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Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, 
there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have 
shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, 
versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone 
complex named  [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of 
inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells 
with CHIKV-nanoluciferase in the presence of the compound, showing that  [CoIII(L1)2]Cl inhibited CHIKV infection with the 
selective index of 3.26.  [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction 
of  [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential 
mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential 
interaction of  [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation 
of ADME-Tox properties showed that  [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, 
and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.
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Introduction

The chikungunya virus (CHIKV) is the etiological agent of 
chikungunya fever, a tropical disease characterized by high 
fever, rash, joint pain, and arthralgia [1]. The virus is trans-
mitted through the bite of Aedes mosquitoes and the infec-
tion caused by CHIKV can progress to a disabling chronic 
disease or may cause neurological complications such as 
Guillain–Barre syndrome [2, 3].

CHIKV is an alphavirus that belongs to the family Toga-
viridae (ICTV, 2019). It is an enveloped virus of icosahedral 
capsid and a positive-sense single-strand RNA of approxi-
mately 12 kb [4]. CHIKV genome contains two open reading 
frames (ORFs) [4]. The 5’ ORF encodes four non-structural 
proteins (nsP1–nsP4) and the 3’ ORF is transcribed into a 
subgenomic RNA which is translated into five structural 
proteins (C, E1, E2, E3, and 6 K) [5, 6]. The non-struc-
tural proteins play substantial roles in the virus replication 
forming a replicase complex [7], nsP4 being defined as the 
CHIKV RNA-dependent RNA polymerase (RdRp). In this 
way, CHIKV replication is directly dependent on nsP4 activ-
ity that represents a promising target for antiviral therapeutic 

[8]. Therefore, disruption or inactivity of the nsP4 activity 
can result in the impairment of the CHIKV replicative cycle, 
decreasing virus replication and also impacting in the clini-
cal progress of Chikungunya fever.

CHIKV was first isolated in Tanzania in 1952 and, for 
a while, cases related to CHIKV occurred in the Southeast 
Asian regions, Africa, and Oceania [9]. In 2006, an outbreak 
was documented in some Indian Ocean islands [10] and, a 
year later, France and Italy reported cases of this infection 
[11, 12]. In 2013, an outbreak occurred in Central America, 
in the Caribbean Islands [13, 14]. Then, the virus spread 
through North and South America [15]. In Brazil, accord-
ing to the Urban Arboviruses Monitoring Report, 132,205 
cases of chikungunya fever were registered in 2019, with 
an incidence rate of 62.9 cases/per 100,000 inhabitants in 
2019. Northeast and Southeast were the regions with the 
highest incidence rates in the Country, with 104.6 and 59.4 
cases/100,000 inhabitants, respectively. In the same year, 92 
deaths were confirmed by CHIKV infection, and a higher 
lethality rate was observed in elderly people over 60 [16]. In 
2020, during the outbreak of COVID-19, the Brazilian states 
of Bahia, Mato Grosso, Espirito Santo, and Rio de Janeiro 
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showed an increase in likely cases of chikungunya, accord-
ing to the bulletin released by the surveillance secretary [17]. 
Furthermore, according to CDC (Centers for Disease Con-
trol), over 110 countries reported CHIKV infection cases 
until October 2020 [18].

Currently, there is no licensed treatment against CHIKV 
showing the need for new molecules that possess antiviral 
activity [19]. The treatment of infected patients is palliative 
and aims to relieve the symptoms caused by the infection. 
According to the World Health Organization (WHO), the 
most appropriate drug is acetaminophen 1 g 3–4 times per 
day for adults, and 50–60 mg per kg per day for children 
[20]. Other non-steroidal analgesics are also recommended, 
except aspirin which can cause platelet dysfunction [21].

Thiosemicarbazones (TSCs) are a class of synthetic 
compounds known to have versatile chemistry, low costs 
of production, and few atoms waste (only molecules of 
water are usually released during synthesis reactions) [22]. 
Teitz and coworkers (1994) described the antiviral activ-
ity of N-methylisatin-β4′:4′-diethylthiosemicarbazone, a 
compound that demonstrated to disrupt the synthesis of 
Human Immunodeficiency Virus (HIV) structural proteins. 
TSCs derivatives have also demonstrated antiviral activity 
described against herpes simplex virus (HSV), affecting the 
expression of structural proteins of HSV, suppressing capsid 
assembly, and inhibiting cell-to-cell spread [23].

Besides that, TSCs are also recognized as excellent metal 
binders, therefore, being widely explored as ligands in coor-
dination chemistry. It also provides very stable and high-
quality chelating organometallics [24–26]. Interestingly, 
TSCs metal complexes have demonstrated antimicrobial 
[27], antiprotozoal [28], and anticancer [29], and antiviral 
activities [30]. Usually, thiosemicarbazones are coordinated 
with metals such as Copper(II) and cobalt(III). These met-
als are present in the human organism, therefore, represent-
ing pre-existing biological pathways that will regulate their 
therapeutic levels. For example, cobalt(III) is an essential 
trace element in the human body and also is a necessary 
component of vitamin  B12 [31]. Physiological speciation 
involving these endogenous metal ions can increase the bio-
availability of these compounds, decrease the cytotoxicity 
and even improve their biological activity [32].

Considering our previous findings on the antibacterial 
action and preliminary anti-CHIKV activities of the com-
plexes of the type  [CoIII(atc–R)2]Cl (R = methyl, Me or phe-
nyl, Ph), as well as the free ligands [33], here we further 
characterized the anti-CHIKV activity of the cobalt(III) 
coordination compound with the thiosemicarbazone ligand 
 [CoIII(L1)2]Cl (Fig. 1) and exploited its potential mode of 
action. Our data show that cobalt(III)-conjugated thiosemi-
carbazones may provide an interesting source of compounds 
for the development of future antivirals to treat chikungunya 
fever.

