCC, FD, OD, or IND—as the main classifica-
tion dimension.

ii. Relational operator: Every optimization targets a par-
ticular query operator or set of query operators. For
this reason, we use the operators of the relational alge-
bra as second classification criterion. In practice, most
optimizations target only one operator. For those opti-
mizations that affect multiple operators, we show the
most relevant operator, which is usually the most expen-
sive one.

iii. Query optimization activity: Every optimization can be
assigned to the query optimization activity that is mainly
affected by it. Hence, we use the three activities that
we discussed in Sect. 2—cost-independent transforma-
tion, cost-based transformation, and cardinality and cost
estimation—as our third classification dimension.

Note that for different systems, techniques might be
classified differently w.r.t. their query optimization activity
depending on the implementation and degree of sophistica-
tion of the query optimizer. For this classification, we place
the techniques into the most likely categories. We also again
emphasize that some optimizations affect not only the struc-
ture of the query plan (e.g., operator reordering) or the choice
of operator implementations (e.g., sequential vs. index scan)
but also the behavior of operators at runtime. Scan opera-
tions, for instance, might abort early in certain cases. Instead
of attributing such optimizations to the execution phase, we
decided to attribute them to query optimization, because, ulti-
mately, the optimizer prepares for such behavior, decides on
the query plan, and instructs the physical operators to act
accordingly.

Counting the entries, Table 1 shows that more optimiza-
tions exist for UCCs (17), FDs (14), and ODs (18) than for
INDs (10): INDs are dependencies between unordered sets of
values (or value combinations); their known optimizations,
therefore, support only join and set operations. Most opti-
mizations influence cost-independent transformations (29),
followed by cost-based transformations (18) and lastly car-
dinality and cost estimation (9).

We also identify a fourth dimension, in which the pre-
sented transformation-based optimization techniques could
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Table 1 Possible optimizations categorized by (i) the examined data
dependencies, (ii) the area of application, i.e., operators of the rela-
tional algebra, and where possible (iii) the query optimization activity
that is affected by the optimization, which is indicated by back-

ground color and symbol:
cost-based plan transformations (†)

,

cost-independent transformations / rewriting (∗)
,

cardinality and cost estimation (‡)
. For optimizations that have

not been scientific section where this optimization is explained

be categorized: the optimization method with which the
improvement is achieved. This dimension is not visualized in
the table, because it does not apply to all depicted techniques.
• Simplification: The task that the operator needs to ful-
fill is simplified, e.g., by removing attributes from a
GROUP BY list or by omitting the sort phase of a
sort-merge join. Avoiding the operator execution alto-
gether is an extreme case of simplification. Examples
can be found in [2,6,17,23,24,29,49,65,83,87,93,99–
101,108,113–115,117,121,127].

• Algorithm choice:Oftentimes, a specific implementation
of a query operator can be selected from different alter-
natives. The available data dependencies can guide this
decision. For instance, a binary search is superior to a
sequential scan if a dependency indicates that the data is
sorted. Examples are found in [42,100,110,115,125,126].

• Substitution: Certain data dependencies indicate that an
operator can, instead of processing an attribute A or a
relation R, process an attribute B or a relation S with the
same result. This might be beneficial if B offers superior
properties, such as a more compact data-type or being
indexed. Examples are presented in [24,33,33,51,57,68,
100].

• Pipelining: Some dependencies provide additional guar-
antees that enable pipelining between operators in cases
where it would usually be infeasible. Examples are found
in [23,30,49,124].

In conclusion, Table 1 provides an overview of all opti-
mization techniques presented in this survey and categorizes
them to showwhichoptimizations are enabledbyeachdepen-
dency type.

5 Unique column combinations

In the following subsections, we present various query opti-
mization techniques that are enabled by the existence of
UCCs. (Primary) keys are by definition UCCs, which, vice
versa, serve as key candidates. For that reason, all presented
optimizations can be applied analogously given either key
constraints on the schema or UCCs discovered from a rela-
tional instance. Apart from query optimization and keys,
uniqueness is often used for data integration, indexing, and
anomaly detection.
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5.1 UCCs and joins

If an SQL query joins two relational instances that both have
a UCC, then the resulting relation contains a (not necessarily
minimal) UCC, which is the concatenation of both UCCs.
Furthermore, if the join attributes are UCCs in both relational
instances, they are also unique for the join result. These two
properties can be used to track unique column combinations
across joins, so that they may be used for the optimization of
downstream operators and query plans.

Most UCC-based join optimizations require the existence
of uniqueness on at least one of the input relations’ join
attributes. For example, Dayal shows that aggregations and
asymmetrically implemented joins can be pipelined if the
grouping attributes contain the primary key, i.e., a UCC of
the outer join relation [30]. Such join implementations group
the result by tuples of the outer relation’s join attributes. Con-
sider the query:

SELECT R.A, SUM(S.B) FROM R, S
WHERE R.A = S.A
GROUP BY R.A

If R.A is a UCC and chosen as outer relation, the join’s
results can be streamed directly to the aggregate function
SUM(S.B), because the absence of duplicate values guaran-
tees that the records are already grouped by R.A. Yan states
that this applies to candidate keys and UCCs if these are the
outer relation’s join attributes [124].

An inner join of two relations R and S on the join attributes
X can be executed by potentially more efficient semijoin6

strategies [87] if X is a UCC on S, and S does not need to
supply columns to the result. Intuitively, the UCC ensures
that any tuple rk ∈ R from the outer relation can match only
one single tuple si ∈ S of the inner relation [23], i.e., rk[X ] =
si [X ] is unique with respect to rk[X ]. This is true, because
by the definition of UCCs no second tuple s j ∈ S, i �= j
exists for which si [X ] = s j [X ]. If X was not a UCC in S,
the inner join could replicate rows in R’s instance and, hence,
produce a different result than the semijoin. Rewriting inner
joins as semijoins is useful, for example, in distributed query
optimization, to send less data over the network [11,86]. For
nested loop join strategies, a UCC on the inner join loop’s
attribute enables aborting the inner loop early and continuing
the outer loop as soon as the first match is found.

