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Abstract
I/O latency and throughput are two of the major performance bottlenecks for disk-based database systems. Persistent memory
(PMem) technologies, like Intel’s Optane DC persistent memory modules, promise to bridge the gap between NAND-based
flash (SSD) and DRAM, and thus eliminate the I/O bottleneck. In this paper, we provide the first comprehensive performance
evaluation of PMem on real hardware in terms of bandwidth and latency. Based on the results, we develop guidelines for
efficient PMem usage and four optimized low-level building blocks for PMem applications: log writing, block flushing,
in-place updates, and coroutines for write latency hiding.

Keywords Persistent memory · Systems · Databases

1 Introduction

Today, data management systems mainly rely on solid-state
drives (NAND flash) or magnetic disks to store data. These
storage technologies offer persistence and large capacities at
low cost. However, due to the high access latencies, most sys-
tems also use volatile main memory in the form of DRAM as
a cache. This yields the traditional two-layered architecture,
as DRAM cannot solely be used due to its volatility, high
cost, and limited capacity.

Novel storage technologies, such as Phase Change Mem-
ory, are shrinking this fundamental gap betweenmemory and
storage. Specifically, Intel’s Optane DC Persistent Memory
Modules (Optane DC PMM) offer an amalgamation of the
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best properties of memory and storage—though as we show
in this paper, with some trade-offs. This Persistent Memory
(PMem) is durable, like storage, and directly addressable by
the CPU, like memory. The price, capacity, and latency lies
between DRAM and flash.

PMem promises to greatly improve the latency of storage
technologies, which in turn would greatly increase the per-
formance of data management systems. However, because
PMem is fundamentally different from existing, well-known
technologies, it also has different performance characteris-
tics to DRAM and flash. While we perform our evaluation in
a database context, these introduced techniques are transfer-
able to other systems, as evidenced by the fact that they are
also implemented by the Persistent Memory Development
Kit (PMDK) [43]. This paper is an extended version of an
originally released paper at DaMoN 2019 [47]. While the
experiments in the original paper were conducted on a proto-
type of Intel’s PMem hardware, all numbers in this paper are
measured on commercially available PMem hardware. Our
contributions can be summarized as follows1:

– We provide the first analyses of actual (not prototyped or
simulated) PMem based on Intel’s Optane DC Persistent
Memory Modules (PMM). We highlight the impact of

1 Source code: github.com/alexandervanrenen/pmembench.
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Table 1 Server Platform—configuration of the used PMem server

CPU Intel Xeon Gold 6212U

Frequency 2.40 GHz (3.90 GHz)

# Cores 24

L1 I+D Cache (per core) 64 kB

L2 Cache (per core) 1 MB

L3 Cache 35.8 MB

# AVX-512 Units 2

CPU Supported Memory 1 TB (DRAM + PMem)

DRAM 192 GB (6 × 32 GB)

PMem 768 GB (6 × 128 GB)

the physical properties of PMem on software and derive
guidelines for efficient usage of PMem (Sect. 2).

– We investigate different algorithms for persisting large
data chunks (database pages) in a failure atomic fashion
to PMem. By combining a copy-on-write method with
temporary delta files, we achieve significant speedups
(Sect. 3.2).

– We introduce an algorithm for persisting small data
chunks (transactional log entries) that reduces the latency
by 2× compared to state-of-the-art algorithms (Sect 3.3).

– We introduce a new abstraction on top of PMem, called
Failure-Atomic Memory (FAM) that allows for fast in-
place updates on PMem (Sect. 3.4).

– We show how synchronous persistent writes to PMem
can be interleaved using fibers to avoid stalling on the
relatively high PMem latencies (Sect. 3.5).

2 PMem characteristics

In this section, we first describe the evaluation platform and
howaPMemsystemcan be configured.Next,we showexper-
imental results for latency and bandwidth. Lastly,we evaluate
the interference of concurrently running PMem and DRAM
processes in a database-like workload. To provide a better
overview, we summarized all important characteristics of our
evaluation platform, which is used for all experiments con-
ducted throughout this paper, in Table 1.

2.1 Setup and configuration

There are two ways of using PMem: memory mode and app
direct mode. Inmemory mode, PMem replaces DRAM as the
(volatile) main memory, and DRAM serves as an additional
hardware managed caching layer (“L4 cache”). The advan-
tage of this mode is that it works transparently for legacy
software and thus offers a simple way of extending the main
memory capacity at low cost. However, this does not utilize

persistence, and performance may degrade due to the lower
bandwidth and higher latency of PMem. In fact, as we show
later, there is a ≈ 10% overhead for accessing data when
DRAM acts as a L4 cache instead of normally.

Because it is not possible to leverage the persistency of
PMem in memory mode, we focus on app direct mode in
the remainder of this paper. App direct mode, unlike mem-
ory mode, leaves the regular memory system untouched. It
optionally allows programs tomake use of PMem in the form
of memory mapped files. We describe this process from a
developer point of view in the following:

We are using a two-socket system with 24 physical (48
virtual) cores on each node. The machine is running Fedora
with a Linux kernel version 4.15.6. Each socket has 6 PMem
DIMMswith 128 GBeach and6DRAMDIMMswith 32 GB
each.

To access PMem, the physical PMem DIMMs first have
to be grouped into so-called regions with ipmctl2:

ipmctl create -f -goal -socket 0
MemoryMode=0 \

PersistentMemoryType=AppDirect

To avoid complicating the following experiments with a dis-
cussion on NUMA effects (which are similar to the ones on
DRAM) we run all our experiments on socket 0. Once a
region is created, ndctl3 is used to create a namespace on
top of it:

ndctl create-namespace --mode fsdax
--region 28

Next, we create a file system on top of this namespace
(mkfs.ext44) and mount it (mount5) using the dax flag,
which enables direct cache-line-grained access to the device
by the CPU:

mkfs.ext4 /dev/pmem28
mount -o dax /dev/pmem28 /mnt/pmem28/

Programs can now create files on the newly mounted device
and map them into their address space using the mmap6 sys-
tem call:

fd = open(("/mnt/pmem28/file", O_RDWR, 0);
res = ftruncate(fd, SIZE);
ptr = mmap(nullptr, SIZE, PROT_WRITE,

MAP_SHARED, fd, 0);

The pointer can be used to access the PMem directly, just
like regular memory. Section 3 discusses how to ensure that
a value written to PMem is actually persistent. In the remain-
der of this section, we discuss the bandwidth and latency of
PMem.

2 ipmctl: github.com/intel/ipmctl.
3 ndctl: github.com/pmem/ndctl.
4 mkfs.ext4: linux.die.net/man/8/mkfs.ext4.
5 mount: linux.die.net/man/8/mount.
6 mmap: man7.org/linux/man-pages/man2/mmap.2.html.
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Fig. 1 Read latency—random access read latency

2.2 Latency

In this first set of experiment, we want to investigate the
latency of PMem. While bandwidth (discussed in the next
section) is critical for OLAP-style applications, latency is
much more important for OLTP-style workloads because the
access pattern shifts from large scan operations (sequential
I/O) to point lookups (random I/O), which are usually latency
bound. OLTP-style applications are not limited to database
systems, but extends to any data intense application, where
the performance depends on random I/O.

In the experiments, we compare the latency of PMem to
that of DRAM, as both can be used via direct load and store
instructions by the CPU. With PMem being persistent, it can
also act as a replacement for traditional storage devices such
as SSDs and HDDs, which are orders of magnitude slower.
Therefore,whilewe focus the discussion in this section on the
comparison between PMem and DRAM, the extremely low
latency PMem is able to speed up applications that require
persistent storage such as logging, page propagation, or sim-
ple random reads/writes from/to a persistent medium.