Materials and methods

Preparation of the compounds

The compounds studied here were previously synthesized 
and characterized as described by Fernandes and cowork-
ers [34].  L1 was prepared by refluxing 4-phenyl-3-thiosem-
icarbazide and 2-acetylpyridine (1:1) in ethanolic solu-
tions [35]. Briefly, the reaction of  CoCl2∙6H2O and  L1 
(1:2) in ethanol (15 mL) provided  [CoIII(L1)2]Cl (Fig. 1). 
The products were characterized and purities evaluated 
[33, 34]. The characterization of the compounds was pre-
viously certified by techniques such as 1H and 13C NMR, 
high-resolution mass spectrometry, LC–MS/MS and frag-
mentation study, and previously reported [34]. The com-
pounds were dissolved in dimethyl sulfoxide (DMSO) and 
stored at − 20 °C for the biological assays. Dilutions of the 
compounds in a complete medium were made immediately 
prior to the experiments to reach a maximum final con-
centration of 0.1% DMSO. For all the assays performed, 
cells were treated with DMSO 0.1% as untreated control.

Cell culture

BHK-21 cells (fibroblasts derived from Syrian golden 
hamster kidney; ATCC® CCL-10™), which are suscepti-
ble to CHIKV infection [36], were maintained in Dulbec-
co’s modified Eagle’s medium (DMEM; Sigma-Aldrich) 
supplemented with 100U/mL of penicillin (Hyclone Lab-
oratories, USA), 100 mg/mL of streptomycin (Hyclone 
Laboratories, USA), 1% of non-essential amino acids 
(Hyclone Laboratories, USA) and 1% of fetal bovine 
serum (FBS, Hyclone Laboratoires, USA) in a humidified 
5%  CO2 incubator at 37 °C.

Fig. 1  Chemical structure of the TSC free ligand  L1 and its cobalt(III) 
complex  [CoIII(L1)2]Cl
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Rescue of CHIKV‑nanoluc reporter virus

The CHIKV expressing nanoluciferase reporter (CHIKV-
nanoluc) used for the antiviral assays were designed 
from a CHIKV sequence based on CHIKV isolate 
LR2006OPY1 (East/Central/South African genotype). 
The cDNA plasmid of CMV-CHIKV-nanoluc contains a 
CMV promoter, SV40 terminator, and a sequence encod-
ing nanoluciferase protein inserted into the region encod-
ing the C-terminal domain of viral nsP3 protein [37, 38]. 
The production of CHIKV-nanoluc virions was carried 
out as previously described [39–41]. Briefly, 2.3 ×  107 
BHK-21 cells seeded in a cell culture flask were trans-
fected with 1.5 µg of CMV-CHIKV-nanoluc plasmid, 
using lipofectamine 3000® and Opti-Mem medium to 
rescue CHIKV nanoluc reporter virus. Forty-eight hours 
post-transfection, the supernatant was collected and 
stored at − 80 °C.

To determine the viral titer, 5 ×  105 BHK-21 cells were 
seeded in each of 6 wells plate 24 h prior to the infection. 
Then, the cells were infected with tenfold serially diluted 
supernatant of CHIKV nanoluc for 1 h at 37 °C. The 
inoculum was removed, and the cells were washed with 
phosphate-buffered saline (PBS) to remove the unbound 
virus and added of cell culture media supplemented with 
1% penicillin, 1% streptomycin, 2% FBS and 1% carboxy-
methyl cellulose (CMC). Infected cells were incubated 
for 2 days in a humidified 5%  CO2 incubator at 37 °C, 
followed by fixation with 3% formaldehyde and stained 
with 0.5% violet crystal and the viral foci were counted 
to determine CHIKV-nanoluc titers [42].

Cell viability through MTT assay

Cell viability was measured by MTT [3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] 
(Sigma–Aldrich) assay. BHK-21 cells were cultured in 
96 well plate and treated with concentrations of each 
compound for 16 h at 37 °C with 5% of  CO2. Twenty-
four hours post-treatment, compound-containing media 
was removed and MTT solution at 1 mg/mL was added to 
each well, incubated for 1 h, and replaced with 100 μL of 
DMSO to solubilize the formazan crystals. The absorb-
ance was measured at 560 nm on Glomax microplate 
reader (Promega, USA). Cell viability was calculated 
according to the equation (T/C) × 100%, in which T and 
C represented the optical density of the treated well and 
control groups, respectively. DMSO was used as untreated 
control. The cytotoxic concentration of 50%  (CC50) was 
calculated using GraphPad Prism 8 (Graph Pad Software).

Antiviral activity assays

BHK-21 cells were seeded at a density of 5 ×  104 cells per 
well into 48-well plates 24 h prior to the infection. CHIKV-
nanoluc [38, 41] at a multiplicity of infection (M.O.I) of 
0.01 and compounds at the non-cytotoxicity concentration 
were simultaneously added to cells. Samples were harvested 
in Renilla luciferase lysis buffer (Promega, USA) at 16 h 
post-infection (h.p.i.) and virus replication levels were quan-
tified by measuring nanoluciferase activity using the Renilla 
luciferase Assay System (Promega, USA). The effective con-
centration of 50% inhibition  (EC50) was calculated using 
GraphPad Prism 8. The values of  CC50 and  EC50 were used 
to calculate the selectivity index (SI =  CC50/EC50).