Yang and Larson illustrated another use case for UCCs
whenworkingwith derived relations and so-calledback-joins
[127]: Let us assume a derived relation E1 from R holds all
the required tuples to answer a query Q, but misses some

6 The semijoin R � S selects tuples of R that would match a tuple of S
if joined, i.e., R � S ⇔ R ��X πX (S).

attribute A.With a back-join,7 the attribute A can be obtained
from another relation E2 that was derived from R as well.
Such a back-join can produce spurious tuples that contain
values that originate from different tuples of the base relation
R. Performing this back-join on a UCC with attributes X ,
however, prevents the generation of such spurious tuples,
because, by the definition of UCCs, if tuples agree on X ,
they also agree on all other attributes.

Abadi et al. [2] introduce so-called invisible joins for star
schemas in column-oriented database engines. This tech-
nique improves the performance of foreign-key/primary-key
joins by, among others, transforming such joins into predi-
cates on fact table columns. Given the required UCC, i.e., a
primary key, the optimizer can choose this special execution
technique to improve the performance of the join. Because
the detailed description of this join technique is beyond the
scope of this paper, we refer the interested reader to [2].

5.2 UCCs and grouping and aggregation

When grouping on a UCC, it is by the definition of UCCs
obvious that themaximumgroup size is 1. For this reason, the
entire grouping step is superfluous to calculate aggregations
on these groups: The data is implicitly grouped already [23].
Hence, both sort- and hash-based aggregation implementa-
tions can omit the grouping phase, i.e., sorting or hashing, if
they are aware of the UCC.

Because UCCs are essentially special forms of functional
dependencies, we list further UCC-based optimizations for
grouping and aggregation operations with the FD-based opti-
mizations in Sect. 6.1.

5.3 UCCs and distinctness

SQL statements containing the DISTINCT keyword are
common in practice [100]. Being able to optimize duplicate
eliminations is, for this reason, very important.

Paulley and Larsson explain that query results in certain
combinations with UCCs cannot contain duplicate tuples
and, hence, the executionof aDISTINCToperation is unnec-
essary [99,100]. Given a UCC X on a relation R, they show:
If either (i) all attributes of X are part of the query’s projection
list, or (ii) a subset Y ⊂ X is contained in the projection list
and the other attributes X \Y are selected via equality predi-
cates, the query result is unique and theDISTINCToperation
can be removed. Pirahesh et al. mention a similar technique,
but not as detailed as Paulley and Larsson andwithout explic-
itly takingnullvalues into account [101]. Since distinctness
is usually ensured by costly sort- or hash-based approaches,

7 A back-join is used when a derived relation holds all necessary tuples
to answer a query but requires additional attributes from other relations.
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the removal of redundant distinctness keywords is a substan-
tial optimization.

5.4 UCCs and subqueries

Paulley and Larsson describe how correlated subqueries can
be transformed into ordinary join queries [99,100]. Optimiz-
ers can then apply all the rules and optimization techniques
that are relevant to joins, e.g., choosing a particular join
algorithm with better performance for that particular case
or adjusting the join order to find a more efficient query plan
[101]. While these techniques have been proposed earlier,
e.g., byKim [67], Ganski et al. [43], and Pirahesh et al. [101],
Paulley and Larsson explicitly consider duplicate entries and
null values.

To illustrate the idea,

SELECT R.A, R.B FROM R WHERE EXISTS
(SELECT * FROM S WHERE S.A = R.A)

can safely be rewritten to

SELECT R.A, R.B FROM R, S
WHERE S.A = R.A

iff S.A is a UCC; otherwise, the transformed version of the
querymight result inmore results than the original version. In
case a rewritewas possible, also the semijoin strategiesmight
apply to further optimize the query [92]. The UCC ensures
that the subquery cannot provide more than one matching
tuple, which enables the transformation. The rewrite is also
possible for amulti-attributeUCC X if the non-join attributes
are selected via equality predicates (see Sect. 5.3).

Sometimes, correlated subqueries cannot be unnested.
In such cases, the query engine can cache results obtained
from subquery evaluations to reuse these results for evalu-
ations with repeated, i.e., the same referenced values. With
the cached results, redundant subquery evaluations can be
avoided. Selinger et al. develop this idea one step further and
propose to first sort the outer relation by the referenced col-
umn and then execute the subqueries [108]; in this way, the
query engine needs to cache only one, i.e., the last subquery
result. However, if the referenced column is a UCC, both
the caching and the sorting are redundant and should not be
applied, because repeated values do not exist [108].

5.5 UCCs and set operations

While the relational algebra is based on set semantics, SQL
generally uses bag semantics. SQL’s set operations, such
as INTERSECT, EXCEPT, and UNION, however, pro-
vide set semantics, unless disabled by the ALL keyword. By
the set definition, sets cannot contain duplicate values, but
relations in database systems typically allow them. There-

fore, implementations of set operations need to ensure that
duplicates are removed before providing the final result.

Because uniqueness plays a central role for set operations,
it is apparent that UCCs can be used to optimize them. For
the following examples, we assume two tables R and S with
a UCC on R.A. Paulley and Larsson note that “the seman-
tics of INTERSECT and INTERSECT ALL are equivalent
if at least one of the involved tables cannot produce dupli-
cate rows” [99,100]. If this pre-condition is guaranteed by a
UCC, the costly duplicate elimination of INTERSECT can
be avoided by rewriting it as an INTERSECT ALL. The
rational is as follows: According to the SQL standard [60,
p. 202], the result of an INTERSECT ALL statement on the
tables R, S containsmin(m, n) instances of a duplicate tuple
t , wherem and n are the numbers of occurrences of t in R and
S. Hence, the UCC guarantees either m or n to be 1 which,
in turn, guarantees only a single occurrence of t in the result.
Thus, no duplicate elimination is necessary.

Similarly, R EXCEPT S can be rewritten to R EXCEPT
ALL S, simply because a difference operation cannot intro-
duce duplicates if these are not already present in R [100].
Their absence is guaranteed by the UCC on R.A.

Further, some database systems, such as MySQL, do not
support INTERSECT statements [88]. Instead, the docu-
mentations of these systems often suggested to express the
semantics of INTERSECT (manually) with an inner join:

SELECT DISTINCT(R.A) FROM R, S
WHERE R.A = S.A
OR (R.A IS NULL AND S.A IS NULL)

If a UCC exists not only on R.A but also on S.A, the
DISTINCT can be removed and, hence, INTERSECT can
be formulated as a join. The correct handling of null val-
ues for such rewrites can be achieved as demonstrated above
[99,100]. Themain advantage of these transformations is that
they help to avoid costly duplicate removals [62] when these
are superfluous.

