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In the beginning there were two

As often happens, two people drew more or less the same 
conclusions at more or less the same time. In 1955, Mason 
[1] and Hayaishi [2, 3] independently proposed that enzy-
matic incorporation of molecular oxygen into a substrate 
was possible. At the time, this was an almost unthinkable 
idea—probably because the prominent German chemist 
and Nobel Prize winner Heinrich Wieland (and naturally, 
therefore, almost everybody else) had ruled the possibil-
ity out—but this did not stop Mason and Hayaishi thinking 
about it quite a lot.

Mason’s experiment was published in 1955 [4] and 
led to his now famous classification of enzymatic oxygen 
metabolism [5]. Mason proposed that two atoms of molec-
ular oxygen can be incorporated into the substrate and he 
termed this type of activity an “oxygen transferase”. Hayai-
shi, using mass spectrometry, demonstrated quantitative 
incorporation of 18O2 (and, importantly, not H2

18O) into the 
substrate in the pyrocatechase reaction [6]. He too referred 
to the activity as “oxygen transferase”. Hayaishi, Fig. 1, 
later introduced the term “oxygenase” to the literature [7], 
a proposal that had first been mooted at an ACS meeting in 
1956 [8] and which has stuck in the heme literature ever 
since.

Where there’s muck there’s brass

Hayaishi’s introduction to tryptophan metabolism had 
occurred from a chance encounter at Osaka University 
with Kotake. Kotake had devoted much of his life’s work 
to the biochemistry of that particular amino acid in ani-
mals and had published some of the earliest seminal studies 
in the 1930s [9, 10], Fig. 2. Japan at that time was in the 

Abstract It is well established that there are two different 
classes of enzymes—tryptophan 2,3-dioxygenase (TDO) 
and indoleamine 2,3-dioxygenase (IDO)—that catalyse 
the O2-dependent oxidation of l-tryptophan to N-for-
mylkynurenine. But it was not always so. This perspective 
presents a short history of the early TDO and IDO litera-
ture, the people that were involved in creating it, and the 
legacy that this left for the future.

Power to the people

There are fashions in science, just as there are in styles of 
trousers. Fashions in science are influenced by variables 
large and small: governments that can control the political 
climate; policy and funding streams; universities and other 
institutions that control scientific appointments; geography 
that can enhance or restrict access to ideas or technology; 
and the rate of development of technology itself which can 
either slow down or suddenly speed up scientific progress. 
But more often than not, fashions in science are also influ-
enced to a greater or lesser extent by people, for it is the 
people who create the focus, the scientific stimulus, and the 
new ideas upon which future progress must be based.

In the case of the heme dioxygenase enzymes, a hand-
ful of people were highly influential and they laid the foun-
dations for the development of the area over the next 60 
years. This short perspective summarises these and other 
early contributions to the heme dioxygenase field.
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aftermath of the war, and Osaka had been totally demol-
ished. Kotake, perhaps wishing to see the tradition of a 
Japanese effort in the tryptophan area continued into the 
future, donated several grams of the precious compound to 
Hayaishi. With no chemicals, no equipment to speak of, a 
non-existent consumables bud get, no animals and proba-
bly no students either, Hayaishi has pointed out [2] that his 
options were somewhat limited. By necessity, he went out-
side and, literally, dug up some muck and mixed it with his 
compound. From there he was able to demonstrate that cer-
tain microorganisms in soil can grow using tryptophan, and 
what followed was a series of four consecutive papers all 
looking at enzymatic incorporation of O2 into a substrate 
[7, 11–13]. One of these, Fig. 3 [11], concerned itself with 
the oxidation of tryptophan and examined the conversion of 
tryptophan to N-formylkynurenine (NFK) in Pseudomonas 
extracts using mass spectrometry, Scheme 1. It was the first 
demonstration that “…both atoms of oxygen incorporated 

in the oxidative step are derived from oxygen gas but not 
from water” [11].

