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Abstract 
Since the characterization of cytochrome c552 as a multiheme nitrite reductase, research on this enzyme has gained major 
interest. Today, it is known as pentaheme cytochrome c nitrite reductase (NrfA). Part of the  NH4

+ produced from  NO2
− is 

released as  NH3 leading to nitrogen loss, similar to denitrification which generates NO,  N2O, and  N2.  NH4
+ can also be used 

for assimilatory purposes, thus NrfA contributes to nitrogen retention. It catalyses the six-electron reduction of  NO2
− to  NH4

+, 
hosting four His/His ligated c-type hemes for electron transfer and one structurally differentiated active site heme. Catalysis 
occurs at the distal side of a Fe(III) heme c proximally coordinated by lysine of a unique CXXCK motif (Sulfurospirillum 
deleyianum, Wolinella succinogenes) or, presumably, by the canonical histidine in Campylobacter jejeuni. Replacement 
of Lys by His in NrfA of W. succinogenes led to a significant loss of enzyme activity. NrfA forms homodimers as shown 
by high resolution X-ray crystallography, and there exist at least two distinct electron transfer systems to the enzyme. In 
γ-proteobacteria (Escherichia coli) NrfA is linked to the menaquinol pool in the cytoplasmic membrane through a penta-
heme electron carrier (NrfB), in δ- and ε-proteobacteria (S. deleyianum, W. succinogenes), the NrfA dimer interacts with 
a tetraheme cytochrome c (NrfH). Both form a membrane-associated respiratory complex on the extracellular side of the 
cytoplasmic membrane to optimize electron transfer efficiency. This minireview traces important steps in understanding the 
nature of pentaheme cytochrome c nitrite reductases, and discusses their structural and functional features.
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DNRA  Dissimilatory nitrate reduction to ammonium
HAO  Octaheme hydroxylamine oxidoreductase
HDH  Hydrazine dehydrogenase
MCD  Magnetic circular dichroism
NMR  Nuclear magnetic resonance
NrfA  Pentaheme cytochrome c nitrite reductase
NrfAec  Nitrite reductase of Eschericia coli
NrfAgl  Nitrite reductase of Geobacter lovleyi
NrfAsd  Nitrite reductase of Sulfurospirillum deleyianum
NrfAws  Nitrite reductase of Wolinella succinogenes
PDB  Protein data bank; https:// www. rcsb. org
UV/Vis  Ultraviolet/visible

Introduction

The focus of this minireview is on multiheme c-type 
cytochromes, written in honor of Isabel Moura and former 
SBIC president José Moura (2010–2012) from the Univer-
sidade Nova de Lisboa in Portugal on the occasion of their 
70th birthday. In my view this topic seems well suited, con-
sidering the numerous important discoveries and contribu-
tions by Isabel and José to our understanding of transition 
metal enzymes, many of them key components of the global 
nitrogen cycle, carrying Fe, Cu, or Mo ions at the active site 
[1–16]; for a complete list of their publications please visit 
https:// sites. fct. unl. pt/ biolo gical chemi strya tfctu nl/ pages/ 
people accessed on 30 Nov 2021.

In c-type cytochromes the heme is covalently attached to 
the polypeptide backbone via two thioether (R–S–R′) bonds 
formed by the vinyl groups of heme and cysteine side chains 
in a Cys-X-X-Cys-His pentapeptide motif; “X” denotes a 

miscellaneous amino acid, and the histidine residue coordi-
nates on the proximal binding site of the heme iron (Fig. 1). 
Cytochromes c possess a wide range of properties, they 
function as electron transfer proteins and are involved in 
many important redox processes [17–35].

In this contribution I will center on the pentaheme 
enzyme cytochrome c nitrite reductase (NrfA), a key player 
within the global nitrogen cycle [36–46]. It catalyses the 
six-electron reduction of nitrite  (NO2

−) to ammonium 
 (NH4

+) (Eq. 1), as part of the dissimilatory nitrate reduction 
to ammonium (DNRA) process, that competes with deni-
trification [47–57]. Notably, NrfA can also convert sulfite 
 (SO3

2−) to hydrogen sulfide  (H2S), an important reaction of 
the microbial sulfur cycle (Eq. 2), performed by dissimila-
tory sulfite reductase employing the coupled siroheme-[4Fe-
4S] center for catalysis [58–62].

Unlike the process of denitrification, DNRA, also known 
as nitrate/nitrite ammonification, conserves bioavailable 
nitrogen in the system, producing soluble  NH4

+ rather 
than chemically unreactive dinitrogen gas  (N2) (Scheme 1) 
[47–57].

With the report by Fujita on soluble cytochromes in 
Enterobacteriaceae in 1966, followed by the purification and 
description of cytochrome c552 as hexaheme nitrite reduc-
tase in 1986 [63–65], the stage was set for an all-out attack 
on the problem of microbial nitrite to ammonia reduction 
by numerous pioneering researchers. Among them Isabel 
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Fig. 1  Left: structure of heme c, with the covalently attached heme group present in cytochromes c. Right: structure of cytochrome c (PDB 
1HRC), with Met80 and His18 ligated to iron [20]

https://www.rcsb.org
https://sites.fct.unl.pt/biologicalchemistryatfctunl/pages/people
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and José Moura, who applied advanced spectroscopic (EPR, 
Mössbauer) and electrochemical techniques to unravel struc-
tural and functional properties of these complex multi-cen-
tered metalloenzymes [1, 6, 8, 10], see also recent review 
entitled “How Biology Handles Nitrite” [54]. Here I will 
give an account of my personal experience in this exciting 
field of Bioinorganic Chemistry, and I will mention some 
of the great moments in this endeavour. In view of the vast 
literature in the field of c-type cytochromes, I suggest for 
introduction the monographs by Ambler [18], Pettigrew 
and Moore [19], and Salgueiro and Dantas [31], for deeper 
insight into the complex topic, the informative articles by 
experts are recommended [21–35]. My apologies go to all 
colleagues who made significant contributions to our current 
knowledge of cytochrome c nitrite reductases and related 
enzymes that will not be discussed here. These omissions 
are not intentional, they are the consequence of time and 
space. Clearly, the emphasis is on the structural and func-
tional properties of the pentaheme nitrite reductases from 
Sulfurospirillum deleyianum and Wolinella succinogenes. 
Yet this minireview will hopefully illustrate what one may 
learn about studying the structure and function of such an 
important and intensively studied enzyme.

Looking back: Tomar 1979—Jean Le Gall—
cytochrome c3—Desulfovibrio

I did my Ph.D. work under the supervision of Peter Hem-
merich [66] at the newly founded University of Konstanz, 
in an area of research nowadays called Bioinorganic Chem-
istry [67–74]. Hemmerich had fruitful collaborations with 
scientists from around the world: Helmut Beinert (Madison), 
Anders Ehrenberg (Stockholm), Jean-Marc Lhoste (Paris), 
Vincent Massey (Ann Arbor), Israel Pecht (Rehovot), Jack 
Spence (Logan), and Cees Veeger (Wageningen), to name a 
few. Advanced spectroscopic techniques, among them mag-
netic resonance methods as well as stopped-flow and rapid 
quench kinetics in the millisecond range, were established 
in Konstanz and applied to investigate the structure and 
function of complex flavin and metal-dependent enzymes. 
I started my work with two plant proteins, the blue multi-
copper enzyme ascorbate oxidase and the type 1 Cu protein 

mavicyanin together with Augusto Marchesini (Milan) 
[75–77].

