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Abstract
String dictionaries constitute a large portion of the memory footprint of database applications. While strong string dictionary
compression algorithms exist, these come with impractical access and compression times. Therefore, lightweight algorithms
such as front coding (PFC) are favored in practice. This paper endeavors tomake strong string dictionary compression practical.
We focus on Re-Pair Front Coding (RPFC), a grammar-based compression algorithm, since it consistently offers better
compression ratios than other algorithms in the literature. To accelerate compression times, we propose block-based RPFC
(BRPFC) which consists in independently compressing small blocks of the dictionary. For further accelerated compression
times especially on large string dictionaries, we also propose an alternative version of BRPFC that uses sampling to speed
up compression. Moreover, to accelerate access times, we devise a vectorized access method, using Intel� Advanced Vector
Extensions 512 (Intel� AVX-512). Our experimental evaluation shows that sampled BRPFC offers compression times up to
190× faster than RPFC, and random string lookups 2.3× faster than RPFC on average. These results move our modified
RPFC into a practical range for use in database systems because the overhead of Re-Pair-based compression for access times
can be reduced by 2×.

Keywords String dictionary · Compression · Re-pair · Vectorization

1 Introduction

Data compression is crucial for in-memory database man-
agement systems (IMDBMS) to reduce both memory con-
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sumption and processing time. In particular, lightweight
dictionary-based compression schemes are typically used for
columns storing string data [1–3]. However, such dictionar-
ies consume a significant amount ofmemory. For illustration,
we conducted an analysis of 9 real-world enterprise resource
planning (ERP) systems that represent common use-cases of
the SAPHANA IMDBMS [4]. A breakdown of the 9 systems
is shown in Fig. 1. System 6 has the highest total footprint
of 21.6 TB, with 30% of that being taken up by string dic-
tionaries. String dictionaries on average consume 28% of the
total memory footprint of the depicted systems, making them
the single largest memory consumer in these systems. We
propose an improved compression algorithm to reduce the
footprint of string dictionaries by up to 50%. This can lead
to a significant reduction in the overall memory footprint of
such systems.

In SAP HANA, the compression method used for string
dictionaries is front coding. Front coding exploits redundancy
in strings to compress the dictionary by ordering the strings
in the dictionary lexicographically, then representing each
string using the length of the common prefix with its prede-
cessor and the remainder that is not commonwith the string’s
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Fig. 1 The memory footprint of 9 ERP systems with the share of the
footprint taken by string dictionaries

predecessor. For efficient lookup operations in SAP HANA,
the strings are grouped into buckets of 16 strings. This can
already achieve significant compression, but as the literature
on string dictionary compression shows [5–8], much higher
compression rates are possible if the performance of read
operations on the dictionary is sacrificed.

Based on this observation, the goal of this work is to find
a string dictionary compression method that

(1) significantly increases string dictionary compression in
comparison with front coding,

(2) features fast read operations, ideally nearing the speed
of front coding,

(3) and has construction times in the same order of magni-
tude as those of front coding.

The requirements are listed in order of importance. Our first
priority is to improve compression (1), but it is very important
to maintain reasonable read operation performance (2). Read
operations include the extraction of single values, as well as
efficient scans of the dictionary. Because string dictionaries
are only periodically reconstructed when main and delta are
merged as a background task, their construction times (3) are
not as important, but should still remain reasonable. Since the
related work shows that a tradeoff between requirements (1)
and (2) exists, being that increased compression typically
mandates slower read operations, we aim to find an existing
compression method that already satisfies requirement (1),
but has potential to be optimized to also satisfy (2) and (3),
if it is not already given.

Comparing different methods for compressing string
dictionaries from the literature, performing Re-Pair com-
pression [9] on top of front coding consistently offers about

two times higher compression rates [7,10] than front coding.
Re-Pair is a compression algorithm that compresses its input
by creating a grammar consisting of rules that can represent
the compressed input in a more compact fashion. Therefore,
despite slower access and construction times, we chose this
method as the candidate to base this work on and will tackle
the aforementioned issues in the process. The simplicity of
Re-Pair compression and decompression alsomakes it a good
candidate because it offers several optimization opportunities
that have not yet been explored in related work.

Therefore, we aim to improve string dictionary compres-
sion, using Re-Pair on top of front coding (RPFC) as a basis,
in this work. Our primary goal is to make access operations
on string dictionaries compressed with RPFC as fast as pos-
sible by better utilizing the computing resources offered by
modern CPUs, ideally approaching the access times of string
dictionaries compressedwith front coding. In addition to this,
we aim to achieve faster compression. Of course, while per-
forming the aforementioned optimizations, it is important to
sacrifice as little compression quality as possible.

Some of the ideas in this paper were presented in our ear-
lier work [11]. In this paper, we add a detailed analysis of
the implementation and the parameters chosen by our com-
pression methods. In particular, we discuss the experiments
in more detail that provide evidence that using 16 bits for
symbols in the grammar rules is sufficient to capture most
potential for compression. We also present new experiments
regarding the CPU cache sensitivity of our compression
methods. This is an important factor because concurrent
workloads contend for precious cache resources. Fortunately,
all presented compression methods have a fairly robust run-
timebehaviorwhen little (shared) last level cache is available.
While our earlier work relied on datasets that are widely used
in the community to analyze the quality of string dictionary
compression, this paper complements this analysis by also
sharing results on real-world database columns that store
string values. These results are consistent with the results
on the datasets used in our prior work.

In this paper, we also extend and refine the block-based
RPFCmethod presented in [11]. Themain novel aspect of the
new alternative sampled BRPFC is to sample strings from all
blocks of the input to create a single shared grammar that is
used to compress all blocks of the input data. Because deriv-
ing this grammar is the most costly part of the compression
step we are able to reduce the compression times compared
to BRPFC by 3× or more. This has no significant impact on
the compression ratio or access times.

In Sect. 2, we introduce the basic working principle of the
Re-Pair method and survey other compression techniques.
The two major contributions of this paper, accelerating con-
struction times for Re-Pair compressed string dictionaries
and improving their access times, are presented in Sects. 3
and 4. More precisely, as the first major contribution of the

123



Faster & strong: string dictionary compression using sampling and fast vectorized… 1265

paper, we accelerate RPFC construction times using a new
block-based Re-Pair compression method on top of front
coding (BRPFC) (Sect. 3). This also has the advantage of
not requiring a single big memory allocation for large dic-
tionaries anymore, but instead making it possible to split the
dictionary into manageable blocks of a configurable size.We
introduce another improved approach to BRPFC compres-
sion that uses sampling to construct the Re-Pair grammar.
That approach can further improve construction times at a
slight loss of compression quality. As our second main con-
tribution, we utilize SIMD-based optimizations to improve
the access times (Sect. 4). Our experiments on well-known
text corpora and real-world databases in Sect. 5 demon-
strate that these techniques improve compressed dictionary
extract times by up to 2.6× and by 2.3× on average over the
original RPFC decompression method. Our newly proposed
sampled BRPFC compression method reaches similar com-
pressed sizes as RPFC at up to 190× lower construction
times and up to 2.6× faster access times over the origi-
nal RPFC. The compressed sizes are increased by just 22%
on average. Our block-based BRPFC method offers better
compression quality than the sampled BRPFC variant with
increased compressed sizes over RPFC of just 15% on aver-
age. BRPFC requires higher compression times than sampled
BRPFC.However, those are still an order ofmagnitude lower
than the compression times of the original RPFC method. In
comparisonwith front coding, sampled BRPFC’s extract and
locate operations are only 2.2× and 1.5× slower on aver-
age, respectively. But sampled BRPFC in turn reduces the
average compressed size by 37% over front coding.

2 Background and related work

Vectorized Processing As previous work has identified
Re-Pair compression to offer high compression rates but
also with high computational costs, we seek to reduce the
impact of the computational complexity of this algorithm.
Vectorized processing offers a method to accelerate compu-
tationally expensive and data-parallel operations. It becomes
attractive as more computation has to be performed per byte
read from memory [12] as the same operation is applied to
multiple operands executing one instruction. On the Intel
platform, the SSE and AVX instruction set extensions realize
vectorization where the newest generation—AVX-512—
offers 512-bit wide registers allowing to process, e.g., up
to 16 32-bit integers with one instruction [13]. An interest-
ing pair of instructions introduced in AVX2 is the gather and
scatter instructions. They introduce the capability to load or
store multiple data elements based on index positions. How-
ever, the latency of the load and store operation is determined
by the slowest load or store for all operands. Using instruc-
tion level parallelism, working on fewer operands, may hide

this latency as multiple load or store operations can be exe-
cuted out of order. A notable extension of AVX-512 to its
predecessor AVX2 is the support of a mask for most instruc-
tions which allows for a selective execution of the instruction
basedon thebits set in themask register. Compilers of higher-
level languages such as C++ can automatically emit vector
instructions in special cases, such as vectorizing a loop that
has no dependencies between iterations. This is called auto-
vectorization and is relatively unreliable, as it does not apply
to most code. This leaves it to the programmer to use vec-
tor instructions manually where appropriate, which we are
going to do in this paper. To use vector instructions directly
in C++, one has to use intrinsics, which are built-in C++
functions that are compiled directly to their corresponding
vector instructions. A full reference of all AVX-512 intrin-
sics, including the ones used in this paper, can be found at
[14].

String Dictionaries Dictionary compression or domain
encoding is a popular method in database systems to reduce
their memory footprint [1–3]. The dictionary maps values
of the domain of a (set of) column(s) to value IDs. In
the records, these values are replaced by the correspond-
ing value IDs which may lead to space savings—especially
for strings—and enables efficient processing on dictionary-
encoded values [2,15,16]. The string dictionary then offers
two access operations: (1) Given a value ID id, extract(id)
returns the corresponding string in the dictionary, and (2)
Given a string str, locate(str) returns the unique value ID of
str if str is in the dictionary or the value ID of the smallest
string greater than str otherwise.

Compression of String Dictionaries Müller et al. [8] sur-
veyed several compression methods for string dictionaries to
evaluate the tradeoff between compression ratio and access
performance: These included front coding, Huffman-Tucker
coding, N-Gram compression, and Re-Pair compression to
name the most important ones. They also proposed a
compression manager, which can automate the decision of
the compression method for a string column based on the
characteristics of the column. In [17], a dictionary-based
compression approach is proposed that encodes arbitrary
keys in an order-preserving way. This technique is applied
to various in-memory search trees. In contrast, our Re-Pair
approach aims at compressing columnar string data.

Plain Front Coding (PFC) is a light-weight method to
compress sorted string dictionaries. Strings are represented
by the length of the common prefix with their predecessor
in the dictionary and the remaining suffix. This is illustrated
in the second row of Fig. 2. In the figure, each box is the
representation of one string in the dictionary. With the front-
coded representation, the last two strings are compressed.
The first one is not, as it has no predecessor. PFC operates
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Fig. 2 Example of PFC and RPFC

on buckets of, e.g. 16 strings. The first string of each bucket
(the bucket header) is stored uncompressed. This facilitates
random accesses to the string dictionary. Without buckets,
each access would require decoding all prior strings in the
dictionary. With buckets, strings only have to be decoded
starting from the beginning of the bucket the desired string
is contained in. PFC offers an interesting trade-off between
reasonable compression rates and fast access operations and
therefore is used in SAP HANA. However, amongst the vari-
ous methods surveyed byMüller et al., Re-Pair compression,
discussed below, on top of PFC, exhibits the best compres-
sion ratios.