At that time, the metabolism of tryptophan was just 
beginning to be clarified, and several people—including the 
distinguished A. Neuberger from Mill Hill in London1 [14, 
15]—had come to the conclusion that NFK was part of the 
process. But the enzyme responsible for the activity had not 
been fully established, and it had been temporarily denomi-
nated as a “tryptophan peroxidase”. The early nomencla-
ture, to put it mildly, would send shivers down the spine of 
an IUPAC committee. A list of terms as long as the Royal 
Mile appeared in print: tryptophan pyrrolase (which still 
pervades in the literature), tryptophan peroxidase, trypto-
phan oxidase, tryptophan peroxidase-oxidase, and trypto-
phan oxygenase were all used (see for example [14, 16–
22]). Most authors evidently found the process of deciding 
between these terms to be an impossible task and so used 
them all at the same time. It was Hayaishi himself who 
brought some order to the confusion, by suggesting in 1970 
[23] that the enzyme would most sensibly be named trypto-
phan 2,3-dioxygenase (TDO), to distinguish its reactivity 
from any other enzymatic tryptophan activity (e.g. in the 
formation of tryptophan 5-monooxygenase). Even so, it 
took some years before the literature adjusted to this brave 
new world in which one enzyme had only one name.

It had been known at this time that there were other 
enzymes from different sources capable of catalysing the 

1 Fred Sanger was Neuberger’s first Ph.D. student.

Fig. 1  Professor Hayaishi pictured holding a model of the fictional 
hero Don Quixote, of whom he was a long-standing admirer (see 
[113]). The photograph was provided by Hayaishi’s daughter, via his 
former secretary, to Prof. Masao Ikeda Saito

Fig. 2  One of the seminal (but for some readers somewhat impen-
etrable) papers from Kotake [10]

Fig. 3  Hayaishi’s seminal paper [11] reporting that both atoms of 
oxygen incorporated into the product during tryptophan oxidation are 
derived from 18O2. Reproduced with permission from The American 
Society for Biochemistry and Molecular Biology
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Scheme 1  The oxidation of tryptophan to NFK, as catalysed by IDO 
and TDO
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same reaction as TDO, but with much less substrate speci-
ficity than TDO. As far back as 1967, Hayaishi had identi-
fied one such enzyme from rabbit intestine [17] and it was 
initially identified as “tryptophan pyrrolase (tryptophan 
2,3-dioxygenase)”. In view of the broad substrate specific-
ity of these other enzymes, it was suggested [24], again by 
Hayaishi, that they be designated as indoleamine 2,3-dioxy-
genases (IDO), to differentiate them from the TDOs (which 
are specific for tryptophan) and to convey the message 
that other substituted indoles were also accessible by these 
enzymes. Although even as late as 1974 the community 
was still afflicted by chronic indecision on the names for 
their pet enzymes, as the early proposal [24] also suggested 
the very awkward and certainly confusing “indoleamine 
2,3-dioxygenase (pyrrolase)” nomenclature. But by the 
end of the 1970s the literature was more consistent, with 
regular papers describing the properties of the now easily 
recognisable indoleamine 2,3-dioxygenase enzyme (see for 
example [25–34]).

In the intervening years, a much clearer picture has 
emerged. It is now well known that the IDOs and the 
TDOs, whilst catalysing the same reaction, have slightly 
different properties. IDOs are monomeric, while the TDOs 
are tetrameric. IDOs have wide substrate specificity and 
will oxidise a range of indoleamine derivatives, while the 
TDOs are much more discriminating and typically oxidise 
only l-Trp at any respectable catalytic rate. Also, while 
IDO is widely distributed in all tissues but not the liver, 
TDO has most often been cited as being found only in the 
liver (although there is emerging evidence that it is also 
located in some cancer cells [35]).

The 1970s: the emergence of heavy metal

The idea that there could be a role for a metal in tryptophan 
oxidation took a while to sink in. The earliest mention of a 
heme dependency that this author was able to identify came 
in 1959 (and there were indications even earlier than that 
[36]). Tanaka and Knox [16] presented UV–visible spectra 
for the TDO from rabbit liver, Fig. 4, with Soret bands that 
are surprisingly close to those found for recombinant mam-
malian TDOs and bacterial TDOs isolated many decades 
later [37–43], and they suggested a similarity with the by 
then well-known ferrous oxy hemoglobin system. A series 
of papers from Feigelson going back as far as 1961 also 
demonstrated very fluently that the activity of TDO was 
dependent on heme (see for example [20, 21, 44–47]). By 
the late 1970s, the role of heme had finally become “main-
stream” in the IDO literature as well [29–34].