In 1979 I attended a workshop in Tomar (Portugal) enti-
tled “Metal Ions in Biology”, sponsored by NATO Advanced 
Study Institutes, and organized by António Xavier (Lisbon) 
and Allen Hill (Oxford) (Fig. 2). It was in Tomar where I 
met Isabel and José Moura for the first time. Both, together 
with Helena Santos and Isabel Coutinho, were working hard 
to keep us participants happy. Clearly, this meeting became a 
memorable milestone in the history of Bioinorganic Chem-
istry. Four years later Ivano Bertini (Florence), Harry Gray 
(Pasadena), Bo Malmström (Göteborg), and Helmut Sigel 
(Basel) initiated the International Conference on Biological 
Inorganic Chemistry (ICBIC) series in Florence [78, 79].

For 2 weeks, leading researchers presented their work 
on metal-dependent enzymes in Tomar. In parallel, distin-
guished experts offered excellent—however quite exhaust-
ing—lectures on physical techniques, such as magnetic 
circular dichroism (MCD), Mössbauer, nuclear magnetic res-
onance (NMR), and electron paramagnetic resonance (EPR) 
spectroscopy, and not to forget the application of direct 
electrochemical methods to study electron transfer (ET) 
and catalysis [79]. I recall a crude three-dimensional model 

+VNO3
- → +IIINO2

- → -IIINH4
+                               DNRA  

+VNO3
- → +IIINO2

- → +IINO → +IN2O → N2        Denitrification
  N2 → -IIINH3                                                        Nitrogen Fixation

Scheme 1  Key processes of the global nitrogen cycle: dissimilatory nitrate reduction to ammonium (DNRA), denitrification, and nitrogen fixa-
tion; changes in the oxidation state of nitrogen, as well as in equations, are indicated by roman numerals

Fig. 2  Participants of the workshop “Metal Ions in Biology”, spon-
sored by NATO Advanced Study Institutes, held September 16–28, 
1979 in Tomar, Portugal [79]. The photograph shows António Xavier, 
Allen Hill, Isabel and José Moura, Helena Santos, Isabel Coutinho, 
Jean Le Gall, and numerous pioneers of Bioinorganic Chemistry 
mentioned in the text
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presented by Richard Haser and colleagues (Marseille) for 
the structure of the tetraheme ET protein cytochrome c3. 
The protein had been isolated from Desulfovibrio desul-
furicans, and its structure was solved at 2.5 Å resolution 
[80–82]. The molecule consisted of a single polypeptide 
chain wrapped around a compact core of four non-parallel 
heme centers. Alignment of the amino acid sequences of 
cytochrome c3 from different sources suggested that the 
structure reported by Haser and colleagues was characteris-
tic of the cytochrome c3 group which became the target of 
numerous NMR studies by Xavier and his associates [26, 
83–86]. Notably, in the course of our early spectroscopic and 
structural studies of metal-dependent proteins and enzymes 
in sulfate reducing bacteria, we isolated cytochrome c3 from 
the periplasmic fraction of D. desulfuricans (strain Essex 
6) and Oliver Einsle solved its three-dimensional struc-
ture. Its major physiological function appeared to be that 
of an electron carrier for the periplasmic hydrogenase, and 
Julia Steuber provided evidence that it interacted with the 
membrane-associated dissimilatory sulfite reductase (DSIR). 
In addition, a nonaheme cytochrome c from this organism 
could be structurally characterised by Günter Fritz in Kon-
stanz [87–90]. Last but not least, the structural origin of 
nonplanar heme distortions in Fe(III) cytochromes c3 was 
investigated by resonance Raman spectroscopy together with 
John Shelnutt (Albuquerque), Isabel and José [91].

Next, I have to mention microbiologist Jean Le Gall from 
the Laboratoire de Chimie Bacterienne (Marseille) whom I 
met in Tomar for the first time. He also held a position as 
Research Professor of Biochemistry and Microbiology at the 
Department of Biochemistry, University of Georgia (Athens) 
[92, 93]. As a graduate student he discovered a new species 
of bacteria which he named Desulfovibrio gigas (gigas, latin, 
meaning gigantic). These bacteria are so-called anaerobes 
and extremely difficult to grow. Clearly, Jean Le Gall has to 
be regarded as one of the pioneering researchers in the field 
of Inorganic Microbial Sulfur Metabolism, and he turned 
into one of the most influential collaborators of Isabel and 
José Moura, and António Xavier and associates [94–107].

Admittedly, when I was trained as a chemist at the Uni-
versities of Basel and Konstanz in the 1960- and 70-ties 
(with a strong preference for transition metal coordination 
chemistry), anaerobic bacteria of the genus Desulfovibrio, 
microbial bioenergetics as well as biogeochemical cycles 
of the elements nitrogen and sulfur were not part of the 
program. It was not until 1986, when Andreas Zöphel fin-
ished his doctorate thesis on microbial sulfur respiration 
by “Spirillum 5175”. In Lisbon, supported by the Gulben-
kian foundation, Andreas learned how to handle anaerobic 
bacteria and how to isolate and purify dioxygen sensitive 
enzymes. “Spirillum 5175” uses the reduction of elemental 
sulfur  (S0) to hydrogen sulfide  (H2S) for energy conserva-
tion (sulfur respiration). Together with Norbert Pfennig, 

Professor of Microbiology in Konstanz, and graduate student 
Wolfram Schumacher, “Spirillum 5175” was described as 
the type strain of the new genus and species S. deleyianum 
[108–110]. Thanks to Norbert Pfennig and his associates, 
Heribert Cypionka, Bernhard Schink, and Friedrich Widdel, 
and inspired by pioneering researchers of Microbiology and 
Bioinorganic Chemistry, either through experiments in the 
laboratory, or by fruitful discussions at international confer-
ences, new and fascinating areas of research with exciting 
discoveries arose. Enzymes with novel transition metal cent-
ers (Fe, Cu, Mo, W) and unique catalytic properties could be 
purified from both anaerobic and aerobic microorganisms. 
These metal-dependent enzymes, among them two multi-
centered key players of the global nitrogen and sulfur cycle, 
cytochrome c nitrite reductase and dissimilatory sulfite 
reductase, were structurally characterized and their mecha-
nism of action was investigated by applying biochemical and 
spectroscopic methods [111, 112].

To finish my backward glance, close to four decades after 
the Tomar meeting, in 2015, both José and I were invited 
to participate in the workshop “Feeding the World in the 
twenty-first Century: Grand Challenges in the Nitrogen 
Cycle”. The workshop was initiated by Nicolai Lehnert 
(University of Michigan), with co-organizers Gloria Coruzzi 
(New York University), Eric Hegg (Michigan State Univer-
sity), Lance Seefeldt (Utah State University), and Lisa Stein 
(University of Alberta). In short, the purpose of this work-
shop was to identify ways that chemists can help the scien-
tific community understand and manage the nitrogen cycle 
to improve agriculture and environmental quality [113].