Re-Pair [9] is a grammar-based compression method. It
iteratively obtains a grammar from an input text T and trans-
forms the text into a compressed sequence of symbols. We
call any symbols that can be present in the input text T termi-
nals and any new symbols that are added during compression
non-terminals. For our purposes, symbols in the input text
are always bytes, and hence terminals are symbols from 0
to 256. This distinction comes from the context of formal
grammars, where terminals are symbols that make up the
set of strings in the formal language defined by the gram-
mar. Non-terminals cannot be part of those strings. Likewise,
with Re-Pair, the compressed sequence may contain non-
terminals, but decompressing it, one obtains the input text
again, which contains only terminals. The input text can be
seen as the only string in the formal language defined by the
Re-Pair grammar, when given the compressed sequence of
symbols to expand.

In each iteration, Re-Pair first finds the most frequent pair
of symbols ab in T. If multiple pairs with the same frequency
exist, one candidate is choosen at random. Then, it adds a rule
R → ab to the grammar, where R is a non-terminal sym-
bol that does not previously appear in T or in the grammar
and a and b can be any symbols (terminal or non-terminal).
Third, it replaces every occurrence of ab in T by R. This
iteration terminates when there are no pairs of symbols left
that occur more than once in T . In practice, several auxil-
iary data structures are used to implement the iterative steps

efficiently [9]. Re-Pair on top of PFC (Re-Pair Front Cod-
ing (RPFC)), introduced by Navarro et al. [7], is the baseline
of this work. The third row of Fig. 2 shows how Re-Pair is
applied on top of PFC. RPFC applies Re-Pair on top of all
front-coded buckets in the dictionary, but the bucket headers
are left uncompressed. One grammar is created for the whole
dictionary. In Fig. 2, this grammar is visualized as a set of
binary trees, where the inner nodes are non-terminals, and
the leaf nodes are terminals.

Navarro et al. [7,10] introduced and evaluated techniques
besides RPFC for compressing string dictionaries. These
included hash-table-based methods and Huffman coding on
top of PFC or on the bucket headers of RPFC. Grossi and
Ottaviano [6] investigated the use of tries to compress strings
by storing identical prefixes only once. The tree relies on
pointers to child nodes which requires additional space. In
practice, several different methods exist to store tries in
a space-efficient and access-friendly manner, e.g. [5,6,18].
Kanda et al. [19] introduced the term “auxiliary string dic-
tionaries” for dictionaries that are used to further compress
the internal strings obtained from a front-coded or a decom-
posed trie dictionary representation, as it is donewithRe-Pair
for RPFC. Fast Static Symbol Table (FSST) [20] is a new
lightweight string compression method that was not pub-
lished yet at the time of writing this paper. It can be used for
string compression in general and string dictionary compres-
sion in particular. Being a lightweight method, FSST does
not aim to provide compression as strong as Re-Pair based
methods, but claims faster compression and decompression
operations than the methods that will be presented here.

In this paper, we base our work on RPFC because none
of the compression methods discussed above consistently
dominates RPFC regarding compression ratio and access
performance. However, RPFC exhibits substantially higher
dictionary access times over PFC (the method currently used
in SAP HANA). We show in Sect. 4 how access operations
on RPFC can be accelerated on modern CPUs.

3 Block-based re-pair compression

The RPFC compression algorithm [7] has serious shortcom-
ings when targeting large string dictionaries. Primarily, its
compression times are very high in comparison with light-
weight compression methods such as front coding, growing
super-linearly with input size. RPFC compression times
quickly become impractical once the input exceeds a few
100MBs. Secondly, it requires a large amount of memory
(multiples of the input text size) for its auxiliary data struc-
tures (see Sect. 2). In our use case, dictionary compression is
done as a background job during normal IMDBMSoperation
as a part of merging main and delta storage [4]. Therefore,
it is undesirable to require large amounts of memory for this
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Fig. 3 Example of BRPFC compression

process, as ourmainmotivation is reducing thememory foot-
print. In the worst case, these memory requirements can even
make applying RPFC compression impossible, if the mem-
ory is simply not available in the system.

In a micro-architecture analysis [21] of the RPFC com-
pressionmethod conducted using Intel� VTune™Amplifier
[22], we found that 70% of the runtime is spent updating and
accessing the auxiliary data structures. During these opera-
tions, execution stalls roughly 45%of the timedue tomemory
latency. In the update of the text itself (10% of total runtime),
75% of the execution is memory bound. Based on this obser-
vation, one can assume that the compression times would
significantly improve if the working set of the algorithm fits
into CPU caches. Therefore, we propose Block Re-Pair Front
Coding (BRPFC), which consists in splitting the dictionary
into blocks containing several front-coded buckets before
applying Re-Pair on each block individually. The idea of
creating blocks of text to reduce the compression time was
also proposed by Gagie et al. [23] concurrently to our initial
work. The block size in our work can be chosen such that
both the input text and the auxiliary data structures used for
Re-Pair compression fit into the CPU caches. We evaluate
the effects of compressing at varying block sizes in Sect. 5.

Anexample of howBRPFCcompresses a stringdictionary
is shown in Fig. 3. A BRPFC-compressed string dictionary
with front coding bucket size b is constructed similarly to
a RPFC-compressed string dictionary: First, we apply front
coding for each b strings in the lexicographically sorted dic-
tionary, yielding � N

b � front-coded buckets of strings, where
N is the total number of strings in the dictionary. In contrast to
RPFCand to our previouswork [11],we explicitly encode the
length of the remaining front-coded strings, instead of zero-
terminating them. This facilitates storing binary strings in the
dictionary, which may contain the symbol 0. A disadvantage

of this is a small amount of additional overhead for strings
where multiple symbols are required to encode the length.
Then, these buckets are concatenated into blocks, omitting
the bucket headers (the first string of each bucket). The num-
ber of buckets per block can be determined in different ways.
The simplest option is to use a fixed number B of buckets per
block. This is what is shown in the example in Fig. 3. How-
ever, this will result in inconsistent numbers of symbols per
block, as the number of symbols per bucket varies depending
on the front-coded length of strings in the bucket. It is also
possible to use a varying number of buckets per block, such
that each block comes as close as possible to a target symbol
count s.We evaluate only the latter option in Sect. 5, as it pro-
duces much more consistent blocks in terms of the number
of symbols present in each block. After the blocks have been
formed, each block is then compressed using Re-Pair such
that buckets remain self-contained, i.e., no symbol belongs to
two adjacent buckets. This is important, as it enables storing
integer offsets to each bucket in the compressed text, which
facilitate random accesses to the dictionary at decompression
time. Note that this is different from the original RPFC algo-
rithm, which enforces the stronger requirement of no symbol
belonging to two adjacent strings. Thereafter, we write the
result as a contiguous sequence of the resulting grammar
followed by the buckets reunited with their headers. In this
sequence, the grammar is stored using an implicit encoding
that stores two symbols per grammar rule. These two sym-
bols are the ones that the rule maps to, while the rule symbol
itself is encoded implicitly by the position of the symbols in
the sequence. The symbols are stored using a fixed bitwidth
of 16 bits per symbol. In contrast to this, the Re-Pair com-
pressed buckets are stored using bit-packing, i.e., using the
minimal number of bits per symbol possible given the num-
ber of distinct symbols in the block. For example, if the input
strings have 256 distinct symbols, and 2000 grammar rules
are created by the Re-Pair algorithm, each symbol would be
stored using �log2(256 + 2000)� = 12 bits. We choose not
to use bit-packing for the grammars at the expense of some
compression quality in favor of decoding performance, as
experimentation has shown that compression quality is not
improved much by bit-packing the grammars. This will be
discussed in more detail in Sect. 4. We store the offsets to
the beginning of each bucket in a separate array, similar to
RPFC. As BRPFC introduces a new indirection layer, we
need to keep offsets to the blocks and their respective gram-
mars as well. This process results in a set of compressed
blocks, each storing a multiple of b strings, except for the
last block, which can possibly contain a non-multiple of b
strings if N is not a multiple of b.

Since Re-Pair is applied on each block separately, its input
text length can be adjusted by changing B or s. As noted
before, using s and thereby a varying number of buckets per
block, yields better control over the input size to the Re-Pair
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algorithm than using a fixed number of buckets per block.
Consequently, picking a suitable block size should allow for
Re-Pair’s working set to fit into the CPU caches, dramati-
cally reducing compression times. We evaluate compression
performance at different block sizes in Sect. 5 to validate our
assumption that a low enough block size speeds up compres-
sion significantly.

Figure 4 shows how the choice of a certain block size B
affects the Re-Pair part of compression. It shows how many
bits are required to be used per symbol when compressing
four different datasets. Information about the datasets can be
found in Sect. 5. Bars show the average number of bits per
symbol across all blocks of the dictionary.Whiskers show the
minimum andmaximum values found in individual blocks of
the dictionary. At higher block sizes, Re-Pair replaces more
pairs by new symbols than at lower block sizes. Fewer sym-
bols lead to fewer bits needed to represent a single symbol,
which can be seen in Fig. 4. As the Re-Pair algorithm does
fewer replacements at lower block sizes, compression is also
going to be worse compared to original RPFC where the
dictionary is compressed as a whole.

Another advantage of BRPFC compression is that it is
trivially parallelizable if a fixed number of buckets per block
is used, since each block is completely independent of other
blocks then. If B is larger than the number of available CPU
threads p, then the compression can be sped up by a factor
�(p). When using a variable number of buckets per block,
it would be necessary to create all blocks first in a sequen-
tial manner, to then run Re-Pair compression in parallel for
several blocks. We do not explore multi-threading because
dictionary compression is typically a background task with
compute resources limited to a single CPU thread such that
the remaining threads can execute foreground user queries.
However, this approach can be a big advantage of BRPFC
over RPFC in scenarios where more resources are available.

Table 1 Overlap of rules in BRPFC grammars (block size s = 8M)

# Total rules n # Unique rules nu Overlap (%)

Uk 2,372,492 954,040 59.8

Indochina 1,028,809 570,330 44.6

Enwiki 2,367,402 527,758 77.7

Geonames 456,946 155,801 65.9

Sampled block-based re-pair compression

BRPFC improves compression times over RPFC by running
the Re-Pair algorithm on smaller blocks of the dictionary.
However, we observe that there is a significant amount of
overlap in the grammar rules of BRPFC blocks. Table 1
demonstrates this by reporting the total number of rules
n across all grammars of compressed BRPFC dictionaries
using the same datasets as Fig. 4, and relating those numbers
to the number of unique rules nu across all grammars. These
two numbers can be used to determine the percentage of
rules that are not unique to one grammar, i.e., rules that over-
lap with rules from other grammars, as follows: n−nu

n . This
is shown in the last column of Table 1 and demonstrates the
significant overlap of grammar rulesmentioned above,which
lies between 44 and 78%, depending on the dataset. Elim-
inating this overlap could improve the compression quality
of BRPFC. Additionally, if it is not necessary to perform full
Re-Pair compression on the whole dictionary, but only on
some smaller part of it, compression would be greatly accel-
erated over BRPFC. This is because the Re-Pair step is by
far the most computationally expensive one in the BRPFC
compression pipeline.