To evaluate the protective activity of the compound, 
cells were pre-treated for 1 h with 50 µM of  [CoIII(L1)2]Cl, 
extensively washed with PBS to remove the compound, and 
infected with CHIKV-nanoluc (M.O.I. of 0.01). The effect 
of  [CoIII(L1)2]Cl on early stages of infection was analyzed 
by incubating the virus and compound simultaneously with 
BHK-21 cells for 1 h. Then, the compound was removed, 
and cells were added of fresh medium. Additionally, to 
investigate the activity of the compound in the post-entry 
stages of the viral replicative cycle, cells were infected with 
CHIKV for 1 h, washed extensively with PBS to remove 
the unabsorbed virus, and added of compound-containing 
media. Luminescence levels were measured 16 h.p.i. to ana-
lyze the virus replication rates.

Intercalation assay

To investigate whether the compound interacts with the dou-
ble-stranded RNA (dsRNA), an experiment using the previ-
ously described protocol [43, 44] was performed. Briefly, 
fifteen nanograms of the dsRNA were incubated with 50 µM 
of  [CoIII(L1)2]Cl at room temperature for 45 min and electro-
phoresed on a 1% agarose gel prior to analysis by densitom-
etry. DMSO and Doxorubicin (DOX) at 100 µM were used 
as the untreated and positive control, respectively.

CHIKV nsP4 cloning, overexpression, 
and purification

The coding region of chikungunya non-structural protein 
4 (nsP4) (GenBank KP164572.1; PROT-ID AJY53709.1) 
was cloned into pET-SUMO expression vector, generat-
ing the nsP4_pET-SUMO/LIC expression vector. Rosetta 
(DE3) E. coli (Novagen) cells were transformed with nsP4_
pET-M11/LIC and grown in TB (Terrific Broth) medium, 
supplemented with 50 μg  ml−1 kanamycin and 34 μg  ml−1 
chloramphenicol at 37 °C. The cell growth was monitored 
until reaching the optical density  (OD600nm) of 1.0. The pro-
tein expression was induced by adding 1 mM of Isopropyl 
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β-d-1-thiogalactopyranoside (IPTG), at 18 °C and main-
tained for 16 h. Cells were harvested by centrifugation and 
cell pellets were resuspended in lysis buffer (50 mM Tris pH 
8.0, 500 mM NaCl, and 10% glycerol). Cells were lysed by 
sonication and cell debris was separated by centrifugation.

The nsP4 was purified using an AKTA Purifier System 
(GE Healthcare). The first purification step was affinity 
chromatography using a HisTrap HP 5.0 ml column (GE 
Healthcare) and the elution was performed using 250 mM 
imidazole. Concomitantly, the buffer was exchanged through 
dialysis and the His-tag-SUMO was cleavaged by TEV pro-
tease overnight at 4 °C. Another affinity chromatography 
step was performed using the same system to collect the 
protein after cleavage. The protein was concentrated, and 
a final purification step was done through size-exclusion 
chromatography on an XK 26/1000 Superdex 75 column 
(GE Healthcare) pre-equilibrated in buffer 50 mM Tris pH 
8.0, 200 mM NaCl and 5% glycerol. The final protein sam-
ple was analyzed by SDS-PAGE electrophoresis to confirm 
its purity. The concentration was determined spectrophoto-
metrically in a Nanodrop 1000 spectrophotometer.

MicroScale thermophoresis (MST)

Experiments were performed on a  Monolith® NT.115 instru-
ment (Nanotemper technologies). The nsP4 was labeled on 
cysteine residues with NT-647-Maleimide dye (Nanotemper 
Technologies) using the Monolith NTTM Protein Labeling 
Kit RED-MALEIMIDE as per the manufacturer’s instruc-
tions. The cys-labeled nsP4 was used to perform MicroScale 
Thermophoresis experiments, at the final concentration of 
25 nM. An initial binding test was carried out with com-
pound  [CoIII(L1)2]Cl at the concentration of 500 µM, to 
check the interaction between the protein and the compound. 
The assay control was performed using cys-labeled nsP4 
with 5% DMSO. Then, a serial dilution of the  [CoIII(L1)2]Cl 
from 500 to 0.015 µM (15 nM) was performed to obtain the 
binding curve. The dissociation constant (Kd) was obtained 
by fitting the binding curve with the Hill function, using 
GraphPad Prism 8 (Graph Pad Software).

Molecular docking analysis

The 3D structure of  [CoIII(L1)2]Cl was obtained by DFT at 
the pbe0/def2-tzvp [45] level of theory using ORCA 4.2.0 
[46, 47]. Auxiliary basis sets AuxJ (def2/J) [48] and AuxC 
(def2-svp/C) [49] were also used. Optimized structures were 
rendered using Chemcraft (graphical software for visuali-
zation of quantum chemistry computations, https:// www. 
chemc raftp rog. com). A representative sequence of nsP4 
extracted from the viral polyprotein (UniProt id: Q8JUX6) 
was modeled using the RoseTTAFold [50] on the Rosetta 
online server (https:// robet ta. baker lab. org/). The nsP4 

