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Abstract
Zinc finger proteins are abundant in the human proteome and are responsible for a variety of functions. The domains that 
constitute zinc finger proteins are compact spherical structures, each comprising approximately 30 amino acid residues, but 
they also have precise molecular factor functions: zinc binding and DNA recognition. Due to the biological importance of 
zinc finger proteins and their unique structural and functional properties, many artificial zinc finger proteins have been cre-
ated and are expected to improve their functions and biological applications. In this study, we review previous studies on 
the redesign and application of artificial zinc finger proteins, focusing on the experimental results obtained by our research 
group. In addition, we systematically review various design strategies used to construct artificial zinc finger proteins and dis-
cuss in detail their potential biological applications, including gene editing. This review will provide relevant information to 
researchers involved or interested in the field of artificial zinc finger proteins as a potential new treatment for various diseases.
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Introduction

Zinc fingers (ZFs) are representative DNA-binding motifs 
found in many transcription factors. Genome analysis of 
human and mouse genomes has revealed that ZFs are present 
in 3–10% of protein-coding genes [1, 2]. ZFs are known to 
be involved in various biological functions such as develop-
ment, differentiation, and suppression of tumors [2]. Thus, 
due to the recognized biological importance of ZFs, their 
structure and function has been extensively studied from 
various perspectives.

Generally, ZF domain comprises 20–30 amino acid 
residues. ZFs are classified according to the number and 
type of amino acids involved in zinc coordination, and typi-
cal examples include  Cys2His2,  Cys2HisCys,  Cys4 ribbon, 
 Cys4 GATA family,  Cys6,  Cys8,  Cys3HisCys4 ring finger, 
and  His2Cys2 [3]. Among these, the  Cys2His2-type ZF is a 
representative classical motif whose structure and function 
have been most intensively studied (Fig. 1) [4]. Focusing 
on the domain structure, two Cys residues and two His resi-
dues form a tetrahedral coordination bond with Zn(II). This 
induces a secondary structure of an inverted parallel β-sheet 
at the amino group terminus and an α-helix (DNA recogni-
tion helix) at the carboxyl group terminus, which further 
folds to form a compact globular structure (Fig. 1A). Fur-
thermore, in numerous ZFs, several single finger domains 
are linked by specific linkers to form tandem structures 
(Fig. 1B). Regarding DNA recognition,  Cys2His2-type ZFs 
are characterized by the following features: (1) one finger 
domain recognizes three to four bases, (2) the tandem struc-
ture allows selective binding to contiguous DNA sequences, 
and (3) unlike restriction enzymes, they can bind to DNA 
in monomeric units and recognize asymmetric sequences 
(Fig. 1B). Thus, ZFs are promising templates for the rede-
sign and creation of functional artificial proteins because 
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of their unique structure and precise molecular recognition 
capabilities (metal coordination binding and DNA recogni-
tion). Against this background, numerous research groups, 
including ours, have been working on the creation of func-
tional artificial proteins using ZFs as templates and using 
various approaches from different angles. Design approaches 
have primarily attempted to target the secondary structural 
sites (α-helix and β-sheet sites), zinc coordination sites, and 
linker sites that constitute the domain.

Recently, there has been revived interest in the metallo-
protein aspect of ZF from a protein design perspective. This 
is likely because the numerous natural metalloproteins with 
their unique structures are now widely recognized as useful 
for the creation of artificial proteins. One-third of human 
natural proteins belong to metalloproteins, which are known 
to cooperate with metal ions to play structural and functional 
roles in maintaining biological activities [1, 5–14]. These 
metalloproteins have been optimized by natural evolution to 
perform complex structural formation and functional regula-
tion that cannot be achieved by either protein or metal ion 
alone. Recently, significant advances in protein design and 
engineering have made it possible to create artificial metal-
loproteins with novel functions by redesigning natural pro-
teins as templates or by constructing entirely new amino acid 
sequences from computer calculations [7–9]. As mentioned 

above, various coordination patterns of ZFs make their metal 
coordination sites interesting targets for redesigning artificial 
proteins.

In this review, we will discuss the creation and applica-
tion of artificial proteins that are redesigned from natural 
ZFs and their application to gene editing and other recent 
biological tools, including our own research findings.