To eliminate grammar overlap and speed up compression
times, we propose a technique for sampled BRPFC com-
pressed string dictionary construction. The technique’s main
steps are shown in Fig. 5. The general idea is to create a single
Re-Pair grammar after the front-coding stage. That grammar
can then be used to compress all blocks of the dictionary.
The grammar is created by sampling a certain number of
the front-coded buckets to form a superblock. Varying target
sizes can be set for the number of symbols in the superblock
to improve the resulting grammar at the cost of increasing
compression time. Front-coded buckets are chosen for sam-
pling following a base 2 van der Corput sequence [24] that
is scaled and discretized to fit the interval of available buck-
ets, and sampling is stopped when the target size has been
reached. In our case, the base 2 van der Corput sequence
is generated by splitting the interval of all buckets in half
recursively. At each recursive step, the split point is selected
as an entry of the sequence, and thereby the corresponding
bucket is included in the sample. For example, if there were
32 buckets numbered from 0 to 31, the first bucket selected
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would be 16, splitting the sequence into two subsequences
(from 0 to 16 and from 16 to 31). Then, the centers of each
of the subsequences would be selected, i.e., first 8 and then
24, again splitting the subsequences into two subsequences
each. This would continue recursively, selecting bucket 4,
12, 20, 28, 2, 6, 10, 14, 18, 22, 26, 30, etc., until the accu-
mulated size of the sampled buckets reaches the superblock
target size. Following this sequence results in roughly equal-
spaced samples from the set of front-coded buckets, without
requiring prior knowledge of how many buckets need to be
sampled to reach the target size. This way the sampling rate
does not need to be an explicit parameter, but is implicitly
determined by the target superblock size. The technique is
necessary because the number of sampled buckets cannot be
accurately determined in advance using the superblock target
size, as buckets vary in size. After sampling, the superblock
is compressed using the Re-Pair algorithm, and the resulting
grammar is used as the shared grammar.

Next, we apply an algorithm that we call recompression to
the blocks of the dictionary. Its inputs are the shared grammar
and anuncompressed block, and the algorithmoutputs a com-
pressed block. This means the algorithm uses the rules from
the existing grammar to compress the block. To do this, we
first build a trie containing all expanded rules from the shared
grammar. The trie is constructed as follows: The expanded
version of each grammar rule is constructed first. This can be
done by iteratively expanding the rules in the order that they
were added to the grammar. Rules that expand to other rules
(i.e., non-terminals) can look up their previously expanded
child rules. With the rules in expanded form, the actual trie
is built. We use a simple node-based representation of the
trie in our implementation. Each node can point to as many
other nodes as there are distinct symbols in the expanded
rules. Expanded rules are added to the trie by starting with

the first symbol of the rule at the root node, and traversing the
trie nodes based on the symbols in the expanded rule, adding
new nodes where necessary. Finally, nodes in the trie that
correspond to an expanded rule—where the aforementioned
traversal ended after handling the last symbol—are tagged
with the non-terminal symbol of that rule. With the grammar
trie available, each block is compressed using that represen-
tation of the shared grammar. At each position in a block’s
text, the trie is traversed using symbols from the text. As a
result of this, several rule expansions may be found to match
the string at the current position in the text. The longest one
is selected, and that segment in the text is replaced with the
rule’s non-terminal. This repeats at the next position after the
replaced segment in the text and continues until the whole
text has been compressed. If no match in the expanded rules
is found, the algorithm continues to the next position in the
text. The matching part of the algorithm is similar to the
Aho-Corasick [25] string-matching algorithm, the difference
being that we only need to find the longest possible expanded
string at any position in the text, while Aho-Corasick finds
all occurrences of all searched strings in the text. Note that
the first part of the recompression algorithm—constructing
the grammar trie—only needs to be done once for the whole
dictionary, as the shared grammar does not change after it
has been initially derived from the superblock.

In comparison with BRPFC, block compression becomes
a two-stage process with sampled BRPFC. A shared gram-
mar is constructedfirst, then blocks are compressed using that
grammar. While the Re-Pair algorithm is still used to obtain
the shared grammar, it is not required anymore for compress-
ing the blocks. Those are compressedwith the recompression
algorithm, which is much less computationally expensive
than the full Re-Pair algorithm. In sum, this can reduce total
compression time significantly. Compression quality can be
traded off for compression speed by reducing the target size
of the superblock, we evaluate this in Sect. 5.

4 Vectorizing re-pair lookup

The main bottleneck when accessing strings in compressed
string dictionaries employing Re-Pair compression is the
expansion of non-terminals into the terminals they repre-
sent by performing lookups in the Re-Pair grammar. From
now on, we assume that this functionality is implemented
in the function ExpandSymbol, which expands a single
non-terminal to the respective terminals using a Re-Pair
grammar. Therefore, we explain in this section how we vec-
torize ExpandSymbol to improve the overall performance
of string access operations in Re-Pair compressed string
dictionaries. As Re-Pair expansion is always required for
decompression when Re-Pair compression was used, this
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applies to RPFC aswell as to BRPFC and to sampled BRPFC
dictionaries.

Iterative symbol expansion

In the RPFC implementation by Navarro et al. [7],
ExpandSymbol is implemented using a recursive algo-
rithm. Since that original implementation of ExpandSym-
bol is not vectorization-friendly, we first turn the algorithm
from a recursive algorithm into an iterative algorithm and
also remove as much branching as possible. We show the
optimized scalar code in Algorithm 1. N and n represent the
total number of non-terminals and terminals, respectively.

Algorithm 1 Simplified iterative Re-Pair symbol expansion
1: function ExpandSymbol(symbol, grammar,

outputBuffer)
2: current ← symbol
3: stack ← buffer of size 32
4: pos ← 0, stackPos ← 1
5: do
6: if current ≥ n then � expand non-terminal
7: left ← GetField(grammar,

�log2(n + N )�, 2 · (current − n))

8: right ← GetField(grammar,

�log2(n + N )�, 2 · (current − n) + 1)
9: current ← left
10: stack[stackPos++] ← right
11: else � expand terminal
12: outputBuffer[pos++] ← current
13: current ← stack[–stackPos]
14: end if
15: while stackPos > 0
16: return pos
17: end function

ExpandSymbol performs a depth-first traversal of the
binary symbol tree, outputting leaves (terminals). We do this
iteratively by processing one tree node in each iteration until
symbol expansion has finished, using a stack to track nodes
that need to be visited at a later point. The current node is
stored in current, which is initialized to ExpandSym-
bol’s input symbol, the root of the symbol tree. Each node
encountered can either be a terminal (leaf node) or a non-
terminal (inner node). If the node is an inner node (branch 1,
lines 7–10), its left and right child nodes are fetched using
GetField, which decodes the symbols from the bit-packed
grammar array. The right child node is put onto a stack for
later use, while the left one becomes current for the next
iteration. This way, the left path in the tree is always traversed
until a leaf is encountered. When this happens (branch 2,
lines 12–13), the leaf node (which is a terminal) is output,
and a node is popped from the stack to be processed in the
next iteration. Once the last leaf node is popped from the
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Fig. 6 Upper bound of iterations per scalar ExpandSymbol call before
limiting non-terminals to expand to at most 8 terminals

stack and output, the tree has been fully traversed, which
means that symbol has been fully expanded to terminals.

Vectorization prerequisites

To accelerate Re-Pair expansion beyond the aforementioned
optimizations, we aim to execute multiple ExpandSym-
bol operations in parallel using vector instructions from
the AVX-512 instruction set extension. As noted earlier,
ExpandSymbol consists in doing a depth-first traversal of
the grammar tree. Since the latter can be of arbitrary depth,
traversals that are executed simultaneously must have a sim-
ilar number of iterations for the vectorization to be efficient.
Otherwise, the vectorization would become inefficient due
to the vector elements that require a small number of itera-
tions being unused, while vector elements that require a large
number of iterations are still being processed. Therefore, we
propose limiting to 8 the number of terminals a non-terminal
can expand to, which is equivalent to limiting the number of
leaves in the symbol trees, thereby allowing us to execute the
vectorized code for a fixed number of 15 iterations, which
results in a salient performance improvement as discussed in
Sect. 5.

The reason for setting the limit to 8 terminals, and in turn
requiring 15 iterations per expansion, can be observed in
Fig. 6. The figure shows the percentage of ExpandSymbol
calls that require at most the number of iterations on the x-
axis before the aforementioned limitation is imposed. It can
be seen that before imposing the limitation, on average 73%
of calls to ExpandSymbol require less than or exactly 15
iterations. As the curves’ slopes fall off after 15 iterations,
increasing the number of iterations beyond 15 would only
increase this percentage slightly, but reduce the performance
of the vectorized symbol expansion.Conversely, reducing the
number of iterations further drastically cuts down the number
of symbol pairs that can be replaced by the Re-Pair algo-
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Fig. 7 Upper bound of iterations per scalar ExpandSymbol call after
limiting non-terminals to expand to at most 8 terminals
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Fig. 8 Upper bound of ExpandSymbol calls necessary per extract
call before limiting non-terminals to expand to at most 8 terminals

rithm at compression time, thereby reducing compression
rates. We therefore consider setting the limit to 8 terminals
as the most practical tradeoff between effective compres-
sion and fast decompression. The distribution of iterations
per ExpandSymbol call after imposing the aforementioned
limitation can be observed in Fig. 7.

It should be noted that the type of vectorization proposed
here can only improve performance if the operation that we
are parallelizing is required to be executed multiple times. To
validate this, we analyzed how many times ExpandSymbol
is called when performing extract operations. We show the
results in Fig. 8. The figure shows the percentage of extract
calls that require at most the number of ExpandSymbol
calls shown on the x-axis. It can be seen that roughly 75% of
extract operations requires between 0 and 15 symbol expan-
sions. However, after limiting symbols to expand to at most
8 terminals, the distribution becomes more flat, as shown
in Fig. 9. This means that executing multiple symbol expan-
sions simultaneously for a single extract operation doesmake
sense, as our analysis shows that a majority of extract opera-
tions require a substantial amount of symbols to be expanded.
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Fig. 9 Upper bound of ExpandSymbol calls necessary per extract
call after limiting non-terminals to expand to at most 8 terminals

It should also be noted that both before and after introducing
the limitation, exactly 6.25%of all extract calls do not require
any symbol expansions. This is expected and due to the fact
that headers of the front coded buckets in the dictionaries are
stored uncompressed. As we are using a bucket size of 16,
this means that every 16th string is left uncompressed and
hence does not require any ExpandSymbol calls.

