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results showed neither an enhanced activity nor an EGFR 
expression-dependent uptake of our new compounds. Con-
sequently, fluorophore-coupled peptides were synthesized 
to re-evaluate the targeting ability of LARLLT itself. How-
ever, also with these molecules, flow cytometry measure-
ments showed no correlation of drug uptake with the EGFR 
expression levels. Taken together, we successfully syn-
thesized the first platinum(IV) complexes coupled to an 
EGFR-targeting peptide; however, the biological investiga-
tions revealed that LARLLT is not an appropriate peptide 
for enhancing the specific uptake of small-molecule drugs 
into EGFR-overexpressing cancer cells.

Keywords  Platinum complexes · Anticancer drug · 
Peptides · EGFR

Introduction

Cancer is still a major cause of death with 8.2 million cases 
worldwide in 2012 [1, 2] and nearly 20% thereof due to 
lung cancer [3]. Despite being the most prominent cancer 
type, lung cancer is usually still a death warrant, not only 
because of the common late-stage diagnosis but also due to 
the bad response rate to chemotherapy [4]. Thus, at diagno-
sis, most patients are in stage III or stage IV with already 
established metastasis into bones, brain, adrenal gland 
and/or liver [5]. Although platinum-based drugs are often 
considered “old-fashioned”, these compounds are still of 
high importance for most treatment regimen in lung can-
cer therapy [6, 7]. Regardless, the overall response is quite 
low (around 20%) and—despite several dose and combina-
tion studies—the 1-year survival rate has only increased 
to around 25–30% during the last decades [8]. The reason 
for this unsatisfactory performance is that treatment has to 
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be frequently discontinued due to drug resistance develop-
ment [9] or severe side effects like nephrotoxicity, neuro-
toxicity and ototoxicity for cisplatin or myelosuppression 
for carboplatin [10]. This is based on the low tumor selec-
tivity of the highly cytotoxic platinum(II) drugs resulting 
also in damage of healthy dividing tissue. To reduce the 
treatment-associated effects, the research is focusing on 
platinum(IV) prodrugs. Such complexes are less cytotoxic 
and are assumed to be reduced preferably inside the tumor 
tissue, in which they release the highly active platinum(II) 
compounds [11]. However, despite vigorous research, so 
far, no platinum(IV) compound (with satraplatin being the 
most prominent representative) was approved for clinical 
application [12, 13].

Nowadays, there are two main approaches to further 
optimize the specificity of chemotherapeutic drugs. One 
possibility is to attach or enclose the compound into macro-
molecular structures like nanoparticles, polymers, micelles, 
etc., and, thereby, accumulate the drug inside the tumor tis-
sue due to the enhanced permeability and retention (EPR) 
effect, also known as passive targeting [14]. Secondly, a 
cancerous tissue can also be targeted actively by aiming 
for tumor-specific characteristics, such as overexpressed 
receptors or an altered metabolism [15, 16]. An example 
is the epidermal growth factor receptor (EGFR), which 
is overexpressed in several tumor types including breast, 
colon and non-small cell lung cancer (NSCLC) [17]. The 
importance of the EGFR signaling pathway already led to 
the approval of several therapeutics, which are based either 
on monoclonal antibodies, such as cetuximab and panitu-
mumab, or on small-molecule inhibitors such as gefitinib, 
erlotinib or afatinib, especially in the treatment of EGFR-
mutated NSCLC [17, 18]. A different approach of EGFR 
targeting is the use of EGFR-binding peptides. Gener-
ally, there are several peptide sequences, which have been 
reported in the literature to specifically bind the EGFR and, 
therefore, enhance drug uptake via receptor-mediated endo-
cytosis. The most prominent peptide sequences are CMY-
IEALDKYAC [19, 20], YHWYGYTPQNVI (also known 
as “GE11”) [21–24] and LARLLT (also known as “D4”) 
[25–28]. For some highly cytotoxic drugs such as pacli-
taxel [23, 26] and doxorubicin [19, 20, 24], conjugates or 
targeted nanoformulations with these peptides were already 
reported to enhance the tumor specificity. Notably, such 
an approach has not been applied to platinum compounds 
so far. This is surprising as in the treatment of lung cancer 
both, the EGFR (as a target) as well as platinum-based anti-
cancer drugs, are of high importance.