Modification of DNA recognition ability 
of ZFs targeting secondary structures 
within the domain

The binding of ZFs to DNA is generally achieved through 
the interaction of the α-helix region with the major groove 
of DNA. In the  Cys2His2-type ZF, amino acid residues -1, 
2, 3, and 6 at the N-terminus of the α-helix interact with 
DNA bases to selectively recognize specific DNA sequences 
(Fig. 1B) [5, 15]. The mutation of amino acid residues 
directly involved in DNA sequence recognition is consid-
ered an effective approach for modifying the DNA recogni-
tion ability of wild-type ZFs. The most effective method 
using the phage display method, in which a ZF library is 
constructed by randomizing amino acid residues involved 
in DNA recognition and selecting ZFs that can bind to the 

(A) (B)

(Tyr, Phe) – Cys - - (- -) Cys - - - Phe - - - - - Leu - - His - - - - - His 

��-helix�� ��

Fig. 1  A Schematic representation of a typical  C2H2-type zinc finger 
motif with the bba fold (upper) and consensus sequence of  C2H2-type 
zinc finger motif “(Tyr, Phe)-x-Cys-x2,4-Cys-x3-Phe-x5-Leu-x2-His-

x3-5-His (x: nonconserved amino acids)” [ref. 10 and 41] (lower). B 
X-ray structure of the Zif268-DNA complex(PDB: 1ZAA)
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target DNA sequence [5, 16, 17]. Barbas et al. successfully 
constructed a ZF domain library using a phage display 
capable of accommodating approximately 75% of the 64 
sequences that combine all triplet sequences, thereby ena-
bling customization of the artificial ZFs that can accommo-
date recognition of most DNA sequences (Fig. 2) [18–20].

In contrast, the so-called domain swapping method, in 
which secondary structural units are recombined among 

target proteins, is one of the effective methods for pro-
tein redesign [21, 22]. We attempted to modify the DNA 
recognition ability of ZF proteins using the domain swap 
method, in which secondary structural units such as α-helix 
and β-hairpin of ZFs are swapped with those of other ZFs 
(Fig. 3). First, artificial ZFs were created by replacing the 
α-helix parts of ZFs of two different origins [23]. A chi-
meric ZF, Sp1HM, was produced by replacing the α-helix 

Clone library of zinc-fingers

Display zinc fingers on the 
surface of phage library

Wash away unbound
zinc  fingers

Recovery and amplification 
of selected zinc fingers

Isolation of high affinity zinc 
fingers for target DNA

Target DNA

Incubate

Fig. 2  Schematic diagram of the selection of zinc finger proteins by the directed evolution method using phage display libraries

Zn2+�-hairpin swapping Helix Substitution

Fig. 3  Modification of DNA binding properties of zinc finger proteins by swapping the α-helix and β-hairpin regions
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region of the human transcription factor-derived Sp1 ZF 
with the α-helix region of the Drosophila-derived transcrip-
tion factor CF2-II ZF (Fig. 3). The Sp1 ZF binds to the GC 
sequence; however, in the case of the CF2-II ZF, it binds 
selectively to the AT sequence. The secondary structure of 
Sp1HM was examined using circular dichroism spectra. The 
results showed that Sp1HM exhibited almost the same spec-
trum as wild-type Sp1, indicating that a similar structure 
to that of wild-type Sp1 is expected to be retained after the 
swapping. The DNA binding of Sp1HM was also primarily 
involved in folding, as observed using a gel shift assay. The 
results showed that Sp1HM bound to DNA containing AT 
sequences with very high affinity (Kd = 1.3 nM), but hardly 
bound to DNA containing GC sequences.

Similarly, the effect of exchanging the β-hairpin site of 
two different ZFs on DNA-binding capacity was also exam-
ined (Fig. 3). As described above, the α-helix portion is 
involved in the DNA recognition of ZFs by directly binding 
to the major DNA groove. In contrast, the β-hairpin portion 
is thought to be primarily involved in folding but not directly 
involved in binding to DNA. Therefore, the β-hairpin por-
tion has not received much attention in the redesign of ZFs 
with respect to functional modification of DNA binding. 
However, even if the β-hairpin does not directly interact 
with DNA, perturbation of the folded structure by domain 
exchange may alter the DNA-binding ability. Therefore, we 
created mutants in which the β-hairpin portion of the Sp1 ZF 
was alternately replaced with the GLI ZF and investigated 
the role of the β-hairpin portion of the ZF in DNA binding 
(Fig. 3) [24]. Interestingly, in Sp1(zf23)BG, a mutant of Sp1 
with the β-hairpin portion of GLI, binding to the GC box 
was stronger than binding to wild-type Sp1. In contrast, the 
GLI mutant GLI(zf45)BS, which contained the β-hairpin 
portion of Sp1, completely lost its binding affinity to DNA. 
Thus, it is clear that the β-hairpin portion of the ZF domain 
affects the DNA-binding ability. In summary, we found that 
the DNA-binding affinity and sequence selectivity can be 
changed by redesigning ZFs using the domain swap method, 
indicating the possibility of applying this method to the 
design of functional artificial ZFs.