Additionally, to reduce the computation in each loop iter-
ation, we propose to fix the number of bits per symbol in
the Re-Pair grammar to 16, thereby avoiding the cost of
decoding the bit-packed grammar array. This allows sym-
bols to be loaded directly from the grammar array into CPU
registers without bit-offset calculations and expensive bit-
shifting. Put differently, the GetField calls in Algorithm 1
can be replaced by simple array access operations if symbols
in grammars are 16 bits wide. However, using 16 bits per
symbol may have two distinct negative effects:

1. The maximum number of symbols is limited to 216. This
can be less than the number of symbols that would have
been generated by theRe-Pair algorithmnormally, reduc-
ing compression quality if these symbols would have
replaced pairs with frequencies high-enough to justify
increasing the number of bits to represent them.

2. If ≤ 216−1 symbols are used in the generated grammar
then less than 16 bits would be needed to represent all
symbols. Therefore, using 16 bits to store these symbols
wastes space.

This change is therefore a trade-off between compression
ratios and decompression performance. Note that this fixed-
width encoding could also be used for symbols in the
compressed buckets in the compressed dictionary. This was
done in our previous work [11]. However, as these symbols
need to be decoded less frequently, we decide to store them
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1 uint32_t RePair:: expand16Symbols(
2 uint16_t* symbols , uchar* str) {
3 <...> // initialization
4 for (size_t i = 0; i < 15; i++)

{
5 <...> // branch 1
6 <...> // branch 2
7 <...> // predicate evaluation
8 }
9 <...> // result output
10 }

Listing 1 Overview of Expand16Symbols

with variable bitwidths here, which is beneficial for the com-
pression quality.

It should be noted that symbols could also be loaded
directly into CPU registers if 8 or 32 bits per symbol were
used. However, at 8 bits per symbol, the Re-Pair algorithm
cannot create any additional symbols beyond the original set
of terminals. 32 bits per symbol would also not be a practical
choice, as the Re-Pair algorithm never creates an amount of
new unique symbols that would require 32 bits to represent,
therefore, using 32 bits per symbol would cause a significant
loss in compression rates. This can be seen in Fig. 4. At the
biggest evaluated block size (128k), 19 bits per symbol are
required at most. At block size 4K, however, the number of
bits per symbol never exceeds 16, which means that no com-
pression is lost due to the aforementioned effect (1) at that
block size. Since the average number of bits per symbol is
not below 14 for any of the datasets at that block size, com-
pressed size will also not increase significantly due to the
aforementioned effect (2). Therefore, choosing B = 4 k or
an equivalent s as the block size for BRPFC makes it possi-
ble tominimize the adverse effects on compression ratios and
reap this change’s benefits of lower dictionary access times,
which will be shown in Sect. 5.

AVX-512 implementation

Similar to the scalar code in Algorithm 1, the vectorized ver-
sion of ExpandSymbol—Expand16Symbols—consists
of 5 main parts which we explain in the following. An
overview of the parts is shown in Listing 1. In the first
part, initialization of the AVX-512 registers necessary for
the following parts is done. This is followed by the main
loop that traverses the grammar tree, processing one node
per vector element per iteration. The loop consists of three
middle parts, one for processing vector elements that are non-
terminals (branch 1), the second one for processing terminal
vector elements (branch 2), and the third part for recombin-
ing the results from the two prior parts in preparation for
the next iteration. This loop has a fixed number of 15 iter-
ations, which is enough to expand symbols that expand to

1 // stack
2 const uint32_t SH = 10;
3 uint32_t stack[SH] = { 0 };
4 uint32_t stack_pos = 2;
5
6 // state
7 uint16_t current = symbol;
8
9 // output offset

10 uint16_t pos = 0;
11
12 // utility
13 uint16_t terminals = this ->terminals

;
14
15 uint32_t mask =
16 ~( uint32_t)0 >> (32 - G->numbits

);
17 // return if outside of
18 // the expected range
19 if (current >= this ->rules +

terminals)
20 return 0;
21
22

Listing 2 Initialization in ExpandSymbol

at most 8 characters, as discussed previously. The last part
of Expand16Symbols is the result output, where the output
string, consisting of the concatenation of the expansions of
all 16 symbols, is copied into the output buffer str and its
length is returned. In the following sections, we will explain
each part of Expand16Symbols in more details. For each
part,we showan equivalent scalar version—i.e., one that only
expands a single symbol at a time—alongside the vectorized
code. Unless otherwise noted, the scalar version performs the
exact operations that the vectorized version does on a single
symbol, while the vectorized version works on 16 symbols
simultaneously.

Initialization: Listings 2 and 3 show the initialization
phase of symbol expansion. In Expand16Symbols, we
zero-initialize a stack that is 16 times the stack height of the
scalar version, since each of the 16 symbolswe are expanding
requires its own region on the stack.We fix the stack height to
10 per traversal. Since the expansion of symbols is limited to
8 characters, the stack height could actually be 8. However,
to simplify branch 1 and 2, two additional elements are added
at the bottom of the stack tomake reading from andwriting to
the stack safe without bounds checking for symbols that have
finished expanding. The stack position is initialized to 2 for
all elements. This way, a stack position of 1 can signal that a
symbol has been fully expanded. Once this has happened, the
stack position for this symbol is not changed in subsequent
iterations. Because of that, we can still read from the stack in
each iteration and for each symbol at stack_pos—1with-
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1 // stack
2 const uint32_t SH = 10;
3 uint32_t stack[SH * 16] = { 0 };
4 __m512i stack_pos =

_mm512_set1_epi32 (2);
5 __m512i stack_offsets =

_mm512_set_epi32(
6 SH * 0, SH * 1, SH * 2, SH * 3,
7 SH * 4, SH * 5, SH * 6, SH * 7,
8 SH * 8, SH * 9, SH * 10, SH *

11,
9 SH * 12, SH * 13, SH * 14, SH *

15);
10 // state
11 __m512i current =
12 _mm512_load_epi32(symbols);
13 // output string
14 __m512i pos = _mm512_setzero_epi32()

;
15 __m512i str0 = _mm512_setzero_epi32

();
16 __m512i str1 = _mm512_setzero_epi32

();
17 // utility
18 __m512i terminals =

_mm512_set1_epi32(
19 this ->terminals);
20 __m512i one = _mm512_set1_epi32 (1);
21 __m512i mask = _mm512_set1_epi32(
22 ~( uint32_t)0 >> (32 - G->numbits

));
23 // set symbols to 0 that are outside

of
24 // the expected range
25 current = _mm512_mask_set1_epi32(

current ,
26 _mm512_cmpge_epi32_mask(current ,
27 _mm512_set1_epi32(this ->

rules
28 + this ->terminals)), 0);

Listing 3 Initialization in Expand16Symbols

out violatingmemory bounds. A stack_offsets register
stores the offsets to the individual regions of the stack that are
each used for one of the 16 symbols being expanded. There-
after, we initialize the current register with the current
symbol in the symbol tree that will be expanded in the next
loop iteration. This register is initialized by loading 16 32-bit
integers from the symbols array, which is an input param-
eter that contains the symbols that ought to be expanded.

In line 14, thepos register, which stores the length of each
expanded string, is initialized to zero. To store the expanded
strings, two 512-bit registers—str0 and str1—are used.
This is because each symbol can potentially expand to up
to 8 characters, i.e., 8 bytes. Therefore, a maximum of 8 ·
16 = 128 bytes is necessary to store all expanded strings,
resulting in the use of two 512-bit, i.e., 64-byte, registers.
As the length of each of the expanded strings is not known
before the expansion is finished, the expanded string for each

1 uint16_t position = current -
2 terminal_count;
3 position = position < current
4 ? position : 0;
5
6 uint32_t child_rules = grammar[

position ];
7
8 uint16_t current1 = child_rules &

mask;
9

10 uint16_t stack_value = child_rules >
16;

11
12 stack[stack_pos] = stack_value;
13
14

Listing 4 Branch 1 in ExpandSymbol

symbol is written to fixed 8-byte sized regions in the string
registers. str0 is used for the expanded strings of the first
8 symbols, and str1 is used for the expanded strings of the
other 8 symbols. As the scalar version expands only a single
symbol, its outputs can be written directly to an output buffer
and do not need to be buffered separately. Therefore, str0
and str1 do not exist in Listing 2.

Next, starting from line 18, three utility registers are ini-
tialized: The terminals register is initialized to contain
the number of terminals in each of its 16 elements. It is later
used to create the predicate that replaces the if-statement from
the iterative version of ExpandSymbol. The one register
just contains ones and is used several times for comparisons
and arithmetic. The mask register is used to mask sym-
bols decoded from the grammar array, in order to obtain the
required left and right child symbols. Therefore, each of its
16 elements is initialized to have the lower numbits bits
set. numbits is the number of bits used per symbol in the
grammar, which is always 16 in our case.

Lastly, we validate that all input symbols are in the
expected range of [0, n + N ) (line 25). Symbols that are
not in this range are set to 0. This avoids out of bounds
accesses to the grammar array. The check is necessary, since
less than 16 symbols might be left in the bucket that is being
decompressed, hence, some trailing symbols in the batch of
16 symbols might be invalid. If the symbol is found to be
out of bounds in the scalar version, the function returns right
away.

Branch 1: Listing 4 and Listing 5 show the equivalent of
the first branch of Algorithm 1. This part loads the child
symbols of the symbols in current from the grammar
array, storing the left ones into current1 for later use and
putting the right ones on top of the stack for each element.
To do so, n is subtracted from all 16 symbols in current to
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1 __m512i position = _mm512_sub_epi32(
2 current , terminals);
3 position = _mm512_maskz_mov_epi32(
4 _mm512_cmple_epu32_mask(position

,
5 current), position);
6 __m512i child_rules =
7 _mm512_i32gather_epi32(position ,
8 (int*)grammar , 4);
9 __m512i current1 =
10 _mm512_and_epi32(child_rules ,

mask);
11 __m512i stack_values =
12 _mm512_srli_epi32(child_rules ,

16);
13 __m512i final_stack_offsets =
14 _mm512_add_epi32(stack_offsets ,
15 stack_pos);
16 _mm512_i32scatter_epi32 ((int*)stack ,
17 final_stack_offsets ,
18 stack_values , 4);

Listing 5 Branch 1 in Expand16Symbols

obtain the indices, stored in position, of the correspond-
ing non-terminals in the grammar array. Since not all symbols
in current are necessarily non-terminals, but can also
be terminals, this subtraction can produce negative values,
resulting in invalid indices. Because two-complement inte-
gers are used here, interpreting negative integers as unsigned
ones results in values above 231 − 1. We utilize this by cre-
ating a mask that is set to one for elements that are in the
expected range [0, n + N ). This mask is obtained by check-
ing if elements are less than or equal to the elements in
current. The conditional move operation zeroes the ele-
ments in position that this mask is set to zero for in line 3.
This makes it possible to use these elements as an index into
the grammar array safely. The fact that they have no mean-
ingful value does not matter here, since the corresponding
decoded symbols are discarded anyways at a later stage.