5.6 Further optimization opportunities with UCCs

Apart from the main concepts described above, unique
column combinations enable some further potential opti-
mizations.
Selection If a SELECT clause defines an equality predicate
for all attributes of a UCC X , the query can be aborted after
the first matching tuple is identified, because the UCC guar-
antees that no further matches can be found. While such an
operation on primary-key columns would be handled usually
by an index lookup, not all UCCs are necessarily indexed.
In real-world ERP database systems, for example, there are
many equality predicates on such attributes [16].
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Cardinality and cost estimation Uniqueness information can
be of use for cardinality and cost estimation of various oper-
ators. For example, selections with equality predicates on a
UCC can have at maximum one resulting tuple. Non-equal
checks result in either |R| or |R|− 1 results and, for equality
joins, there is at most a single matching tuple, cf. Section 5.1.
Furthermore, uniqueness information can be utilized to deter-
mine the number of groups for GROUP BY operations and
to estimate lower bounds for set operations.
SortingThe presence of UCCs allows to remove all attributes
following that UCC in the attribute list of an ORDER BY
clause. For instance, under the UCC X , the attributes Y can
be removed from ORDER BY X, Y, because sorting by Y
would affect only the order of tuples that agree in X . The
UCC guarantees that such tuples do not exist.

Stable sort algorithms keep equal elements in their orig-
inal order. This stability guarantee is usually exchanged for
higher runtime complexity or elevated memory consump-
tion. However, UCCs ensure that no duplicate elements
exist so that stable sort algorithms are not needed. So if
the execution engine offers multiple physical sort operator
implementations, UCCs can be used to find the most suitable
implementation during optimization.
Embedded unique constraints Embedded unique constraints
allow for expressing the existence of UCCs on fragments of
incomplete data, i.e., data containing null values. Wei et al.
demonstrate how such embedded unique constraints can be
utilized for query optimization, e.g., to improve the efficiency
of joins or scans in queries that handle incomplete data [122].

6 Functional dependencies

Theuse cases for functional dependencies aremanifold. They
were initially used to normalize database schemata [26], but
meanwhile also aid data cleansing, data integration, and data
translation tasks. In the remainder of this section, we focus
on their utilization for query optimization.

6.1 FDs and grouping

Grouping operations can be simplified through query rewrit-
ing if functional dependencies are present. If the functional
dependency B,C → A holds and a group operation on the
combination B,C, A is to be executed, the grouping attribute
A is unnecessary, because all elements that fall into the same
group for B,C necessarily also have the same value for A.
Thus, the grouping attribute A can simply be removed and it is
sufficient to group only on B,C [114]. The same rule applies
if the determinant B,C is (partly) filtered in the WHERE
clause with an equals condition. For example, the GROUP
BY clause in the query

SELECT C, SUM(D) FROM R WHERE B = 17
GROUP BY C, A

can be rewritten toGROUP BY C. Since 1999, the SQL stan-
dard explicitly allows selecting columns that are not part of
the GROUP BY clause if they are functionally dependent on
grouping columns [59]. Date and Darwen [29] mentioned
this problem earlier in their work. The presented technique
can in fact also be applied to several TPC-H queries [17].
For example, TPC-H Query 3 contains a grouping opera-
tion on l_orderkey, o_orderdate, o_shippriority. Because
l_orderkey is a key, o_orderkey → o_orderdate, o_ship-
priority holds. The grouping statement in Q3 can, therefore,
be simplified to group on l_orderkey only.

As the enforcement of distinctness is a special case of
grouping [23], the above-described method can also be
applied to SQL DISTINCT clauses: DISTINCT X, A
reduces to DISTINCT X if X → A. In the context of
duplicate elimination, Weddell also explained how duplicate
eliminating projections (in the sense of the relational algebra)
can be avoided with known functional dependencies [121].

Date and Darwen also partly describe an optimization if a
DISTINCT is applied after a relation has been filtered with
an equals predicate [29]: Consider A → B to hold and the
query

SELECT DISTINCT B FROM R WHERE A = 4

In this case, the DISTINCT is necessary, because the selec-
tion can possibly yield multiple results. However, above’s
FD ensures that all resulting rows will have the same value
in B, and a costly duplicate elimination can be avoided by
just returning the first row.

6.2 FDs and joins

The optimization potential of FDs for joins might appear
limited at first glance, because joins test for value correspon-
dences across potentially different relations, while FDs test
for value dependencies within one relation. There are, how-
ever, a few interesting applications related to joins in query
rewriting and join ordering.

First, Eich et al. examine optimizations for eager aggre-
gation that were initially presented by Yan and Larson [125],
i.e., group-by operations that are pushed below joins. The
authors show how functional dependencies can be used to
prune join trees during query plan generation and, hence,
speed up the plan generation process by orders of magni-
tude [38]. For example, consider the question whether a join
subtree T1 that is more expensive than a join subtree T2 can
be pruned during plan generation. In T1, attribute A of a
relation R is (eagerly) grouped before R is joined with S.
In T2, R �� S is executed before attributes A, B (B is an
attribute of S) are grouped. Now, T1 should only be pruned if

123



12 J. Kossmann et al.

at least the same set of FDs holds after executing T2 as after
T1. The intuition is as follows: The execution of a group-by
influences which functional dependencies hold in the subse-
quent intermediate results; without grouping, the FDs would
be equivalent for all join trees. If the FDs that are neces-
sary to fulfill the specified query do not hold in the end, a
final group-by would have to be added to ensure the correct
result. This final group-by operation could introduce addi-
tional costs that, when taking the aforementioned pruning
criteria into account, renders the plan suboptimal. Note that
early partial aggregation could even reduce the overall costs
[74].

Kambayashi and Yoshikawa [65] apply FDs to simplify
queries that involve joins. Assume a natural join R �� S that
joins the relations R and S on the attributes Z with S[Z ] ⊆
R[Z ] and vice versa. If the FD X → A holds and X ⊆ Z ,
then the join attributes Z can be reduced to Z \ A, because
matching values in X guarantee matching values in A. The
same reduction also applies to arbitrary self-joins R ��Z R
on same attributes Z , if A, i.e., the removed attribute, does
not contain null values; such null values would prevent
certain result pairs that match on Z \ A and would, therefore,
arise after the reduction. The described rewriting technique
improves the join execution, because fewer join attributes can
reduce both computation time and memory consumption.