Redesign of linker site‑modified ZFs

ZFs are typically connected in a tandem manner using a con-
served linker consisting of the five amino acids “TGEK(R)
P” with two to three finger domains, thereby allowing 
sequence-selective binding to contiguous DNA sequences. 
Generally, a ZF must recognize and bind to more than 18 
bases to locate a specific site in the genome sequence.

We attempted to extend the DNA base recognition region 
of the ZF by tandemly binding multiple finger domains via a 
linker [25, 26]. Two or three wild-type Sp1ZFs were linked 

using the conserved linker “TGEKP” to create multi-ZFs, 
Sp1ZF6 and Sp1ZF9, containing six and nine ZF domains, 
respectively. As mentioned above, Sp1ZF3 binds to nine 
base pairs enriched in GC bases, known as GC boxes. The 
DNA-binding behaviors of Sp1ZF6 and Sp1ZF9 were exam-
ined using a gel shift assay, which confirmed that Sp1ZF6 
and Sp1ZF9 selectively bind to 18 and 27 base pairs, cor-
responding to 2 and 3 GC boxes, respectively. We also 
constructed the longest artificial ZF, Sp1ZF15, to evaluate 
the potential for multiple linkage of ZF domains [27]. The 
results revealed that Sp1ZF15 regulates the number of finger 
domains active for DNA binding in response to the length 
and sequence of the target DNA. Thus, the creation of multi-
fingers by combining multiple ZF domains by a conserved 
linker can facilitate binding to longer DNA sequences, indi-
cating that this redesign approach effectively extends the 
contiguous DNA recognition region of the ZFs.

Next, artificial ZFs capable of recognizing discontinuous 
DNA sequences were redesigned by connecting Sp1ZF3 to 
each other with a longer and more flexible glycine linker 
[28, 29]. Sp1ZF6(Gly)7 and Sp1ZF6(Gly)10 have linkers 
consisting of 7 and 10 glycine residues, respectively, and 
their binding behavior to discontinuous DNA sequences was 
examined. The results showed that these 6-ZFs could bind 
to two target sequences, “2GC(10),” which are 10 base pairs 
apart, corresponding to one helical turn of DNA. Further-
more, the 6-ZFs induced a curvature between the two target 
DNA sequences by binding to DNA, and the magnitude of 
the distortion was dependent on the linker length and was 
larger for Sp1ZF6(Gly)7 than that for Sp1ZF6(Gly)10. Since 
conformational changes in DNA are important in the process 
of transcription, artificial ZFs that can bend DNA created by 
this redesign method could be applied to artificial transcrip-
tion manipulation in the cell.

We further investigated the use of oligoarginine as a 
linker [30]. Arginine is positively charged and has a highly 
sterically hindered side chain. Sp1ZF6(Arg)8 was created 
by linking two Sp1ZF3 with eight consecutive arginine-
containing sequences (GRR RRR RRR RRR Q) as a linker, 
and its DNA-binding ability was compared with that of 
Sp1ZF6(Gly)10, which has the same number of amino 
acid residues and a flexible linker. The binding affinities 
of these ZFs to DNA from contiguous (2GC(0)) and non-
contiguous (2GC(10)) target sequences were examined. As 
a result, Sp1ZF6(Gly)10 showed similar affinity to both 
target sequences. In contrast, Sp1ZF6(Arg)8 showed the 
same affinity for 2GC(10) as Sp1ZF6(Gly)10, but its affin-
ity for 2GC(0) was reduced more than 20-fold from that 
of 2GC(10). Possible reasons for the reduced binding of 
Sp1ZF6(Arg)8 to 2GC(0) include electrostatic and physical 
repulsion within the linker and inhibition of binding to the 
GC box sequence due to nonspecific binding of the arginine 
linker to DNA. In addition, Sp1ZF6(EAAAR)4, which has a 



253JBIC Journal of Biological Inorganic Chemistry (2023) 28:249–261 

1 3

linker that forms an α-helix structure, showed binding pref-
erence for the discontinuous recognition sites in the same 
phase, 2GC(10) [31]. Our results suggest that the degree of 
DNA binding, selectivity, and affinity can be controlled by 
appropriately redesigning the structure of the linker part.