Therefore, the aim of this study was the development 
of the first EGFR-targeted platinum(IV) compounds func-
tionalized with the EGFR-binding peptide LARLLT and to 
study their targeting effects. In course of this study, maleim-
ide-containing platinum(IV) precursors based on cisplatin 

and oxaliplatin were prepared and coupled via a cysteine 
moiety to LARLLT or the shuffled sequence RTALLL, 
which was used as a reference compound for all experi-
ments. Notably, chemical analyses revealed the occur-
rence of a transcyclization reaction between the coupling 
moieties maleimide and cysteine which, however, does not 
affect the targeting peptide sequence. Subsequent biologi-
cal analyses of the new peptide-coupled platinum(VI) com-
pounds showed, unexpectedly, no significant correlation 
with the EGFR status of the cancer cell lines. Therefore, 
fluorophore-coupled LARLLT and RTALLL were syn-
thesized to re-evaluate the targeting ability of the peptide 
sequence itself. However, also these investigations did not 
reveal any EGFR-specific drug uptake in cell culture exper-
iments. Consequently, we conclude in this study that LAR-
LLT is not a suitable peptide for the EGFR-specific target-
ing of small-molecule drugs.

Results and discussion

Synthesis

For all synthesized platinum compounds potassium tet-
rachloridoplatinate was used as a starting material. The 
respective platinum(II) cores, cisplatin [29] and oxaliplatin 
[30], were prepared according to standard, literature-known 
procedures. Subsequent oxidation with hydrogen perox-
ide was carried out either in methanol [31] or acetic acid 
[32] to yield the hydroxidomethoxidoplatinum(IV) species 
or the acetatohydroxidoplatinum(IV) species, respectively. 
The maleimide-functionalized platinum precursors 1 and 2 
were synthesized in absolute DMF under inert conditions 
with subsequent chromatographic purification, as pub-
lished recently [33]. Additionally, a succinimide-function-
alized oxaliplatin compound 2ref was prepared analogously, 
which was used as the platinum(IV) reference compound. 
The cysteine-functionalized peptide C-MiniPEG-LARLLT 
(MiniPEG = 2-(2-(2-aminoethoxy)ethoxy)acetic acid) and 
the shuffled, reference sequence C-MiniPEG-RTALLL (see 
Scheme 1) were customer synthesized (trifluoroacetic acid 
(TFA) salts; >95% purity checked by elemental analysis; 
the amino acid sequence was verified by two-dimensional 
NMR spectroscopy).

The MiniPEG linker was introduced to ensure a suf-
ficient distance between the targeting peptide LARLLT/
RTALLL and the platinum complex, whereas the cysteine 
moiety was used as a highly reactive moiety toward the 
maleimide-functionalized platinum(IV) precursors (see 
Scheme 2). As a first attempt, the coupling reactions were 
performed with an excess of the platinum complex 1 
(which can be easily removed by preparative HPLC) and 
C-MiniPEG-LARLLT in buffered aqueous solution and 
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monitored by RP-HPLC. Already the first measurement 
after mixing of the starting materials (after approximately 
5  min) revealed a very fast binding of the peptide to the 
platinum(IV) precursor with formation of 3.

However, after several hours of the coupling reaction in 
phosphate buffer at pH 7.4 the product peak (3A) strongly 
decreased and another peak (3B) with a higher retention 
time on the reversed-phase column was found. Surprisingly, 

Scheme 1   Structures of the 
cysteine-functionalized peptides 
C-MiniPEG-LARLLT and the 
shuffled reference C-MiniPEG-
RTALLL
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mass spectrometry measurements showed that both peaks 
have exactly the same molecular mass. To investigate the 
reason for the difference in retention time and whether it 
is an intramolecular rearrangement or just a pH-dependent 
protonation/deprotonation, both product fractions 3A and 
3B were purified and analyzed.

Detailed investigations of the conversion reaction

First, the purified compound 3A was incubated in phos-
phate buffer at pH 7.4 and analyzed with RP-HPLC cou-
pled to a mass spectrometer over 12 h. An obvious decrease 
of 3A with a half-life time of approximately 2  h was 
observed with a simultaneous rise of 3B (Fig.  1a). The 
extracted  ion chromatograms (EIC) clearly confirmed this 
conversion and revealed that both peaks possess the same 
molecular mass of m/z = 1449 (Fig. 1b).

Interestingly, when the reaction of C-MiniPEG-LAR-
LLT and 1 was performed in acetate buffer at pH 5, the 
coupling still took place. However, the product 3A was 
“stable” and no conversion was observed (see Figure S1A). 
Furthermore, when the isolated secondary species 3B was 
dissolved in 100 mM citric acid (pH ~2.0), no conversion 
back to 3A was detected (see Figure S1B).