Thereafter, the child symbols are gathered directly from
the grammar array using a single 32-bit gather in line 6.
This is possible since the child symbols for a non-terminal
are guaranteed to have a 32-bit offset in the grammar array
and to be 32 bits in total size, thanks to fixing the size of
symbols to 16 bits. Subsequently, decoding the left child
symbols for current1 is simply a matter of masking
away the higher 16 bits of the gathered elements (line 9).
Then, to store the right child symbols on the stack, we
decode them by right-shifting the gathered elements by 16
bits (line 11). We compute the stack offsets by adding
stack_offsets to stack_pos and storing that in
final_stack_offsets in line 13. Since these do not
point to contiguous memory locations, we use a scatter
instead of a store operation to write the stack_values
to the right locations.

1
2 uint32_t current2 = stack[stack_pos

- 1];
3
4

Listing 6 Branch 2 in ExpandSymbol

1 final_stack_offsets =
_mm512_sub_epi32(

2 final_stack_offsets , one);
3 __m512i current2 =
4 _mm512_i32gather_epi32(
5 final_stack_offsets , (int*)stack

, 4);

Listing 7 Branch 2 in Expand16Symbols

Branch 2: Listing 6 and Listing 7 show the equivalent of the
second branch of Algorithm 1. Branch 2 is responsible for
fetching symbols from the stack to be possibly used as new
current symbols in the next loop iteration. Symbols need to be
fetched from stack_pos—1 (line 1), where stack_pos
has already been computed previously. Once this is done,
symbols are loaded into current2 from the stack using a
32-bit gather operation in line 3.As the scatter from line 16
of branch 1 writes to different positions on the stack than the
ones that the gather in line 3 of branch 2 reads from, the
data fetched in branch 2 cannot have been overwritten by
branch 1. Reading at the stack_pos—1 offsets is safe, as
none of the elements in stack_pos can be less than one.
Therefore, subtracting one from the previously calculated
offsets always produces a safe offset that can be used to read
without causing a memory protection violation.

Predicate evaluation: Listing 8 and 9 show how the pre-
viously computed results of branch 1 and branch 2 can
be combined without branching using predicated opera-
tions. The main predicate is evaluated first, and the mask
predicate is created from it in line 1. This is equivalent
to the condition of the original if-statement in Algorithm 1.
The created mask consists of ones for terminals and zeroes
for non-terminals in current. The second mask stored in
the register not_done_predicate, created in line 4, is
required to keep track of which symbols have already been
fully expanded. This state is indicated by stack_pos ==
1. The mask is therefore obtained using an inequality com-
parison between stack_pos and _1.

Before current and stack_pos are updated, the ter-
minals in current are extracted to become part of the
expanded string of the respective symbol. This is done by
masking current to obtain only the symbols that are ter-
minals in current_masked. current_masked is then
split up into the registersstr0_add and str1_add, where
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1 bool is_terminal =
2 current < terminal_count;
3
4 bool not_done_predicate = stack_pos

!= 1;
5
6 uint16_t current_masked =

is_terminal
7 ? current : 0;
8
9 str[pos] = current_masked;
10 current = is_terminal
11 ? current2 : current1;
12 uint16_t stack_pos_tmp = is_terminal
13 ? stack_pos + 1 : stack_pos - 1;
14
15 stack_pos = not_done_predicate
16 ? stack_pos_tmp : 1;
17 uint16_t pos_add =
18 not_done_predicate &&

is_terminal
19 ? 1 : 0;
20
21 pos += pos_add;
22 if (! not_done_predicate) break;

Listing 8 Combining branch results in ExpandSymbol

the first stores the symbols being added to the first 8 expanded
strings and the latter those being added to the second 8
expanded strings. Thereby each new symbol has a 64-bit
slot in one of the registers. As the final expanded strings
also take up at most 64 bits, this makes it possible to shift
the new terminals in str0_add and str1_add to their
final positions in the respective string using the informa-
tion about the current output expanded lengths from the pos
register (lines 16–21). Once the terminals are at the right
position in their 64-bit slots, they can be combined into the
string registers using an or-instruction. Lastly, current,
stack_pos, and pos are updated to reflect the changes
from the current iteration and prepare for the next iteration.
Using a conditional move operation with the predicate
mask, elements in current are updated to either become
elements from current1 or current2 if the correspond-
ing element in current was a non-terminal or a terminal,
respectively (cf. line 24). Updating stack_pos takes two
conditional move operations: The first one in line 26 incre-
ments elements if the respective element in current was a
non-terminal and decrements them if it was a terminal. The
second operation in line 31 sets elements to one if the respec-
tive symbol has already been fully expanded to ensure that no
elements of stack_pos drop below one. pos is updated
using a similar logic in lines 33 and 37: an offset (8) is added
only to elements that have not already been fully expanded
and where the respective element in current was a termi-
nal. Finally, line 38 serves as an early exit from the symbol
expansion loop if all 16 symbols are already fully expanded.

1 __mmask16 is_terminal =
2 _mm512_cmplt_epi32_mask(current ,
3 terminals);
4 __mmask16 not_done_predicate =
5 _mm512_cmpneq_epi32_mask(
6 stack_pos , one);
7 __m512i current_masked =
8 _mm512_maskz_mov_epi32(
9 is_terminal , current);

10 __m512i str0_add =
_mm512_cvtepi32_epi64(

11 _mm512_extracti32x8_epi32(
12 current_masked , 0));
13 __m512i str1_add =

_mm512_cvtepi32_epi64(
14 _mm512_extracti32x8_epi32(
15 current_masked , 1));
16 str0_add = _mm512_sllv_epi64(

str0_add ,
17 _mm512_cvtepi32_epi64(
18 _mm512_extracti32x8_epi32(pos ,

0)));
19 str1_add = _mm512_sllv_epi64(

str1_add ,
20 _mm512_cvtepi32_epi64(
21 _mm512_extracti32x8_epi32(pos ,

1)));
22 str0 = _mm512_or_si512(str0 ,

str0_add);
23 str1 = _mm512_or_si512(str1 ,

str1_add);
24 current = _mm512_mask_mov_epi32(

current1 ,
25 is_terminal , current2);
26 __m512i stack_pos_tmp =
27 _mm512_mask_mov_epi32(
28 _mm512_add_epi32(stack_pos ,

one),
29 is_terminal ,

_mm512_sub_epi32(
30 stack_pos , one));
31 stack_pos = _mm512_mask_mov_epi32(

one ,
32 not_done_predicate ,

stack_pos_tmp);
33 __m512i pos_add =

_mm512_maskz_mov_epi32(
34 not_done_predicate ,
35 _mm512_maskz_mov_epi32(

is_terminal ,
36 _mm512_set1_epi32 (8)));
37 pos = _mm512_add_epi32(pos , pos_add)

;
38 if (not_done_predicate == 0) break;

Listing 9 Combining branch results in Expand16Symbols

Result output: After themain loop of Expand16Symbols
has finished, the resulting 16 individual expanded strings
are processed to form a single contiguous string that is the
expansion of all 16 symbols. The code for this is shown in
Listing 10. We do not show equivalent scalar code here, as
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1 pos = _mm512_srli_epi32(pos , 3);
2 uint8_t expanded_chars [16];
3 _mm_store_si128(reinterpret_cast <__m128i*>( expanded_chars),

_mm512_cvtepi32_epi8(pos));
4 _mm512_storeu_si512(str , str0);
5 _mm512_storeu_si512(str + 64, str1);
6
7 uint32_t offset = expanded_chars [0];
8 for (size_t i = 1; i < 16; i++) {
9 memmove(str + offset , str + i * 8, 8);
10 offset += expanded_chars[i];
11 }
12
13 return offset;

Listing 10 Result output in Expand16Symbols.

the scalar code outputs directly to a buffer and only needs to
return the length of the expanded string at this point.

All elements in pos are first divided by 8 with a left shift
operation in line 1. After this, they represent byte counts as
opposed to the bit counts they represented earlier. These byte
counts of the number of expanded characters for each origi-
nal symbol are then stored in expanded_chars as a local
buffer (in line 3) for use in the scalar code that concatenates
the expanded strings. The expanded strings themselves are
stored in the output buffer str in lines 4 and 5. Follow-
ing this, the individual expanded strings are concatenated by
moving each string directly behind its predecessor using suc-
cessive calls to memmove in the loop from lines 8–11. Since
each call tomemmovemoves a fixed number of 8 bytes, these
calls are optimized by the compiler to become simple loads
and stores without the cost of a function call. The total num-
ber of expanded characters is kept in the offset variable
and is finally returned as the result of Expand16Symbols
in line 13.

We note that it may also be possible to implement the
concatenation of the individual output strings entirely vec-
torized by using compress_epi8 instructions. However,
the compress instructions operating on byte granularity
are part of the VBMI2 extension of AVX-512, which was
not available to us at the time of implementing this, hence
we chose a scalar implementation here.

AVX-512 optimizations

While developing Expand16Symbols, several opportuni-
ties for further optimization were considered as well, but all
of the following ideas resulted in no performance improve-
ments or even slowdowns, so they are not included in our
final proposed version.

Merging gathers: As gathers and scatters are the most
expensive operations in AVX-512, it is desirable to avoid
them as much as possible. Two gathers are used in the

final version of Expand16Symbols: One for gathering child
symbols from the grammar array, and one for gathering pos-
sible new current symbols from the stack. Ultimately, the
resulting elements of these gathers are used fully exclusively
when updating current. It is therefore possible to merge
the two gathers into a single one. To achieve this, the stack
cannot be a freely allocated buffer anymore, but is instead
kept in front of the grammar array. This way, a single gather
can be used to access the grammar array with positive off-
sets, and the stackwith negative offsets. Of course, the offsets
have to be properly prepared for that. Applying this in prac-
tice, we saw a slight performance decrease with this change
instead of the expected improvement from removing one
gather. This is because the critical path of the final ver-
sion of Expand16Symbols is formed by the gather from
the grammar array. The gather from the stack is insignificant
in comparison, because the stack can always be kept in L1
cache, as opposed to the grammar array, which does not fully
fit in L1 cache. By adding more operations to calculate the
modified offsets for the merged gather, the length of the crit-
ical path is thus increased, slowing down the execution of
Expand16Symbols.

Masked gathers/scatters: As all AVX-512 operations
support masking away individual elements, it could be
beneficial to mask elements in the scatter and gather opera-
tions in Expand16Symbols, to avoid unnecessary memory
accesses. This can be done without problems, as the masks
required for this, namely not_done_predicate and
predicate, can also be generated at the beginning of each
iteration. However, we found that this does not make a dif-
ference in performance in our case and therefore omitted this
change in favor of simplicity.