To measure the latency for load operations on PMem, we
use a single thread and perform loads from random locations.
To study this effect, we prevented out-of-order execution by
chaining the loads such that the address for the load in step
i depends on the value read in step i − 1. This approach is
more reliable than using fencing operations (lfence), as
these still allow for speculative loads and introduce a small
CPU overhead. To minimize caching effects, we use an array
sufficiently larger (8 GB) than the CPU cache (32 MB). The
results of this experiment are shown in Fig. 1.

We can observe that DRAM read latency is lower than
PMem by a factor of 3.3. Note that this does not mean that
each access to PMem is that much slower, because many
applications can usually still benefit from spatial or temporal
locality (i.e., caching).WhenPMemis used inmemorymode,
it replaces DRAM as main memory and DRAM acts as an
L4 cache. In this configuration, the data size is important:
When using only 8 GB (as in the app direct experiment) the
performance is similar to that of DRAM, because the DRAM
cache captures all accesses. However, when we increase the
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Fig. 2 Persistent write latency—access latency for writing cache lines
persistently

data size to 360 GB, the DRAM cache (192 GB) is not hit
that frequently and the performance degrades to what the
PMem is actually capable of.

To store data persistently on PMem, the data have to be
written (i.e., a store instruction), the cache line evicted, and
then an sfence has to be used to wait for the data to reach
PMem. This process is described in more detail in Sect. 3.1.
To measure the latency for persistent store operations7 on
PMem, we use a single thread that persistently stores data to
an array of 10 GB in size. Each store is aligned to a cache
line (64 bytes) boundary. The results are shown in Fig. 2.

The four bars on the left show the results for continu-
ously writing to the same cache line, in the middle we write
cache lines sequentially, and on the right randomly. In each
scenario, we use four different methods for flushing cache
lines. From left to right: flush, flushopt, clwb, and
non-temporal stores (_mm512_stream_si512).

When data are written to the same cache line, non-
temporal stores should be preferred. This pattern appears in
many data structures (e.g., array-like structures with a size
field) or algorithms (e.g., a global counter for time-stamping)
that have some kind of global variable that is often modified.
Therefore, for efficient usage of PMem, techniques similar
to the ones developed to avoid congestion in multi-threaded
programming have to be applied to PMem as well. Among
instructions without the non-temporal memory hint, there is
no significant difference, because the Cascade Lake CPUs do
not fully implement clwb. Intel has added opcode to allow
software to use it, but implement it as flush_opt for now.
Therefore, non-temporal operations andclwb should be pre-
ferred over flush and flush_opt.

2.3 Bandwidth

Having discussed latency of PMem in the previous sec-
tion, we now want to investigate the bandwidth for both
non-saturated and saturated PMem systems. For this, it
is important to know that the PMem hardware internally

7 We do not show non-persistent writes to PMem, as these are not
latency bound because they are cached just like DRAM writes.
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Fig. 3 PMem bandwidth: varying access granularity—PMem bandwidth (a, c) with 24 threads compared to DRAMbandwidth (b, d) with a varying
number of adjacently accessed cache lines. We use a random access pattern that allows for out-of-order execution
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Fig. 4 PMem bandwidth: varying thread count—PMem bandwidth (a, c, e, g) compared to DRAM bandwidth (b, d, f, h) for 256-byte (4 adjacent
cache lines) and 1 MB blocks with an increasing number of threads. We use a random access pattern that allows for out-of-order execution

works on 256-byte blocks. A small write-combining buffer
is used to avoid write amplification, because the transfer size
between PMem and CPU is, as for DRAM, 64 bytes (cache
lines).

This block-based (4 cache lines) design of PMem leads
to some interesting performance characteristics that we are
discussing in this section. The first experiment (cf. Fig. 3)
measures the bandwidth for loading/storing from/to inde-
pendent random locations (allowing out-of-order execution)
on PMem and DRAM. We use all 24 physical cores of the
machine to maximize the number of parallel accesses. The
figure shows store (PMem: a, DRAM: b) and load (PMem:
c, DRAM: d) benchmarks. The performance depends sig-
nificantly on the number of consecutively accessed cache
lines on PMem, while there is no significant difference on
DRAM. Peak throughput can only be reached when a multi-
ple of the block size (4 cache lines = 256 bytes) is used, thus
confirming the 256-byte block-based architecture of PMem.
Obviously, this effect is mostly relevant for smaller chunk
sizes as the write/read amplification is bound to three cache
lines at most.

Before discussing the different write techniques, we want
to use Fig. 4 to derive peak bandwidth numbers: In the exper-

iment, we vary the number of threads on the horizontal axis
instead of the number of cache lines loaded/stored. The first
row (a, b, c, d) shows the bandwidth forwriting PMem-block-
sized chunks (256 bytes) to random locations. The second
row (e, f, g, h) shows the same for 1 MB sized chunks. As
onewould suspect, by using larger chunk sizes a higher band-
width can be achieved, the peaks are shown in Table 2.

Next to pure bandwidth numbers, the figure shows that the
“ramp up’-phase’ (number of threads required to reach the
peak bandwidth) is faster with larger chunk sizes. Addition-
ally, we observe that the throughput peaks on PMem when
using a small number of threads and then declines, while it
flattens out on DRAM.We suspect that this is only an artifact
of the first version of this new hardware and future versions
of this product will be able to handle higher request rates
without suffering in throughput.

This hole section is broken. There should NOT be a new
line before the icons. In addition, the icons are blury. ( ),
regular stores followed by a clwb instruction ( ), and
blind writes realized by a non-temporal (or streaming) store
(i.e., _mm512_stream_si512) ( ). For both, DRAM
and PMem, the blind stores provide the best throughput
because the modified cache lines do not have to be loaded
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Table 2 Peak write and read
bandwidth for DRAM and
PMem with an optimal number
of threads

Peak read BW Required #threads Peak write BW Required #threads

DRAM 113.8 15 92.5 17

PMem 39.1 17 12.5 3

first—thereby saving memory bandwidth. On PMem, how-
ever, there is an additional benefit when using non-temporal
stores as they bypass the cache and force the data to thePMem
DIMM directly.

To explain this, consider the stark performance difference
between DRAM and PMem when using stores followed by
clwb ( ) in Fig. 4: On DRAM, the extra instruction only
adds additional CPU overhead to a very tight loop and thus
causes a slowdown compared to regular stores ( ). With
an increasing number of threads this overhead no longer
impacts the overall throughput, as the bottleneck shifts from
CPU-bound to memory-bound. On PMem, in contrast, the
performance of regular stores ( ) can be increased by issu-
ing a clwb instruction after each store ( ). By forcing the
cache lines to PMem right after they are modified, we can
ensure that the ones that are modified together also arrive at
the PMem DIMMs together and can thus be written together
by the write-combining buffers. In other words: By using the
clwb instruction, we are preserving the spatial locality of
the writes when going from the CPU to the PMem DIMMs.

Using clwb ( ) becomes more important with several
threads thanwith a single one, because cache lines are evicted
more randomly from the last level CPU cache, and thus
arrive increasingly out of order at the PMemwrite-combining
buffer. Starting at 12 threads for 256B chunks, regular stores
followed by a clwb ( ) become as fast as non-temporal
stores ( ). However, this is likely due to the performance
drop experienced by the non-temporal stores due to the over-
saturation of PMem. Compared to DRAM, where there is
only a difference between blind writes ( ) and regular ones
( , ), on PMem there is also a difference whether we
ensure spatial locality of modified cache lines at the PMem
DIMM ( , ) or not ( ). Thus, on PMemwe end upwith
three discrete optimal throughput numbers (when consider-
ing the peaks) for regular stores ( ), regular stores followed
by a clwb instruction ( ), and non-temporal store ( ).
While there is a minor CPU overhead for using clwb, our
experiments do suggest that the potential bandwidth benefit
is worth it.