tridimensional model was assessed using ERRAT [51], 
Ramachandran Plot [52], and Verify 3D [53] tools in the 
SAVES v6.0 server (https:// saves. mbi. ucla. edu/). The nsP4 
binding site was predicted using COACH [54] based on the 
RoseTTAFold-predicted structure. COACH is a meta-server 
approach that combines multiple function annotation results 
to generate ligand binding site predictions. COACH results 
indicate a binding site similar to the site where the Uridine 
5′-Triphosphate (UTP) interacts with the crystal structure of 
HCV ns5B polymerase (PDBid: 4RY5). Thus,  [CoIII(L1)2]
Cl was docked with the modeled protein using GOLD [55]. 
GOLD performs a search for the best interacting pose of the 
chosen molecule in the receptor binding site using a genetic 
algorithm (GA) and the scoring function ChemPL. The bind-
ing site was defined by the UTP position based on the 4RY5 
structure and extrapolated to the modeled nsP4. The GA 
parameters were set to the default values for the run, with 
M-L bonds treated as zero-order bonds. The poses generated 
are then ranked and the solution with the best score was 
chosen. The intramolecular interactions in the best-ranked 
pose were analyzed using DS Visualizer (BIOVIA, Dassault 
Systèmes, Discovery Studio Visualizer, v 20.1, San Diego: 
Dassault Systèmes, 2020).

ADME‑Tox predictions

The free online platforms SwissADME (www. swiss adme. 
ch) and OSIRIS Property  Explorer® (http:// www. chemi 
nfo. org/ Chemi stry/ Chemi nform atics/ Prope rty_ explo rer/ 
index. html) were used to evaluate the parameters of absorp-
tion, distribution, metabolism, excretion, and toxicity 
(ADME-Tox).

Statistical analysis

Individual experiments were performed in triplicate and in 
a minimum of three times to confirm the reproducibility of 
the results. Differences between means of readings were 
compared using analysis of variance (one-way or two-way 
ANOVA) or Student’s t-test using GraphPad Prism 8 (Graph 
Pad Software). P values ≤ 0.05 were considered to be statisti-
cally significant.

Results and discussion

CHIKV is an emerging arbovirus with a high impact on 
public health in tropical and non-tropical areas. In recent 
years, outbreaks have occurred around the world affecting 
many patients with chikungunya fever, the disease caused by 
CHIKV [2, 56, 57]. Currently, there is no antiviral therapy 
against CHIKV, demonstrating the need to identify new anti-
CHIKV compounds [19].

https://www.chemcraftprog.com
https://www.chemcraftprog.com
https://robetta.bakerlab.org/
https://saves.mbi.ucla.edu/
http://www.swissadme.ch
http://www.swissadme.ch
http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html
http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html
http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html
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In this context, thiosemicarbazones (TSCs) have pre-
viously been demonstrated to possess antiviral activity 
against HIV and HSV by disrupting the synthesis of struc-
tural proteins and also capsid assembly [23, 25]. Addition-
ally, TSCs are described as possessing interesting motifs 
for metal binders and thus being coordinated with metals 
such as copper(II) and cobalt(III) [58, 59]. Cobalt(III) is 
an endogenous metal, and therefore, the bioavailability of 
cobalt(III)-like compounds can be increased, as well as their 
biological properties, in therapeutic protocols for human dis-
eases [31, 60]. Considering the chemical versatility of the 
synthesis of TSC and the biological properties of cobalt(III)-
like compounds, we previously analyzed complexes of the 
type  [CoIII(atc–R)2]Cl which demonstrated interesting anti-
bacterial and antiviral activities [33]. Here, we characterized 
the anti-CHIKV activity of the  [CoIII(L1)2]Cl, a Cobalt(III) 
coordination compound with the thiosemicarbazone ligand 
with promising antiviral proprieties.

[CoIII(L1)2]Cl inhibits CHIKV infection in vitro

We previously demonstrated that the treatment of CHIKV-
infected cells with the cobalt(III)-conjugated thiosemi-
carbazone  [CoIII(L1)2]Cl (Fig. 1) reduced CHIKV infec-
tion, and cell viability was not affected compared to 
the treatment with its organic ligand [33]. In this work, 
 [CoIII(L1)2]Cl had its antiviral activity characterized using 

a recombinant CHIKV engineered to express the nanolu-
ciferase reporter (CHIKV-nanoluc) (Fig. 2A). To assess 
the effect of  [CoIII(L1)2]Cl on cell viability and virus infec-
tion, we performed a dose–response assay to determine the 
effective concentration of 50%  (EC50) and the cytotoxic-
ity concentration of 50%  (CC50) values for this complex. 
BHK-21 cells were infected with CHIKV-nanoluc and 
treated with  [CoIII(L1)2]Cl at concentrations ranging from 
0.14 to 300 µM, and viral replication levels were evalu-
ated by measuring the nanoluciferase reporter activity at 
16 h.p.i. (Fig. 2B). Employing this range of concentra-
tions, it was determined that the  [CoIII(L1)2]Cl has an  EC50 
of 19 µM,  CC50 of 62 µM, and SI of 3.26 (Fig. 2B). For 
further analysis, cells were treated with  [CoIII(L1)2]Cl at 
50 µM, which significantly inhibited 94% of the CHIKV 
infection (cell viability > 80%) (Fig. 2C).