The suggestion [22, 48] that copper was involved in 
TDO catalysis turned out not to be correct [49, 50], but 
nonetheless generated heated debate.

The 1980s onwards

In the 10 years or from 1980, after the extensive work that 
had been done previously (as summarised above), a large vol-
ume of spectroscopy and kinetic work appeared on both IDO 
and TDO. This has been comprehensively summarised in an 
outstanding review by Sono and Dawson in 1996 [18] and 
will not be rehearsed here again. But an analysis of the litera-
ture, Fig. 5, shows that there was a lull in publication activ-
ity around the late 1980s and early 1990s. The field stalled to 
some extent, waiting for the development of suitable systems 
for expression of IDO and TDO in E. coli. An early report 
[37] of expression of rat TDO in E. coli stood out and led 
the way as it preceded, by some margin, the publication of 
numerous other expression systems for TDO/IDO in mam-
malian [38–40, 51–60], bacterial [61–63], insect [64–66], 
fungal [67, 68], yeast [67] and other [69] systems.

A new dawn from 2000: arise again

The Dawson review was very timely, because it included 
a focused but detailed summary of all of the previous IDO 
and TDO work. With expression systems emerging soon 
afterwards (see above), the review set the scene for a resur-
gence in interest in these enzymes over the next two dec-
ades, Fig. 5. Mauk has referred to this as a “renaissance” 
[70]. Much of the new work in the last few years has been 
motivated by the search for IDO inhibitors relevant to ther-
apeutic application in cancer [71–73].

Fig. 4  An early UV–visible spectrum of TDO [16], showing a Soret 
absorbance at around 405 nm (note the nomenclature for the name 
of the enzyme). Reproduced with permission from The American 
Society for Biochemistry and Molecular Biology
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Structure

In terms of functional analyses, there have been some sub-
stantial developments since 2000 (see also previous reviews 
[74–76]). Of special note is the landmark human IDO struc-
ture from Sugimoto and Shiro [52], which gave the first 
glimpse of the highly hydrophobic IDO active site in com-
plex with the inhibitor 4-phenylimidazole bound to the 
heme; other structures in complex with related inhibitors 
have recently appeared [77, 78] and form an important struc-
tural framework for structure-based drug design in the future.

The structure of the X. campestris TDO in complex with 
tryptophan [61], and other TDO structures have also been 
important [62, 66]. The structure of human TDO in the 
apo form (i.e. without heme bound) has also been reported 
[79]. There are no structures for inhibitor-bound TDOs, 
with structure-based virtual screening providing the best 
information so far [80]. It has been suggested from spec-
troscopic work that the heme sites in (tetrameric) TDO may 
not be equivalent [81]. The recent structure of human TDO 
in complex with both O2 and l-Trp [82] is another step for-
ward, and allows the first reliable visualisation of the bind-
ing orientation in the ternary complex.

There is evidence, at least in IDO, that the active site 
and other regions of protein structure that are not visible 
in the X-ray maps are conformationally mobile and that 
this might affect reactivity [83]; similar flexibility is known 
to be important in the P450cam system (see for example 
[84–86]).

Mechanism

Techniques other than crystallography have been needed 
to make progress on mechanism, and there is much work 

to do yet before the mechanism is fully clarified. Early 
proposals for the mechanism of NFK formation [87] have 
been substantially revised in recent years. The generational 
echoes have resonated loudly, as some of the newer ideas 
on mechanism [88] were derived from mass spectrometry 
experiments (as in the early days [6]).

Spectroscopy and kinetics, at one time the poor relations 
compared to the mighty crystallography, are now playing 
a leading role again just as they did in the 1980s (includ-
ing recently on indoleamine 2,3-dioxygenase 2 (IDO-2) 
[89]). In terms of mechanism, there seems to be a con-
sensus emerging that the mechanism outlined in Fig. 6 
is reasonable, but things are far from being conclusively 
established and, bearing in mind the early mechanistic red 
herrings in this area [87], caution is still needed. Compu-
tational approaches have proved very useful in elucidating 
the mechanism [90–93].