Lastly, we briefly want to show an interesting yet, PMem-
unrelated finding: The read benchmarks (c, d) show through-
put numbers with (w/ prefetcher) and without the hardware
prefetcher8. For both, PMem and DRAM, there is a signifi-

8 Intel hardware prefetcher can be disabled via wrmsr –all
0x1a4 7 https://software.intel.com/en-us/articles/disclosure-of-hw-
prefetcher-control-on-some-intel-processors.

cant performancedropwhen theprefetcher is enabled starting
at 10 consecutively accessed cache lines. This experiment
illustrates a PMem unrelated, yet interesting effect: when
reading chunks of more than 10 cache lines from random
locations with many threads (oversubscribed system), the
prefetcher can actually harm the effective bandwidth as it
unnecessarily loads cache lines.

In summary, judging from our experimental results, we
recommend the following guidelines for bandwidth-critical
applications:

– Algorithms should no longer be designed to fit data on
single cache lines (64 bytes) but rather cluster data on
PMem blocks (256 bytes).

– When possible, non-temporal stores should be utilized,
otherwise the regular stores should be followed by a
clwb instruction.

– Over-saturating PMem can lead to reduced performance
with as little as four threads.

– The experiments showed that currently the PMem read
bandwidth is 2.9× lower and the write bandwidth 7.4×
lower than DRAM. Therefore, performance-critical code
should prefer DRAM over PMem (e.g., by buffering
writes in a DRAM cache).

2.4 Interference

Next to bandwidth and latency, another important question to
answer is how well DRAM, after decades of solitude, works
alongside with PMem. In contrast to Yoshida et al. [19],
who have already undertaken an extensive study in several
microbenchmarks, we show interference effects in a simu-
lated database workload. We simulate a database workload
made up of four tasks: table scans (sequential reads: “Sq”),
index lookups (random reads: “Rd”), logging (small sequen-
tial persistent writes: “Log”) and page propagation (large
random persistent writes: “Page”). Table scans and index
lookups can be executed either on DRAM (volatile: “V”)
or on PMem (persistent: “P”). Page propagation and logging
are always done on PMem as they need to be persistent. Fig-
ure 5 shows the relative slowdown of 14 threads performing
table scans on DRAM (a), table scans on PMem (b), index
lookups on DRAM (c) and index lookups on PMem (d) when
executed together alongside with one other task (depicted on
the horizontal axis). The other task uses 1, 5 or 10 threads.

We find a significant slowdown (around 50%) for table
scans onDRAM(a)when large amounts of data are read from
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Fig. 5 PMem versus DRAM interference—the relative slowdown of sequential scans (Sq) and random accesses (Rd) on DRAM (V) and PMem
(P) when executed together with other sequential scans, random lookups, log writing (Log), and page propagation (Page) with 1, 5, and 10 threads

or written to PMem. Concurrently performed index lookups,
only cause a minor slowdown, because they do not require a
lot of bandwidth. It is interesting to note, that writing data to
PMem via logging (“Log”) and page propagation (“Page”)
only consumes 6.4 GB/s and 9.2 GB/s of bandwidth, yet the
sequential DRAM read bandwidth drops from 113.5 GB/s
down to 65.6 GB/s and 49.2 GB/s, respectively. This leaves
a significant gap of “unused” bandwidth. Yoshida et al. [19]
suggest that this is caused by the CPU’s memory controller
prioritizing PMem write requests over DRAM requests.

The other way around, when performing table scans on
PMem (b) the slowdown caused by DRAM reads (“Sq V”) is
not as pronounced. In this scenario, the only significant slow-
downs happen when another task is writing to PMem at the
same time. As before, this causes a significant slowdown of
more than 50% from 40.3 GB/s down to 15.6 GB/s for log-
ging and 13.0 GB/s for page propagation. Together with the
results from the table scan on DRAM (a), this suggests that
the amount of data that is written to PMem (page propagation
consumes more bandwidth than logging) is more important
than the number of persistency barriers (logging).

In the third scenario (c), the index lookups on DRAM
are mostly slowed down by other DRAM uses. This can be
explainedby the smaller amount of bandwidth that is required
for random reads, compared to sequential reads (a). However,
this effect is not observable on PMem: for index lookups on
PMem (d), the experiment shows even larger slowdowns than
for table scans on PMem.

3 Building blocks for PMem

The low write latency of PMem (compared to other durable
storage devices) makes it an ideal candidate for use in
database systems, file systems, and other system software.
However, due to the CPU cache, writes to PMem are only
persisted once the corresponding cache line is flushed. Algo-
rithms have to explicitly order stores and cache line flushes
to ensure that a persistent data structure is always in a con-
sistent state (in case of a crash). We call this property failure

atomicity and discuss it in Sect. 3.1. Intel’s Persistent Mem-
ory Development Kit (PMDK) [43], an open-source library
for PMem, abstracts this complexity by providing two failure
atomic I/O primitives: log writing (libpmemlog) and block-
/page flushing (libpmemblk). In Sect. 3.3 and 3.2, we apply
the guidelines developed earlier (Sect. 2) to these two prob-
lems and analyze their performance. Afterwards, in Sect. 3.4
we introduce Failure-AtomicMemory (FAM), an abstraction
over persistent memory that enables fast in-place updates
while guaranteeing failure atomicity. Lastly, we show how
to use fibers9 (implemented as C++20 coroutines) to avoid
stalls on synchronous writes to PMem.

3.1 Failure atomicity

As mentioned earlier, when data are written to PMem, stores
are not immediately propagated to the PMem device, instead
they are buffered in the regular on-CPU cache. Therefore,
a whole cache line cannot be written as an atomic opera-
tion. Only updates made to a cache line (in 8-byte blocks)
by the CPU are atomic. While programs cannot prevent the
eviction of a cache line, they can force it by using explicit
write-back (clwb) or flush CPU instructions (flush or
flush_opt). This implies that any persistent data structure
on PMem always needs to be in a consistent (or recoverable)
state, as any modification to the structure could become per-
sistent immediately. Otherwise a system crash—interrupting
an update operation—could lead to an inconsistent state after
a restart. The following code snippet shows how an element
is appended to a pre-allocated buffer:

1 struct Buffer {
2 int eles[128]
3 int next
4 }
5
6
7
8
9

| void append(Buffer* buf,
| int ele) {
| buf->eles[buf->next]=ele
| clwb(&buf->eles[buf->next])
| sfence()
| buf->next++
| clwb(&buf->next)
| sfence()
| }

9 user-land threads with cooperative multitasking.
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The new element is first copied into the next free slot
(line 3) and the corresponding cache line is forced to be
written back to PMem (line 4). Instead of using a regular
flush operation, clwb (cache line write back) is used, which
is an optimized flush operation designed to evict the cache
line without invalidating it. Before the buffer’s size indicator
(next) can be changed, an sfence (store fence) must be
issued to prevent re-ordering by the compiler or hardware
(line 5). Once next has been written (line 6), it is persisted
tomemory in the same fashion (line 7, 8). Note that persisting
the next field is not necessary for the failure atomicity of a
single append operation. However, it is convenient and often
required for subsequent code (e.g., another append). Here-
after, we will use the term persistency barrier and persist for
a combination of a clwb and a subsequent sfence:

void persist(void* ptr) { clwb(ptr); sfence(); }

Generally, a persistency barrier is an expensive operation
(≥ 100 ns, cf. Sect. 2.2), as it forces a synchronous write
to PMem (or, more precisely, to its internal battery-backed
buffers). Therefore, in addition to the guidelines laid out
in Sect. 2, it is also important to minimize the number of
persistency barriers while still maintaining failure atomicity.
While a hand-tuned implementation for a specific problem
can often outperform a generic library, the involved com-
plexity and proneness to errors needs to be considered. In the
following four sections, we introduce highly tuned building
blocks for various problems when dealing with PMem: page
propagation (3.2), logging (3.3), in-place updates (3.4), and
asynchronous writes via fibers (3.5).