The same experiments were performed for the oxalipl-
atin precursor 2 and C-MiniPEG-LARLLT as well as the 
shuffled analog C-MiniPEG-RTALLL. The LC–MS meas-
urements revealed also for these compounds (4 and 5) a 
distinct conversion comparable to the cisplatin analog 3 
(see Figure S2). Again, this phenomenon did not take place 
in acetate buffer at pH 5 and the secondary species (4B and 

5B) could not be converted back to the primary compounds 
4A and 5A by lowering the pH. A stability test of the puri-
fied 4B in phosphate buffer (pH 7.4) for 24 h revealed no 
further conversions, but a very slow degradation of about 
0.5%/h.

To exclude the involvement of different functional moie-
ties of the peptide sequence in the conversion process, three 
additional peptides were investigated (see Figure S3). In 
case of the first peptide (C-MiniPEG-LAGLLT), the argi-
nine was exchanged by a glycine to exclude any possible 
effects of the guanidine moiety. The second peptide was 
amidated to remove the possibility of reactions of the free 
terminal carboxylic acid and the third peptide possesses a 
GGG linker instead of the MiniPEG moiety. However, all 
three peptides showed the same kind of conversion within 
the first few hours after incubation with 2 in phosphate 
buffer (pH 7.4) (see Figure S4). Thus, on the basis of these 
results, we could rule out that one of the three functional 
building blocks of the peptide is responsible for the conver-
sion phenomenon. Further HPLC–MS incubation experi-
ments with the peptides C-MiniPEG-LARLLT and C-Mini-
PEG-RTALLL alone in phosphate buffer at pH 7.4 revealed 
that no conversion takes place. Solely, the oxidation of the 
thiols to the disulfide species could be clearly observed 
with a half-life time of around 12 h (see Figure S5). Also 
195Pt-NMR measurements of 4A and 4B showed nearly 
identical shifts for both compounds. Therefore, as the LAR-
LLT/RTALLL peptides alone showed no conversion and 
the platinum core seems not to be affected, only the area of 
the maleimide moiety remains as reaction site. Thus, most 
likely a nucleophilic attack of the cysteine amino group on 
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the maleimide carbonyl takes place (see Scheme 3, conver-
sion of 3A to 3B see Scheme S1). Although a complete 
characterization of the conjugates by 2D-NMR spectros-
copy due to the very large/complex structures was not pos-
sible, a comparison of the 2D-NMR spectra of compound 
4A and 4B in DMF-d7 clearly supports this assumption. 
Especially the occurrence of an additional NH-signal in the 
15N-1H-HSQC spectrum and a coupling of the OC(=O)NH 
proton to this NH in the TOCSY spectrum confirmed this 
reaction. Notably, such a transcyclization reaction between 
cysteines coupled to maleimides was already reported, but 
only in few examples in literature [34–36].

Due to the fact that the platinum core is still intact and 
also the LARLLT/RTALLL peptide sequence is completely 
unaffected, this intramolecular rearrangement reaction 
should not influence the biological activity. On the con-
trary, the transcyclization possibly prevents a retro-Michael 
reaction [37] of the maleimide moiety with thiol-containing 
molecules.

Reduction experiments

The actual active species of these peptide-targeted 
platinum(IV) prodrugs are their respective platinum(II) 
complexes. Therefore, the reduction of the platinum(IV) 
moiety with release of the axial targeting ligand and the 

active platinum(II) compounds is crucial. Nevertheless, the 
reduction rate should not be too high, as the compounds 
need sufficient time to accumulate at the tumor site.

All three complexes were dissolved in 100  mM phos-
phate buffer (pH 7.4) and after addition of 10 eq. of ascor-
bic acid the decrease of the compound peak was monitored 
by RP-HPLC (the stable transcyclization products were 
used). The experiment showed that the cisplatin-containing 
conjugate 3B was reduced much faster in comparison to the 
two oxaliplatin analogs 4B and 5B. In general, this result 
is not unexpected, as the chloride ligands of the cisplatin-
based compound are known to facilitate the electron trans-
fer [38]. The almost identical results of the two oxaliplatin 
conjugates can be explained, as the only difference is the 
sequence of the amino acids. Overall, these results are in 
good accordance to previous experiments with similar plat-
inum cores [33] (Fig. 2).