We then created an artificial nuclease molecule Sp1(P1G)
GLI by attaching a functional linker, the cerium-binding 
peptide sequence P1 (DKDGDGYISAAE), to two differ-
ent ZFs, Sp1(zf23) and GLI(zf45) (Fig. 4) [32]. In general, 
exonuclease-type artificial restriction enzymes are often cre-
ated by joining the DNA-binding site and the cleavage site 
in parallel, and this type cleaves DNA sequences outside 
the DNA-binding site. In contrast, Sp1(P1G)GLI is consid-
ered an endonuclease-like artificial restriction enzyme that 
can cut inside the target DNA sequence by introducing a P1 
linker between two ZFs. DNA cleavage experiments were 

performed by adding tetravalent cerium ions to Sp1(P1G)
GLI. We found that Sp1(P1G)GLI selectively cleaves the 
DNA region between the DNA-binding sites of two ZFs by 
binding of cerium ions to the P1 linker moiety.

Thus, by appropriately designing the linker portion, it is 
possible to create artificial ZFs with various new functions, 
such as DNA cleavage ability and extension of DNA-binding 
regions, which are expected to be applied to artificial gene 
regulation.

Redesign of ZF to target Zn(II) coordination 
sites

Thermodynamic and structural analyses have revealed that 
Zn(II) is an essential structural factor for ZF but not a func-
tional factor, because it cannot catalyze biological reactions 
such as enzymes [10–14]. With regard to the creation of arti-
ficial ZFs focusing on the zinc coordination site, two main 
approaches have been attempted to redesign the zinc (II) 
coordination site: mutation of amino acid residues involved 
in the coordination properties and direct replacement of zinc 
(II) with exogenous metal ions. (Fig. 5).

The amino acid pattern of naturally occurring zinc 
finger proteins

We studied the possibility of introducing a new function 
to ZF by redesigning the amino acid ligand of the Zn(II) 
coordination site, giving the structural factor of Zn(II) a new 

3’

3’

5’

5’

Zinc 
Finger

A

Zinc 
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B

Fig. 4  Schematic diagram of an endonuclease-type artificial enzyme 
obtained by linking two ZFs with a functional linker

redesign

structure factor functional factor
(A)

(B)

Ligand
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(M : Co2+, Ni2++, Cd2+, Fe2+, Cu2+ )

Metal
Substitution

redesign

( : Co2+, Ni2++, Cd2+, Fe2+, Cu2+ )
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Fig. 5  Schematic of the redesign approach for the Zn(II)-binding site: A substitution of coordinating amino acids for non-coordinating amino 
acids, B substitution of Zn(II) for exogenous metal ions
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role as a functional factor. Andreini et al. classified approxi-
mately 3000 zinc proteins encoded by the human genome by 
function and zinc ion-binding pattern [1]. The results show 
that about one-third of human zinc proteins belong to the 
functional category of transcription factors. In addition, zinc 
proteins were classified according to the amino acid pattern 
of their zinc ion-binding sites. The results showed that the 
 Cys4 type was the most abundant, followed by the  Cys2His2 
tetracoordinated type, with these two types accounting for 
approximately 70% of the total coordination pattern.

Interestingly, the  CysHis3 and  His4 type ligand patterns 
are absent in human zinc proteins. One possible reason for 
the absence of these ligand patterns in nature is that zinc pro-
teins with these sequences may have been eliminated during 
evolution because of some inconvenience to the organism. In 
contrast, we hypothesized that introducing these unnatural 
ligand patterns into natural ZFs might confer new functions 
not observed in existing ZFs.

Substitution of amino acid residues ligated to Zn(II)

We mutated two Cys residues involved in the Zn(II) coor-
dination site to His using Sp1 ZF to create artificial ZFs of 
 CysHis3 and  His4 types and evaluated their structure and 
function (Fig. 6A) [33–35]. Circular dichroism and nuclear 

