Evelyn Mayaan • Kevin Range - Darrin M. York

Structure and binding of $\mathbf{M g}(I I)$ ions and di-metal bridge complexes with biological phosphates and phosphoranes

Published online: 29 October 2004
© SBIC 2004

J Biol Inorg Chem (2004) 9:807-817

Both the online and the print versions of this article show an error in Table 2 and a missing line in Table 3. The correct tables appear below.

Table 2 Geometries of phosphorane complexes with hydrated $\mathrm{Mg} 2+\operatorname{binding}(\AA)$

Molecule	equatorial				axial			
	bridging P-O(C)	non-bridging			endo-cyclic		exo-cyclic	
$\mathrm{P}-\mathrm{O}(\mathrm{H}) / \mathrm{P}^{-}{ }^{-} \mathrm{O}$		$\mathrm{P}-\mathrm{O}(\mathrm{H}) / \mathrm{P}_{. .}^{-} \mathrm{O}$	HB	P-O:Mg	P-O	HB	P-O	HB
[EPA $]_{a q}^{2-}$	1.716	1.547	-	-	1.946	-	1.803	
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{EPA})\right]$	1.665	1.572	+	1.574	1.744	-	1.874	+
[$\left.\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~b}-\mathrm{EPA})\right]$	1.651	-	-	1.567	1.901	+	1.768	+
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})(\mathrm{b}-\mathrm{EPA})\right]^{1-}$	1.673	-	-	1.550	1.981	+	1.778	+
[EPAH_{2}]	1.653	1.630	-	-	1.727	-	1.674	
[EPAH] ${ }^{(} \uparrow$)	1.706	1.661	-	-	1.893	-	1.715	
[EPAH] ${ }^{-}(\downarrow)$	1.714	1.665	-	-	1.779	-	1.790	-
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{EPAH})\right]_{\text {exo }}^{1+}$	1.641	1.693	+	1.547	1.743	-	1.740	+
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{EPAH})\right]_{\text {endo }}^{1+}$	1.626	1.679	+	1.540	1.938	+	1.649	
$\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})(\mathrm{EPAH})\right]$	1.663	1.642	-	1.542	1.827	+	1.705	-

Bridging/non-bridging distinguishes between oxygens which are bridged between a P and C atom versus an O which is bonded only to P (or in the case of neutral phosphates bound to H as well). $[E P A]_{a q}^{2-}$ optimization was preformed using the PCM solvation model (see text). (\uparrow) or (\downarrow) indicate the orientation of the proton on
the non-bridging O relative to the ethylene ring. Columns headed by HB indicate the presence $(+)$ or absence $(-)$ of a hydrogen bond between a Mg^{2+}-water and the phosphorane oxygen. Deviations are shown in parentheses. Subscripts exo/endo distinguish which axial oxygen atom is hydrogen bonded

The online version of the original article can be found at http:// dx.doi.org/10.1007/s00775-004-0583-7

[^0]Table 3 Ligand substitution energies ($\mathrm{kcal} / \mathrm{mol}$)

	Gas phase properties								$\Delta \mathrm{G}_{\mathrm{aq}}$	
L	$\Delta \mathrm{E}$	$\Delta \mathrm{H}$	$-\mathrm{T} \Delta \mathrm{S}$	$\Delta \mathrm{G}$		PCM				

Mono-dentate reactions are of the form $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{L}^{-}$ ${ }^{\mathrm{q}} \rightarrow\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{~L})\right]^{2-\mathrm{q}}+\mathrm{H}_{2} \mathrm{O}$ and bi-dentate reactions are of the form $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{~L})\right]^{-\mathrm{q}} \rightarrow\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~b}-\mathrm{L})\right]^{-\mathrm{q}}+\mathrm{H}_{2} \mathrm{O}$ where b-L indicates a ligand bound bi-dentate to Mg^{2+}. Due to the instability of $[E P A]^{2-}$ in the gas phase, the structure was first opti-
mized using the PCM solvation model (see text). Single point energies were then calculated for the optimized structure in the gas phase. Columns headed with PCM and COSMO indicate $\Delta \mathrm{G}_{\mathrm{aq}}$ single point calculations performed with the PCM and COSMO solvation models

[^0]: E. Mayaan • K. Range • D. M. York (\boxtimes)

 Department of Chemistry, University of Minnesota,
 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
 E-mail: york@chem.umn.edu
 Tel.: + 1-612-6248042
 Fax: + 1-612-6267541