Investigations of the platinum(IV) conjugates in cell 
culture

In order to allow the biological testing of the novel deriva-
tives, a cell line panel was selected based on EGFR expres-
sion levels and sensitivity to EGFR-inhibitory treatment 
(Table  1; Fig.  3). Consequently, A431 as well as RUMH 
cells were used due to their distinct overexpression of the 
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wild-type EGFR (EGFR/wt) and moderate sensitivity to 
EGFR inhibition in the µM range. In addition, HCC827 
cells were included; a cell model known for its amplifica-
tion of the mutated EGFR version (E746-A750 del), which 
renders these cells hypersensitive to EGFR inhibition. 
Finally, H520 cells were chosen as a negative control for 
this study as they lack EGFR expression and, hence, do not 
respond to treatment with EGFR inhibitors.

As a first step to evaluate our new compounds, the 
impact on cell viability after 72  h treatment was inves-
tigated by MTT assay (Fig.  4a) in comparison to the 
succinimide reference compound of 2 (unable to bind 
to thiol groups, denoted as 2ref). Comparable to other 
platinum(IV) complexes [39, 40], this reference complex 
2ref was distinctly less active than oxaliplatin, which is 
based on the prodrug nature of the compound. However, 
unexpectedly, the peptide-coupled oxaliplatin derivatives 
were even less active than 2ref and no difference in the 
activity was observed with regard to the EGFR expres-
sion level or whether LARLLT or RTALLL was attached 
to the platinum(IV) complex (as assumed above, also no 
significant differences between the A and B derivatives 
were observed). Furthermore, also in case of the cispl-
atin analog 3, no correlation between anticancer activity 
and EGFR status was found (data not shown). In order to 

investigate whether a longer drug exposure time is needed 
for prodrug activation, long-term clonogenic assays with 
14 days of drug treatment (25 and 50 µM) were performed 
in EGFR-overexpressing A431 cells (Fig.  4b). However, 
although the activity of all drugs was distinctly increased, 
again no differences between the LARLLT and RTALLL 
conjugates were found. In line with these data, ICP-MS 
uptake studies showed no correlation between drug accu-
mulation and the EGFR status of the tested cell lines 
(Fig.  4c). Notably, also other authors recently reported 
about difficulties to correlate the cytotoxicity and cell 
uptake with the receptor expression in case of RGD (argi-
nine-glycine-aspartate) peptide-containing platinum com-
plexes targeting the αvβ3 integrin receptor [41].

Accumulation studies using FITC‑labeled peptides

As the investigated LARLLT-conjugated platinum com-
pounds unexpectedly did not show any EGFR-specific 
drug accumulation nor anticancer activity, fluorophore-
coupled LARLLT/RTALLL peptides were synthesized 
to re-evaluate the general targeting ability of the peptide 
sequences. Commercially available maleimide-function-
alized fluorescein (in general abbreviated as its isothiocy-
anate form, FITC) was coupled to C-MiniPEG-LARLLT 
and C-MiniPEG-RTALLL yielding derivatives 6 and 7, 
respectively, after purification (Scheme 4).

The impact of the EGFR expression levels on the 
uptake of the FITC-labeled peptides 6 and 7 was then 
tested by flow cytometry after several incubation times 
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Table 1   IC50 values of gefitinib and erlotinib in our selected cell line panel after 72 h of treatment

Cell line EGFR expression Gefitinib (µM) Erlotinib (µM)

IC50 ± SD IC50 ± SD

A431 EGFR/wt overexpression 14.1 ± 0.98 7.6 ± 1.7

RUMH EGFR/wt overexpression 7.5 ± 0.51 23.0 ± 2.6

HCC827 Overexpression of EGFR with the sensitizing mutation (E746-A750 del) 0.06 ± 0.02 0.06 ± 0.00

H520 No EGFR expression >25 >25

Fig. 3   EGFR protein level of selected cell lines. Membrane-enriched 
fractions of the indicated cell lines were resolved by gel electrophore-
sis and EGFR expression detected via Western blot. β-Actin was used 
as a loading control
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(Fig.  5). Again, the panel of cell lines with different 
EGFR status was used. Comparable to the conjugated 
platinum drugs, also with these compounds, no EGFR 
dependency was found either in total uptake or in uptake 
kinetic. In addition, at no point in time in none of the 

tested cell models, cellular accumulation of LARLLT 
was superior to the shuffled RTALLL reference.