magnetic resonance spectroscopic analysis revealed that 
the  His4 mutants induce the same typical ββα structure as 
the wild type upon binding to Zn(II). H4Sp1, consisting 
of three  His4-type ZF domains with all Cys residues of 
Sp1 ZF mutated to His residues (Fig. 6B), was created 
and its DNA-binding behavior was examined using gel 
shift assay and DNase I footprinting. The results showed 
that H4Sp1 can sequence-selectively bind to the GC box, 
the DNA-binding site of wild-type Sp1 ZF. In general, 
Zn(II) complexes with high Lewis acidity show high 
hydrolytic activity. The coordination of cysteine residues 
to zinc(II) reduces the Lewis acidity of zinc(II) due to its 
high electron-donating property, thereby reducing hydro-
lytic reactivity. In this regard, the Lewis acidity of Zn(II) 
in  CysHis3-type and  His4-type ZFs was considered to be 
higher than that of natural-type ZFs, because more His 
residues are coordinated to Zn(II) than Cys residues, and 
their hydrolytic activity was further investigated [34, 35]. 
4-Nitrophenyl acetate (4-NP), a commonly used substrate, 
was selected for the hydrolysis study (Scheme 1). The 
results showed that natural ZF does not promote hydrolysis 
of ester bonds at all, while both  CysHis3- and  His4-type ZF 
hydrolyze ester bonds efficiently (Fig. 7). These mutants 
were also found to be able to hydrolyze phosphate bonds, 
which is generally considered difficult.

(A)

(B)

(C)

Fig. 6  Artificial ZF proteins with unnatural Zn(II) coordination sites. 
A Artificial ZF domains of  H4 and  CH3 types; B Structure of  H4-type 
artificial ZF protein H4Sp1 by redesigning wild-type Sp1. C Struc-

ture of a non-Fok I-type ZF nuclease with a  His4-type domain added 
to the C-terminal side of the wild-type Sp1 ZF
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Next, we examined the DNA cleavage potential of 
H4-type ZFs. Interestingly, H4Sp1 was able to specifically 
cleave the DNA duplex at the GC box site of plasmid DNA 
(pUC19GC) under physiological conditions [34]. We also 
created an artificial restriction endonuclease with a  His4-type 
domain added to the C-terminal side of wild-type Sp1 ZF 
(called non-Fok I type ZF) nuclease (Fig. 6C) [36–38]. We 
found that this artificial restriction enzyme exhibited higher 
sequence selectivity and DNA double-strand cleavage activ-
ity. These results indicate that zinc ions, which originally 
existed as structural factors in their natural forms, can be 
converted into functional factors capable of catalytic func-
tions by modifying the coordination site of zinc ions. Fur-
thermore, from a biological point of view, this result may 
be one possible reason why zinc-binding sequences of the 
 CysHis3 and  His4 types were eliminated from the human 
protein component during natural evolution. These results 
indicate that Zn(II), which originally plays the role of a 
structure factor in its natural form, can be converted into a 
catalytic function factor by redesigning its coordination site.

As an example of another ligand substitution method, 
several groups, including ours, have created ZF mutants in 
which one of the amino acids in the  Cys2His2 coordination 

site is replaced by an uncoordinated amino acid (Gly or Ala), 
such as the CCHH to CCHG or CCHA type (C: Cys, H: His, 
G: Gly, A: Ala), and studied their structure and hydrolytic 
enzyme-like function [39–41], considering that most zinc 
proteins with a tridentate zinc (II) coordination structure 
belong to hydrolytic enzymes [1, 2]. We constructed a series 
of ZF mutants in which one of the four zinc-coordinated 
amino acid residues of finger 2 of Sp1 ZF was replaced with 
non-coordinating Gly or Ala residues. The results show that 
the tridentate ZF mutants form a compact domain struc-
ture similar to the wild type in the presence of Zn(II), pro-
vided that the interaction between the first His ligand in the 
α-helical region and the hydrophobic core is conserved [10, 
39, 41]. In addition, these mutants have hydrolytic activity 
for 4-NP, which decreases in the order CCHA > CGHH > G
CHH > CCHG > CCAH > CCGH [40]. Presumably, the loss 
of one coordinating amino acid allows one water molecule 
to bind to the vacant coordination site, thereby conferring 
hydrolytic activity to the ZF mutants against 4-NP. Kinetic 
studies have also revealed that the hydrolysis reaction is 
influenced by the electron-donating ability of the protein 
ligand and the coordination environment. These studies are 
another example of how redesigning the coordination site 

CH3COO-O2N OAc O2N O
-

Zinc-finger

in H2O

Scheme 1.  Hydrolysis reaction by artificial ZFs created by ligand substitution

Cys4 Cys3His Cys2His2
CysHis3 His4

Fig. 7  Comparison of ester hydrolysis and DNA cleavage ability of natural and non-natural forms of ZF protein
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of Zn(II) could add a new functional factor to the structural 
factor Zn(II).