In combination with selections that are executed prior to
the join, FDs can be used for optimizing these joins. Again,
consider the FD X → A to hold on a relation R and a query
that filters R with an equality predicate on X and then joins
R with a relation S on A. The FD ensures that all tuples in
R that remain after the filter operation have the same value
in A. Thus, all tuples from S that match the first filtered
tuple in R also match all other remaining tuples in R. This
insight can substantially reduce the complexity of the join
operation: After joining the first filtered tuple of R to its
matching tuples in S, we can reuse the same set of S tuples
as matching tuples for all other filtered R tuples by simply
duplicating these tuples. In other words, σX (R) ��A S with
X → A can bewritten as σX (R)×(S�AπA(σX (R))), which
is, we calculate the cross-product of the filtered R tuples with
the S tuples filtered by the right-hand-side value A defined
by the X value. For performance reasons, the result of σX (R)

can be cached to execute the filter only once. Also note that,
under bag semantics, the limit operator must be applied to
obtain only the first matching R tuple for the semijoin with
S.

Finally, Abiteboul, Hull, and Vianu show that an equal-
ity self-join can be avoided in cases, where the join attribute
functionally determines all other attributes in the distinct pro-
jection of the query [6]. Consider a relational instance r over
R with attributes X , Y and the FD X → Y to hold. Any self-
join of r on X is semantically superfluous and can, therefore,
be avoided, because ∀s, t ∈ r : iff s[X ,Y ] and t[X ,Y ′]

the aforementioned FD ensures Y = Y ′. If R contains the
attributes X ,Y , Z , but X � Z , the self-join on X is still
unnecessary if only X and Y are in the projection of the
query. In both cases, the self-join adds a redundant column.
More specifically, πXY (R) ��X πXY (R) with X → Y can
be rewritten to πXY XY (R). Admittedly, the join also (ineffi-
ciently) removes null-valued records if X contains null
values and it increases the cardinality of the relation if X is
not distinct, i.e., it is not a UCC.

6.3 FDs and selection

The use of FDs with selections offers powerful simplifica-
tions. Some of the below mentioned optimizations might not
be efficiently realizable with standard implementations of
physical operators but require alternative implementations.

For an FD X → A on a relational instance r over R,
consider a query that filters R with two equality predicates on
X and A. If the filter on X is evaluated first, it then suffices to
check only a single element of A, because the FD guarantees
that all other tuples (that matched X ) have the same value
in A: The overall result is empty, if the A value differs from
its filter value; otherwise, it is non-empty and no further A
value needs to be checked. In an extreme case, a tuple-at-a-
time execution model can abort the selection process after
checking the first tuple of a potentially large table, if its X
value matches but its A value differs.

Furthermore, selections can be shifted to another attribute
that is less expensive to process, for instance because it is
indexed or of a less complex data-type, such as int instead
of string. This technique is also called predicate introduc-
tion8 and was originally intended to be used with check
constraints by Cheng et al. [24]. Kimura et al. [68] explicitly
mention the application of FDs in such scenarios. Given the
FD A → B for a relational instance r over schema R and
a query with the selection σA=vA , the system could deter-
mine the first tuple s ∈ r with s[A] = vA (for example, with
a partial scan) and, then, find the value vB as s[B] = vB
that corresponds to the selection value vA. Now, the system
replaces σA=vA with the cheaper selection σB=vB . This new
query serves only as a pre-filter, because not all tuples that
match on σB=vB also match on σA=vA . So in the end, the
(potentially small) result-set of the adapted query must be
re-evaluated on σA=vA . This optimization technique requires
highly selective B-predicates and relatively large amounts of
data to result in performance advantages. Furthermore, vB
must not be null, because null comparisons in selections
always resolve to effectively false. The evaluation of σA=vA

can be omitted, if the reverse FD B → A is also true.

8 Predicate introduction can be applied not only if FDs are present, but
also if correlations [84] or algebraic constraints [18] exist which are not
considered in this work.
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Scalar subqueries are required to return either noor exactly
one row. Many systems throw an exception otherwise [94,
105]. Date and Darwen [29] mention a possible optimization
regarding such queries in combination with FDs. Consider
the query

SELECT * FROM R WHERE R.B >
(SELECT B FROM S WHERE S.A = 4)

If the FD A → B holds, the equality predicate on A in
combination with the FD ensures that B has the same value
for all rows. Thus, the result could be computed even though
the subquery returns more than a single row. However, to the
best of our knowledge, this technique is not implemented in
any commercial database system.

6.4 FDs and sorting

FDs can be used to simplify operations that introduce order in
the involved relations [24,114]. We can, in particular, reduce
the attribute lists inORDER BY clauseswith the use of known
FDs, which was first shown by Simmen et al. [110]. For
example, the clause ORDER BY X, A can be reduced to
ORDER BY X if the FD X → A holds, because for a certain
value of X , there is only one value in A.

6.5 Further optimization opportunities

Apart from the optimizations for the operations described
above, functional dependencies also support various further
query-related tasks. Analogously to embedded unique con-
straints, embedded functional dependencies [123] can be
used for query optimization under incomplete data.
Cardinality estimation Query plan optimizers or other
database components that estimate the cardinality of database
operators often assume value independence for the differ-
ent attributes and uniform value distributions9 [75,76,108].
As the name implies, functional dependencies indicate the
contrary. Known FDs can, therefore, improve cardinality
estimations [25,58,106] and lead to better query plans. For
instance, the cardinality of the conjunction of two predicates
σA=vA and σB=vB is usually estimated as the product of their
individual selectivities, which is 1

|A| · 1
|B| . If, however, A → B

is true, then only 1
|A| is the appropriate cardinality estimate,

because vA always co-occurs with vB due to the FD.
Furthermore, given A → B, we know that |B| ≤ |A| and,

given both A → B and B → A, we know that |B| = |A|. In
this way, we can use FDs to let cardinality information (or
estimations) propagate from one attribute to another.

9 Not all systems assume uniformity for all values. For example, Post-
greSQL assumes uniform value distributions only for all values inside
each histogram bucket [119].