Our results showed that  [CoIII(L1)2]Cl significantly 
reduced virus post-entry to host cells at non-toxic concen-
trations, and therefore, the effect of this complex was fur-
ther evaluated. As shown by other authors, and in agreement 
with our results, TSCs had their antiviral activity previously 
described against HIV and HSV, in a post-entry manner. The 
authors suggested that the mechanism of action for these 
compounds was related to the disruption of the synthesis 
of the structural protein and also capsid assembly [23, 25]. 
Additionally, Langsjoen et al. showed that the gold salt 
auranofin displayed antiviral activity against CHIKV with 

Fig. 2  A Schematic representation of the engineered Chikungunya 
virus nanoluciferase genome (CHIKV-nanoluc). B The effective con-
centration  (EC50) and cytotoxic concentration  (CC50) of  [CoIII(L1)2]
Cl. BHK-21 cells were treated with increasing concentrations of 
 [CoIII(L1)2]Cl ranging from 0.14 to 300 µM. CHIKV replication was 
measured by nanoluciferase activity (indicated by ■) and cellular 
viability was measured using an MTT assay (indicated by •). Mean 
values of three independent experiments each measured in quad-

ruple including the standard deviation are shown. C BHK-21 cells 
were infected with CHIKV-nanoluc and simultaneously treated with 
 [CoIII(L1)2]Cl at 50 µM for 16 h. After treatment, cells were lysed and 
nanoluciferase levels were measured to assess the CHIKV replica-
tion rate. An MTT assay was carried out in parallel. Mean values of a 
minimum of three independent experiments each measured in tripli-
cate are represented
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a Therapeutic Index (TI) of 104.5 12 h.p.i, aiming to target 
oxidative folding pathways [61].

[CoIII(L1)2]Cl is a post‑entry inhibitor of the CHIKV 
replicative cycle

To analyze the effects of  [CoIII(L1)2]Cl on different stages of 
the CHIKV replicative cycle, viruses and compounds were 
added to BHK-21 cells at different times. First, cells were 
pre-treated with  [CoIII(L1)2]Cl for 1 h, washed to remove 
the compound, and were infected with CHIKV-nanoluc 
(Fig. 3A). To assess the effect on the early stages of infec-
tion, CHIKV-nanoluc and  [CoIII(L1)2]Cl were simulta-
neously added to the BHK-21 cells for 1 h, followed by 
repeated cell washes to remove the inoculum and addition 
of fresh media (Fig. 3B). To investigate the interference with 
post-entry steps of infection, cells were first infected with 
CHIKV-nanoluc, washed to remove the unbounded virus, 
and then a media-containing compound was added (Fig. 3C). 
The results obtained from all these experimental conditions 
demonstrated that  [CoIII(L1)2]Cl at 50 µM inhibited up to 
94% of the CHIKV post-entry replication step (Fig. 3C) but 
had no effect on the early stages of the replicative cycle 
(Fig. 3B) or in protecting cells from infection (Fig. 3A).

Despite being widely studied as antifungal [62], anti-
bacterial [63], and largely exploited in cancer therapy [64], 
metal complexes are not studied nearly as much as antiviral 
agents in comparison to other applications such as antican-
cer [65], and only a few studies have reported the antiviral 
activity of cobalt(III) complexes [66]. In the latest 1990, a 

cobalt chelate series (CTC) (General formula [Co(acacen)
(L)2]+) of cobalt(III) complexes were studied as antiviral 
molecules against Herpes Simplex I virus (HSV-I) in vitro. 
The drug Doxovir™ (also named Co-1 or CTC-96 in the 
literature) significantly inhibited HSV-I infectivity in Vero 
cells at 5 µg  mL−1 [67]. In the earlies 2000, Schwartz and 
coworkers reported that Co-1 at 50 µg  mL−1 inhibited the 
early stages of HSV-1 infection in Vero cells, impairing 
virus penetration in the initial fusion stage between cell and 
virus. They have also found that this compound inhibited 
Varicella-zoster virus (VZV) plaque formation [68]. The 
antiviral activity of Co-1 was also described against Human 
Adenovirus type 5 (Ad5) in cell culture, acting as a virucidal 
compound, and also in rabbit model [69].

Another cobalt complex, the CTC compound Co-sb, 
showed to inhibit HIV-1 in vitro by Louie and Meade, by 
disrupting zinc finger structures, inhibiting transcription 
factors, and also interactions of some viral proteins with 
zinc fingers domains [70]. Moreover, the cobalt(III) complex 
sodium hydrogen butylimino bis-8,8-[5-(3-oxa-pentoxy)-
3-cobalt bis(1,2-dicarbollide)]di-ate([Co(NH2C(NH)-
NHC(NH)NHsBu)3]3 +) showed antiviral activity against 
HIV-I, inhibiting HIV-I protease interactions in the hydro-
phobic sites of the protein, with  EC50 0.25 µM in PM-1 
cells [71, 72]. This compounds also showed antiviral activ-
ity against H1N1 virus, reducing H1N1 cytopathic effect 
in MDCK cells, with  EC50 of 125 µg/mL and SI of 8 [73].

What is more, there are only two research articles report-
ing cobalt(III) complexes as antiviral agents against arbo-
viruses: Miranda and coworkers described the activity of 

Fig. 3  [CoIII(L1)2]Cl impairs post-entry stages of the CHIKV replica-
tive cycle. A BHK-21 cells were pre-treated with  [CoIII(L1)2]Cl for 
1 h, washed to completely remove the compounds, and were infected 
with CHIKV-nanoluc. B BHK-21 cells were infected with CHIKV-
nanoluc and simultaneously treated with  [CoIII(L1)2]Cl 50  µM for 
1 h. Then, cells were washed to remove the virus and compound and 

were replaced with fresh media. C BHK-21 cells were infected with 
CHIKV- nanoluc for 1 h, washed to remove unbound virus and added 
fresh media-containing compound. For all protocols, nanoluciferase 
activity levels were measured 16 h.p.i. Mean values of a minimum of 
three independent experiments each measured in triplicate are repre-
sented. ***P < 0.01 were considered significant
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this class of metal complexes against Dengue virus (DENV) 
and Yellow fever virus (YFV) [73]; and our previous data 
published on CHIKV [33]. The compounds investigated 
by Miranda and coworkers were the cobalt(III) complex 
of protoporphyrin IX (CoPPIX) and tinprotoporphyrinIX 
(SnPPIX) [74]. For DENV-2, DENV-3 and YFV CoPPIX 
presented  EC50 of 3.91, 0.77 and 3.74 µmol  l−1 in HepG2 
cells, while SnPPIX presented 3.26, 0.85 and 0.37 µmol  l−1. 
For DENV, the compounds seem to disrupt or impair pro-
tein synthesis, and block virus adsorption and penetration 
in BHK 21 cells, with the same MOA that inhibited YFV.