Multiheme proteins and enzymes

Heme proteins (Fe protoporphyrin IX complexes) exhibit an 
impressive range of biological functions, such as ET reac-
tions, dioxygen  (O2) transport and storage,  O2 reduction to 
hydrogen peroxide  (H2O2) or water  (H2O), and the oxygen-
ation of organic substrates (R–H → R–OH). The range of 
functions can be extended further by linking heme groups 
with other redox active cofactors and metal sites plus other 
heme centers. These combinations will permit heme cofac-
tors to couple ET with other processes, such as the translo-
cation of protons or the reduction/oxidation of molecules 
both inside and outside of the cell. In aerobic and anaerobic 
microbes, especially those of the biological nitrogen and sul-
fur cycles, there are many c-type cytochromes with multiple 
heme centers per polypeptide chain [2, 3, 5, 23, 25–32, 35, 
55, 98, 103, 114–122]. Early examples include the octaheme 
hydroxylamine oxidoreductase (HAO) and related proteins 
[123–129], the tetraheme NapC/NirT/TorC family [130], 
the 16-heme-containing protein Hmc (high molecular mass 
cytochrome c) from sulfate-reducing bacteria [131, 132], 
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the octaheme tetrathionate reductase from Shewanella onei-
densis [133, 134], the tetraheme cytochrome c3 described 
in the previous section, and the pentaheme cytochrome c 
nitrite reductase, the central enzyme of this review. These 
multiheme proteins form structurally related families, in 
which the positions of the heme can often be overlaid, even 
when there is little sequence conservation between members 
of the family, e.g., pentaheme nitrite reductase NrfA, octa-
heme HAO, and flavocytochrome fumarate reductase [22, 
133–135]. In 1999, Barker and Ferguson argued that only 
by fixing the hemes spatially via their thioether bonds can 
such clustering of hemes be achieved [22]. Furthermore, 
the dense packing of hemes allows rapid electron transfer 
between the heme centers [136], an essential part of the 
function of these cytochromes. This molecular arrangement 
is advantageous for enzymes such as NrfA, which catalyses 
the six-electron reduction of nitrite (Eq. 1), or the group of 

cytochrome P460 enzymes, which catalyse the oxidation of 
hydroxylamine  (NH2OH) [45] (Fig. 3).

Finally, one of the recent important scientific discoveries in 
the global nitrogen cycle has to be brought forward, the anam-
mox process (Anaerobic Ammonium Oxidation) described by 
Gijs Kuenen and associates (Delft) in 1995 [137, 138]. On a 
global scale, anammox bacteria significantly contribute to the 
removal of fixed nitrogen from the environment [139]. The pro-
cess depends on multiheme proteins that structurally resemble 
the ones known from other microorganisms, but that exhibit 
new functions. In the three-step process,  NH4

+ becomes oxi-
dized by anaerobic ammonium-oxidizing bacteria, they can 
oxidize ammonium with nitrite as the oxidant instead of  O2 
and form  N2 as the end product (Eqs. 3–6).

Fig. 3  Structural comparison of pentaheme cytochrome c nitrite 
reductase of W. succinogenes (NrfAws) and octaheme hydroxy-
lamine oxidoreductase of Nitrosomonas europaea (HAO). Left: 
NrfAws, functional homodimer; PDB 1FS7). Right: HAO, functional 
homotrimer; PDB 1FGJ). Below: Superposition of the heme groups 
of NrfAws (gray) and of HAO (black) numbered according to their 

attachment to the protein chain. With the exception of the active site 
heme (one in NrfA, four in HAO), all heme groups form so-called di-
heme elbow motifs (circles), which are connected via a parallel stack-
ing arrangement like in split-Soret cytochrome c (ovals) [104, 123, 
163]
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Notably, substrate conversion proceeds through poten-
tially toxic intermediates nitric oxide (NO) and hydrazine 
 (N2H4). The anammox machinery resides in a special and 
unique cell organelle, the Anammoxosome. Here, energy 
released in the anammox reaction is used to drive ATP syn-
thesis, powered by novel membrane-bound protein com-
plexes [140, 141]. The end product  N2 is produced from the 
oxidation of intermediate  N2H4, with the octaheme protein 
hydrazine dehydrogenase (HDH) involved in catalysis which 
appears to be related to octaheme HAO. HDH is a soluble 
multi-protein complex (1.7 MDa) that is not spatially asso-
ciated with the anammoxosome membrane. The enzyme of 
Kuenenia stuttgartiensis was characterized as a covalently 
cross-linked homotrimeric octaheme protein. The HDH 
trimers build an octameric architecture, with each octamer 
harbouring an amazing 192 (!) c-type heme centers. It is 
concluded that the multi-protein complex observed both 
X-ray crystallography and Cryo-Electron Microscopy, prob-
ably represents the functionally relevant oligomeric state of 
HDH [142–146].

Sulfur respiration and reduction of nitrite 
to ammonia in Sulfurospirillum deleyianum 
and Wolinella succinogenes

When asking myself how I, a coordination chemist by 
training, got into the field of metal-dependent proteins and 
enzymes in aerobic and anaerobic microorganisms, clearly 
all my excursions into microbiology are linked, from the 
early experiments on sulfur respiration to cytochrome c 
nitrite reductase and multiheme c-type cytochromes, with 
Norbert Pfennig. Together with Regina Bache, a survey 
was made of components of sulfur-reducing bacteria that 
can be detected by EPR spectroscopy around 10 K [147]. 
Among the organisms investigated was a small spirillum 
later described as S. deleyianum, which turned out to be a 
model organism for (1) studying sulfur respiration, that is 
the reduction of elemental sulfur  (S0) to hydrogen sulfide 
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 (H2S), and (2) exploring the structural and functional char-
acteristics of DNRA enzyme cytochrome c nitrite reductase 
(NrfA) [39, 43, 44, 108–112, 147–157]. Basically, DNRA is 
a short circuit that bypasses the processes of denitrification 
 (NO3

− →  N2) and nitrogen fixation  (N2 →  NH3) (Scheme) 
[155]. Dihydrogen  (H2) and formate  (HCOO−) are the pre-
dominant electron donors for various nitrite-ammonifying 
bacteria including S. deleyianum and W. succinogenes. 
Sulfide  (S2−) can serve as electron donor as well, thus con-
necting the biogeochemical cycles of nitrogen and sulfur 
[150]. In this case, the presence of a highly active nitrite 
reducing system might help to dispose toxic  NO2

−. When 
grown with  NO3

−,  NO2
−, or  S0 as terminal electron accep-

tor, S. deleyianum expressed a red protein with intense EPR 
resonances centered at g ≈ 3.85 and 9.12 (recorded in per-
pendicular mode) and at g ≈ 9.8 (recorded in parallel mode), 
localized mainly in the membrane fraction. Under reduc-
ing conditions  (Na+ dithionite) the prominent cytochrome 
in the membrane fraction exhibited absorption maxima at 
553, 522.5 and 426 nm, and notably, both the soluble and 
the membrane fraction of S. deleyianum showed high nitrite 
reductase activity [108, 109, 147]. Following the intense 
EPR signal at g 3.85, Wolfram Schumacher isolated a heme-
dependent nitrite reductase from both the soluble and mem-
brane fraction of S. deleyianum and related microorganism 
W. succinogenes; it reduced  NO2

− to  NH4
+ with a specific 

activity of up to 1050 µmol  NO2
− (protein min)−1 (Fig. 4) 

which was key to build a nitrite sensor based on a highly 
sensitive nitrite reductase mediator-coupled amperometric 
detection [151–153]. The UV/Vis spectrum of the enzyme 
was typical for c-type cytochromes with absorption maxima 
at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 
and 553 nm (reduced). The EPR spectrum (perpendicular 
mode) revealed resonances at g 9.82, 3.85, 3.31, 2.95, 2.30, 
and 1.49, resulting from high-spin and low-spin Fe(III) 
heme centers, as reported for other nitrite reductases puri-
fied from D. desulfuricans, W. succinogenes, or Escherichia 
coli [151]. Early on, the characteristic signal at g 3.85, which 
could also be observed in EPR spectra of whole cells of 
S. deleyianum grown with  S0, was suggested to originate 
from a magnetic interaction between high-spin and low-spin 
Fe(III) hemes [158].