Notably, in most of the publications in literature, 
LARLLT was used as a targeting peptide without a shuf-
fled control [27, 42, 43]. This makes an evaluation quite 
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difficult as, for example, our uptake studies (Fig.  4c), 
when not considering the RTALLL data, would also sug-
gest a significantly increased accumulation into the EGFR-
expressing A431 cell line. Some promising data were 
reported for nanoformulations like liposomes [25] and 
micelles [26], which harbor a huge number of LARLLT 
peptides attached to their surface. However, also in case of 
LARLLT-containing silica nanoparticles no correlation of 

drug uptake with the EGFR status (even when the EGFR 
was genetically silenced in a cancer cell line) was found. 
However, coupling of EGFR-specific single-domain anti-
bodies (sdAbs) to the same nanoparticles resulted in highly 
specific uptake. This implies that not the nanoformulation 
in general but the LARLLT peptide was responsible for the 
lack of EGFR specificity [44]. The authors of this study 
mentioned that the chemical nature of the conjugates and 
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characteristics such as charge and polarity may have a sub-
stantial influence on the tumor-targeting abilities of LAR-
LLT, which is supported by our study.

Conclusion

In this study, we successfully synthesized the first EGFR-
targeting, peptide-coupled platinum(IV) conjugates. 
Thereto, maleimide-functionalized platinum(IV) com-
plexes were attached to the literature-known EGFR-affine 
peptide LARLLT in comparison to the shuffled RTALLL 
analog. Subsequently, the EGFR-dependent anticancer 
activity and their targeting properties were evaluated in dif-
ferent cell lines. However, these studies revealed that the 
activity of the targeted complexes did not correlate with 
the EGFR status. Furthermore, cell uptake studies showed 
no EGFR specificity compared to the reference complex. 
Thus, proof-of-principle studies using fluorescein-labeled 
LARLLT and RTALLL were conducted to re-evaluate the 
targeting ability of the peptide. In line, these data sug-
gested that LARLLT (when compared to RTALLL) is not 
a suitable targeting moiety to improve the specificity of 
such small-molecule compounds for EGFR-overexpressing 
cells. As a consequence, these results prompt that also for 
literature-known peptide sequences (1) the targeting ability 
has to be re-evaluated in an appropriate cell line panel and 
(2) a shuffled reference of the targeting peptide obligato-
rily has to be included into the study design to exclude false 
positive results originating from unspecific interactions.

Independently from the biological evaluation, we were 
able to identify an interesting transcyclization reaction after 
coupling of the terminal cysteine to the maleimide moiety. 
This is of special interest as it is a quite common coupling 
strategy for the attachment of bioactive compounds to 
peptides. Interestingly, only few references described this 
intramolecular reaction so far [34–36], although it should 
frequently occur in this type of coupling strategy. Ongoing 
studies will clarify if such transcyclization processes could 
prevent a possible retro-Michael reaction of the maleim-
ide moiety with thiol-containing molecules and, therefore, 
increase the stability of such peptide-coupled drugs in bio-
logical matrices such as blood serum.

Experimental part

Materials and methods

Potassium tetrachloridoplatinate (K2PtCl4) was purchased 
from Johnson Matthey (Switzerland). Water used for 
synthesis was taken from a reverse osmosis system and 
distilled twice. For HPLC measurements Milli-Q water 

(18.2 MΩ cm, Merck Milli-Q Advantage, Darmstadt, Ger-
many) was used. Other chemicals and solvents were pur-
chased from commercial suppliers (Sigma Aldrich, Merck, 
Acros, Fluka and Fisher Scientific) and used without fur-
ther purification. The starting platinum(II) compounds cis-
platin [29] and oxaliplatin [30] were synthesized according 
to literature-known procedures. Hydrogen peroxide (50%) 
was used for oxidation of the complexes in either methanol 
[31] or acetic acid [32] as a solvent, yielding the unsym-
metrically oxidized platinum(IV) precursors. Thereafter, 
the ligands with the maleimide or succinimide moiety were 
coupled to yield compounds 1, 2 and 2Ref as recently pub-
lished [33, 45]. Cys-MiniPEG-LARLLT and Cys-Mini-
PEG-RTALLL (MiniPEG =  2-(2-(2-aminoethoxy)ethoxy)
acetic acid, both TFA salts, >95% purity) were purchased 
from Biomatik Corporation (Cambridge, Canada). Elec-
trospray ionization (ESI) mass spectra were recorded on 
a Bruker AmaZon SL ion trap mass spectrometer in posi-
tive and/or negative ionization mode by direct infusion. 
High-resolution mass spectra were measured on a Bruker 
maXis™ UHR ESI time-of-flight mass spectrometer. All 
mass spectra were recorded at the Mass Spectrometry Cen-
tre of the University of Vienna. One- and two-dimensional 
1H-, 13C-, 15N- and 195Pt-NMR spectra were recorded 
on a Bruker Avance III 500  MHz spectrometer at 500.10 
(1H), 127.75 (13C), 50.68 (15N), and 107.51 (195Pt) MHz at 
298 K. For 1H- and 13C-NMR spectra the solvent residual 
peak was taken as internal reference, whereas 195Pt-shifts 
were referenced relative to external K2PtCl4 and 15N-shifts 
relative to external NH4Cl. Elemental analysis measure-
ments were performed on a Perkin Elmer 2400 CHN Ele-
mental Analyzer at the Microanalytical Laboratory of the 
University of Vienna.

