ERRATUM

Evelyn Mayaan · Kevin Range · Darrin M. York

Structure and binding of Mg(II) ions and di-metal bridge complexes with biological phosphates and phosphoranes

Published online: 29 October 2004 © SBIC 2004

J Biol Inorg Chem (2004) 9:807-817

Both the online and the print versions of this article show an error in Table 2 and a missing line in Table 3. The correct tables appear below.

|--|

Molecule $P - O(H)/P_{}^{-}O$	equatorial	axial						
	bridging	non-bridging			endo-cyclic		exo-cyclic	
	P-O(C)	$\overline{P-O(H)\big/P_{_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!}}^-O}$	HB	P-O:Mg	P-O	HB	P-O	HB
$[EPA]^{2-}$	1.716	1.547	-	-	1.946	-	1.803	-
$[Mg(H_2^{aq}O)_5(EPA)]$	1.665	1.572	+	1.574	1.744	-	1.874	+
$[Mg(H_2O)_4(b-EPA)]$	1.651	-	-	1.567	1.901	+	1.768	+
$[Mg(H_2O)_3(OH)(b-EPA)]^{1-}$	1.673	-	-	1.550	1.981	+	1.778	+
[EPAH ₂]	1.653	1.630	-	-	1.727	-	1.674	-
[EPAH] [−] (↑)	1.706	1.661	-	-	1.893	-	1.715	-
$[EPAH]^{-}(\downarrow)$	1.714	1.665	-	-	1.779	-	1.790	-
$\left[Mg(H_2O)_5(EPAH)\right]_{exo}^{1+}$	1.641	1.693	+	1.547	1.743	-	1.740	+
$\left[Mg(H_2O)_5(EPAH)\right]_{endo}^{1+}$	1.626	1.679	+	1.540	1.938	+	1.649	-
$[Mg(H_2O)_4(OH)(EPAH)]$	1.663	1.642	-	1.542	1.827	+	1.705	-

Bridging/non-bridging distinguishes between oxygens which are bridged between a P and C atom versus an O which is bonded only to P (or in the case of neutral phosphates bound to H as well). $[EPA]_{aq}^{2-}$ optimization was preformed using the PCM solvation model (see text). (\uparrow) or (\downarrow) indicate the orientation of the proton on

the non-bridging O relative to the ethylene ring. Columns headed by HB indicate the presence (+) or absence (-) of a hydrogen bond between a Mg²⁺-water and the phosphorane oxygen. Deviations are shown in parentheses. Subscripts exo/endo distinguish which axial oxygen atom is hydrogen bonded

The online version of the original article can be found at http://dx.doi.org/10.1007/s00775-004-0583-7

E. Mayaan · K. Range · D. M. York (⊠) Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA E-mail: york@chem.umn.edu Tel.: +1-612-6248042 Fax: +1-612-6267541

Table 3 Ligand substitution energies (kcal/mol)

	Gas phase pro	operties	ΔG_{aq}			
L	ΔE	ΔΗ	$-T\Delta S$	ΔG	РСМ	COSMO
mono-dentate reac	tions					
CH ₃ COOH	-12.93	-13.49	1.33	-12.16	6.18	5.59
H ₃ PO ₄	-22.56	-23.28	1.41	-21.86	1.93	1.67
DMPH	-28.77	-29.33	1.34	-27.99	5.47	4.60
EPH	-29.19	-29.63	1.37	-28.26	1.08	1.43
OH ⁻	-229.69	-230.03	-0.36	-230.39	-4.45	6.23
CH ₃ O ⁻	-218.66	-217.17	0.52	-216.65	-7.47	-0.18
CH ₃ COO ⁻	-203.76	-204.78	2.22	-202.56	-5.81	-0.88
EPĂH ⁻	-205.14	-204.47	4.09	-200.38	-6.96	-2.84
DMP ⁻	-200.01	-200.07	3.14	-196.93	-6.40	-3.43
EP-	-197.98	-198.15	3.86	-194.29	-5.61	-2.37
$H_2PO_4^-$	-196.06	-196.58	2.52	-194.06	-6.21	-3.48
HPO ₄ ² -	-396.14	-398.62	6.08	-392.53	-6.97	1.04
EPA ²⁻	-395.72	-394.63	5.78	-388.86	-6.12	4.79
bi-dentate reaction	S					
b-DMP ⁻	18.42	16.98	-11.23	5.75	-0.13	-0.94
b-EP ⁻	14.51	13.22	-11.46	1.77	-5.54	-5.95
b-EPA ²⁻	8.31	7.25	-11.07	-3.82	-8.71	-9.13

Mono-dentate reactions are of the form $[Mg(H_2O)_6]^{2^+} + L^ ^q \rightarrow [Mg(H_2O)_5(L)]^{2^-q} + H_2O$ and bi-dentate reactions are of the form $[Mg(H_2O)_5(L)]^{-q} \rightarrow [Mg(H_2O)_4(b-L)]^{-q} + H_2O$ where b-L indicates a ligand bound bi-dentate to Mg^{2^+} . Due to the instability of $[EPA]^{2^-}$ in the gas phase, the structure was first opti-

mized using the PCM solvation model (see text). Single point energies were then calculated for the optimized structure in the gas phase. Columns headed with PCM and COSMO indicate ΔG_{aq} single point calculations performed with the PCM and COSMO solvation models