The view of the existence of a family of hexaheme nitrite 
reductases, based on their similar sizes, specific activities, 
UV/Vis and EPR spectral properties, had to be abandoned 
in 1993 when the amino acid sequence of the E. coli enzyme 
became available. During this time both Jeff Cole (Univer-
sity of Birmingham) and I had suggested, based on sequence 
and spectroscopic data, that NrfA of E. coli [159, 160] as 
well as of S. deleyianum and W. succinogenes hosted only 
four c-type hemes each [152]. Notably, the E. coli NrfA 
sequence revealed the presence of just ten cysteine residues, 
eight arranged as four conventional CXXCH heme-binding 
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motifs. However, in a consecutive publication, Cole and 
associates provided convincing evidence for a fifth heme 
covalently attached to the remaining two cysteine resi-
dues within a novel cysteine-lysine Cys-Trp-Ser-Cys-Lys 
motif, and that the lysine residue is required for normal 
rates of nitrite to ammonia reduction [161]. Oliver Einsle, 
together with Albrecht Messerschmidt and Robert Huber 
(Max Planck Institute of Biochemistry, Martinsried), gave 
the final answer to the question about the number of hemes 
and nature of heme binding motifs by solving the three-
dimensional structure of cytochrome c nitrite reductases of 
S. deleyianum (1.9 Å resolution) [162] and of W. succino-
genes (1.6 Å) [163]. The molecular architecture showed a 
homodimer with five hemes anchored in each subunit, four 
of them bound to the protein with the conventional Cys-
X-X-Cys-His motif, and one with the novel cysteine-lysine 
Cys-X-X-Cys-Lys motif (Fig. 5) [164]. These characteristic 
basic features of NrfA, detected in nitrite reductase of S. 
deleyianum and W. succinogenes, have been also found in 
the NrfA structures of E. coli [165, 166], D. desulfuricans 
ATCC27774 [167, 168], S. oneidensis [169], the  NrfA4H2 
complex of D. vulgaris [170, 171], and most recently in 
NrfA of the bacterium Geobacter lovleyi [172, 173].

However, recent investigations of the diversity and phy-
logeny of the NrfA enzyme, analysing 272 full-length NrfA 
protein sequences, distinguished 18 NrfA clades, with 3 
clades having the conventional CysX-X-Cys-His motif in the 
first heme-binding domain, whereas all other clades had the 
Cys-X-X-Cys-Lys motif in this location [174, 175]. Earlier 

studies on the ε-proteo-bacterium Campylobacter jejeuni 
did already indicate that the putative nrfA gene carried the 
conventional Cys-X-X-Cys-His motif, and not the Cys-X-
X-Cys-Lys motif present in E. coli, S. deleyianum, or W. 
succinogenes [176].

Structure of pentaheme cytochrome c nitrite 
reductase

Note that the main focus will be on the structural and func-
tional properties of the cytochrome c nitrite reductase of 
ε-proteobacteria W. succinogenes (NrfAws) and S. deley-
ianum (NrfAsd); for a more comprehensive analysis the 
article by Oliver Einsle in Methods of Enzymology is rec-
ommended [164].

Overall structure and protein architecture

Both NrfAsd (PDB 1QD8) [162] and NrfAws (PDB 1FS7) 
[163] are pentaheme enzymes encoded by a single gene 
termed nrfA, with a protoporphyrin IX covalently linked to 
the protein backbone at the active site. The protein forms a 
homodimer with dimensions of ≈ 100 Å × 80 Å × 50 Å, in 
which the ten covalently attached heme groups are closely 
packed (Figs. 3, 5). It folds into one compact domain, with 
α-helices as the predominant secondary structural motif, 
ranging from short helical turns to four long helices at the 
carboxy-terminal end of the peptide chain; ß-sheet structures 

Fig. 4  Specific nitrite reductase activity and substrate spectrum of 
cytochrome c nitrite reductase of S. deleyianum (NrfAsd). With nitro-
gen monoxide (NO), hydroxylamine  (NH2OH), and O-methyl hydrox-
ylamine  (NH2OCH3) ammonium  (NH4

+) was the product; in the case 
of nitrous oxide  (N2O), dinitrogen  (N2) was formed most likely; with 
sulfite  (SO3

2−) hydrogen sulfide  (H2S) was the only product [60, 156]

Fig. 5  Overall structure of the cytochrome c nitrite reductase dimer 
(NrfAsd PDB 1QD8; NrfAws PDB 1FS7); front view of the dimer, 
dimer formation is mediated by the central helical segments. The 
peptide chain packs into a compact, predominantly α-helical fold 
that can be subdivided into the central part, where long helices form 
the dimer interface, and the heme containing part, where the peptide 
chain wraps tightly around the cofactors; Fe ions in red, heme groups 
in green,  Ca2+ in grey close to active site heme; the five hemes in the 
monomer are in close contact, with Fe–Fe distances of between 9.3 
and 12.8 Å, and 11.7 Å for hemes at dimer interface [162–164]
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are only found in two short antiparallel strands, where one 
is part of a funnel-like cavity leading to the active site. The 
dimer interface is dominated by three long α-helices in each 
monomer, and although the area of this interface amounts 
to only ≈ 10% of the total surface area of the protein, the 
arrangement is highly conserved. The five heme groups in 
each monomer are sufficiently close to assure rapid intramo-
lecular electron transfer that also bridges the dimer through 
the adjacent heme group 5 from each monomer. Heme 
center 1 is the active site of the enzyme, showing the typical 
scheme found in c-type cytochromes, with thioether bonds 
to the Cys residues of the heme binding motif. It has a Lys 
residue to replace the conventional His as a proximal ligand 
to the heme iron. The Fe atom is coordinated by the  Nζ atom 
 (sp3 N) of Lys (Fe–N distance 2.1 Å/NrfAws), and the distal 
axial position remains open for interaction with the sub-
strate. As expected from amino acid sequence comparisons, 
the structures of NrfA from both S. deleyianum [162] and 
W. succinogenes [163] are very similar (root mean square 
displacement for  Cα atoms 1.19 Å). The main differences 
in the peptide chain are two insertions in NrfAsd, which 
are absent in the NrfAws sequence. Apart from these inser-
tions and the additional residues at the N terminus of the 
NrfAws polypeptide chain, a further major difference is the 
C-terminus of the chain, which forms an α-helix in NrfAsd 
and a short two-stranded β-sheet in NrfAws. The residues 
that surround the active site and form the substrate/product 
channel are completely conserved [162–164].