Further compounds (non-metals) were reported with 
antiviral activity against post-entry stages of CHIKV repli-
cative cycle. For example, the guanosine analog Ribavirin, 
described as a substrate of RdRp of HCV [75, 76], disrupted 
CHIKV replication with  EC50 of 3.41 µM in Vero cells, 
2 days post-infection [77]. Additionally, the 6-azauridine, an 
uridine analog used to treat psoriasis, also impaired CHIKV 
replication by disrupting CHIKV RNA replication. Briolant 
and coworkers showed that this compound possesses SI of 
204 in Vero cells, 8.5 times higher than ribavirin used in the 
same study as a positive control [78].

Insights on mechanisms of action of  [CoIII(L1)2]Cl

Based on the activity of the complex on CHIKV post-entry 
stages, we investigated whether this compound could inter-
act with the viral dsRNA. During the chikungunya repli-
cative cycle, a double-strand RNA (dsRNA) is formed as 
replicative intermediate molecules. Considering that some 
compounds possess antiviral activity by intercalating into 
this dsRNA [43] and that many metal complexes are DNA 
intercalators [79, 80] or DNA binders [81], we assessed the 
dsRNA interaction capabilities of  [CoIII(L1)2]Cl by agarose 

gel electrophoresis.  [CoIII(L1)2]Cl was incubated with 15 nM 
of dsRNA and analyzed in an agarose gel. Doxorubicin 
(DOX) at 100 µM and DMSO 0.1% were used as positive 
and untreated controls, respectively. Since  [CoIII(L1)2]Cl 
had no intercalation activity, ethidium bromide was able 
to intercalate to the dsRNA and the band was visualized 
as observed in the untreated control (Fig. 4). Densitometry 
analysis confirmed that the cobalt(III) conjugated compound 
did not intercalate with dsRNA (Fig. 4).

Aiming to access initial information about a possible 
target for  [CoIII(L1)2]Cl action, the CHIKV nsP4 was syn-
thesized and purified in vitro (Fig. 5A). Thereby, the inter-
action between nsP4 and  [CoIII(L1)2]Cl was evaluated by 
Microscale Thermophoresis (MST). The binding affinity 
curve was obtained using a serial dilution of the compound 
to obtain information on the dissociation constant  (kd). The 
results demonstrated that the binding affinity curve pre-
sented well-defined bound and unbound states, suggesting 
the occurrence of interaction between the CHIKV nsP4 and 
the  [CoIII(L1)2]Cl (Fig. 5B). Through the obtained curve, the 
estimated kd ± ∆kd for this interaction was 8.35 ± 0.681 µM.

To achieve evidence on the mechanism of action of this 
compound, we performed a dsRNA interaction assay. Dur-
ing the CHIKV replication cycle, a dsRNA is formed as a 
replicative intermediate molecule during the synthesis of a 
negative sense sRNA which is a template for the next viral 
replication stages. Considering that some compounds that 
acted on post-entry stages of virus replicative cycle dem-
onstrated antiviral activity intercalating in dsRNA species 
[43], we investigated the interference of  [CoIII(L1)2]Cl with 
a dsRNA, however,  [CoIII(L1)2]Cl seems to not act by this 
mechanism.

Knowing that replication is a very important process in 
the virus replication cycle, we investigated the interaction 

Fig. 4  [CoIII(L1)2]Cl does not intercalate intro dsRNA.  [CoIII(L1)2]Cl 
was incubated with 15  nM of dsRNA for 45  min and submitted to 
electrophoresis using a 1% agarose gel (run in 1 × TAE buffer) stained 

with ethidium bromide, followed by densitometry analysis. DMSO 
0.1% and Doxorubicin (DOX) at 100 µM were used as untreated and 
positive controls, respectively
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of  [CoIII(L1)2]Cl with the non-structural protein 4 (nsP4), 
a nsP which plays an essential role in the replicative com-
plex activity. The nsP4 is an RNA-dependent RNA poly-
merase (RdRp) responsible for the synthesis of new RNA 
strands that will be incorporated into the viral progeny 
resulting from the replicative cycle. As it is crucial for 
viral replication, the RdRp has been an important target 
for antiviral therapies. Studies have shown compounds 
with antiviral activity against CHIKV replication, but 
only a few were documented suggesting nsP4 as a target. 
Some examples include benzimidazole [82], hesperetin-
A derivates [83], and favipiravir [84]. The availability 
of only a few studies for nsP4 can be explained due to 
the lack of structural information about this protein, such 
as the absence of an experimentally solved three-dimen-
sional structure of CHIKV nsP4, which limits studies on 
the search for specific inhibitors based on this target.