Finally, Gelenbe et al. utilize functional dependencies to
estimate the size of projections (in the duplicate-removing
semantics of relational algebra) [44]. They use the above-
described guarantee of |B| ≤ |A| in the presence of A → B.
Following from that, |�A,B | = |�A|.
Rewrite after decompositionGianella et al. [45] demonstrate
howFDs, can be used for query rewriting in combinationwith
horizontal table partitioning. The idea is to split a relational
table horizontally into two partitions, one in which an FD
is actually true and one that contains all the violations to
the FD. All queries to the partitioned table, then, also need
to be split, i.e., rewritten to read from both partitions. The
subquery that reads from the partition, in which the FD holds
true, can use all the optimizations that we introduced before;
the other subquery is executed just regularly. DBMSs that
implicitly partition the stored data, such as Hyper [66] or
Hyrise [36], could use this technique and determine FDs on
a per partition basis. Please note that, in practice, partitioning
criteria should be based not only on FDs but on other aspects,
e.g., availability or performance, too [90].

7 Order dependencies

Order information serves a variety of tasks, such as opti-
mizing the physical storage of records (e.g., for run length
encoding in columnar data stores [1]) and improving read-
ability of query results by ordering them.

Information about order and so-called interesting orders
(first introduced by Selinger et al. [108]) are a crucial part
for query rewriting and query plan optimization; they can,
in particular, further be utilized during the actual operator
execution and for cost estimation. ODs present an important
opportunity tomake themost use of order-based optimization
techniques, because they help to derive additional order infor-
mation from knowledge about currently available orders. As
a result, knowing that X

��−→ Y holds and that X is ordered
opens up opportunities to utilize the order information about
both attributes X and Y during query optimization. Oper-
ations that generate ordered data can be explicitly pushed
down (closer to the beginning of the query plan, cf. sort-
ahead [110]) to enable order-based optimizations for the
subsequent operators. The more order information is avail-
able the wider is the range of potential plan optimizations.

We compile information on how exactly order and order
dependencies can be utilized for query optimization and to
improve the execution of individual operators in the remain-
der of this section. Some optimization ideas presented in this
section are similar to ideas presented for FDs, showing inter-
esting relationships between FDs and ODs.
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7.1 ODs and sorting

The purpose of sort operations, explicitly expressed by
ORDER BY statements in SQL, is to produce order. Hence,
it is not surprising that this operation offers several potential
optimizations regarding ODs. First, the number of attributes
in the order clause can be reduced in the presence of interest-
ing orders [110] and, hence, order dependencies [113–115].
A reduced number of sorting attributes leads to fewer sort
operations, which can potentially decrease the execution
time. Additionally, reducing the number of attributes in the
order clause increases the possibility that this operation can
be solved with an index.

If X
��−→ Y holds on a relation R, the clause ORDER BY

X, Y can be reduced to ORDER BY X, because an ordered
X ensures an ordered Y .10 With the aforementioned OD,
Y can furthermore be removed from both clauses ORDER
BY W, X, Y and ORDER BY W, Y, X [114]. The lat-
ter might not be intuitively clear, but if we replace Y with
X , which is possible because X imposes an order on Y ,
the resulting ORDER BY W, X, X still guarantees that
the result is ordered by Y following from the definition of
ODs; obviously, one of the consecutive X could be removed.
Sorting Y can be avoided altogether under above’s OD and
if other previously executed operations, such as sort-merge
joins, sort-based aggregates, or index scans internally order
X (or Y ) [49,100]. In the case of X

≺�−→ Y , ORDER BY Y,
X can be reduced to ORDER BY Y, because X cannot break
ties in Y .

Furthermore, ODs can be utilized to substitute sorting
attributes [100]. Imagine the attributes A (integer), B (string),
and C (integer) and the OD A

��−→ B to hold. Hence, a state-
ment ORDER BY B, C could be replaced by ORDER BY
A, C, because an ordered A implies B to be ordered. Substi-
tutions are beneficial if they decrease the cost of the sorting
operation: in our example the costly string-sort was replaced
by the cheaper integer-sort. Alternatively, the attribute to be
substituted could be replaced by an indexed attribute that
allows efficient ordered retrieval.

Szlichta et al. [115] also mention that ODs and near-
sortedness can be combined to execute small, on-the-fly
main-memory sorts instead of external sorts.

7.2 ODs and joins

Order information can be used to simplify joins in the plan
optimization phase, to improve the join operator execution
phase, and to better estimate join result-set cardinalities.

10 Note that X
≺�−→ Y is not sufficient for this optimization, because the

comparator ≺ imposes only a partial order. Therefore, Y would still be
needed to impose a clear order on tuples with the same X values.

Sort-merge join algorithms, as the name implies, are
split into two phases: (i) an initial sort phase that provides
ordered input for the (ii) merge phase, where the actual join
takes place by merging two ordered lists. It is evident that
sort-merge joins can benefit from already sorted inputs, by
omitting the initial sort phase [42,100,110]. If X

��−→ Y holds
and X is ordered, sort-merge joins on either X or Y could
both omit the sort phase on their corresponding relation, and
could be a preferred choice.

Another opportunity is the pipelining of grouping and join
operators [23,49]. In [23], the authors present a cost model-
based approach to push grouping operators past joins to find
more efficient query plans. Some grouping operator imple-
mentations sort the data to create groups. If X

��−→ Y holds
and X constitutes the grouping attributes, this technique is
promising if the later join is either on X or on Y .

Szlichta et al. further describe a datawarehouse scenario in
whichODs canbe used for query rewriting to avoid expensive
joins between fact and dimension tables [115,117]. Consider
the SQL query

SELECT ... FROM sales s, date d WHERE
s.sold_date_sk = d.date_sk AND
d.date BETWEEN ’20201104’ AND
’20201204’

The insight that there is usually an order dependency in the
date dimension table between a well-constructed surrogate
key and natural date values, i.e., datesk

��−→ date, enables
the rewriting of joins on dates, because date attributes of
the fact and dimension table can be replaced with probably
cheaper local predicates. The intuition is as follows:Two sim-
ple probes find the minimum andmaximum11 surrogate keys
for the corresponding dates in the dimension table. These sur-
rogate keys are used as local predicates on the fact table:

SELECT ... FROM sales s,
(SELECT MIN(date_sk) min_d FROM date

WHERE date >= ’20201104’) d1,
(SELECT MAX(date_sk) max_d FROM date

WHERE date <= ’20201204’) d2
WHERE s.sold_date_sk BETWEEN d1.min_d

AND d2.max_d

The combination of dimension table probing and a local
fact table predicate effectively replaces the join. This is pos-
sible only because the OD datesk

��−→ date ensures that the
correct surrogate keys are picked for the local predicate via
MIN and MAX.