In many multiheme c proteins, heme groups pack into 
distinct and recurring motifs that were recognized early on 
in electron transfer proteins, e.g., cytochrome c554 from N. 
europaea [177] and enzymes, such as NrfA. They were clas-
sified in particular into a parallel and a perpendicular stack-
ing interaction (Fig. 3). These two types of interactions are 
combined in the proteins to form efficient electron transfer 
chains. The five hemes in the NrfA monomer are in close 
contact, with Fe–Fe distances of between 9 and 12.8 Å. They 
are arranged as a group of three, almost coplanar hemes (1, 
3, 4), with heme 1 forming the active site. Hemes 2 and 5 
are farther apart and are not coplanar with hemes 1, 3 and 4. 
All hemes, with the exception of heme 1, are His/His coor-
dinated; with edge-to-edge distances below 4 Å, hemes 1, 3 
and 4 are close enough to allow direct π-electron interaction 
of the porphyrin rings. The propionate side chains of heme 
1 form part of the active-site cavity, while those of heme 4 
are exposed to the solvent and those of heme 3 are hydrogen-
bonded inside the protein. All porphyrins show a slight dis-
tortion from planarity, most strongly in heme 2, and least in 
the active-site heme 1. Heme 2 could function as the entry 
point for electrons, see discussion on the complex between 
NrfA and its redox partner. The dimer interface is dominated 
by three long α-helices per NrfA monomer. Hemes 5 interact 
across the dimer interface which is even closer than hemes 

2 and 3 within each monomer. The short Fe–Fe distance of 
11.7 Å will allow efficient electron transfer across the NrfA 
dimer interface [136] which might be functionally relevant. 
Furthermore, both these hemes interact directly through 
hydrogen bonds between their propionate side chains. Note 
that the relative orientation of the five heme groups in Nrf-
Asd corresponds exactly to the one observed in NrfAws, 
including the fact that heme 1 is the five-coordinate active 
site heme group, clearly all the structurally and functionally 
important features are conserved between both species. The 
five heme groups of NrfAws align with those of NrfAsd 
within a root mean square displacement of 0.12 Å for all 
atoms [162–164].

Fe–Fe distances between the heme groups are in a range 
commonly found in redox proteins and are short enough to 
allow for direct electron tunneling between the individual 
heme centers [136]. Whereas heme 1 is the site of nitrite 
binding, it is more difficult to define the entry point for elec-
trons delivered by the physiological redox partner, the tetra-
heme c-type cytochrome NrfH [178, 179]. All heme groups 
cluster on one side of the dimer, and heme 2 as well as heme 
5 have one edge of the porphyrin plane exposed to the sol-
vent, although for heme 5, most of this area is in the dimer 
interface and is covered upon dimerization. Furthermore, 
the area where heme 2 reaches the protein surface is located 
within a patch of strong positive surface potential in the 
NrfAws structure. In S. deleyianum, the membranous nitrite 
reductase complex was described to be less stable than in W. 
succinogenes [152], and in accordance with this, the positive 
patch surrounding heme 2 is less pronounced. Thus, heme 
2 has been proposed to be the most likely entry point for 
electrons into the nitrite reductase of both S. deleyianum 
and W. succinogenes [162–164]. The electropositive patch 
in the vicinity of heme 2 is conserved in the E. coli enzyme 
(NrfAec), however, it is significantly less pronounced than 
in NrfAsd and NrfAws. The size of the positive patch is 
reduced in the NrfAec structure by the substitution of an 
adjacent arginine residue (Arg 207/NrfAws; Arg 206/Nrf-
Asd) for a glutamine residue (Gln 205). Although weak, this 
represents one of the few positive surface patches apart from 
that at the site of substrate entry to heme 1. This weakness 
may relate to the observation that, it has not been possi-
ble to isolate and crystallize stable complexes of NrfAsd, 
NrfAws, or NrfAec with its electron donors, either NrfH or 
NrfB, and to solve their three-dimensional structures [152, 
165, 180]. A significant step forward in understanding the 
complex architecture of the complete cytochrome c nitrite 
reductase machinery came from the work by Inês Pereira, 
Margarida Archer, and associates (Lisbon) who solved the 
X-ray structure of the stable complex between the reductase 
NrfA and its electron donor NrfH from Desulfovibrio vul-
garis. One NrfH molecule interacts with one NrfA dimer in 
an asymmetrical manner, forming a large membrane-bound 
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complex with an overall α4ß2 quaternary arrangement. The 
menaquinol-interacting NrfH heme is pentacoordinated, 
bound by a methionine from the CXXCHXM sequence, with 
an aspartate residue occupying the distal position. The NrfH 
heme that transfers electrons to NrfA has a lysine residue 
from the closest NrfA molecule as distal ligand [170, 171]. 

Cytochrome c nitrite reductase does not only convert 
 NO2

− to  NH4
+, but also the potential reaction interme-

diates NO and  NH2OH, as well as  N2O,  NH2OCH3, and 
 SO3

2− (Fig. 4). However, intermediates are not released 
during nitrite turnover. Obviously, the active site cavity can 
accommodate both anions and uncharged molecules, and 
will release the  NH4

+ cation only after the full six-electron 
reduction of  NO2

−. The preference for anions is reflected by 
a positive electrostatic potential around and inside the active 
site cavity, induced by the residues forming the cavity, Tyr 
127, His 282, Arg 113, Gln 281, and Lys 279 (numbering 
NrfAsd). These residues serve as stores for protons required 
for the reduction of  NO2

− to  NH4
+ (Eq. 1) and can be resup-

plied by water molecules. Considering the good accessibility 
of the active site for  H2O and the presumably lower pH on 
the periplasmic side of the cytoplasmic membrane, the prod-
uct of  NO2

− reduction will be the  NH4
+ cation rather than 

uncharged  NH3. The cationic product might take advantage 
of a second channel leading to the protein surface opposite 
to the entry channel. This second channel is lined by His 406 
and Tyr 95 and filled with coordinated water molecules, it 

branches before reaching the protein surface and ends with 
both arms in areas possessing a significantly negative elec-
trostatic surface potential (Fig. 6) [162, 163].

Active site

The site of nitrite reduction is heme center 1, with the  Nζ 
atom  (sp3 N) of lysine, replacing a His  (sp2 N) residue 
in the classical binding motif, and an oxygen atom of a 
bound  SO4

2− anion detected in the first published struc-
tures NrfAsd (Lys 133; PDB 1QD8) and NrfAws (Lys 
134; 1PDB 1FS8) (Fig. 7) [162, 163]. The  SO4

2− anion 
binds to the iron with an oxygen atom, it further interacts 
with both a His and a Tyr via a single oxygen atom, and 
with a water molecule which in turn interacts with the 
two propionate side chains of heme 1. At low concentra-
tions of  SO4

2− it was replaced by  H2O at heme 1. The 
structure of the water-bound form (1.6 Å resolution) of 
NrfAws showed the oxygen atom of  H2O bound to the Fe 
at a distance of 2.05 Å. Without the bulky  SO4

2− anion, 
the imidazole moiety of His 277 moved closer to the heme 
iron, and a hydrogen bond (length 2.88 Å) was formed 
between its Nε2 and the  H2O molecule at the active site. 
The positions of both Tyr 218 and Arg 114 remained 
unchanged [163]. Although the bound  SO4

2− originated 
from the crystallization buffer, its binding at the active 
heme center provided early information about substrate 
binding. As expected both  SO4

2−, and structurally related 
 PO4

3−
, acted as weak inhibitors in the activity assay [156]. 

Azide,  N3
−, was expected to bind to the active site heme 

iron as a competitive inhibitor [181, 182] just like  SO4
2−. 