3.2 Page propagation

One of the most important components of a storage engine
is the buffer manager. It is responsible for loading (swapping
in) pages from the SSD/HDD into DRAM whenever a page
is accessed by the query engine. When the buffer pool is full,
the buffer manager needs to evict pages in order to serve new
requests. When a dirty page (i.e., a modified one) is evicted,
it needs to be flushed to storage before it can be dropped from
the buffer pool, in order to ensure durability. This process has
to be carefully coordinated with the transaction and logging
controller, i.e., a page can only be flushed when the undo
information of all non-committed modifications is persisted
in the log file (otherwise a crash would lead to corrupted
data).

Flushing pages to persistent storage is an inherent I/O-
bound task. To reduce the latency for page requests, the buffer
manager continuously flushes dirty pages to persistent stor-
age in the background. This way, it can always serve requests
without stalling on apageflush.Thismakesflushingpages (in

a background thread) a mostly bandwidth-critical problem
(compared to log writing, where latency is most important).

For SSDs/HDDs, this architecture is strictly necessary
as pages have to be copied to DRAM before they can be
read or written by the CPU. When PMem is used instead
of SSDs/HDDs, the buffer pool becomes optional. How-
ever, as recent work [5,46] has shown, it is still beneficial
to use a buffer pool, due to the lower latencies and reduced
complexity when working on DRAM compared to PMem.
In addition, this architecture is used in most existing disk-
based database systems. Moreover, page propagation is also
required in many other system software, as evidenced by the
Persistent Memory Development Kit (PMDK [43]) offers
page propagation in their libpmemblk library.

In the following, we first discuss why page propagation
algorithms on PMem should be failure atomic. After that, we
describe the two well-known page propagation algorithms
(copy-on-write and log-based), showhow they can be applied
to PMem and propose potential optimizations.

3.2.1 Failure-atomic page propagation

In order to prevent data corruption, the page propagation
algorithm needs to ensure that written data can always be
recovered. This can either be achieved by making the propa-
gation process failure atomic or by detecting and recovering
inconsistent pages later on.Using a failure-atomic page prop-
agation has the advantage that it reduces the complexity of
the system: There is no need to detect torn writes during
recovery and use a combination of logging and snapshotting
to repair inconsistent pages. While this is desirable for most
applications, one might argue that high-performance system
software (such as database systems) implements these func-
tionalities already and could therefore benefit from a faster
non-failure-atomic page propagation algorithm. In fact, at
any given point in time there is only a very small number
of pages that might experience a torn write during a crash:
The CPU cache is usually much smaller (tens of megabytes)
than the page volume in a database (hundreds of gigabytes).
However, in the following we show that failure-atomic page
propagation is as efficient as detecting torn writes on PMem
and therefore advantageous, due to its reduced complexity.

OnSSDs andHDDsdetecting tornwrites relies on sequen-
tial write guarantees of the underlying hardware: A marker
(bit pattern) at the beginning and end of a page can be used to
validate if a page has been written completely. Without these
guarantees on PMem (only ensures atomic 8-byte writes), we
need to utilize persistency barriers to order stores and make
torn writes detectable. By utilizing two (or more) persistency
barriers torn writes could easily be detected on PMem (e.g.,
copy-on-write). However, such an algorithm already ensures
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failure atomicity making torn write detection and recovery
unnecessary.

While it is possible to detect torn writes with a single per-
sistency barrier, it comes with some, arguably, unacceptable
overheads for page propagation10: PopLog requires zero-
initialized memory and thus twice the bandwidth, RAWL
requires significant additional computation and some extra
storage, andFAM requires roughly twice the amount storage.

Alternatively, probabilistic (also called: optimistic) tech-
niques, as proposed by Lersch et al. [30], can be utilized: A
check sum of the page’s data is written as part of the page
and can be used to validate the page’s consistency during
recovery. When an inconsistency is detected the log and an
older snapshot (additional storage required) of the page is
used to restore the page. Cryptographic hash functions, such
as the Secure Hash Algorithm (SHA), make collisions prac-
tically impossible and should provide sufficient throughput
in a multi-threaded scenario (throughput of state-of-the-art
SIMD-optimized SHA-256 implementations is reported11

at roughly 3.5 GB/s per core). In our implementation we
use CRC32, which is supported directly by modern CPUs
(_mm_crc32_u64) and works almost at line rate (we mea-
sured a throughput of 10.3 GBs−1). While CRC32 does not
provide as good of a collision resistance, it does model the
best case scenario for the check-sum-based page propagation
as it incurs the lowest overhead. However, our experimental
results, even for CRC32, showed no performance advantage
compared to the failure atomic copy-on-write implemen-
tation12. Therefore, we argue that the additional system
complexity, recovery time, and storage overhead (for snap-
shots) is not worth it and failure-atomic page propagation
should be preferred.

3.2.2 Copy-on-write

When writing a page back from DRAM to PMem, Copy-on-
Write (CoW) does not overwrite the original PMem page.
Instead, the modified page is written to an unused PMem
page [4], thus avoiding any torn-write complications during
copy process. Once the page is fully written, it is atomically
set to valid.

10 These algorithms are discussed in Sect. 3.3 (logging) and Sect. 3.4
(in-place updates).
11 https://github.com/minio/sha256-simd.
12 There is a slight (3 and 4%) advantage in a single threaded scenario.

This process is illustrated on the left of Listing 1. The
pseudo code shows the page propagation of aDRAMresident
volatile page (vp) to a used persistent page (pp). Once the
volatile page (vp) is written (line 2) and persisted using a
persistency barrier (line 3), it is marked as valid (line 7-11)
and the old PMem page can be reused. During recovery, the
headers of all PMem pages are inspected to determine the
physical location of each logical page. To avoid invalidating
unused pages before they can be written again, we use a per
page monotonically increasing page version number (pvn) to
determine the latest version of the page on disk.

We illustrate the use of the pvn in Fig. 6. Time progresses
from left to right. The three physical page slots in the left
most column (state 1) show the initial state on PMem: The
page slots in row 1 and 2 contain the latest valid persistent
copy of the logical page B and A, respectively. Both slots are
shaded in green to indicate that they currently hold a valid
page. The page slot in row 3 contains an older version B,
which can be determined by inspecting the pvn: a lower pvn
indicates an older page version. The different versions of
page slot 3 show each step (cf. Listing 1) of flushing a new
version of page A to this currently (state 1) unused slot. The
line numbers in the pseudo code where the transition might

1 B 5, b’

2 A 7, a A 7, a

3 B 4, b B 4, a’ A 4, a’ A 8, a’

format: pid pvn, data

P
ag

e
sl
ot

state 1 state 2 state 3 state 4
Time

line
2,3

line
7,8

line
7,8
9,10

Fig. 6 CoWpage propagation—the flush process is optimized by using
a page version number (pvn) to avoid invalidating pages, which would
require an additional persistency barrier
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Fig. 7 Failure atomic page flush—flushing 16 kB pages (256cache lineseach) in a failure atomic way from DRAM to PMem

occur are written over the arrows. In each step, the pvn can
be used to determine the most recent version of each page.