Thus, to investigate whether this protein could be a 
possible target for  [CoIII(L1)2]Cl, we cloned, overex-
pressed, and purified CHIKV nsP4, and interaction stud-
ies were carried out by MicroScale Thermophoresis with 
different concentrations of the compound. Our data show 
that  [CoIII(L1)2]Cl interacted with CHIKV nsP4, suggest-
ing that it might be a potential mechanism of antiviral 
action of this complex. Furthermore, molecular docking 
analysis suggested that the compound potentially inter-
acts with CHIKV nsP4 through hydrogen bonding and 
electrostatic interactions in the Uridine 5'-Triphosphate 
(UTP) binding site, and probably impairing the initiation 
and elongation of new viral RNA, corroborating with the 
in vitro results.

Molecular docking analysis

In view of CHIKV nsP4 as a possible target for  [CoIII(L1)2]
Cl complex, molecular docking was performed for a better 
understanding of the nature of the interactions between this 
protein and the compound. To this end, a prediction of the 
nsP4 protein structure was performed using the RoseTTA-
Fold method and the structure was validated using Verify 
3D, ERRAT, and Ramachandran Plot formalism (Supple-
mentary Figs. 1–3). The 3D structure of  [CoIII(L1)2]Cl was 
obtained by DFT (Fig. 6A). The compound  [CoIII(L1)2]
Cl was then submitted as a ligand for molecular docking 
analysis using the nsP4 protein model as a receptor. The 
COACH software suggested the Uridine 5'-Triphosphate 
(UTP) binding site as the probable spot for the  [CoIII(L1)2]
Cl interaction. The best scored pose (ChemPL = 66.92) was 
selected (Fig. 6B). Analyzing the intramolecular interac-
tions, it can be observed a hydrogen bond involving the 
N–H group of Arg205 amino acid (2.95 Å). Furthermore, 
hydrophobic interactions with Pro298 and Lys295 amino 
acids (4.95 Å and 4.11 Å, respectively) were predicted, 
along with aromatic-sulfur interaction with Cys506 amino 
acid (5.30 Å). Finally, van der Waals interactions were 
observed with Pro307, Gln310, Glu304, Lys308, Val296, 
Thr297, Asp467, Ile464, Phe375, Ile372, Ser374, Asp376, 
and Asp466 (Fig. 7A and B). 

ADME‑Tox predictions

The evaluation of ADME-Tox properties of  L1 and 
 [CoIII(L1)2]Cl complex was carried out to verify the 

Fig. 5  [CoIII(L1)2]Cl interacts with CHIKV nsP4. A SDS-PAGE Elec-
trophoresis gel of nsP4 purification. M: Molecular weight marker; 
Elu1: Elution of His-tag-SUMO-nsP4 (approximately 70  kDa) by 
affinity chromatography step; Ptev: sample after incubation with TEV 
protease, indicating the cleavage of His-tag-SUMO; Elu2: Elution of 
nsP4 (54.54 kDa) after TEV protease cleavage; The P1 and P2 refer 

to the two peaks in the chromatogram (right) of the gel filtration step, 
corresponding to the eluted fractions. The purified nsP4 was eluted 
in P2 (54.54 kDa). B Binding affinity curve of nsP4 and  [CoIII(L1)2]
Cl, obtained by Microscale Thermophoresis experiments. Estimated 
kd ± ∆kd = 8.35 ± 0.681 µM
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Fig. 6  Prediction of  [CoIII(L1)2]Cl and CHIKV NSP4 structures. A 
DFT-optimized structure of compound  [CoIII(L1)2]Cl at the pbe0/
def2-tvp level of theory as implemented in ORCA 4.2.0. Color code: 

white—hydrogen; gray—carbon; blue—nitrogen; yellow—sulfur; 
light pink—cobalt. B The predicted nsP4 structure interacting with 
 [CoIII(L1)2]Cl

Fig. 7  In silico analysis of potential interactions between  [CoIII(L1)2]
Cl and CHIKV NSP4. A Best ranked pose obtained by the molecular 
docking of  [CoIII(L1)2]Cl (represented in red) into the CHIKV nsP4 
model. B CHIKV NSP4 and  [CoIII(L1)2]Cl atomic interactions. Green 
dashed line indicates hydrogen bond, magenta, and light magenta 

dashed lines indicate hydrophobic interactions, yellow dashed lines 
indicate electrostatic interactions, orange dashed lines indicate pi-
sulfur interactions, and numbers in black indicate the interaction dis-
tances in angstroms (Å)
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physicochemical properties as lipophilicity, water-solubil-
ity, human intestinal absorption (HIA), blood–brain barrier 
penetration (BBB), inhibition of isoenzymes belonging to 
the CYP450 system and toxicological effect (irritant, muta-
genic, reproductive and tumorigenic). The results are shown 
in Tables 1 and 2.

According to the results listed in Table 1, the  L1 is in 
according to Lipinski’s rules while  [CoIII(L1)2]Cl complex 
breaks one of Lipinski’s rules because of its higher molecu-
lar weight (MW > 500). Other important parameters are Log 
S, MR, and TPSA concerning to hydrophobicity of a given 
compound, and, consequently, the ability to cross plasmatic 
membranes and permeate cells. Those parameters provide 
information about the absorption and distribution of a drug 
in the organism [85]. According to the results shown in 

Table 1, the  L1 and  [CoIII(L1)2]Cl complex could show good 
lipophilicity and the ability to cross plasmatic membranes. 
Although this is an initial study, these results reveal that 
 [CoIII(L1)2]Cl has the potential to be used as a metal drug. 
Furthermore, these data may be useful for future studies in 
the case of evaluating the absorption and biodistribution of 
this complex and its analogs in vivo.