However, the structure of the NrfAws-N3
− complex (2.0 Å 

resolution) revealed a water bound to Fe at 2.05 Å, and in 
close proximity the  N3

− anion, bound to residues lining 

Fig. 6  The active-site channel of cytochrome c nitrite reductase of 
Sulfurospirillum deleyianum (NrfAsd PDB 1QD8). Apart from the 
channel (entrance) guiding  NO2

− from the protein surface to the cata-
lytic heme 1 site, a second channel (exit) reaches the protein surface 
on the opposite side of the molecule. The whole channel is coloured 
according to the electrostatic surface potential, blue for a positive and 
red for a negative potential. In contrast to the immediate surroundings 
of the active-site heme group 1, the surface potential is drastically 
changed in the presumed exit channel for  NH4

+ [162]

Fig. 7  The conserved  Ca2+ site in cytochrome c nitrite reductase 
(NrfAsd) bridges two stretches of protein that host active site resi-
dues. Note the close proximity between heme 1  (SO4

2− bound), and a 
set of conserved tyrosine residues which was thought a role in radical 
stabilization during catalysis [162, 197]
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the active site entrance, with hydrogen bonds to Gln 276 
(3.0 Å), Tyr 218 (2.8 Å) and two hydrogen bonds to Arg 
114. With  N3

− bound in this fashion, the active site cavity 
can no longer accommodate  SO4

2− [163].
A survey of NrfA (and variants) structures, including struc-

tures of NrfAws with  H2O (PDB 1FS7),  N3
− (PDB 1FS9), 

 NO2
− (PDB 2E80),  NH2OH (PDB 2E81), and  SO3

2− (PDB 
3BNF) bound at the active heme site, is compiled in [164]. 
The special feature of the active site heme 1 is its fivefold 
coordination, with the lysine ligand provided by the novel 
binding motif CXXCK, in contrast to the conventional bis-
His coordination in the residual four heme centers. Early on 
it was suggested that the proximal lysine ligand is of crucial 
importance in promoting the binding of anions, and that the 
environment of this heme provides a reduction potential low 
enough to reduce the substrate  NO2

− to  NH4
+ [183]. Earlier 

studies on E. coli NrfA (cytochrome c552) showed that the 
lysine residue was required for normal rates of nitrite reduc-
tion, if it was altered to histidine, the enzyme was inactive 
[161]. Jörg Simon and co-workers (Darmstadt) [184] con-
structed the NrfAK134H variant from W. succinogenes; the 
specific nitrite reductase activity of the cell homogenate, the 
membrane fraction, as well as of the soluble fraction and the 
purified NrfA obtained from W. succinogenes strain K134H 
did not exceed 40% of that of the wild-type system.

An electron-density maximum close to the active site 
heme 1 was assigned to a  Ca2+ ion, which could be con-
firmed by inductively coupled plasma atomic emission 
spectroscopy (1.0 ± 0.1  Ca2+ atoms/NrfA monomer). The 
 Ca2+ion, first discovered in NrfAsd [162], is coordinated 
by the carboxy group of a glutamate in a bidentate man-
ner and by glutamine, two peptide carbonyl oxygen atoms 
and two water molecules. The roof of the active-site cavity 
of NrfAsd is formed by Phe 91, Lys 279, Tyr 95, Ala 404 
and Gln 281, which coordinates the  Ca2+ by its carboxam-
ide oxygen such that the amino group faces the active site 
(Fig. 7). The  Ca2+ binding site appeared to be an essential 
structural feature in the overall architecture of the enzyme, 
and the region surrounding this site is one of the most highly 
conserved parts of the whole sequence. This is easily under-
stood for Tyr 218, which is an active site residue that can 
directly interact with substrate. It can be rationalized that 
the  Ca2+ ligands Lys 274 and Gln 276 immediately precede 
another active site residue, His 277, such that the  Ca2+ ion 
bridges two stretches of protein that hold key residues for 
catalysis. Furthermore, both Lys 274 and Gln 276 take part 
in forming the active site cavity, whose electrostatic surface 
potential is presumably essential for guiding substrate influx 
and product efflux. Another remarkable feature close to the 
active site is a set of tyrosine residues, which are conserved 
in NrfA sequences. Tyr 219 follows directly on the active 
site residue Tyr 218, whose backbone carbonyl oxygen is a 
calcium ligand (Fig. 7).

In cytochrome c nitrite reductase from D. desulfuricans 
ATCC 27774, a second calcium site was discovered by 
Maria João Romão in collaboration with Isabel, José, and 
colleagues, featuring an octahedral geometry, coordinated 
to propionates of hemes 3 and 4, and caged by a loop 
absent in the NrfAsd and NrfAws structures. The highly 
negative electrostatic potential around hemes 3 and 4 sug-
gests that the main role of this  Ca2+ ion may be structural, 
namely to stabilize the conformation of the additional 
caging loop and to influence the solvent accessibility of 
heme 4 [168]. The NrfA active site is similar to that of 
peroxidases with a nearby  Ca2+ at the heme distal side 
nearly in the same location as occurs in the class II and 
class III peroxidases. This finding suggests that the  Ca2+ 
ion at the distal side of the active site in the NrfA enzymes 
may have a similar physiological role to that reported for 
the peroxidases [185]. On the other hand, Eric Hegg, 
Nicolai Lehnert, and associates characterized NrfA from 
bacterium G. lovleyi (NrfAgl) which had recently been 
recognized as one of the key drivers of DNRA in nature. 
The enzyme crystallized as a dimer, but dynamic light 
scattering characterization suggested that NrfA remained 
a monomer in solution even up to ≈ 300 μM. In this con-
text one should recall that the interface of the NrfA dimer, 
which is dominated by three long α-helices in each mono-
mer, only accounts to ≈ 10% of the total protein surface 
(Fig. 5). As a consequence, the state of NrfA in solution 
(monomer/dimer) is expected to vary depending on the 
protein source and experimental conditions [164]. Along 
these lines, nitrite reductase activity resided both in the 
soluble and the membrane fraction during protein purifi-
cation, but the distribution of both pools of protein varied 
strongly. While in E. coli virtually all activity was found 
in the soluble fraction [165], in S. deleyianum and W. suc-
cinogenes, both the soluble and the membrane fractions 
showed nitrite reductase activity [151, 152]. In the case 
of D. vulgaris, however, the majority of enzyme resided 
in the membrane fraction, forming a stable membrane-
bound complex with an overall  NrfA4NrfH2 quaternary 
arrangement [170].