Order dependencies can also be used to optimize certain
theta joins via query rewriting if combined with UCCs. For

11 This optimization benefits from an engine supporting the simultane-
ous computation of MIN and MAX with a single scan.

123



Data dependencies for query optimization: a survey 15

this, assume that the OD X
≺�−→ Y holds on a relation R and

that X is a UCC. Then, consider the example SQL query

SELECT * FROM R Rl, R Rr WHERE
Rl.X < Rr.X

which performs a theta self-join on X . Due to the OD, we
can replace the term Rl.X < Rr.X with the OD’s right-
hand-side attribute Y : Rl.Y < Rr.Y. The UCC ensures
that R does not contain tuples with the same value in X
and potentially unordered values in Y . Scenarios with such
a combination of UCC and OD occur naturally if attributes
X correlate with, for example, an incremental surrogate key
attribute Y . This technique improves the execution of the
query if Y has, e.g., an index, a smaller domain or a more
join-friendly data-type. The same optimization also applies
for the other inequality predicates ≤, >, and ≥ in the query
as well as for the OD X

��−→ Y .

7.3 ODs and grouping

Similar to joins, there are two approaches for grouping
data and aggregating data, respectively: hashing and sort-
ing [85]. Both operators profit from pre-ordered inputs. With
the knowledge of ODs, additional inputs are known to be
ordered. Hence, optimizers can choose sort-based opera-
tors in more cases. Sort-based implementations can benefit
from pre-ordered inputs, because the sorting step of the
operator can—exactly as for joins—be (partially) omitted
[100,110,115,125,126]. Hash-based implementations, on the
other hand, can exploit ordered inputs to minimize the num-
ber of hash calculations, i.e., they simply avoid repeated
re-hashing of the same value by recycling the previous hash
until the next new value in the ordered input is read. The pos-
itive effect of ordered data on the performance of hash-based
algorithms was investigated by Memarzia et al. [82].

7.4 Further optimization opportunities with ODs

Apart from the main concepts described above, order depen-
dencies offer various further optimizations.
Selection Selections can benefit from ODs in the following
way: If A

��−→ B holds and their relation is ordered by A, then
table scans on data that is held in-memory can be replaced
with binary searches not only for selections on A but also for
selections on B [100], which reduces the complexity from
O(n) to O(log n). Range predicates can analogously use a
binary search to determine the starting element of the range.
Aggregate functions Some aggregation functions, such as
MIN, MAX, and MEDIAN, allow obvious optimizations on
ordered data [100]: If A

��−→ B holds and their relation is
ordered by A, it is not necessary to check all elements of
the relation to determine the result of MIN on either A or

B. Instead, it is sufficient to return the first element of the
respective attribute [93, p. 566]. This shortcut works analo-
gously for MAX and MEDIAN, but instead of the first, the last
and middle element, respectively, are selected.
Leveraging indexes Indexes can be used to retrieve tuples
in order, which is useful to pipeline index operations with
other operators that rely on ordered data. In this way, we can,
for instance, pipeline sort-merge joins with index scans [49].
Also, a clustered index on salary along with the ODs salary
��−→ taxes and salary

��−→ percent allow a query that contains
an ORDER BY taxes, percent clause to be evaluated
directly by retrieving the data from the index, without an
additional sort operation [115]. Another index optimization
based on ODs was proposed by Dong et al., who found that
with the knowledge of ODs sparse indexes can be chosen
over dense ones to save space [34].
Generating distinctness According to Chaudhuri et al. [23],
distinctness is a special case of a grouping operation. Hence,
optimizations presented in Sect. 7.3, such as the utilization
of already sorted input [100,110], apply here as well.
Set operations Set operations, unless explicitly specified,
eliminate duplicate rows. As stated above, the removal of
duplicate entries often relies on sorting the input data, thereby
opening up opportunities for order optimizations for set oper-
ations [100]: We consider a UNION statement whose select
list consists only of Y and we assume X

��−→ Y to hold while
X has been ordered, for example, by an ORDER BY clause
that has been pushed down. In such a case, the duplicate elim-
ination within the set operation can avoid an additional sort
operation, because the tuples are already sorted with respect
to Y . Similar optimizations are possible for INTERSECT
and EXCEPT.
Cost estimationWhile executing subqueries, a query engine
might decide to cache previously computed results of the
inner query to reuse them in case the inner query is executed
with the same correlation attribute values again. In the case
of ordered correlation attributes (compare the optimization
of Selinger et al. [108] mentioned in Sect. 5.4), e.g., by order
dependencies, a cache size of 1 is sufficient, because the order
guarantees that the subquery will never be executed with the
same inputs again once new inputs are read from the ordered
correlation attributes. Again, ODs extend the applicability of
such order-based optimizations to further attributes.

Also, cost predictions, e.g., for operator costing, can take
ODs into account tomore accurately estimate execution costs
of operators that rely on ordered data.

8 Inclusion dependencies

Inclusion dependencies often serve data linkage and data
integration scenarios as they may span across multiple data
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sources.We illustrate in this section, how they can be utilized
also for query optimization.

8.1 INDs and joins

By their definition, INDs are most relevant for join oper-
ations. An often used join variant are semijoins R �X S,
which are used to filter R by the tuples that have a match-
ing tuple in S. In SQL, semijoins are expressed as joins with
a post-projection on the attributes of the R side, which is
πR(R ��X S). Given the IND R.X ⊆ S.X with its formal
definition ∀tr ∈ R, ∃ts ∈ S : tr [X] = ts[X], all tuples from
Rmatch tuples in S so that the semijoin is redundant; hence, it
can be removed. Note that this optimization requires all R.X
to be NOT NULL or the IND to follow the null �= null
semantics. This is because the semijoin filters out all tuples
with null values in R.X ; the IND R.X ⊆ S.X with null
= null semantics, on the contrary, might find a matching
tuple in S with the same null values as the R tuple.