Stack in registers: Lastly, we explored keeping the stack in
AVX-512 registers instead of inmemory, in order to avoid the
expensive gather and scatter operations used to read andwrite
from it. To do this, 8 registers are necessary, as each register
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Table 2 Datasets used in our experiments

# Strings (Mio) Size (MB) � String size (B)

Uk 18.52 1438.71 76.68

Indochina 7.41 642.71 85.68

Enwiki 35.28 708.34 19.08

Geonames 7.31 114.59 14.68

can hold 16 elements. With this change, the stack can have a
height of 8, since unsafe elements in stack_pos are han-
dled implicitly. To read andwrite from this stack, masks have
to be computed, indicating for each of the 8 layers, whether
elements should be written to or read from the layer. The
reading and writing can then be done using conditional move
operations that merge the elements in two registers based on
a mask. However, as this requires an extensive amount of
operations proportional to the height of the stack, the version
with the memory-based stack outperforms this version and
we therefore dismiss this change.

5 Experimental evaluation

In this section, we present several experiments that prove
the effectiveness of the compression and decompression
techniques proposed in Sects. 3 and 4. We evaluate RPFC
compression with the modifications that make improved
access times possible, namely limiting non-terminals to
expand to at most 8 terminals and using exactly 16 bits for all
symbols. The newly proposed BRPFC and sampled BRPFC
methods are evaluated as well, followed by an evaluation of
decompression performance, and an analysis of the sensi-
tivity of decompression performance regarding the available
cache size. Additionally, we present results from evaluating
both compression and decompression in the real-world con-
text of an IMDBMS.

We use the bucket size b = 16 for front coding in all
of our experiments, as this has proven to be a good tradeoff
between compression and dictionary access times in practice.
As a baseline, we use the original RPFC method by Navarro
et al. [7].

Experimental setup

We run the experiments on a system with Intel� Xeon�

Platinum 8180 CPUs [26] with 1MiB/core of L2-cache, 38,5
MiB 11-way associative non-inclusive L3-cache, 183 GiB
RAM, and CentOS 7.5.1804. If not mentioned otherwise, we
run the experiments single-threaded. The code was compiled
using gcc 7.4.0 with -O9 optimizations.

We use the following datasets in our experiments:

– Uk: URLs obtained from a 2002 crawl [27] of the “.uk”
domain using the UbiCrawler [28].

– Indochina: URLs collected from a 2004 Indochina
domain crawl [27].

– Enwiki: Page titles fromEnglishWikipedia of Dec. 2018
[29].

– Geonames: asciiname column of the Geonames geo-
graphical name dump [30].

Table 2 shows relevant statistics of the datasets. They are
selected to cover common use cases for string columns,
such as natural language (Enwiki), names (Geonames), and
machine-readable data (Indochina, Uk). They also range
from short average string size (Geonames, Enwiki) to long
average string size (Indochina, Uk). The Uk and an older
version of the Enwiki datasets were used in [5–7,10]. All 4
datasets were also used by Kanda et al. [19].

Compression ratios

In this section, we compare the compression ratios of the
following string dictionary compression methods:

– RPFC: The original Re-Pair front coding by Navarro et
al. [7].

– RPFC8: RPFC expanding to at most 8 terminals as
described in Sect. 4.

– RPFC8 16bps: RPFC expanding to at most 8 terminals
and using 16 bits per symbol (bps) as described in Sect. 4.

– BRPFC: the block-based variant of RPFC as introduced
in Sect. 3.

– SampledBRPFC: the sampled variant ofBRPFCas intro-
duced in Sect. 3.

– PFC: Plain front coding as implemented by Navarro et
al. [7].

BRPFC and sampled BRPFC both include the two changes
facilitating fast vectorized decompression, as RPFC8 16bps
does. However, we chose to use the fixed number of 16
bits per symbol only in the grammars of the compressed
dictionaries for those two methods. The compressed texts
themselves are encoded using as many bits per symbol as
are required based on the total number of distinct symbols
per block. Additionally for BRPFC and sampled BRPFC,
strings are stored prefixed with their length instead of zero-
terminated. This allows storing binary strings that may
contain zero bytes, but affects compression quality nega-
tively. The aforementioned two changes are in contrast to our
previous BRPFC results [11]. We also compare against two
general-purpose compressors, gzip (at the highest compres-
sion level 9), and Snappy [31]. The reported compression
times and ratios are the result of compressing the datasets
with the respective compression utility without any further
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pre- or postprocessing. General-purpose compression cannot
be used for string dictionaries, as it does not support random
accesses, but it is nevertheless worthy comparing against, as
it illustrates which compression could optimally be obtained
on a given dataset. As Snappy is only available as a library,
we use the snzip command line utility [32] to run Snappy
compression on our input files.

Table 3 shows themeasured compression ratios alongwith
the respective time taken for compression, which will be
discussed in the following section. Compression ratios are
obtained by dividing the compressed size of the string dictio-
nary by the uncompressed size of the dataset. We experiment
with different BRPFC block sizes s ranging from 64 thou-
sand to 64million symbols per block. In combination with
the compression time results, this allows us to determine the
block size with the best trade-off between compression time
and compression ratio.

For RPFC, the results show that the 8 terminal limita-
tion (RPFC8) increases compression ratios. This increase is,
however, drastically different between datasets, as the com-
pression ratio for Indochina increases by 50%, while the
one for Uk only increases by 30%, and the ratios for Enwiki
and Geonames increase by less than 10%. However, the
compressed size of all datasets stays below 67% of the com-
pressed size achieved by plain front coding. Compression
ratios are improved again by using a fixed number of 16 bits
per symbol. This is in contrast to our forecast from Sect. 4,
where we predicted that this change would deteriorate com-
pression quality. The effect is an artifact of the bit-packed
encoding of the compressed blocks used here. Because of this
encoding, adding Re-Pair rules can inflate the compressed
size of the dictionary, even though the number of symbols
is reduced, due to the fact that adding a new rule can cause
more bits to be used for all symbols in the final encoded
compressed text. This has also been observed by Yoshida
and Kida [33] when using a similar variable-length coding
for Re-Pair compression. Here, when limiting symbols to use
16 bits, Re-Pair rule creation is also limited to rules that can
be represented within this bitwidth, and hence the negative
effect of adding rules that deteriorate compression quality is
weakened. Overall, the compressed size of all datasets when
using RPFC8 16bps is below 63% of the compressed size
when using plain front coding.

ForBRPFC,we observe in general that compression ratios
improve, or at least stay similar with increased block sizes.
For the datasets with relatively small average string sizes—
Enwiki and Geonames—there is a general positive trend of
improved compression ratios at higher block sizes. With the
two datasets that feature relatively large average string sizes,
Uk and Indochina, there is a slight negative trend. This is
expected as larger block sizes allow Re-Pair to extract more
redundancy from its input data. At the same time, however, if
the Re-Pair algorithm creates more rules, an increasing num-

ber of bits is required to store each symbol in the compressed
texts. This negative effect is more apparent for the datasets
with larger average string sizes and slightly outweighs the
positive effect of being able to exploit more redundancy.
Because RPFC8 16bps always uses 16 bits per symbol, even
if they are not required, it is outperformed by BRPFC on Uk
and Indochina, especially at small block sizes. Contrary
to that BRPFC compression ratios for Enwiki and Geon-
ames only come close to RPFC8 16bps at larger block sizes.
This can be attributed to the reduced ability of Re-Pair to
exploit redundancy at small block sizes, as well as to the
previously mentioned change in BRPFC that allows storing
binary strings at the cost of decreased compression quality.
In summary, we observe that the block size where BRPFC
compresses better thanRPFC8 16bps is lower for the datasets
with longer average string sizes (Uk and Indochina), and
non-existent for the ones with smaller average string sizes
(Enwiki and Geonames). Compared to front coding (PFC),
BRPFC still significantly improves compression at all block
sizes. Compressed sizes are reduced by at least 24% at the
lowest evaluated block size, andmore than that at other block
sizes.

For sampled BRPFC, we evaluate the resulting compres-
sion ratios at varying superblock sizes S ranging from 64
thousand symbols to 128 million symbols. We use a block
size of s = 8M. It should be noted, however, that sam-
pled BRPFC’s compression quality is not sensitive toward
the block size s, but only toward the superblock size S. The
results are shown in Table 4. As expected, compression ratios
improve with increased superblock sizes because the quality
of the shared grammar improves with an increased sam-
ple size. However, the returns of increasing the superblock
size start diminishing after S = 8M. At this point, the
compression ratios can be compared to those of BRPFC
shown in Table 3. For Uk and Indochina, sampled BRPFC
cannot quite reach the compression ratios of BRPFC, but
the difference is within 2% for most block sizes s. For
Enwiki, sampled BRPFC is better than BRPFC for block
sizes s < 8M and for Geonames it is even strictly better
than BRPFC. Sampled BRPFC benefits from only storing a
single shared grammar for the whole dictionary here, instead
of storing a grammar for each block, potentially partially
redundant to other grammars in the dictionary. As BRPFC
does, sampled BRPFC also significantly improves compres-
sion over PFC, reducing compressed sizes by at least 35%.

Comparing to the general-purpose compressors, one can
observe that the requirement of supporting random accesses
to strings severely limits compression quality, as gzip com-
presses up to 3× stronger than BRPFC and sampled BRPFC.

To confirm the effectiveness of sampled BRPFC’s sam-
pling scheme, we perform a brief analysis of the Re-Pair
grammars created by sampledBRPFC. The results are shown
in Table 5. The table shows the number of rules in the shared
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Table 3 Compression ratios and compression times of the evaluated string dictionary compression methods and two general-purpose compressors

uk indochina enwiki geonames

RPFC [7] 14.2% 1544.9 s 12.0% 358.1 s 30.8% 984.7 s 32.1% 53.1 s

RPFC8 18.3% 1140.4 s 18.0% 509.2 s 33.8% 870.8 s 35.4% 52.4 s

RPFC8 16bps 17.4% 813.9 s 16.8% 216.4 s 31.4% 604.5 s 32.3% 41.9 s

BRPFC varying s s=64k 16.7% 51.4 s 15.0% 20.9 s 38.2% 64.8 s 42.4% 11.0 s

s=128k 16.6% 53.7 s 15.0% 20.0 s 37.5% 65.7 s 40.8% 12.0 s

s=256k 16.7% 57.9 s 15.2% 21.4 s 35.6% 70.6 s 39.6% 13.0 s

s=512k 16.8% 60.2 s 15.4% 21.8 s 35.2% 81.6 s 39.3% 13.8 s

s=1M 16.9% 66.4 s 15.7% 23.0 s 34.9% 82.0 s 39.0% 15.1 s

s=2M 16.8% 74.6 s 16.0% 25.1 s 34.5% 91.1 s 38.5% 17.1 s

s=4M 16.8% 93.3 s 16.3% 29.0 s 33.2% 130.9 s 36.8% 22.2 s

s=8M 16.6% 90.9 s 16.4% 35.4 s 32.5% 112.5 s 35.9% 21.5 s

s=16M 16.7% 83.8 s 16.4% 33.7 s 32.3% 127.2 s 35.5% 20.7 s

s=32M 16.9% 91.1 s 16.6% 31.4 s 32.2% 125.6 s 35.2% 21.6 s

s=64M 17.2% 77.9 s 16.8% 30.4 s 32.2% 102.5 s 35.1% 18.4 s

Sampled BRPFC 17.8% 8.03 s 17.3% 4.45 s 33.0% 9.87 s 35.1% 4.39 s

PFC [7] 27.5% 3.5 s 29.9% 1.5 s 50.4% 3.3 s 56.1% 0.5 s

gzip (-9) 7.3% 45.2 s 5.9% 21.7 s 26.1% 127.8 s 29.1% 22.8 s

Snappy (framing2 format) [32] 13.2% 5.6 s 11.8% 2.2 s 41.3% 8.1 s 46.6% 1.5 s

The BRPFC block size s refers to the number of symbols in each block before the blocks are Re-Pair compressed. Sampled BRPFC uses the
parameters s = 8M and S = 8M