In state 1, the page slot 3 contains the old (no longer
needed) version of B and is therefore ready to be overwritten
by a new version of page A. In state 2, the pseudo code is
run until the persistency barrier in line 3 (persist). At this
point only the payload has been updated and the page would
therefore still be identified as an old version of B. Next, this
newly written version of page A has to be made valid by
updating the pid and pvn. It is crucial that the pid is updated
before the pvn, otherwise there is a brief time window in
which the updated pvn would identify the page as the latest
version of page B despite it storing data of page A. We ensure
this ordering by placing both (pid and pvn) on the same cache
line and separating the two store operationswith ansfence.
This way, state 3 and state 4 are the only possible versions
of the page during these updates. In each case, the page is
correctly identified as an outdated version of page B or the
new version of page A. The final persistency barrier in line
10 ensures that the update is completed before continuing.
Note: If page slot 3 would have started out with a higher
pvn than the one of A (e.g., 10), it would have already been
identified as the latest version of A in state 3 (which is fine
because the payload has already been updated).

Using the pvn, it becomes unnecessary to invalidate the
old PMem page before writing the new one. This reduces
the number of persistency barriers from three down to two
(plus one sfence, which is much cheaper as it does not stall
on a preceding clwb). Using this technique, we measured a
≈ 10% increase in throughput.

In the context of a database system, it would still be nec-
essary to add a pvn next to the existing log sequence number
lsn. Otherwise, the example would contain an invalid config-
uration in state 3: The log entries between 4 and 8 would be
applied to an already updated page.

3.2.3 Micro log

The micro log technique (µlog) uses a small log file to record
changes that are going to be made to the page. In order
to know which cache lines have been changed, the page is

required to track modified areas since its last flush. During
recovery, all valid micro logs are reapplied, independent of
the page’s state. This forces us to invalidate the log (right-
hand side of Listing 1, line 1-3) before changing the content
(line 5-7), otherwise the changes would be applied to the
previous page in case of a crash. Only once the changes are
written, we set them to valid (line 8-10) and then apply them
to the actual page (line 13-15).

3.2.4 Experiments

Figure 7 details the page flush performance. All techniques
are implemented as a microbenchmark using non-temporal
stores (also known as streaming stores), which have been
shown to provide the highest throughput in Sect. 2. When
using copy-on-write (CoW ), we differentiate whether all
cache lines are available in DRAM ( ) or only the dirty
ones ( ). As a performance metric, we chose the number
of pages that can be flushed to PMem per second. We vary
the number of dirty cache lines in (a) for a single thread and
in (b) for 7 threads. In (c), we vary the number of threads to
show the scale-out behavior.

The results show that the micro log (µLog) is beneficial
when the number of cache lines that have to be flushed is low.
We can observe this effect for a single thread in (a): Using
the µLog yields performance gains for up to 28 dirty cache
lines. In a multi-threaded scenario (c), the µLog’s advantage
continues up to 40cache lines. Therefore, a hybrid technique
based on a simple cost model should be used to choose the
better technique, depending on the number of dirty cache
lines (and single/multi threading).

TheCoW approaches are largely independent of the num-
ber of dirty cache lines. As expected, the performance is
lower when cache lines have to be loaded from PMem first
( ). The throughput for CoW ( ) with a single thread is
almost at 300 thousand pages per second, which corresponds
to a throughput of 4.9 GBs−1 and is thus significantly lower
than the raw throughput for writing to PMem of 7.7 GBs−1

(as measured in Sect. 2.3). This can be explained by (1) the
interference (cf. Sect. 2.4) when using DRAM and PMem
in parallel (note: the bandwidth experiments in Sect. 2.3
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do not load the data that is written first, but simple write
register-resident constants to memory) and (2) the memory
stalls of using persistency barriers (≈ 6% slowdown). How-
ever, this gap tightenswhen usingmultiple threads (optimally
5): CoW is able to flush ≈ 700 thousand pages per sec-
ond which corresponds to 11.3 GBs−1 and is therefore at
90% of the maximum throughput of PMem (using 2 threads:
12.5 GBs−1).

In addition, as in the bandwidth experiments, we can see
a performance degradation when too many threads are used:
For optimal throughput it is important to tailor the number of
writer threads to the system. As (b) shows, the performance
degrades after reaching a peak at around 7-11 threads.

Lastly, themicrobenchmarks inSect. 2 suggested that non-
temporal stores should be preferred over regular stores. We
were able to confirm this finding in the page flushing exper-
iment (not shown in the chart).

3.3 Logging

Write-ahead logging (WAL) is used to ensure the atomicity
and durability of transactions in database systems as well as
many other system software such as file systems. In this sec-
tion, we device PMem techniques for efficientWAL logging.
InWAL, the durability is achieved by recording (logging) the
individual changes of a larger transaction in order to be able
to undo them in the event of a crash or rollback. If any of the
transaction’s changes to the data are persistedwhile the trans-
action is still active, the log has to be persisted as well. Before
a transaction is completed, all log entries of the transaction
have to be written persistently (thereby guaranteeing to the
user, that all changes of the transaction are durable). Logging
allows a database to only persist the delta of the modifica-
tions: For example, consider an insert into a table stored as a
B-Tree: Using logging, only the altered data needs to be per-
sisted instead of all modified nodes (pages). During restart,
the recovery component reads the log file, determines the
most recent fully persisted log entry, and applies the log to
the database.

Logging continues to constitute a major performance bot-
tleneck in database systems [17] when using traditional
storage devices (SSD/HDD): each transaction has to wait
until the log entry, recording its changes, is written. As a
mitigation, reduced consistency guarantees are offered and
complex group commit protocols are implemented. How-
ever, using PMem, a low-latency logging protocol can be
implemented that largely eliminates this problem.

In the following, we first explain the adoption of twowell-
known logging algorithms for SSD/HDD to PMem (Classic
and Header). Next we discuss the RAWL algorithm [49] and
introduce the PopLog, which are both designed for PMem.
Lastly, we do an experimental evaluation of the described
algorithms.

3.3.1 Algorithms

Classic represents a form of logging commonly used in
database systems [45]. The following listing shows the algo-
rithm in pseudo code (left) and the file layout grammar
(right). For clarity, only information relevant to the proto-
col is depicted.

1 log << header << payload
2 persist(log)
3 log << footer
4 persist(log)

| LogFile -> Entry*
| Entry -> header ←
| payload ←
| footer

A log entry is flushed in two steps: First, the header and
payload is appended to the log and persisted; second, the
footer, which contains a copy of the log sequence number
(lsn; an id given to each log entry). The lsn in the footer can
be used during recovery to determine whether a log entry
was completely written and therefore should be considered
as valid and applied to the database. Note that it takes two
persistency barriers. Without the first barrier, parts of the
payload could be missing even if the footer is present in
PMem, due to the flushes being reordered.

Header uses the same technique as libpmemlog in the
PMDK [43]. It is similar to appending elements to an array:

1 log << header << payload
2 persist(log)
3 log.size += entry_size
4 persist(log.size)

| LogFile -> size ←
| Entry*
| Entry -> header ←
| payload

The log entry is also written in two steps: First, the header
and payload are appended to the tail of the log and persisted.
Next, the new size of the log is set in the header of the log
file and persisted. This eliminates the need to scan the log
file for the last valid entry during recovery because the valid
size is directly stored in the header.

RAWL is a logging technique specifically developed for
PMem in the context of the Mnemosyne library [49].