A popular, yet dependency-independent optimization
technique is semijoin reduction [11,111], which reduces the
number of tuples considered by join operators before the
actual join is conducted. For this reduction, the matching
(non-dangling) tuples are determined a priori by utilizing
semijoins. The semijoin reduction (R � πX (S)) ��X S is
equivalent to the plain join operation R ��X S. The rationale
is that identifying the matching tuples in R and joining only
these with S is more efficient than joining R and S directly.
This semijoin technique is particularly useful for distributed
database setups that need to minimize expensive data trans-
fers. However, if all tuples from R match tuples in S, which
is the case under an IND, semijoin reductions are unneces-
sary but still costly as they effectively perform the join twice.
So if the IND R.X ⊆ S.X is known, semijoin reductions on
R.X can be avoided. Because the semijoins are used only
as pre-filters in this optimization, it is possible to use INDs
based onnull=null and null �=null semantics in this
optimization: By using null= null INDs, wemight elim-
inate semijoins that would filter some records with nulls
in the join attributes, but (i) the following join filters them
anyway so that the result remains correct, (ii) removing such
semijoins might not even impact the performance negatively
depending on the number of actually filterablenull records,
because the filtering costs might outweigh the data transfer
overhead, and (iii) adding a default null check to all join
tuples before sending them would easily solve the issue.

Johnson and Klug [64] as well as Cheng et al. [24] discuss
and evaluate techniques to eliminate joins in the presence of
INDs and foreign-key constraints, respectively. If a foreign-
key constraint holds, it allows to eliminate certain joins
whose result is known without executing them: Given the
IND R.X ⊆ S.X and a UCC on S.X on the relations R and
S, then the join R ��X S can be avoided if there are no fur-

ther selections or projections on any attributes of S. This is,
because the IND guarantees that every tuple of S joins with
a tuple in T , and the UCC ensures the absence of multiple
matching tuples. The described optimization, again, requires
that either R.X is free of null values or the IND is valid
under null �= null semantics.

The idea of join elimination can be extended to interme-
diate joins: If there are two joins R ��X S and S ��X T with
the INDs R.X ⊆ S.X and S.X ⊆ T .X and a UCC on S.X ,
the two joins can be reduced to a single join R ��X T fol-
lowing from the transitivity of INDs [21]. The UCC on S.X
is necessary, because duplicate values in S.X would cause
record duplication that would be ignored in the optimized
case. The removal of S also requires that the SQL query nei-
ther contains attributes from S in its final projection nor that
it filters S. The authors state that transitive join queries are
suboptimal and could be avoided in the first place, but they
are nevertheless often seen in practice, because applications
and object-relational mappers automatically generate them
or database users can access only specific views that con-
tain unnecessary joins. For this reason, query optimizers can
benefit from such IND-based optimization techniques.

Deutsch et al. show that in certain cases a join R ��X S
can be replaced with a join R ��X T [33]. This replacement
can be beneficial for peer database systems, inwhich T might
offer faster access or higher availability due to being located
at a different site than S. This rewrite requires the INDs
T .X ⊆ S.X and (R ��X S).X ⊆ T .X to hold. Because
the second IND depends on a query result, a practical imple-
mentation would need to check the stricter, but discoverable
IND S.X ⊆ T .X .

8.2 Further optimization opportunities with INDs

Although IND-based query optimizations seem to focus
primarily on join operations, various further optimization
opportunities exist.
Query folding Query folding is an optimization technique
to answer queries by rewriting them in a way that lets them
use certain resources, e.g., cached query results or material-
ized views instead of base tables. Jarek Gryz demonstrated
in [51] how INDs enable further scenarios for the application
of query folding with views.

Assume a query that accesses the attribute combination
X of a relation S. If no materialized view contains S.X ,
this query does not have a query folding and cannot be
answered using views. However, assuming that there is an
IND R.X ⊆ S.X and a materialized view on R.X , the query
could be rewritten to access R.X instead of S.X so that the
answer to the query can be retrieved via query folding from
R.X’smaterialized view. Clearly, the rewritemay return only
a subset of the actual result of the initial query, but this might
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be acceptable for certain use cases where users need their
answers quickly [51].

Deutsch et al. [33] as well as Ileana et al. [57] explain how
INDs (the original work uses more general tuple-generating
dependencies) enable rewritings that utilize materialized
views or result caches if set semantics12 are assumed. For
example, a join S ��X T can be replaced by accessing a view
VST if the INDs S ��X T ⊆ VST .X and VST .X ⊆ S ��X T
hold.
Exists Correlated subqueries as part of EXISTS statements
can also be simplifiedwith INDs.Given the IND R.A ⊆ S.A,
the query

SELECT * FROM R WHERE EXISTS
(SELECT * FROM S WHERE S.A = R.A)

can be computed without accessing S, because the IND
ensures that the subquery returns TRUE for every value of
R.A. For known foreign-key constraints, such EXISTS opti-
mizations have been adopted by productive query optimizers,
e.g., by Microsoft SQL Server [83]; whether or not they also
use INDs is not known. Note that because joins and select
statements do not match null values, we require null �=
null semantics or an additional null check here.
Set operations Inclusion dependencies can further be used to
simplify the computation of set operations. A query of the
form

SELECT A FROM R
UNION

SELECT A FROM S

could be rewritten to SELECT DISTINCT A FROM S if
the IND R.A ⊆ S.A holds. By the set-based definition of
the UNION operation, the result contains all distinct values
from R.A and S.A while the IND guarantees that all values
from R.A are already included in S.A. Here again, the IND
must be true under null �= null semantics (or R.A must
not contain null values), because the rewrite would other-
wise miss the null values from R.A that the UNION would
have added. Analogously to the UNION case, this optimiza-
tion can be applied toINTERSECT operations, but instead of
returning the values of S.A, the distinct values of R.A need
to be returned. For this, the optimization requires an IND
with null = null semantics (or R.A without null val-
ues), because the INTERSECT removes null values from
R.A if these are also present in S.A. Note that in cases of
INTERSECT ALL, the query optimizer can omit even the
DISTINCT operation. Besides UNIQUE and INTERSECT
also difference operations, such as