The  L1 and  [CoIII(L1)2]Cl complex were also evaluated 
for human intestinal absorption (HIA), blood–brain barrier 
penetration (BBB), and inhibition of isoenzymes belonging 
to the CYP450 system as a preliminary theoretical study 
(Table 2). The results showed that both candidates had high 
absorption in the intestine, none of the compounds were 
able to cross the blood–brain barrier as well as none inhib-
ited the CYP2D6 and CYP3A4 isoenzymes belonging to 
the CYP450 system. Furthermore, the toxicological effects 
(irritant, mutagenic, carcinogenic, and tumorigenic) were 
also evaluated. In general, the  L1 has higher toxic effects 
than the  [CoIII(L1)2]Cl complex, which demonstrates the 
importance of complexation with a trace metal and shows 
that the introduction of the metal cobalt ion reduces the toxic 
effects of the free ligand [86].

Although the complex presents some unsatisfactory 
results as a potential to be carcinogenic and does not follow 
all the rules of Lipinsk, it still represents a candidate to the 
development of antiviral drugs. Some drugs used to treat 
diseases also violate specific rules and continue to be used 
as medications, such as ivermectin, tenofovir dis-oproxil 
fumarate (TDF), ceftadizime, and isoniazid. Acarbose, 
Chloroquine, Lopinavir, Amodiaquine are predicted by the 
web server Admetsar 2.0 as hepatotoxic and mutagenic [87].

Conclusion

In summary, we have shown that the  [CoIII(L1)2]Cl inhib-
its the post-entry stage of CHIKV infection, potentially by 
interacting and interfering with the nsP4 activity. Due to the 
lack of studies with CHIKV nsP4, there is no positive con-
trol for in vitro assays, and also, there is no well-established 
structure yet. Therefore, we suggest that  [CoIII(L1)2]Cl might 
interact with nsP4 and interferes with its activity, however, 
we acknowledge that interpretation of these experiments is 
challenging and further studies are necessary.

Table 1  In silico evaluation of Lipinski parameters of  L1 and 
 [CoIII(L1)2]Cl complex

a MW: Molecular Weight
b MR: Molar Refractivity
c TPSA: Topological Polar Surface Area
d Consensus log Po/w = Average of all five predictions
e log Po/w = partition coefficient between n-octanol/water
f Class = Ali classes: insoluble < –10 < poor < –6 < moderately solu-
ble < –4 < soluble < –2 < very soluble < 0 < highly
g Lipinski = MW ≤ 500; log  Po/w ≤ 5; H–bond donors ≤ 5; H–bond 
acceptors ≤ 10

Parameters L1 [CoIII(L1)2]Cl

Physicochemical properties
 Formula C14H14N4S C30H30N8S2ClCo
  MWa 270.35 g/mol 661.13 g/mol

Num. rotatable bonds 5 6
 Num. H–bonds acceptors 2 2
 Num. H–bonds donors 2 2
  MRb 81.92 191.87
  TPSAc 81.40 Å2 133.96 Å2

Lipophilicity
 log Po/w

d,e 2.49 2.16
Water solubility
 log S –3.44 –9.07
  Classf Soluble Poorly soluble

Druglikeness
  Lipinskig Yes No: MW > 500
 Bioavailability score 0.55 0.55

Table 2  Data on the main 
pharmacokinetic and toxicology 
properties of  L1 and  [CoIII(L1)2]
Cl complex

Compound HIA BBB 
penetra-
tion

CYP3A4 
inhibitor

CYP2D6 
inhibitor

Reproductive Mutagenic Tumorigenic Irritant

L1 High No No No High High Low Low
[CoIII(L1)2]Cl High No No No Low Median Low Low
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It is also important to emphasize the broad antimicro-
bial activities of this compound since it has already shown 
activity against Mycobacterium tuberculosis [34], E. fae-
calis, S. salivarius, S. sanguinis, S. mitis, S. mutans, and L. 
paracasei [33]. In this way, this compound could be applied 
for the treatment of multiple diseases caused by such bac-
teria and the chikungunya virus, which can be interesting 
for the pharmaceutical industry and generate great social 
impact. Although metallodrugs are widely exploited in can-
cer treatment, some antimicrobials and skin diseases, there is 
no metallodrug licensed to treat any virus infection. Herein 
we presented data about the antiviral activity and suggest 
potential MOA of  [CoIII(L1)2]Cl against chikungunya, thus 
reinforcing the relevance of these results to the current state 
of antiviral research and the potential of this class of metal 
complexes as a proposed therapeutic molecule candidate to 
be further explored.

It is worth to mention that there are only a few published 
works using Cobalt(III) coordinated compounds as thera-
peutic molecules, highlighting the relevance to the published 
data exploring such combination. From a vast bibliography, 
with several papers exploring this coordination, we can then 
make a better scientific judgment whether the application of 
these complexes is worthwhile or not for in vivo and clini-
cal trials, reinforcing the application of these data for the 
research landscape of therapeutic targets against chikungu-
nya fever.

The conclusions obtained from molecular docking stud-
ies demonstrated a significant binding of the complex 
with CHIKV NSP4 structures which is consistent with the 
in vitro antiviral activity. Furthermore, the antiviral activity 
of  [CoIII(L1)2]Cl against other viruses which impact human 
health may be the target of future investigation. Consider-
ing the pivotal role of RdRp in Alphavirus replication, our 
results may contribute to future studies on inhibitors of nsP4, 
representing a relevant contribution to the field of antiviral 
research against CHIKV. The significant antiviral profile 
together with ADME-Tox results provides an interesting 
approach for future in vivo studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00775- 022- 01974-z.
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