Synthesis and characterization

General procedure for the synthesis of peptide‑conjugated 
complexes 3–5

The maleimide-functionalized platinum(IV) compound and 
the cysteine-containing peptide (0.7–0.8  eq.) were trans-
ferred into a vial, phosphate buffer (pH 7.4, ~0.45 mL/µmol 
platinum complex) was added and the solution was stirred 
for around 4 h. Both of the compound peaks were purified 
by preparative RP-HPLC on a Waters XBridge C18 column 
using H2O (0.1% HCOOH) and acetonitrile (ACN) as elu-
ents. The product fractions were collected and thereafter 
lyophilized. Purity (>95%) was confirmed by analytical 
RP-HPLC measurements (see Figure S6).

Compound 3  The compound was synthesized from 20 mg 
(OC-6-44)-diamminedichloridomethoxido[2-(2,5-dioxo-
2,5-dihydro-1H-pyrrol-1-yl)ethylcarbamato]platinum(IV) 
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(1, 38.9 µmol) and 39.7 mg C-MiniPEG-LARLLT (0.8 eq., 
31.1 µmol). Yield: 16.7 mg (37%) pale-yellow powder; HRMS 
(ESI-TOF): calcd. for [C48H91Cl2N15O17PtS-Na+H+]2+: 
735.7712, found: 735.7732.

Compound 4  The compound was synthesized from 
30  mg (OC-6-34)-acetato[(1R,2R)-cyclohexane-1,2-di-
amine]oxalato[2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)
ethylcarbamato]platinum(IV) (2, 45.6  µmol) and 40.8  mg 
C-MiniPEG-LARLLT (0.7 eq., 31.9 µmol). Yield: 25.3 mg 
(50%) white powder; HRMS (ESI-TOF): calcd. for 
[C57H99N15O22PtS-Na+H+]2+: 798.8214, found: 798.8242.

Compound 5  The compound was synthesized from 
30  mg (OC-6-34)-acetato[(1R,2R)-cyclohexane-1,2-di-
amine]oxalato[2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)
ethylcarbamato]platinum(IV) (2, 45.6  µmol) and 40.8  mg 
C-MiniPEG-RTALLL (0.7 eq., 31.9 µmol). Yield: 22.4 mg 
(43%) white powder; HRMS (ESI-TOF): calcd. for 
[C57H99N15O22PtS-Na+H+]2+: 798.8214, found: 798.8250.

General procedure for the synthesis of the 
fluorescein‑peptide conjugates

The cysteine-functionalized peptide was dissolved in phos-
phate buffer (pH 7) and was added to a solution of FITC-
maleimide in DMSO. After the solution was stirred for 1 h 
the product was purified by preparative RP-HPLC on a 
Waters XBridge C18 column using H2O (0.1% HCOOH) 
and ACN as eluents. The product fractions were collected 
and thereafter lyophilized.

Compound 6  The compound was synthesized from 20 mg 
C-MiniPEG-LARLLT (15.7 µmol) in 8 mL phosphate buffer 
(pH 7) and 6.7  mg FITC-maleimide (1  eq., 15.7  µmol) 
in 1.3  mL DMSO. Yield: 16.0  mg (75%) yellow powder; 
ESI-MS: calcd. for [C64H88N12O19S-H+]+: 1361.61, found: 
1361.91.

Compound 7  The compound was synthesized from 20 mg 
C-MiniPEG-RTALLL (15.7 µmol) in 8 mL phosphate buffer 
(pH 7) and 6.7  mg FITC-maleimide (1  eq., 15.7  µmol) in 

1.3 mL DMSO. Yield: 16.6 mg (78%) yellow powder; ESI-MS: 
calcd. for [C64H88N12O19S-H+]+: 1361.61, found: 1361.72.