Table 4 Compression ratios and compression times of sampled BRPFC with varying superblock size S

uk indochina enwiki geonames

S=64k 22.7% 5.23 s (0.01 s) 22.8% 2.80 s (0.01 s) 39.3% 5.58 s (0.01 s) 41.3% 1.02 s (0.01 s)

S=128k 22.4% 6.73 s (0.03 s) 20.4% 2.16 s (0.03 s) 38.5% 5.88 s (0.03 s) 38.5% 1.05 s (0.03 s)

S=256k 22.0% 5.38 s (0.06 s) 19.8% 2.25 s (0.05 s) 35.9% 5.89 s (0.06 s) 38.2% 1.18 s (0.06 s)

S=512k 20.3% 6.88 s (0.14 s) 19.2% 2.26 s (0.11 s) 35.6% 6.08 s (0.13 s) 37.9% 1.23 s (0.13 s)

S=1M 19.7% 5.69 s (0.32 s) 18.7% 2.42 s (0.23 s) 35.4% 6.52 s (0.31 s) 37.6% 1.43 s (0.27 s)

S=2M 19.2% 5.85 s (0.72 s) 17.8% 3.29 s (0.53 s) 35.0% 8.66 s (0.75 s) 37.2% 1.78 s (0.65 s)

S=4M 18.2% 8.67 s (1.75 s) 18.0% 3.30 s (1.16 s) 33.4% 10.12 s (2.15 s) 35.5% 2.89 s (1.62 s)

S=8M 17.8% 8.03 s (2.81 s) 17.3% 4.45 s (2.30 s) 33.0% 9.87 s (3.20 s) 35.1% 4.39 s (3.13 s)

S=16M 17.7% 10.48 s (5.15 s) 17.2% 6.21 s (4.06 s) 32.9% 12.19 s (5.76 s) 34.9% 7.67 s (6.18 s)

S=32M 17.6% 18.32 s (11.11 s) 17.1% 9.85 s (7.56 s) 32.7% 17.56 s (10.86 s) 34.8% 13.80 s (11.93 s)

S=64M 17.6% 23.51 s (17.67 s) 17.1% 16.60 s (14.09 s) 32.7% 29.36 s (21.74 s) 34.8% 26.94 s (24.56 s)

S=128M 17.6% 40.01 s (33.52 s) 17.1% 29.74 s (26.94 s) 32.7% 50.06 s (40.95 s) 34.8% 25.48 s (23.13 s)

The time shown in parentheses is the time taken to compress only superblock, while the other value is the full compression time

Table 5 Sampled BRPFC grammars (superblock size S = 8M)

# Rules Overlap with BRPFC (s = 8M) (%)

Uk 65,278 84.1

Indochina 65,278 74.8

Enwiki 65,278 98.2

Geonames 65,278 94.9

grammars of sampledBRPFCdictionaries in thefirst column.
The second column shows the percentage of these rules that
are also present in the BRPFC dictionaries of the respective
dataset at the same block size as the superblock size used
for sampled BRPFC. It can be observed that 65,278 rules
are created for all datasets, which is the maximum number
of rules that can be created given our limitation of using at
most 16 bits per symbol. Additionally, all datasets exhibit
high percentages of 74.8–98.2% of rule overlap between
sampled BRPFC and BRPFC. The facts that the sampled
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BRPFC grammars utilize the maximum possible number of
rules to achieve compression and that at least 74.8% of these
rules can also be found in the corresponding BRPFC gram-
mars, show that sampled BRPFC is effective at replicating
the compression performed by BRPFC at a lower computa-
tional cost. Nevertheless, there may be cases where sampled
BRPFC fails to produce results as good as BRPFC that are
not captured with the datasets evaluated here. For example,
if the strings in different blocks of the dictionary use entirely
different character sets—e.g., the first half of the dictionary is
alphanumeric, and the second half consists solely of special
characters—then it would be difficult for a shared grammar
to achieve the same compression quality as separate gram-
mars for these very different blocks could. However, to the
best of our knowledge, such extreme cases are uncommon in
practice and we did not encounter such issues in our testing.
We therefore believe sampled BRPFC to be applicable in the
majority of cases. If unfavorable input data are encountered
in practice, it is also still possible to fall back to BRPFC to
preserve compression quality at the cost of higher compres-
sion times.

Compression times

In this section, we compare the time necessary for dictio-
nary construction with each of the methods evaluated in the
previous sub-section. The results are shown alongside the
compression ratios in Table 3. More detailed results for sam-
pled BRPFC at varying superblock sizes S are presented in
Table 4. Looking at theRPFC results, we observe that RPFC8
16bps compression times are faster than those of RPFC. This
is because the number of symbols is limited by their 16-bit
representation in RPFC8 16bps, thereby reducing the num-
ber of iterations done by the Re-Pair algorithm. Additionally,
the number of rules that are created by the Re-Pair algorithm
is reduced by the limitation of rules expanding to at most 8
symbols, which also reduces the iteration count.

The newly proposed BRPFC compression is roughly an
order of magnitude faster than that of RPFC at smaller block
sizes and also stays faster even at larger block sizes. BRPFC
compression times increase with increasing block sizes.

Varying the superblock size S for sampled BRPFC as
shown in Table 4, we observe that increasing the superblock
size results in a roughly proportional increase in superblock
compression time (shown in parentheses). The remaining
part of compression time, which is primarily comprised of
the time to run the recompression, stays mostly constant with
increasing S. It does slightly go up with increasing S because
that also results in amore complex shared grammar and there-
fore a longer runtime of the recompression algorithm, but
that effect is relatively small in comparison with the cost of
compressing the superblock itself. Note that the proportional
increase in superblock compression time does not hold true

for geonames going from S = 64M to S = 128M. This
is because the dataset consists of only 64.3M symbols after
front coding.Consequently, nomore symbols than that can be
sampled, and the target size of S = 128M cannot be reached,
resulting in an actual superblock size of 64.3M symbols even
at S = 128M.

Comparing sampled BRPFC at S = 8M to the other com-
pression methods shown in Table 3, it becomes apparent that
the compression times of BRPFC are further reduced with
the sampled BRPFC variant, which is up to two orders of
magnitude faster than the original RPFC. As noted in the pre-
vious section, sampled BRPFC still significantly improves
compression over front coding (PFC) while at the same time
achieving the aforementioned speedup compared to RPFC.

In light of sampledBRPFC’s comparatively very fast com-
pression times, it should be noted that BRPFCmay still yield
better compression quality for certain datasets at acceptable
compression times. Therefore, depending on the exact use
case, one can choose between BRPFC and sampled BRPFC
to get optimal results. In comparison with the version of
BRPFC presented in our previous work [11], it is not as clear
any more which block size s is optimal to use with BRPFC.
This is because we encode symbols with variable bitwidths
to improve compression ratios at smaller block sizes. In par-
ticular, the compression ratios of BRPFC have become less
sensitive toward the chosen block size.

In summary, both BRPFC and sampled BRPFC signifi-
cantly reduce compression times in comparison with RPFC,
while mostly preserving RPFC’s compression quality. Sam-
pled BRPFC reaches the faster compression times of the two
methods and comes very close to plain front coding, our base-
line. It is only between 2.5 and 9 times slower than PFC on
the evaluated datasets while reducing the compressed size to
as low as 58% of the compressed size reached with PFC.

In terms of compression times, BRPFCperforms similarly
in comparison with gzip, while sampled BRPFC compresses
significantly faster than gzip across all datasets. The more
lightweight Snappy compressor features compression times
slightly faster than sampled BRPFC, while compressing
Uk and Indochina much better than sampled BRPFC, but
compressing Enwiki and Geonames worse than sampled
BRPFC.

Access times of re-pair front coding

In this section, we compare the access times of the com-
pressed dictionaries. As discussed in Sect. 2, the access
operations supported by string dictionaries are extract(id)
and locate(str), which return a string given a value identi-
fier id or return the value identifier of the string str, if str
is present in the dictionary, respectively. We evaluate these
operations separately by executing each operation 106 times
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Table 6 RPFC extract (top) and locate (bottom) times (µs)

Extract RPFC RPFC RPFC RPFC 16bps BRPFC 16bps Sampled BRPFC PFC
Orig. Iter. AVX-512 AVX-512 AVX-512 16bps AVX-512

Uk 2.47 1.99 1.16 0.85 1.07 1.02 0.42

Indochina 2.53 1.87 1.20 0.90 1.00 0.97 0.38

Enwiki 1.66 1.34 0.86 0.61 0.86 0.78 0.37

Geonames 1.28 0.98 0.70 0.51 0.62 0.58 0.31

Locate RPFC RPFC RPFC RPFC 16bps BRPFC 16bps Sampled BRPFC PFC
Orig. Iter. AVX-512 AVX-512 AVX-512 16bps AVX-512

Uk 4.15 3.53 2.50 1.92 2.30 2.17 1.46

Indochina 3.77 3.13 2.23 1.86 2.03 2.03 1.34

Enwiki 2.75 2.38 1.71 1.31 1.67 1.56 1.09

Geonames 1.87 1.57 1.25 1.02 1.17 1.14 0.83

using a pre-generated set of random predicates and repeating
that measurement 10 times.

We report the average execution time of a single access
operation in Table 6. RPFC Orig. represents the runtimes
of the original implementation of RPFC from [7]. RPFC
Iter. shows the runtimes of the optimized iterative version
presented in Sect. 4. RPFC AVX-512 refers to an imple-
mentation using the vectorized version of Re-Pair symbol
expansion that operates on RPFC8 compressed dictionar-
ies only. Finally, RPFC 16bps AVX-512 uses vectorized
symbol expansion with the simplifications made possible by
storing 16 bits per symbol. Additionally, we report in the
BRPFC 16bps AVX-512 column the operation runtimes for
a BRPFC8 16bps compressed dictionary with s = 8M using
vectorization and in Sampled BRPFC 16bps AVX-512 the
equivalent values for a dictionary compressed with sampled
BRPFC at S = 8M. For comparison, we also report the
access operation runtimes of PFC.