Notably, the crystal structure of NrfAgl (2.55  Å) 
revealed the presence of an arginine residue in the region 
otherwise occupied by the  Ca2+ ion in canonical NrfA 
enzymes, such as NrfAsd or NrfAws. The presence of 
chelating agent EDTA did not affect the activity of Nrf-
Agl, and site-directed mutagenesis of this arginine reduced 
enzymatic activity siginificantly. Furthermore, phyloge-
netic analysis revealed four separate emergences of Arg-
containing NrfA enzymes. Thus, the  Ca2+-independent, 
Arg-containing NrfAgl represents a new subclass of pen-
taheme cytochrome c nitrite reductase [172, 173].
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Reaction mechanism of pentaheme 
cytochrome c nitrite reductase

Biological redox reactions classically involve the trans-
fer of electrons one or two at a time. A limited group of 
reactions can be classified as multi-electron reductions, 
in that more than two electrons—in fact, as many as six—
are transferred to an enzyme-bound substrate before prod-
uct release from the site of reduction [186, 187]. Multi-
electron reduction reactions occupy crucial positions in 
metabolism, being involved in the utilization of dioxygen 
as terminal electron acceptor by all organisms capable of 
aerobic metabolism, as well as in the biological conver-
sion of inorganic sulfur and nitrogen compounds, e.g., 
 SO3

2− and  NO2
−, for assimilatory (biosynthesis) and dis-

similatory (energy conservation) purposes. For each of 
these reactions, enzymes exist that can catalyse the entire 
multi-electron transfer process without release of inor-
ganic compounds of oxidation states intermediate between 
substrate and product. Furthermore, such novel types of 
redox reactions will be most likely associated with novel 
types of complex enzyme prosthetic groups. The enzy-
matic reductions of oxyanions  SO3

2− and  NO2
− occur as 

part of two different physiological processes, (1) in plants, 
fungi, and many bacteria, the reductions of  SO3

2− to  H2S/
S2− and  NO2

− to  NH3/NH4
+ are intermediate steps in the 

assimilation of sulfate  (SO4
2−) and nitrate  (NO3

−), respec-
tively, for the synthesis of S and N-containing cellular 
constituents, and (2) in microorganisms, the reductions of 
 SO3

2− and  NO2
− are large-scale processes associated with 

anaerobic respiration utilizing  SO4
2− and  NO3

− as terminal 
electron acceptors [111, 186, 187].

The six-electron reductions of nitrite to ammonia/
ammonium and sulfite to hydrogen sulfide/sulfide (Eqs. 1, 
2) are fundamental to early and contemporary life. These 
multi-electron, multi-proton transfer processes are cata-
lysed by a group of diverse nitrite and sulfite reductases 
that provide a unique prosthetic group assembly in their 
active centers with structural features that are key for 
the catalytic mechanism [39, 46, 188–192]. Cytochrome 
c nitrite reductase (NrfA) catalyses the reduction of 
 NO2

− to  NH4
+ with high specific activity (Eq. 1), without 

the release of bound intermediates NO and  NH2OH as 
discussed below (Fig. 8). Electrons usually are delivered 
from the membranous quinone pool, thereby generating a 
proton motive force [34].

In addition to  NO2
−, NrfA converts  NH2OH and NO to 

 NH4
+ (Fig. 4) [156], furthermore, the NO reductase activ-

ity of NrfA has been later shown to play an important role 
within the oxidative and nitrosative stress defense network 
of bacteria such as E. coli and W. succinogenes [54, 55]. 
Note that  NH2OH and methyl derivatives reacted poorly 

with Fe(III)-NrfA, on the other hand,  NH2NH2 acted as 
reductant. Photochemically reduced NrfA (using 5-deaza-
10-methyl-3-sulfopropyl-isoalloxazine/ oxalate) was rap-
idly oxidized by  NH2OH and derivatives in solution, but 
not by  NH2NH2 [157]. Attempts to produce crystalline 
Fe(II)-NrfAsd from oxidized Fe(III) crystals, by reaction 
with either  Na+ dithionite, or dihydrogen in the presence 
of traces of [Ni,Fe] hydrogenase from S. deleyianum [109], 
failed as the crystals began to disintegrate [156].

On the basis of crystallographic observations of the 
Fe(III)-NO2

− adduct and potential reaction intermedi-
ates, and of density functional calculations, a first work-
ing hypothesis for the reaction mechanism of NrfA, which 
hosts the novel Lys coordinated heme group (Fe-Lys), was 
developed by Oliver Einsle and Frank Neese (Fig. 8) [193]. 
Reduction of  NO2

− started with the heterolytic cleavage of 
the N–O bond, facilitated by a pronounced back-bonding 
interaction of  NO2

− coordinated through nitrogen to the 
reduced Fe(II) but not the oxidized Fe(III) of the active heme 
site. This step led to the formation of an {FeNO}6 species 
and a water molecule and was further facilitated by a hydro-
gen bonding network that induced an electronic asymmetry 
in the  NO2

− molecule that weakened one N–O bond and 
strengthened the other. Subsequently, two rapid one-electron 
reductions led to an {FeNO}8 form and, by protonation, to 
an Fe(II)-HNO adduct. Hereafter,  NH2OH, formed by a con-
secutive two-electron two-proton step, was dehydrated in the 
final two-electron reduction step to give  NH3 and  H2O. A 
single electron reduction of the active site closes the catalytic 
cycle [193]. In a set of consecutive theoretical studies, the 
 NO2

− reduction mechanism was analysed in greater detail 
by Dimytro Bykov and Frank Neese (Max-Planck Institut 
für Chemische Energiekonversion, Mülheim) [194–197]. 
The mechanism comprises five functional stages. In phase 
1, the substrate binds via its N atom to the active site heme 
1 followed by N−O bond cleavage, with His 277 acting as 
the proton donor. In this step, the N−O bond of  NO2

− is 
cleaved heterolytically through double protonation of the 
substrate. The second phase consists of two proton coupled 
electron-transfer events, leading to the HNO intermediate. 
Phase 3 involves the formation of  NH2OH, where Arg 114 
provides the necessary proton for the reaction. The second 
N−O bond is cleaved in phase 4 of the mechanism, again 
triggered by proton transfer from His 277. The Tyr 218 side 
chain governs the fifth and last phase of the mechanism, it 
consists of radical transfer and ammonia formation. In other 
words, this mechanism implies that all conserved active-site 
side chains work in a concerted way to achieve this complex 
chemical transformation from nitrite to ammonia. Interest-
ingly, evidence for the active role of residue Tyr 218 was 
provided by earlier studies on the sulfite reductase activity 
of NrfAws and the active site variant Tyr218Phe. This NrfA 
variant exhibited an almost complete loss of nitrite reductase 
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activity, while sulfite reduction remained unaffected [60]. 
According to the theoretical studies by Bykov and Neese, 
an intramolecular reaction with Tyr 218 in the final step of 
the nitrite reduction process led directly to the final product, 
 NH3. Dissociation of the final product proceeds concomi-
tantly with a change in heme Fe spin state [171, 197, 198].

Last but not least, recent reports surrounding the bioel-
ectrochemical communication of enzymes, such as nitroge-
nase, nitrate reductase, or cytochrome c nitrite reductase, at 
electrode surfaces have demonstrated the ability to probe 
enzymatic mechanisms, to produce  NH3 from a range of 
sources (e.g.,  NO3

−,  NO2
−,  N3

−), and to detect biologically 
important N,O compounds, (e.g.,  NO2

−, NO). Additionally, 
coupling of artificial cascade reactions have been utilized 
if a single catalyst is incapable of the complete substrate 
reduction to produce  NH3 [199]. Electrochemical combined 
with spectroscopic techniques (UV/Vis, EPR, MCD) and 
site-directed mutagenesis, have been successfully applied 
to investigate multiheme enzymes by Julea Butt (Norwich), 
Sean Elliott (Boston), Kyle Lancaster (Ithaca), Andrew 
Pacheco (Milwaukee), and of course by Isabel, José Moura 
and their associates (Lisbon). The elegant studies by these 

leading researchers brought significant advances to our 
knowledge about important multi-electron, multi-proton 
transfer processes in biological systems [153, 166, 167, 173, 
181, 200–212].