RP‑HPLC studies

The RP-HPLC measurements for monitoring the coupling 
reaction and the conversion were either performed on a 
Dionex Summit System equipped with a Waters XBridge 
BEH C18 column (130 Å, 5 µm, 4.6 × 150 mm) or on a 
Thermo Scientific Dionex Ultimate 3000 Rapid Separation 
LC system equipped with a Waters Acquity UPLC BEH 
C18 column (130 Å, 1.7 µm, 3.0 × 50 mm). Milli-Q water, 
containing 0.1% formic acid, and methanol or ACN were 
used as eluents and as a standard method, a gradient from 5 
to 95% of the organic solvent was used. The samples were 
dissolved in phosphate buffer (pH 7.4) and were incubated 
in the autosampler at 20 °C. The column compartment was 
temperature controlled at 25 °C.

All the LC–MS measurements were performed on an 
Agilent 1260 Infinity system using either a Waters Atlan-
tis T3 C18 column (100  Å, 3  µm, 2.1 ×  150  mm) or a 
Waters Acquity UPLC BEH C18 column (130 Å, 1.7 µm, 
3.0 ×  50  mm). Milli-Q water and acetonitrile, both con-
taining 0.1% formic acid, were used as eluents and a gradi-
ent from 5 to 95% of the acetonitrile solution over 15 min 
with 0.2  mL/min was used. The samples were dissolved 
in phosphate buffer (pH 7.4) and were incubated in the 
autosampler at 20 °C. The mass spectra were recorded on 
a Bruker AmaZon SL electrospray ionization ion trap mass 
spectrometry system in positive ionization mode using 
a drying gas flow of 10 L/min (350 °C), a nebulizer pres-
sure of 35 psi and a capillary voltage of 4000 V. HyStar 3.2 
and Data Analysis 4.0 software package (Bruker Daltonics) 
were used for instrument control and data evaluation.

RP‑HPLC reduction experiments

The reduction studies were performed on a Thermo Scien-
tific Dionex Ultimate 3000 Rapid Separation LC system 
equipped with a Waters Acquity UPLC BEH C18 column 
(130 Å, 1.7 µm, 3.0 × 50 mm). Milli-Q water and acetoni-
trile, both containing 0.1% formic acid, were used as elu-
ents and as a standard screening gradient, a gradient from 

Table 2   Detailed information on the used cell lines

ATCC American Type Culture Collection Manassas VA, ICR Institute of Cancer Research, Vienna

Cell line Characteristics Growth medium Source

A431 EGFR wild-type overexpression, erlotinib-sensitive RPMI-1640 ATCC

HCC827 Erlotinib-sensitive due to the EGFR mutation (delE746-A750) RPMI-1640 ATCC

RUMH EGFR wild-type overexpression, erlotinib-sensitive RPMI-1640 Established at the ICR

H520 No EGFR expression, erlotinib-resistant RPMI-1640 ATCC
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5 to 95% of the organic eluent over 10 min with 0.6 mL/
min was carried out. The samples and 10  eq. of ascorbic 
acid were dissolved in phosphate buffer (pH 7.4) and were 
incubated in the autosampler at 20  °C. The column com-
partment was temperature controlled at 25 °C.

Cell culture

The following human cell models were used in this study: 
the renal cell carcinomas RUMH, the squamous cell car-
cinoma H520, the epidermoid carcinoma A431, as well 
as the non-small-cell lung cancer (NSCLC) line HCC827 
(sources and used medium are summarized in (Table  2). 
Unless otherwise indicated, the cells were cultivated in 
humidified incubators (37 °C, 21% O2, 5% CO2) in full cul-
ture medium, containing 10% fetal calf serum (PAA, Linz, 
Austria). Cell cultures were periodically checked for Myco‑
plasma contamination.

Cytotoxicity assay

Cells were plated (2 × 103 cells/well) in 96-well plates and 
allowed to recover for 24  h. Subsequently, the dissolved 
drugs were added. After 72 h drug exposure, the proportion 
of viable cells was determined by MTT assay following 
the manufacturer’s recommendations (EZ4U, Biomedica, 
Vienna, Austria). Cytotoxicity was expressed as IC50 val-
ues calculated from full dose–response curves using Graph-
Pad Prism software. For long-term exposure, A431 cells 
(200 cells/well) were seeded in 24-well plates and allowed 
to recover for 24  h. Then, the cells were exposed to the 
indicated drugs (25 or 50 µM) for 14 days. After washing 
with phosphate-buffered saline (PBS), the cells were fixed 
with methanol (−20 °C, 20 min) and after another washing 
step stained with crystal violet (1 h). The washed and dried 
plates were then measured for fluorescence (with 633 nm 
excitation and 610/30  nm  bandpass emission filter) with 
the imager Typhoon Trio (GE Healthcare Life Sciences). 
The sum of fluorescence intensities per well was measured 
with ImageJ and, after blank subtraction, normalized to the 
untreated cells.