In RAWL, the log file needs to be initialized to zero. This
is commonly done by database systems (e.g., PostgreSQL)
anyway to force the file system to actually allocate pages to
the file. Unlike the first two techniques,RAWL requires only a
single persistency barrier. This constitutes a large advantage
in terms of performance because persistency barriers cause
synchronous writes to PMem, which take around 100 ns as
shown in Fig. 2. To still be able to guarantee atomicity, each
8-byte block (atomic write unit for PMem) in the log file
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Fig. 8 Transaction log—the throughput for writing log entries of varying size to PMem

contains a validity bit and 63 bits of log data. When initially
writing the log file, data is chunked into 63 bit ranges and
concatenated with a set validity bit (validity_bit=1).
Once the log file is full, it can be reused by flipping the
validity bit.

PopLog is a novel technique we propose for PMem that
requires only one persistency barrier:

As in RAWL, before logging starts, the log file is initial-
ized to zero. When a log entry is written, the number of set
bits are counted (using the popcnt instruction). Next the
header, data, and bit count (cnt) is written to the log and
persisted together. Using the bit count, it is always possible
to determine the validity of a log entry: Either the cache line
containing the bit count was not flushed or it was. In the for-
mer case, the field contains the number zero (because the file
was zeroed) and the entry is invalid. In the latter case, the bit
count field can be used to determine whether all other cache
lines belonging to the log entry have been flushed as well.
Compared to RAWL, the code for writing and reading the log
is less complex and only requires a logarithmic space over-
head (pop_count field) instead of a linear one (1 validity
bit per 63 bits of log data).

3.3.2 Experiments

In Sect. 2.2, we showed that there is a large performance
penalty when the same cache line is persisted twice in a row.
This effect is very relevant for latency-critical systems, as
shown in Fig. 8.Weuse amicro-benchmark thatmeasures the
throughput of flushing log entries of varying sizes. The left
chart shows a naive implementation, while the right one uses
padding on each log entry to align entries to cache line bound-
aries and thus avoid subsequent writes to the same cache line
(whichhavebeen shown tobe slow: cf. Fig. 1).While padding

wastes some memory13, the throughput greatly increases
(≈ 8×). The correct alignment also happens by “accident”
in the left chart when the log entries are just the right size.
These performance spikes happen 8 bytes earlier for RAWL
compared to PopLog, because of the validity bits used in
RAWL. This gap would widen with larger log entries (first
time at 512 bytes where two times 8 bytes are required).

As an alternative to padding, the cache lines that are per-
sisted twice (for two subsequent log entries) could also be
cached in a DRAM buffer and then flushed with a non-
temporal (or streaming) store operation. This would avoid
the need to re-load the evicted cache line and therefore avoid
the slowdown. The additional work caused by copying the
data into a DRAM buffer has a small performance penalty,
thus making this a trade-off between used space and latency.
In the shown experiment we used the padding approach and
thus traded space for latency.

However, even with padding, the Classic approach still
outperforms theHeader one, because of the slowdown due to
thewrites to the same cache line in the headerwhen the size is
updated. This problem can be solved by using a dancing size
field:We use several size fields on different cache lines in the
header and only write one (round-robin) for each log entry.
By using 64 of these dancing size fields, the throughput of
Header can be increased to that of Classic. However, both of
these techniques still require persistency barriers and there-
fore cannot compete with RAWL and PopLog (≈ 2× faster).
PopLog slightly outperforms RAWL because less processing
is required and slightly less memory has to be copied.

The log implementation (libpmemlog) of PMDK [43] uses
the same approach as our naiveHeader implementationwith-
out alignment and dancing. Therefore, it also yields the same
throughput, when its support for multi-threading is disabled
(not shown in the charts). It has the advantage that the log file
is dense and can be presented to the user as one continuous
memory segment. However, this leaves the user with the task
of reconstructing log entry boundaries manually. By moving

13 At most 1 cache line for PopLog, RAWL, and Header; up to
2 cache lines for Classic.
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Table 3 Performance characteristics of in-place update techniques

Required #Cache lines written #Persists

Size (byte) 16B 32B 64B

CoW 2n + 1 2 2 3 2

Log n + c 2 2 3 2

FAM �8n/31� ∗ 8 1 2 3 1

this functionality into the library, a better logging strategy
can be implemented and the usability increased.

For validation, we have integrated all techniques into our
storage engine prototype HyMem [46]. Running a write-
heavy (100%) YCSB benchmark [11] on a single thread
with a DRAM-resident table, PopLog, Header, and Classic
achieves a throughput of 2M, 1.7M, and 1.5M transactions
per second, respectively.

3.4 In-place updates

In the previous two sections, we discussed page propagation
(writing out large chunks of data to random locations) and
log writing (writing out small pieces of data sequentially).
In the following, we want to investigate small (16- to 64-
byte) failure-atomic in-place updates, which are important as
they are the persistent equivalent to simply writing to volatile
memory. PMem only supports 8-byte failure-atomic writes.
Any data up to this size can simply be updated by a regular
store instruction followed by a persistency barrier (clwb and
sfence). For larger in-place updates, as commonly used
in any PMem-based data structure [2,9,15,27,48,52], either
copy-on-write or log-based techniques are used. Both tech-
niques require at least two persistency barriers, thus slowing
down the update throughput.

In the following, we first detail these existing techniques
and then introduce a new approach that is able to perform
in-place updates with a single persistency barrier. To sim-
plify the examples, we will focus our discussion on updating
16 bytes. In the evaluation, toward the end of this section, we
evaluate the techniques for a variety of data sizes.

Table 3 shows a summary of the performance character-
istics of the three approaches. The first column displays the
size (in bytes) of the data structure to store n bytes of user
data. The next three columns, show how many cache lines
need to be written to PMem per update for three data sizes
(16 B, 32 B, and 64 B). The last column shows how many
persistency barriers are required per update. Note that 8 B
can be updated atomically by hardware and, therefore, do
not to be handled by a special algorithm.

3.4.1 CoW-based

Similar to Sect. 3.2.2 where copy-on-write (CoW) was used
for page propagation, the newdata is firstwritten to an unused
location, persisted, and then set valid:

1 struct CowBased {
2 bool active
3 char a[16]
4 char b[16]
5 }
6
7
8

| void update(char[16] new) {
| if(active) {
| b = new; persist(b)
| } else {
| a = new; persist(a)
| }
| active = !active
| persist(active)

In order to do this in-place, we need roughly twice the
required data plus a single boolean value that indicates which
field (a or b) is currently active. The memory consumption
could be optimized by sharing the “unused” buffer over mul-
tipleCoWstructures.However, thiswould incur an additional
cache line miss (pointer chase). Additionally, by moving the
actual data behind a pointer (out-of-place), we would avoid
the actual issue we are trying to solve here: in-place updates.
Therefore, the depicted algorithm keeps both versions in-
place and could be used on a single node in a tree-like
data structure (thus avoid memory allocation and reclama-
tion issues and also keeping it in a flat memory format that
can be easily written to disc). The update process inherently
requires two persistency barriers to avoid any corruption
in case of a crash, because the new data needs to be fully
written before it can be set valid. For both, reading and writ-
ing, only one cache line has to be touched for 16 bytes of
data.

3.4.2 Log-based

Similar to Sect. 3.2.3 about the µlog for page propagation,
the data is first written to a log, persisted, and then modified
in-place. In case of a crash, the log is used to undo or redo
the pending changes.