We also created CXHH-type ZFs (X = C, H, D, E) in 
which the second Cys in the CCHH-type coordination site 
was replaced with other coordinating amino acid residues, 
His, Asp, and Glu, and examined the effects of ligand sub-
stitution on both Zn(II) binding and DNA binding [42, 43]. 
Thus, by substituting ligands that coordinate to Zn(II), arti-
ficial ZFs with various DNA-binding affinities in response 
to Zn(II) concentrations can be redesigned.

Thus, the ligand redesign method is capable of adjusting 
the intrinsic function of natural proteins or introducing com-
pletely new functions, indicating that it is one of the most 
promising methods for the creation of artificial functional 
ZFs using natural ones as templates.

Replacement of Zn(II) with various exogenous metal 
ions

Another approach to redesign the coordination site of Zn(II) 
is to replace Zn(II) in ZF with another exogenous metal ion 
(Fig. 5B). Given that Zn(II) is important for the structure 
formation and functional expression of ZF, its function can 
be modulated by replacement with exogenous metals or 
other metal complexes and new functions could be intro-
duced more directly into ZF. In general, Zn(II) is known to 
bind tightly to various intracellular proteins, and the intracel-
lular concentration of free Zn(II) maintains homeostasis in 
the range of  10–9 to  10–11 M [44, 45]. The ZF motif has been 
designed during evolution to bind Zn(II) with high selectiv-
ity, and its dissociation constant is low relative to the con-
centration of free Zn(II). In contrast, the ZF motif can also 
bind other metal ions in vivo [46, 47]. Moreover, substitution 
of Zn(II) with exogenous metal ions is of biological inter-
est, because it can induce toxic effects (including carcino-
genic effects) specific to certain metal ions [48, 49]. There 
have been extensive studies on metal substitutions in ZF and 
their interactions with metal complexes [50–56]. In addi-
tion, it is crucial to evaluate the genotoxic effects of metal 
substitution of Zn(II) in ZFs from both biological and toxi-
cological perspectives. It has been reported that metal ions 
such as Co(II) [12, 14, 57–59], Ni(II) [58, 60–66], Cd(II) 
[14, 67–70], Pb(II) [71–73], Cu(I) [12, 74], Fe(II) [75–77], 
Au(I) [78–84], and Ag(I) [85] can interact with various ZFs. 
The effects of these metal substitutions on the structure and 
chemistry of ZFs are diverse depending on the metal ion.

Co(II), like Zn(II), exhibits intermediate Lewis acid-
ity and thus high affinity for oxygen, nitrogen, and sulfur 
donors, because of which it is widely used to study the coor-
dination environment and determine the stability constants 
of zinc proteins by replacing the spectroscopically inert 
Zn(II) with Co(II) as a spectroscopic probe [12, 14, 57–59].

Ni(II) is also frequently used as a spectroscopic probe in 
the study of zinc proteins. In ZF, Ni(II), along with Co(II), 
is often used to study their metal-binding properties. Instead 
of using Ni(II) as a probe, we created nickel-substituted ZFs 
(nickel finger) in which all three Zn(II) are replaced by Ni(II) 
in wild-type Sp1 ZFs and studied their structure and DNA-
binding ability [62]. Interestingly, the substitution of Zn(II) 
for Ni(II) in Sp1 ZF did not result in a significant difference 
in the mode of interaction with DNA, but the preference 
for DNA sequences was significantly altered from that of 
the wild type. This is an example of how Ni(II) substitution 
alters the DNA sequence-specific recognition ability of ZF. 
Perhaps, the change in DNA-binding sequence selectivity in 
the nickel finger is due to perturbations to the domain struc-
ture caused by Ni(II) coordination, which would be expected 
to have a slightly different structure than that of the wild 
type. Furthermore, Ni(II) substitution significantly alters the 
folding structure and properties of ZF, previously reported. 
For example, in XPA ZF, the Ni(II) substitutions resulted 
in the formation of a square planar complex, which is dif-
ferent from the tetrahedral structure of the original Zn(II) 
complex [61]. Furthermore, ZF in Zn(II) coordination is 
significantly resistant to air oxidation, whereas the presence 
of Ni(II) ions promotes its oxidation [61]. This change in 
oxidative reactivity is thought to be due to the disruption 
of the ZF domain structure by Ni(II) substitution, which in 
turn promotes oxidation of the Cys residues. Additionally, 
hydrolysis of peptide bonds has been reported as an inter-
esting property of Ni(II)-substituted ZFs. In general, Ni(II) 
is known to bind to -TESHHK- amino acid sequences to 
form square planar complexes and catalyze the hydrolysis of 
peptide bonds between Gln and Ser residues [64–66]. This 
amino acid sequence is abundant in the ZF domain, where 
Ni(II) selectively hydrolyzes peptide bonds in the ZF [63]. 
From a biological perspective, the oxidative and peptide 
hydrolysis properties of nickel-substituted ZF may further 
increase the toxicity of nickel in vivo.