The results show that the optimized iterative version
already improves upon the original implementation, resulting
in a speedup of at least 24% and 15% for extract and locate
operations, respectively, on all datasets, without requiring
any changes to the original compressed dictionary structure.
If we accept to reduce compression rates over the original
RPFC method, then another drastic speedup of at least 40%
and 26% for extract and locate, respectively, is achieved by
vectorizing Re-Pair expansion. Finally, avoiding the expen-
sive decoding of bit-packed arrays by fixing the number of
bits per symbol at 16 improves access times significantly.
As this change even improves compression ratios over just
limiting symbol expansion to 8 terminals, it is clearly supe-
rior to its predecessor. It improves extract and locate times
by 2.5–2.9 and 1.8–2.2 times, respectively, over the origi-
nal RPFC implementation. Of course, accessing front-coded
dictionaries is still faster, as the additional cost of Re-Pair
cannot be entirely avoided. The 16bps AVX-512 method

makes extract and locate 1.6–2.4 and 1.2–1.4 times slower
than those for PFC, respectively. This can be an acceptable
trade-off given the drastically improved compression ratios
over front coding in scenarios where reducing main memory
load is desirable. Unfortunately, the access times for BRPFC
compressed dictionaries shown in column BRPFC 16bps
AVX-512 are worse than for RPFC compressed ones when
AVX-512 decompression is used. This is because BRPFC
uses one grammar for each block, instead of one for thewhole
dictionary. This results in increased numbers of cache misses
when accessing the compressed dictionary at random loca-
tions. The block-based nature of BRPFC dictionaries also
results in an additional indirection layer in comparison with
RPFC, producingmore cachemisses. These effects cannot be
avoided without going back to using a single grammar for the
whole dictionary. The order of the dictionary is also required
to be lexicographical by front coding. This prohibits ordering
strings in the dictionary differently to improve data locality
for certain access patterns. Sampled BRPFC—shown in col-
umn Sampled BRPFC 16bps AVX-512—slightly improves
the access times over full BRPFC, because only a single
grammar is used there. However, it is still beaten by RPFC
16bps AVX-512 due to the disadvantages of the block-based
dictionary structure.

BRPFC’s extract and locate operations are 2.0–2.6 and
1.4–1.6 times slower than those of PFC, respectively. Sam-
pled BRPFC performs slightly better and is 1.9–2.5 times
slower than PFC for extract and 1.4–1.5 times slower for
locate operations. We argue that these times are still rea-
sonable given the improved compression over PFC and the
drastically reduced compression times over RPFC.

Cache sensitivity analysis

In Sect. 4, we argued that the performance of the lookup oper-
ations in the compressed dictionary depend on the latencies
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of memory accesses. In this section, we analyze how sensi-
tive PFC, RPFC, and BRPFC are regarding the size of the
last/3rd level cache (LLC) for the extract operation in Fig. 10
and the locate operation in Fig. 11. To analyze this, we rely
on the cache allocation technology (CAT) of modern Intel
CPUs [34] that can restrict data allocation originated from
certain processor cores to portions (ways) of the LLC. By
forcing our test process to run on a core with such restricted
access, we emulate reduced L3 cache availability. As the
LLC of the Intel processor used in our experiments is 11-
way associative with 38.5MB total capacity, we can assign
cache in portions of 3.5MB shown on the x-axis of these
figures. For these operations, we report the response times
for the extract and locate operations. As with the previous
experiments on access times, the reported times refer to a
single operation. They were obtained by executing 106 oper-
ations with a pre-generated set of predicates 10 times and
calculating the average time for a single operation from that.
We run the BRPFC experiments on dictionaries with block
size s = 8M. Note that the results using the full cache cor-
respond to the measurements we report in Table 6. As we
discussed, PFC generally has lower response times than the
Re-Pair methods due to the additional Re-Pair decompres-
sion overhead imposed by those. Comparing Fig. 10b, c and
also Fig. 11b, c we observe that BRPFC is more sensitive
to the available cache than RPFC. This is because there is

a single grammar in RPFC shared by all blocks while for
BRPFC every block has its own grammar which results in
reduced locality. Consequently, random lookups in BRPFC
result in more cache misses than for RPFC. Sampled BRPFC
performs similar toRPFC, because it also uses a single shared
grammar for all blocks; hence, we do not report these num-
bers.

Their high cache locality results in very robust access
times for extract and locate for both PFC and RPFC. Still, for
BRPFC the response times degrade only by at most 2× if the
cache size is reduced to 1/11-th of the cache. So even when
a concurrent workload leads to high contention of the LLC,
one can expect fairly robust access times for BRPFC.Consid-
ering the drastically reduced compression times of BRPFC
and sampled BRPFC, the block-based compression schemes
offer a good trade-off at slightly increased access times.

End-to-end experiments with real-world datasets

Wealso evaluate our compressionmethodon three real-world
datasets taken from SAP HANA scenarios which were also
used in a previous study [35]. The first data set (ERP) is taken
from an internal development system for the SAPERPwhich
is used to analyze mixed OLAP and OLTP workloads. The
second data set (BW) is derived from customer data of a large
warehouse system. The third data set (Mat) is a key column

123



Faster & strong: string dictionary compression using sampling and fast vectorized… 1283

(a) (b) (c)

0 10 20
0%

20%

40%

60%

80%

100%

Column Rank

C
om

pr
es
si
on

R
at
io

Compression Ratio

0 10 20
0

10

20

30

Column Rank

C
om

pr
es
si
on

T
im

e
[s
]

Compression Time

0 10 20

2

4

6
·10−2

Column Rank

Q
ue
ry

T
im

e
[s
]

Query Time

PFC BRPFC Sampled BRPFC

Fig. 12 Evaluation on real-world datasets

Table 7 Comparison of the
evaluated compression methods

Compression method Compression time Compression
quality

Vectorized
extract/locate

RPFC [7] Impractical for large datasets 1.95

RPFC8 Impractical for large datasets 1.56 (�)
RPFC8 16bps Impractical for large datasets 1.68 �
BRPFC (ours) Up to 30× faster than RPFC 1.70 �
Sampled BRPFC (ours) Up to 190× faster than RPFC 1.60 �
PFC [7] Fastest 1.00 n/a

of a very large table used in the SAP ERP for representing
material management data including the current stock level
for somematerial. As we are only interested in large columns
containing strings, we ended up with 21 columns with an
uncompressed size between 30.1 and 639.8MB.

In Fig. 12, we present the results of our experiments with
these real-world datasets. In each plot, we have ordered the
measurements for a column by its rank using plain front cod-
ing. In Fig. 12a, we plot the compression ratio. These results
are consistent with the other datasets as BRPFC and sampled
BRPFC achieve a significantly better compression ratio than
PFC.The largest dictionary in our dataset is compressed from
639.8 to 198.6MB for PFC but to about 100MB for BRPFC
and sampled BRPFC. We show the end-to-end time for a
deltamerge in SAPHANA—which includes the time to com-
press the dictionary—in Fig. 12b. As BRPFC and sampled
BRPFC add extra effort on top of PFC, their merge times are
up to three times higher. However, this seems acceptable as
the delta merge in SAP HANA is performed asynchronously
and using a single background thread. In most cases, sam-
pledBRPFC reduces the time for the deltamerge compared to
BRPFC—in the best case by2.3× and for the columnwith the
longest merge time from 34.5 to 20.3s. However, in the worst
case, sampled BRPFC is 3.4× slower than BRPFC. This is
due to the fixed overhead of compressing the superblock that
sampled BRPFC has over BRPFC, which makes sampling
not worthwhile to use for relatively small datasets. Finally,
Fig. 12c presents the average end-to-end time to perform a
query with a LIKE predicate that has to scan the full dictio-

nary. Note, that multiple threads are used to scan for matches
in the compressed dictionary in parallel. As expected, PFC’s
response times are lower because the other two methods add
extra effort to decompress each string where BRPFC and
sampled BRPFC have almost the same response times across
all columns. In the worst case, the response times for BRPFC
and its sampled variant are 2× higher than for PFC.

Discussion

As a conclusion to this evaluation, Table 7 shows a compar-
ison of all evaluated string dictionary compression methods.
The table compares compression time and quality for each
method. The compression quality column shows the aver-
age compression rate achieved with each method, with PFC
as the baseline, so higher values are better. It also lists
whether vectorized access operations as described in Sect. 4
are supported. This is important, as the access times for Re-
Pair based compression methods are not fast enough for
general-purpose usage without vectorized decompression.
For RPFC8, only the slower version of vectorized access
operations is possible, because symbols are not fixed to a
bitwidth of 16 here. Vectorized access operations as pro-
posed in this paper do not apply to PFC, as it is not based on
Re-Pair.

Of the methods presented here, we would generally rec-
ommend using sampled BRPFC with a superblock size of
S = 8M, as it offers the best tradeoff between compression
time and compression quality, while supporting fast vector-
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ized access operations. However, if sampled BRPFC cannot
provide the desired compression quality, BRPFC will yield
better results at the cost of higher compression times than
sampled BRPFC. For BRPFC, the block size can be varied
to find an acceptable tradeoff between compression quality
and time, like shown in Table 3.

Of course the cost of strong compression may not always
be tolerable, for example for very frequently accessed
columns, where faster response times outweigh the bene-
fits of stronger compression. To automate the decision which
string dictionary compression method shall be used for a
given column, Müller et al. [8] propose the concept of a
compression manager, which uses models of compression
ratios, access and compression times for each available com-
pression method to decide which method to use given the
characteristics of the target column. This work could also
be used to decide when to use one of the compression meth-
ods proposed here vs. other methods. The runtime model can
be easily obtained using microbenchmarks such as the ones
we performed in this evaluation. Due to the grammar-based
nature of Re-Pair, it is hard to accurately predict compres-
sion ratios, however. The authors of [8] also noted this for
the original RPFCmethod. They therefore proposed tomodel
RPFC’s compression ratios by assuming a uniform compres-
sion rate for the entire dictionary. This could also be done for
our new methods.

6 Conclusion

In this paper, we have presented techniques that improve
upon the access and compression times of the original RPFC
string dictionary compression implementation by Navarro
et al. [7]. To improve compression times, we proposed the
block-based RPFC (BRPFC) method that applies Re-Pair
independently on chunks of the input such that the working
dataset during compression fits in the CPU caches. Addition-
ally, we proposed a sampled variant of BRPFC, that resulted
in compression times up to 190 times faster than RPFC. Fur-
thermore, we showed that access times can be significantly
improved by vectorizing the Re-Pair decompression routine
with AVX-512. This makes extract and locate operations
on average 2.3 and 1.8 times faster than those of the orig-
inal RPFC, respectively. To facilitate vectorization and to
achieve these speedups, we introduced two modifications to
the compression algorithm. These cause decreased compres-
sion rates, but compression is still substantially better than
that of plain front coding. Overall, this makes the proposed
string dictionary compression methods in combination with
the accelerated access operations attractive candidates for
database workloads.
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