Unlike in the CoW -based technique, only a single log file
is required for all in-place updatable fields in a data struc-
ture (or the entire program). Therefore, the space overhead is
reduced to a constant amount (depending on the data size).
However, an update operation now touches at least two dis-
tinct cache lines and still requires at least two (depending on
the logging technique) persistency barriers: one for the log
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Fig. 9 In-place updates with a single persistency barrier—the input (top) is split into 31-bit blocks and stored in 8-byte blocks (bottom), which are
of which stores the previous (red) and new (green) state. In case of a crash, the version number (blue) can be used to recover the old state

and on for the data. To minimize the number of used per-
sistency barriers we used PopLog for the log-based in-place
updates.

Note that it is not possible to simply use PopLog or
RAWL for in-place updates directly: PopLog would require
to reset the data to zero, before writing the new data. If
the system crashes during these two steps, the old data
would not be recoverable. RAWL does not have this lim-
itation. However, if the system crashes after a few 8-byte
updates, these could also not be recovered. The fact that the
memory that we are writing already contains valid infor-
mation makes the in-place update problem distinct from
logging.

3.4.3 Failure-atomic memory (FAM)

While CoW -based and logging-based techniques are well
known in the field and have been used for decades, PMem
allows for some novel algorithms. Here we introduce failure-
atomic memory (FAM), which is an in-place update algo-
rithm tuned for actual PMem hardware. It improves the write
latency and throughput of small in-place updates, at the cost
of additional storage (compared to logging). FAM has an
advantage over the CoW- and log-based approaches because
it only requires a single persistency barrier per update. The
key idea is to split the user data into smaller chunks and
store them in recoverable 8-byte blocks (hereafter referred
to as FAM blocks or FAMBs). Each FAMB is able to store
31 bits of user data and can be written in a failure-atomic
way, due to the failure-atomic write granularity of PMem
(8 bytes). To make the FAMB recoverable, it stores a version
number (2 bits), the old version (31 bits), and the new version
(31 bits) of the user data. This allows for updates with only
a single persistency barrier, but requires more computation
and memory bandwidth when reading the data. For FAM to
be able to store 16 bytes of user data, 5 FAMBs (40 bytes)
are required:

The update of a single FAMB is shown in line 1-6: The
entire FAMB (8 bytes) is first loaded into memory. It is
important that it is copied into a local variable so that any
intermediate changes are not written back to memory. Next
(order irrelevant), the version is incremented (line 3), the cur-
rently stored user data (new) is copied to a backup location
(old) (line 4), and the new user data is written (line 5). Once
the FAMB is updated it is written back to memory (6). This
process is performed for each 4-byte block of the user data.
Because FAMBs only store 31 bits of user data, the most sig-
nificant bits of each 4-byte input block are extracted (line
13-14) and stored in an additional fifth FAMB (line 16).

This whole process is visualized in Fig. 9: The four blocks
at the top visualize the user data (within the Update() call)
and the five blocks toward the bottom show the five FAMBs.
Our algorithmonly ensures that no intermediate state of a sin-
gle FAMB is leaked to PMem, however individual FAMBs of
oneFAMmaybewritten back before others. In case of a crash
before everything is committed to PMem (persist), the
program can inspect the 2 bit version number during recov-
ery: If the version numbers of all FAMBs match, the FAM is
in a consistent state (either old or new). Otherwise, only some
FAMBs have been persisted and need to be rolled back. The
version number (2 bit) provides 4 states (0, 1, 2, and 3) and
increments may trigger overflows (inc(3) = 0), making
it possible to determine which FAMB has the more advanced
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Fig. 10 In-place updates—performance of Failure-Atomic Memory (FAM) in comparison with CoW- and log-based updates and reads. While the
lines show the average throughput, the highlighted areas (mostly in (c) and (f)) indicate the 95% percentile over multiple runs

version and needs to be rolled back. A rollback requires
the version number to be decremented (with underflows:
dec(0)= 3) and the recovery of the old version (l.new
= l.old). In case of repeated crashes, a single FAMB is
only rolled back once because during subsequent recover-
ies the version number already matches the other FAMBs.
Hence, the recovery of FAM is idempotent and guarantees
progress as rollback actions do not need to be repeated.

FAM reduces the number of required persistency barri-
ers (roughly 100 ns) from two to one, by making use of the
failure-atomic 8-byte block on PMem. The additional pro-
cessing required for FAM can largely be hidden by the high
access latency of PMem. However, FAM requires one 8-byte
FAMB for each 31 bits of user data. Both the processing and
storage overhead (for smaller inputs) could be reduced if the
application is not using the entire domain of the data (only
31 bit out of the 32 bit). In our evaluation, we ignore this opti-
mization potential and measure the most generic version of
FAM that deals with opaque user data. Appendix A provides
and discusses a highly-optimized SIMD (AVX2) implemen-
tation of FAM.

3.4.4 Experiments

Figure 10 shows the performance evaluation of the three
introduced approaches for in-place updates. We plot the
throughput (vertical axis) over the size of the updates in byte
(horizontal axis). For each approach, we create a flat array
of 10 GB and perform 100 M operations on it. All in-place
updatable structures are aligned to cache lines boundaries to
minimize the number of cache line write backs (clwb). The

logging-based approach is assigned a sufficiently large log
file for theworkload, such that it never has to be re-initialized.
The figure shows performance for a sequential access pattern
(a, b, c) and a random access one (d, e, f). The throughput
of writes (a, d), reads (b, e), and dependent reads (c, f) are
depicted from left to right. For dependent reads, out of order
execution is prevented by making a read location dependent
on the previously read value.

Overall, the results show that the reduction in persistency
barriers of FAM pays off for write operations and still offers
reasonable performance when reading. Especially for small
data sizes (16 bytes), the FAMoffers large performance gains
(2× for sequential and 1.6× for random). Logging, performs
especially well in sequential reads (b, c), because there is no
indirection (CoW) or any other processing (FAM) required.
However, this advantage is largely lost for random reads as
those are dominated by access latency.

3.5 Coroutines

To avoid stalling the active thread of a program on high-
latency operations (like disk or network I/O), many libraries
implement asynchronous APIs. Internally, these libraries can
use multi-threading or work queues and offer some event-
or polling-based mechanism for the user to learn about com-
pleted operations. Alternatively, the user can utilize kernel or
user-land threads with a synchronous API. This has several
advantages, as the state of the thread of execution at the time
of theAPI call is automatically preserved anddoes not have to
be restored manually. Independent of how the asynchronous
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Fig. 11 Coroutines: interleaved inserts—by interleaving n write operation (clwb) and sharing one synchronization barrier (sfence), the number
of memory stalls can be reduced from n to 1

execution is realized, the advantage is that the program can
make progress while waiting on a slow I/O operation.

To avoid stalling on low-latency operations (such as
DRAM or PMem reads during pointer chasing), an asyn-
chronous API or kernel threads are infeasible as their
overhead would be to great. However, lightweight user-land
threadswith cooperativemultitasking have successfully been
used tomitigate the impact ofmemory stalls. The earlyworks
of Chen et al. on group pre-fetching [8] and Koçberber et
al. on asynchronous memory access chaining (AMAC) [26]
implement the switching between different tasks by hand.
With the release of C++20, a low-overhead implementation
of cooperative multitasking in the form of coroutines has
become available as a language feature. Jonathan et al. [22]
showed that the performance of coroutines is competitive
with earlier manual implementations and greatly reduces
complexity. Given that memory latencies are already an issue
for data structures with random access patterns on DRAM,
this issue is only intensified on PMemdue to the higher laten-
cies. Coroutines have successfully been shown tomitigate the
high latencies on PMem by Psaropoulos et al. [44] for index
joins and tuple reconstruction in database systems.