Recently, complex formation of ZFs with precious met-
als such as gold, platinum, and silver ions and their metal 
complexes, and subsequent binding to DNA and RNA 
has been reported [78–85]. Gold ion complexes strongly 
interact with cysteine residues on ZFs, and the binding 
of Gold ion has been shown to alter the folding struc-
ture of ZFs. Therefore, gold complexes may form “gold 
fingers” by targeting the Zn(II) coordination sites of ZF 
in vivo. Similarly, the interaction of platinum complexes 
such as cisplatin with ZFs has been studied, and cases of 
Zn(II) release and loss of secondary structure have been 
reported. Silver ions are being actively researched for 
practical applications in the fields of antibacterial, anti-
inflammatory, and anti-cancer properties, and the utili-
zation of silver nanoparticles (AgNPs) is increasing in 
line with this research. Because of the global popularity 
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of COVID-19, many personal items are now coated with 
AgNPs, and as a result, our exposure to AgNPs and Ag 
ions is increasing more than ever. Against this back-
ground, a recent study on the interaction between Ag(I) 
and ZF reported interesting results in which Zn(II) instead 
of Ag(I) directly forms a silver cluster structure within 
the ZF domain, resulting in loss of structure and function. 
Thus, silver ions may not necessarily be harmless metal 
ions for living organisms either.

Recently, Michel et al. focused on tristetraprolin pro-
tein (TTP), an RNA-binding protein of the CCCH fam-
ily of ZFs, and are actively engaged in research on the 
exchange of TTP with exogenous metal ions, the design of 
metal complexes that stabilize or destabilize TTP, and the 
possibility of developing new anti-inflammatory and anti-
cancer drugs by modulating TTP activity with exogenous 
molecules [56, 57, 69, 70, 74, 77, 82, 86]. Iron-substituted 
TTPs achieve nanomolar affinity and retain the ability 
to recognize homologous RNA sequences compared to 
Zn(II)-containing sites [77]. While classical ZFs, such 
as TFIIIA, lose structure and function upon iron substi-
tution, this study shows interesting results in that non-
classical ZF TTPs maintain structure and function upon 
Fe(II)/Fe(III) substitution.

In summary, when ZF is substituted with exogenous 
metal ions, its structure and function are often lost, and 
there are only a few cases where metal substitution has 
successfully introduced new functions into ZF itself. 
However, extending the study of metal substitution to 
non-classical ZFs such as TTP, or even combining it with 
methods such as computational chemistry, could lead to 
further studies of interactions with exogenous metal ions. 
This is highly promising and could lead to the creation 
of artificial metal-substituted ZFs with novel functions.

Biological applications of designer ZF 
proteins

Finally, we describe the use of artificial ZF technology for 
biological applications. The representative biological appli-
cation of artificial ZFs is genome editing. Genome editing 
is a technology that uses site-specific nucleases to modify 
target genes as desired. The major site-specific nucleases 
are ZF nucleases (ZFN), transcription activator-like effec-
tor nucleases (TALENs), and clustered regularly interspaced 
short palindromic repeats (CRISPR)/Cas9. These technolo-
gies have a much wider range of applications compared to 
conventional genetic engineering and gene therapy and are 
being intensively studied [87–92]. Here, we will introduce 
ZFNs, which have been at the center of genome editing 
research since the early stages of its development.