SELECT A FROM R

12 Set semantics occur in SQL-based DBMS in the presence of keys,
set operations, or the DISTINCT keyword.

EXCEPT
SELECT A FROM S

can be simplified. In the EXCEPT case, the IND guarantees
that only an empty result-set can be returned, allowing the
query optimizer to skip the execution of the query altogether
and return an empty set. Note that EXCEPT removals require
INDs with null = null semantics, because the EXCEPT
removes records with null values in R.A only if they are
also present in S.A.
Cardinality estimation Similar to some of the dependencies
discussed before, INDs also allow formore accurate cardinal-
ity estimations. Consider, for example, an IND R.X ⊆ S.X .
An equality join on the attribute combination X of these two
relations returns a minimum of |R.X| results, because the
IND guarantees for every tuple in R at least one matching
tuple in S. Again, we need the null �= null semantics
for this optimization, because it effectively ensures that the
IND is valid only if there are no null values in R.X . In
case S.X is a UCC on S.X , the IND basically appears as
a foreign-key constraint and returns exactly |R.X| results.
For theta joins with predicate �=, i.e., R ��R.X �=S.X S, the
number of results is exactly |R.X| × (|S.X| − 1) records
given the IND R.X ⊆ S.X and the UCC S.X . Considering
implementations of such cardinality estimation strategies in
real products, we found only one example (although further
examples might exist): IBM’s DB2 [56] database manage-
ment system uses foreign-key constraints tomake cardinality
estimations more efficient by reducing the number of consid-
ered statistical views.

9 Further optimizations

In this section, we first discuss opportunities for further opti-
mizations with semantic integrity constraints and other types
of dependencies. Afterward, we summarize open issues for
future work that remain to be solved to close the gap between
research and practice in dependency-driven query optimiza-
tion.

9.1 Semantic query optimization

The field of semantic query optimization [22,52,69,128]
offers more techniques that utilize further constraints and
dependencies for query optimization. For instance, seman-
tic integrity constraints [112] are typically user-defined and
encode knowledge about attributes of a relation. For example,
a German citizen relationmight follow the semantic integrity
constraint ci ti zen.ci ty = Berlin → ci ti zen.zipcode ∈
[10115, 14199]. While such constraints can also be used for
efficient query processing, they differ from data dependen-
cies that do not necessarily carry any semantic meaning.
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9.2 Further dependency types

A substantial body of work discusses how the combina-
tion of the Chase and Backchase procedures can be used to
find minimal, equivalent plans for a particular query [31,81].
These procedures can reveal opportunities to use certain aux-
iliary structures, such as materialized views or indexes, for
answering a query [103]. The dependencies that are often
used in the aforementioned work are so-called equality-
generating dependencies (egds) and tuple-generating depen-
dencies (tgds) [10]. Both egds and tgds can be seen as
generalizations of other dependencies [33], including the
dependencies covered in this work. As such, we already
showed their usefulness in Sects. 8.1 and 8.2. There are, how-
ever, no general automatic discovery algorithms for tgds and
egds (yet). What is more, they are usually present in integra-
tion scenarios where they span multiple schemata as derived
fromuser-defined schemamappings [40]. Further, priorwork
often assumes set semantics [32,57], so it is not always suit-
able for typical relational database scenarios in which bag
semantics prevail.

Although the data dependencies examined in this survey,
namely UCCs, FDs, ODs, and INDs, are arguably the most
important dependencies for query optimization today, many
further types of discoverable data dependencies and data
rules exist, such as multi-valued dependencies (MVDs) [39],
neighborhood dependencies (NDs) [9], sequential dependen-
cies (SDs) [48], denial constraints (DCs) [12], and others. If
an SQL query tests for such a dependency, this test can be
avoided if the dependency is already known to be true. Apart
from this general rule, we find hardly any research on the use
of these dependencies for query optimization and, thus, do
not cover them in this survey.

10 Summary and outlook

In this paper,we surveyedvarious core techniqueswithwhich
databasemanagement systems can use genuine and observed
data dependencies, namely uniqueness, functional, order, and
inclusion dependencies, to improve their query optimization
capabilities. The surveyed optimizations are of increasing
relevance, because recent advances in the field of automatic
data profiling algorithms now enable the efficient discovery
of such metadata for large and, hence, practically relevant
datasets—database systems today have access not only to
user-defined dependencies and constraints but also to much
larger corpora of automatically discovered dependencies.

The compilation of techniques presented in this survey can
serve as a starting point to equip query optimizers with inter-
esting and potentially powerful optimization capabilities that
rely on data dependencies. Furthermore, it supports database
engineers of established systems in identifying additional

techniques to further increase the efficiency of their already
advanced execution engines or query optimizers. The survey
finally also provides researchers with an exhaustive collec-
tion of related work and facilitates the uncovering of open
research questions and opportunities for future work. Next,
we summarize three major research directions.
Efficient implementation and integration While some of the
mentioned optimization techniques require relatively sim-
ple implementations or are already implemented in some of
today’s database systems, other advanced techniques will be
much more complex to incorporate in practice and might
require broadmodifications of existing systems. Even though
many of the surveyed techniques have been evaluated in the
respective research papers, transferring them to practice in
commercial database systems is not an easy undertaking and,
therefore, a challenge for future work.
Incremental discovery and maintenance The knowledge of
available data dependencies is essential for all dependency-
driven optimization techniques. Although we did reference
incremental discovery and maintenance approaches for all
of the four considered dependency types, more efficient
approaches that canhandle large dynamic datasets under real-
world workloads are necessary to enable the surveyed query
optimization techniques in practice.
Empirical impact evaluationWhile this survey collectsmany
optimization techniques, their effectiveness, relevance and
overhead is still to be evaluated. To measure effectiveness, a
systematic study is needed that measures the impact of the
various optimizations on query performance. Such impacts
are neither obvious nor simple to determine, as they depend
on various factors, such as the database system’s implemen-
tation, the specific query at hand, and the underlying dataset.
To judge the relevance of each optimization, an empirical
study is needed that evaluates how often and, hence, how
likely the presented techniques apply to queries in real-world
workloads. This study is a challenging task as it requires a
representative collectionof queryworkloads. Finally, another
study to quantify the optimization overhead introduced by
the proposed optimization techniques would require specific,
well-tuned implementations to measure potentially elevated
optimizer runtimes and assess code complexity.
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