On DRAM, only read operations are synchronous and
write operations can always be performed in an asynchronous
way. On PMem, however, write operations become syn-
chronous as well when followed by a persistency barrier.
This leaves the CPU stalling until the written data has reach a
persistent location. Tomitigate this, we propose to use corou-
tines (or cooperativemultitasking, in general) for interleaving
a number of update operations. In the following section, we
introduce the FP-Tree [37], which will be used as an exam-
ple and in the evaluation. Afterwards, we discuss the use of
coroutines for read and write operations.

3.5.1 FP-tree implementation

The FP-Tree is a B-Tree-like data structure designed for
PMem. It uses sorted inner nodes that are placed in DRAM
to speed up the traversal. These volatile inner nodes can be

recovered after a crash from the leaf nodes which are placed
in PMem. Leaf nodes are not sorted but use hash-based finger
prints for efficient point lookups instead:

Leaf Node: used fps kvs

bit mask finger prints key value pairs

4 bytes 32 bytes 512 bytes

Each leaf node has a bit mask (used) indicating which
slots are filled, an array of finger prints (fps) that stores a
1-byte hash of each key, and an array with key-value pairs
(kvs). We use these leaf nodes to measure the effect of inter-
leaving lookups as well as interleaving inserts.

3.5.2 Lookup implementation

A lookup is done by hashing the search key and comparing
it to each used finger print in the node. If there is a match,
the actual key for this finger print is retrieved and used to
validate the match before returning the result. For simplicity,
we only evaluated positive lookups and avoid control flow
divergence of the executed coroutines by prohibitingmultiple
matchingfingerprints. Thenon-interleaved lookup code (left)
can easily be extended using coroutines (right):

Before potential memory stalls we issue a prefetch
(_mm_prefetch) instruction to get the requested cache

123



1238 A. v. Renen et al.

Coroutines read+write Coroutines write Coroutines read No coroutines

(a) Inserts on PMem

1 8 16 24 32
0

2

4

6

# active coroutines

In
se
rt
s/
s

(b) Lookups on PMem

1 8 16 24 32
0
4
8

12
16
20

# active coroutines

L
oo

ku
ps

/s

(c) Lookups on DRAM

1 8 16 24 32
0
4
8

12
16
20

# active coroutines

L
oo

ku
ps

/s

Fig. 12 Coroutines on PMem—we use coroutines to hide read and write latencies of PMem for lookups and inserts on FP-Tree leaf nodes

line from the underlyingmemory (DRAMor PMem). Instead
of waiting for the cache line to be loaded, we use co_await
to return the control flow to the caller. The caller can then
continue execution by resuming the next active coroutine or
starting a new one. This way any number of lookups can be
executed in an interleaved fashion and while one is waiting
for memory to be loaded, another one can progress.

3.5.3 Insert implementation

As described in Sect. 3.4, PMem-based data structures use
a two phased update process: (1) write the new data and
persist it; (2) set a flag to mark the new data as valid and
persist the flag. In case of the FP-Tree, the flag is the used
bitmask and the data is the key-value pair (kvs) and the key’s
fingerprintfps.Wecan interleavemultiplewrites, by issuing
the write and cache line write back instruction normally and
then using one storage fence (sfence) for a group of inserts
to force the data to PMem. Hence, the algorithm only has to
wait once for the completion of all cache evictions, but each
individual insert operation still has the guarantee that its data
was persisted before it continues. Figure 11 illustrates three
inserts with individual fences (top) and shared ones (bottom).

3.5.4 Experiments

Figure 12 shows the experimental results for inserts onPMem
(a), lookups on PMem (b), and lookups on DRAM (c). There
is no experiment for inserts on DRAM because writes on
DRAM are not persistent and, therefore, do not require inter-
leaving. The horizontal axis shows the group size: howmany
coroutines are active at the same time. For both, reads and
writes the curve flattens out at around 20 active coroutines.
Due to the higher latencies of PMem, the impact of using
an interleaved execution to prevent stalls is more significant
than on DRAM: 6.2× for inserts on PMem and 5× speed up
for lookups, compared to 2.6× for lookups on DRAM.

The insert experiment (a) shows three different usages of
coroutines: only for reads ( ), only for writes ( ) and for

both ( ). There is no benefit in using coroutines to inter-
leave only reads ( ), because the CPU uses out-of-order
execution in the normal code path to prefetch data across
persistency barriers. This is possible, because a persistency
barrier is made up of a cache line write back (clwb) and
storage fence (sfence) instruction. The sfence instruc-
tion allows for reordering of loads and only “fences” stores.
To test this hypothesis, we used a memory fence (mfence)
instruction instead of the sfence. The mfence does not
allow for any reordering. In this scenario, the performance
of inserts with interleaved reads ( ) becomes similar to that
of inserts with interleaved writes ( ).

4 Related work

With PMem only being released recently, this is one of
the two [21] initial studies that have been performed on
the actual hardware. While our work proposes low-level
optimizations, Swanson et al. evaluate PMem with various
storage engines aswell as file systems. Until now, software or
hardware-based simulations, or emulations based on specula-
tive performance characteristics, have been used to evaluate
possible system architectures [3,36,38,40]. The number of
persistent index structures [2,9,15,27–29,48,52,53] is large,
and has been summarized by Götze et. al [16]. Similar tech-
niques have been used to build storage engines directly
on PMem [4,35]. These approaches use in-place updates
on PMem, which suffers from the lower-than-DRAM per-
formance. Therefore, a number of indexes [37,51] as well
as storage engines [1,7,12,23,24,32,33] integrate PMem as
a separate storage layer or an extension to the recovery
component [39,41]. Furthermore, buffer-managed architec-
tures [5,25,46] have been proposed to use PMem more
adaptively. Recovery has always been an essential (and
performance-critical) component of database systems [45].
Several designs have been proposed for database-specific
logging [6,14,18,42,50] and file systems [13]. There is also a
great bodyofwork that researches transactional semantics for
PMemas a library to be easily used by other programs [31,34]
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(similar to thePMDK).Whilewe focus on the currently avail-
able hardware, another interesting line of research considers
possible extensions to PMem, such as extending the persis-
tency domain to include CPU caches [10,20].

5 Conclusion

This is the first comprehensive evaluation of PMem on “real”
(non prototype) hardware. In our evaluation, we found sev-
eral guidelines for using PMem efficiently (cf. Sects. 2.3 and
2.2): (1) Instead of optimizing for cache lines (64 bytes) as on
DRAM, we have to optimize for PMem blocks (256 bytes).
(2) As in multi-threaded programming, writes to the same
cache line in close temporal proximity should be avoided.
(3) Forcing the data out of the on-CPU cache (using clwb
or non-temporal stores) is essential for a high write band-
width. (4) When using PMem and DRAM at the same time,
there are interference effects cause significant slowdowns.

Furthermore, we proposed and evaluated algorithms for
logging, page propagation, in-place updates, and interleaved
execution of PMem writes:

(1) Our logging experiments have shown that latency-critical
code should minimize the number of persistency barriers
and avoid subsequent writes to the same cache line.

(2) Our PopLog algorithm reduces the required persistency
barriers from two to one, thus doubling the throughput.

(3) For flushing database pages, a small log (µLog) can
be used to flush only dirty cache lines. The I/O prim-
itives introduced use an interface similar to the one in
PMDK [43], making them widely applicable.

(4) We introduced Failure-Atomic Memory (FAM), which
enables in-place updates with a single persistency barrier.

(5) We showed how cooperative multitasking (via corou-
tines) can be utilized to not only interleave loads but also
stores on PMem.
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Appendix

A FAM implementation details

Listing 2 contains the AVX2 SIMD code for performing
updateswith the FAMalgorithm for 16 bytes. For better read-
ability the comments are provided inline.
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