The above-mentioned phage display system allows for 
the production of finger motifs that specifically recognize 
any three bases; by combining these motifs, artificial ZFs 
that can bind to any base sequence can be created. Artifi-
cial ZFNs have been designed by fusing the DNA cleav-
age domain of the restriction enzyme Fok I to ZFs (Fig. 8). 
Some attempts have been made to “correct” and normalize 
mutated chromosomes using ZFNs for practical use in gene 
therapy [87, 93, 94]. Sangamo successfully altered DNA 
sequences by inducing homologous recombination between 
chromosomes and extrachromosomal DNA at specific sites 
of DNA double-strand breaks on chromosomes by ZFNs. 
In fact, genome editing using a ZF designed to target a 
mutation site on the interleukin-2 receptor (IL2R) gene 
that causes X-linked severe combined immunodeficiency, 
an incurable human disease, resulted in a high frequency 
of DNA homologous recombination (15–20%) in mutant 
human cells. Thus, genetically repaired human cells were 
obtained without selection conditions, and the mutant gene 

Cleavage domain Zinc-finger domain

Zinc-finger domain

Fig. 8  Schematic diagram of the structure of ZF nuclease (ZFN) 
and the mechanism by which it induces double-stranded breaks 
(DBS) in its targets. Target sites for gene editing are defined by “left” 
and “right” zinc finger units with 3-6 ZF domains arranged in tan-

dem. The ZF sites are bound to the nuclease domain of the restric-
tion enzyme Fok I. When the left and right ZFs recognize the target 
sequence, the Fok I nuclease dimerizes and cleaves the DNA along 
the spacer sequence between the two ZFP recognition sites
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was successfully recombined into the normal sequence. 
Furthermore, in 2018, a phase I trial of genome editing 
therapy for hemophilia was initiated under the leadership 
of Sangamo (NCT02695160). ZFNs were employed as the 
genome editing tool, with liver-directed AAV6 vectors car-
rying two ZFNs and an F9 donor template.

Since then, numerous studies using ZFN-based genome 
editing have been conducted [93, 95, 96], and highly versa-
tile genome editing system is now commercially available. 
Although CRISPR/Cas9 is currently the mainstream method 
for genome editing, because of the convenience in designing 
and preparing guide RNA [97], there are still difficulties in 
packaging the large Cas9 gene into virus vectors to deliver 
into cells. In contrast, it is much easier to package the ZFN 
genes in the virus vectors than Cas9, because the size of ZFs 
recognize a specific 18 bp DNA is approximately 20 kDa 
and that of the FokI nuclease domain is around 20 kDa.

Furthermore, ZF, TALE, and engineered RNA-binding 
proteins have been used to alter the levels of mutated mito-
chondrial DNA and mitochondrial RNA in mammals [98, 
99]. For example, it has become clear that mitochondrial 
diseases caused by defects in mitochondrial DNA are behind 
numerous intractable pediatric diseases. Typical mitochon-
drial diseases, such as Leigh's syndrome and NARP (mental 
retardation due to ataxia), are intractable chronic progres-
sive diseases with a wide range of symptoms including 
mental and motor delays and respiratory disorders due to 
brain abnormalities caused by impaired energy production 
in the central nervous system. ZFN-based approaches have 
been tried for these diseases, and it has been shown that it 
is possible in principle to modify mitochondrial DNA in a 
sequence-selective manner [98].

Recently, there have also been attempts to visualize 
dynamic phenomena in cells using artificial ZFs. Stasevich 
et al. have successfully developed a genome visualization 
technique based on a ZF DNA-binding protein with a repeti-
tive epitope tag and signal amplification by epitope-specific 
intracellular antibodies [100]. This demonstrated that the 
dynamics of non-repetitive genomic loci can be imaged by 
designing and using ZF probes.

ZF-based molecular tools, which still have high sequence 
selectivity and diverse functions, are expected to be applied 
for gene analysis and editing and as novel gene therapy.

Outlook

In this review, we outline the creation of functional ZFs 
using several redesign techniques. Various designer ZFs 
have been created by targeting characteristic structural sites 
such as secondary structural units in the ZF domain, Zn(II) 
coordination sites, and linker sites used for tandem struc-
ture formation, resulting in unique structures and functions. 

Although these studies have been conducted for a long time, 
we believe that there are still numerous challenges in the 
study of artificial protein design using ZFs and that this is 
a research field that is promising for further development. 
In the future, redesigned artificial ZFs will play an increas-
ingly important role in advancing research in various fields, 
including protein engineering, medicine, and pharmacol-
ogy. Research on new functions of ZFs themselves, such 
as interactions between ZFs and other biomolecules, is also 
expected to advance, leading to the development of new arti-
ficial ZFs that will enable the construction of complex artifi-
cial biological systems and the control of more sophisticated 
biological functions. In the future, we expect that artificial 
ZFs could provide entirely new treatments for intractable 
diseases such as cancer, genetic diseases, AIDS, and Alz-
heimer’s disease.
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