Early proposals [87] for tryptophan oxidation sug-
gested a base-catalysed abstraction mechanism and no 
change in oxidation state of the metal, but several groups 
had independently reported [42, 88, 94] that the 1-Me-
l-Trp analogue was also reactive, and it was noted [95] 
that this is not consistent with a base-catalysed abstrac-
tion mechanism. Mutational data where the presumed 
active site base (histidine) had been removed were also 
not consistent with base-catalysed abstraction [96]. Two 
other mechanisms, Fig. 6, have been put forward [88, 90, 
91, 97], but there is little in the way of firm evidence for 
either. Electrophilic addition from the ferrous oxy spe-
cies, Fig. 6, is one possibility: recent evidence in TDO 
[98] (using modified hemes that were first used more than 
30 years ago [99]) supports this. We have noted [74, 75] 
that oxygen may not be an especially good electrophile 
if it is bound to the heme as a ferric superoxide species, 
and there is spectroscopic evidence for a ferric superox-
ide species [97] from Raman’s work. An alternative sug-
gestion [97] is radical addition from the ferric superox-
ide, Fig. 6 (bottom). Both pathways lead to formation of a 
ferryl (FeIV) species. There is mass spectrometry evidence 
for epoxide formation [100], but later intermediates in the 
mechanism are not clarified. Addition of oxygen across 
either the C2 or the C3 position of the substrate is possible 
for both the radical and electrophilic mechanisms, and at 
present this is a moot point. Both possibilities have been 
suggested [82, 88, 90, 91, 93, 97].

A real step forward was made using resonance Raman 
[97, 101] to identify a ferryl (Compound II) intermedi-
ate in the IDO mechanism. The same Compound II spe-
cies has recently been identified kinetically and is also 
observed during oxidation of 1-methyl-l-Trp and a num-
ber of other substrate analogues [102], providing strong 
evidence that IDO uses the same mechanism for oxidation 
of tryptophan as it does for oxidation of other substrate 
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analogues. We have argued [74, 75, 103] that since the 
process of oxygen activation in most heme enzymes (e.g. 
P450s, peroxidases, etc.) is also achieved through forma-
tion of highly oxidised iron intermediates, this brings the 
dioxygenases into line with the oxidative mechanisms 
used in other heme enzymes, as illustrated schematically 
in Fig. 7. One difference in the dioxygenases is that con-
tinuous re-reduction of an oxidised ferryl heme (through 
an associated reductase) is not required, because all of the 
available evidence indicates that the dioxygenases only 
require a single, initiating reduction of ferric heme. The 
reader is referred to previous reviews [74, 75, 103] for a 
fuller discussion.

Substrate binding and catalysis

It had been noted from very early on [17, 104] that the rate 
of tryptophan turnover in IDO decreases at high concentra-
tions of substrate. This was originally proposed [104] to be 
a consequence of substrate binding to the ferric form of the 
enzyme, but this is not consistent with the known [51, 105] 
increase in reduction potential on substrate binding and has 

therefore been questioned [106]. Some evidence suggests 
that the sequence of binding of O2 and the substrate at high 
and low substrate concentrations is important [106–108], 
possibly linked to changes in the reduction potential on 
substrate binding [106]. Others have suggested [94] that 
there is a second (inhibitory) binding site in IDO and that 
this is the origin of the inhibition—this is also plausible and 
there is evidence for more than one binding site (or at least 
multiple binding conformations) [61, 109–112], including 
in a recent structure for human TDO where a second l-Trp 
binding site (referred to as an exo site) has been clearly 
observed at >40 Å from the active site [82].

What goes around comes around: the lasting 
contribution of Osamu Hayaishi

Heme dioxygenases have floated into fashion, out of it, 
and back in again. The early contributions that Hayaishi 
made to the dioxygenase field are a lasting legacy that form 
a framework of reference to this day and will serve us all 
well as the field moves to the future.
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