Western blot analysis

To assess the EGFR expression levels, membrane-
enriched fractions of untreated cells cultivated under nor-
mal cell culture conditions were prepared and resolved 
by SDS-PAGE and transferred onto a polyvinylidene 
difluoride membrane for Western blotting as previously 
described [46]. The following antibodies were used: 
EGFR (monoclonal rabbit, dilution 1:1000 from Cell 
Signaling) and β-actin (monoclonal mouse, dilution 

1:5000 from Sigma Aldrich). Additionally, horserad-
ish peroxidase-labeled secondary antibodies from Santa 
Cruz Biotechnology were used at working dilutions of 
1:10,000.

Cellular drug uptake

Cells (3 ×  105  cells/well) were seeded in 6-well plates 
and allowed to recover for 24 h. Then, cells were exposed 
to the drugs with the indicated concentrations for 3  h. 
Subsequently, the cells were washed three times with 
2 mL PBS and platinum was extracted by incubating the 
cells with 500  µL HNO3 (HPLC grade) for 1  h. From 
the suspension aliquots of 400  µL were diluted 20-fold 
in dd H2O. The experiment was performed in triplicates. 
Cell-free wells exposed to the according drugs were used 
as blanks. Cells from three additional wells were trypsi-
nized and counted to determine the cell number per well.

Flow cytometry

Cells were seeded in 6-well plates at a concentration of 
4 ×  105  cells per well in 2  mL growth media contain-
ing 10% FCS. Then, cells were incubated over night 
at 37  °C and 5% CO2. The growth media was removed 
and the adherent cells were washed with PBS two times 
before further treatment. As a next step, the drugs were 
added in serum-free media obtaining a final concentra-
tion of 10  µM followed by incubation at 37  °C. At the 
indicated points in time, cells were washed two times 
with PBS and harvested by trypsinization. After centrifu-
gation at 2000 rpm for 3 min, the pellet was resuspended 
in 500  µL FACS-PBS (7.81  mM Na2HPO4  ×  2H2O, 
1.47 mM KH2PO4, 2.68 mM KCl and 0.137 M NaCl) and 
transferred into FACS-tubes. Fluorescence intensities of 

Table 3   Parameters of the Agilent 7500ce ICP-MS

The limit of quantification (LOQ) was determined by the formula 
LOQ = x̄ + 10× s with x̄ as the average sample blank value and s as 
the standard deviation of x (n = 7)

RF power (W) 1560

Cone material Nickel

Carrier gas (L/min) 0.8–1.0

Make up gas (L/min) 0.1–0.3

Plasma gas (L/min) 15

Monitored isotopes 185Re, 194Pt, 195Pt

Dwell time (s) 0.3

Number of replicates 10

Number of sweeps 100
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10,000 cells per sample were measured using a FACS 
Calibur (Becton–Dickinson, Palo Alto, CA). The results 
were analyzed and quantified using Cell Quest Pro 
software.

ICP‑MS measurements

Milli-Q water (18.2  MΩ cm, Milli-Q Advantage, Darm-
stadt, Germany) was used for all dilutions for ICP-MS 
measurements. Nitric acid (≥69%, p.a., Fluka, Buchs, 
Switzerland) was used without further purification. Plati-
num and rhenium standards for ICP-MS measurements 
were derived from CPI International (Amsterdam, The 
Netherlands). All other reagents and solvents were obtained 
from commercial sources and were used without further 
purification.

The ICP-MS Agilent 7500ce (Agilent Technologies, 
Waldbronn, Germany) was equipped with a CETAC ASX-
520 autosampler (Nebraska, USA) and a MicroMist nebu-
lizer at a sample uptake rate of approx. 0.25 mL/min. The 
Agilent MassHunter software package (Workstation Soft-
ware, version B.01.01, Build 123.11, Patch 4, 2012) was 
used for data processing. The experimental parameters for 
ICP-MS are summarized in Table  3. The instrument was 
tuned on a daily basis to achieve maximum sensitivity.
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