Outlook and conclusions

Despite several decades of intensive research since the report 
by Fujita on soluble cytochromes in Enterobacteriaceae 
and the characterization of cytochrome c552 as a hexaheme 
nitrite reductase [63–65], there remain many unresolved 
issues concerning Nature’s nitrite to ammonia reductases. 
Clearly, cytochrome c nitrite reductase has become a mature 
field. The basic catalytic mechanism is understood at the 
atomic level in the context of electronic changes leading 
to  NO2

− activation and its reduction to  NH3/NH4
+. Their 

catalytic versatility makes multiheme proteins and enzymes 
particularly valuable for numerous applications. Bioelec-
trochemical technology combined with various biophysi-
cal methods provide a new and powerful tool for a broad 
spectrum of biochemical and biophysical applications. 

Fig. 8  Proposed reaction scheme for the six-electron reduction of 
nitrite to ammonia catalysed by cytochrome c nitrite reductase. When 
started from the water-bound resting state in either the oxidized  (FeIII) 
or reduced  (FeII) form, the binding of  NO2

− starts the reaction cycle, 
which, after a heterolytic cleavage of the first N–O bond, proceeds 
through two one-electron reductions and a protonation step to Fe(II)-
HNO, which is readily reduced by two electrons to Fe(II)-H2NOH. A 

further reduction leads to the dissociation of the second water mol-
ecule, and subsequently, after the last reduction step, the product 
ammonia can dissociate [193]. Notably,  N2O—in contrast to NO and 
 NH2OH not an intermediate in the proposed cycle—is a substrate of 
NrfA, however with low activity (Fig.  4), and the reaction product 
has not been identified so far [156]
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Important structural and mechanistic information on multi-
heme proteins including extracellular electron transfer can 
be obtained by this technology, ranging from quaternary 
information, protein–protein and protein–surface recogni-
tion to highly resolved molecular pictures. In summary, 
c-type cytochromes will continue to be an important field 
of research. Determining and understanding their reac-
tion mechanisms have greatly advanced a variety of fields 
and our understanding of activation of inorganic nitrogen 
and sulfur compounds as well as multi-electron and multi-
proton transfer. Molecular dynamics simulations and quan-
tum–mechanical/molecular-mechanical calculations will 
complement experiments and elucidate the choreography by 
which the cytochrome protein regulates the catalytic cycle 
[213–220].

Perhaps the exciting feature of the bacterial enzyme 
cytochrome c nitrite reductase (NrfA), first proposed by Jeff 
Cole and co-workers in 1998 on the basis of sequence stud-
ies for the nitrite reductase of E. coli, was the novel heme 
binding motif Cys-X-X-Cys-Lys (CXXCK) [161]. One year 
later, Oliver Einsle and associates presented the first high 
resolution NrfA structure of sulfur-reducing bacterium S. 
deleyianum, a homodimer with five covalently bound heme 
centers in each monomer, four of them carrying the conven-
tional bis-His coordination (Cys-X-X-Cys-His motif), and 
the active site heme carrying the novel Cys-X-X-Cys-Lys 
motif, with a catalytically important  Ca2+ cation above the 
distal side of the heme plane [162]. Today, we know from 
extensive investigations of the diversity and phylogeny of the 
NrfA enzyme including analysis of full-length NrfA protein 
sequences that there exist several clades carrying the con-
ventional Cys-X-X-Cys-His motif in the first heme-binding 
domain [174–176], yet, detailed structural information on 
these enzymes by X-ray crystallography still has to come. 
The presence of the distal Lys residue was thought to be of 
crucial importance in promoting the binding of anions, and 
the design of the catalytic cavity around heme 1 was pro-
posed to provide a reduction potential low enough for the 
reduction of nitrite to ammonium [183]. There exist natu-
rally occurring heme proteins with Lys axially coordinated 
to Fe, such as the alkaline form of cytochrome c [221, 222], 
or the truncated hemoglobin THB1 of Chlamydomonas 
reinhardtii [223]. Furthermore, a Met100Lys variant of 
cytochrome c550 from Paracoccus versutus was produced, 
leading to a shift of the midpoint potential by − 329 mV 
compared to wild type [224, 225].

The His93Gly myoglobin cavity mutant was intro-
duced by John Dawson and co-workers (University of 
South Carolina) as a valuable model system to investigate 
for endogenous Lys and terminal amine ligation in heme 
proteins. Replacement of proximal ligand His93 with the 
much smaller non-coordinating Gly residue left a cavity 
on the proximal side of the heme into which a wide variety 

of exogenous ligands could be delivered. The scaffold 
provided a remarkably versatile template for the prepara-
tion of model heme complexes and was used to mimic the 
heme iron coordination structure of native heme proteins, 
such as NrfA (Fe-NLys), the CooA transcription factor (Fe-
NPro), or cytochrome f (Fe-NTyr) [226, 227]. Along these 
lines, Nicholas Watmough and associates (University of 
East Anglia) created the His93Lys variant of sperm whale 
myoglobin and studied its binding and reactivity with 
nitrite [228]. Substitution of the proximal His ligand with 
Lys led to an eightfold increase in the rate of  NO2

− → NO 
reduction relative to wild-type myoglobin. The binding of 
 NO2

− via the oxygen atom (O-nitrito mode) to the Fe(III) 
heme was retained in His93Lys myoglobin. Nitrite can 
coordinate to heme iron through either nitrogen (N-nitrito 
mode), e.g., in cytochrome c nitrite reductase or in assimi-
latory and dissimilatory sulfite reductase, or through oxy-
gen as observed for myoglobin and hemoglobin. This is 
known as linkage isomerism [229, 230]. Based on site-
directed mutagenesis studies, it was argued that the His 
residue on the distal heme side modulates this unique 
O-nitrito binding mode. This suggestion received strong 
support by the computation of spin Hamiltonian EPR 
parameters of different linkage isomers of  NO2

− bound 
myoglobin using wave function based “ab initio” and den-
sity functional theories [231].

Finally, the work by Tamara Tikhonova and colleagues 
(Russian Academy of Sciences) on related octaheme nitrite 
reductases should be mentioned here [232–235]. The first 
representative of this family of octaheme cytochrome c 
nitrite reductases was isolated from the haloalkaliphilic 
bacterium Thioalkalivibrio nitratireducens. The enzyme 
converted nitrite and hydroxylamine to ammonia without 
release of intermediates with high activity, as well as sulfite 
to sulfide. In solution, it exists as a stable hexamer, each 
subunit contains eight c-type hemes, seven of them are coor-
dinated by the conventional CXXCH motif, while one, like 
in pentaheme NrfA, is bonded by the unique CXXCK motif.

In summary, the bioinorganic chemistry of multiheme 
c-type cytochromes is a vibrant field and will remain in the 
focus of active research in chemistry, biochemistry, microbi-
ology and geochemistry, as impressively documented by dis-
coveries of new enzymes with astounding chemical activities 
and novel active sites. Notably, the field of geomicrobiology 
has experienced an extraordinary growth in recent years, 
and microbes have been studied in all kinds of environments 
on Earth [113, 236]. In the context of c-type cytochromes, 
Geobacter bacteria are of high interest in the bioremediation 
and bioenergy fields, due to their ability to produce high cur-
rent densities in microbial fuel cells, consequently, they are 
interesting targets for bioenergy applications. Closely related 
to these physiological features is the ability of Geobacter 
cells to produce conductive protein nanowires, a property 
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that is currently being explored in the bionanotechnology 
field [122, 237].
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