Skip to main content

Advertisement

Log in

TBS correlates with bone density and microstructure at trabecular and cortical bone evaluated by HR-pQCT

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

Trabecular bone score (TBS) estimates bone microstructure, which is directly measured by high-resolution peripheral quantitative computed tomography (HRpQCT). We evaluated the correlation between these methods and TBS influence on fracture risk assessed by FRAX.

Materials and methods

We evaluated 129 individuals (82 women, 43 postmenopausal) 20 to 82.3 years without prevalent clinical or non-clinical morphometric vertebral fractures, using DXA (spine and hip), HR-pQCT at distal radius (R) and tibia (T) and TBS which classifies bone microarchitecture as normal (TBS ≥ 1.350), partially degraded (1.200 < TBS < 1.350), or degraded (TBS ≤ 1.200).

Results

Spine and hip BMD and HR-pQCT parameters at cortical bone: area (T), density (R,T) thickness (T) and trabecular bone: density (R,T), number (T) and thickness (R) were significantly better in the 78 individuals with normal TBS (group 1) versus the 51 classified as partially degraded (n = 42) or degraded microarchitecture (n = 9) altogether (group 2). TBS values correlated with age (r = − 0.55), positively with spine and hip BMD and all cortical and trabecular bone density and microstructure parameters evaluated, p < 0.05 all tests. Binary logistic regression defined age (p = 0.008) and cortical thickness (p = 0.018) as main influences on TBS, while ANCOVA demonstrated that HR-pQCT data corrected for age were not different between TBS groups 1 and 2. TBS adjustment increased FRAX risk for major osteoporotic fractures and hip fractures.

Conclusion

We describe significant association between TBS and both trabecular and cortical bone parameters measured by HR-pQCT, consistent with TBS influence on fracture risk estimation by FRAX, including hip fractures, where cortical bone predominates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peck W, Burckhardt P, Christiansen C, Fleisch H, Genant H, Gennari C, Martin T, Martini L, Morita R, Ogata E, Rapado A, Shulman L, Stern P, Young R (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

    Article  Google Scholar 

  2. Alexeeva L, Bonjour J, Burkhardt P, Christiansen C, Cooper C, Delmas P, Johnell O, Johnston C, Kanis J, Khaltaev N, Lips P, Mazzuoli G, Melton L, Meunier P, Seeman E, Stepan J, Tosteson A (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO study group. WHO Tech Rep Ser 843:1–129

    Google Scholar 

  3. Baim S, Binkley N, Bilezikian JP, Kendler DL, Hans DB, Lewiecki EM, Silverman S (2008) Official positions of the international society for clinical densitometry and executive summary of the 2007 ISCD position development conference. J Clin Densitom. https://doi.org/10.1016/j.jocd.2007.12.007

    Article  PubMed  Google Scholar 

  4. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, Berger ML, Santora AC, Sherwood LM (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk assessment. JAMA 286:2815–2822

    Article  CAS  PubMed  Google Scholar 

  5. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, Berger ML (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. JAMA Intern Med 164:1108–1112

    Article  Google Scholar 

  6. Schuit SC, Van der Klift M, Weel AE, De Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, Van Leeuwen JP, Pols HA (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    Article  CAS  PubMed  Google Scholar 

  7. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530

    Article  PubMed  Google Scholar 

  8. Silva BC, Leslie WD (2017) Trabecular bone score: a new DXA–derived measurement for fracture risk assessment. Endocrinol Metab Clin North Am 46:153–180

    Article  PubMed  Google Scholar 

  9. Leslie W, Kanis JA, Lamy O, Johansson H, McCloskey EV, Hans D (2013) Adjustment of FRAX probability according to lumbar spine Trabecular Bone Score (TBS): The Manitoba BMD Cohort. J Clin Densitom 16:267–268

    Google Scholar 

  10. Couraud G, Souffir C, Gaigneux E, Kolta S, Roux C, Briot K (2017) Adjusting FRAX® on TBS for identification of subjects at high risk of fractures. Bone 101:214–218

    Article  CAS  PubMed  Google Scholar 

  11. McCloskey E, Harvey NC, Lorentzon M, Johansson H, Hans D, Kanis JA (2022) Trabecular bone score adjustment for the fracture risk assessment tool (FRAX®). Calcif Tissue Int 111:226–227. https://doi.org/10.1007/s00223-022-00994-w

    Article  CAS  PubMed  Google Scholar 

  12. Van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R (2021) The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int 32:1465–1485

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cheung WH, Hung VW, Cheuk KY, Chau WW, Tsoi KK, Wong RM, Chow SK, Lam TP, Yung PS, Law SW, Qin L (2021) Best performance parameters of HR-pQCT to predict fragility fracture—systematic review and meta-analysis. J Bone Miner Res. https://doi.org/10.1002/jbmr.4449

    Article  PubMed  Google Scholar 

  14. Whittier DE, Samelson EJ, Hannan MT, Burt LA, Hanley DA, Biver E, Szulc P, Sornay-Rendu E, Merle B, Chapurlat R, Lespessailles E (2023) A fracture risk assessment tool for high resolution peripheral quantitative computed tomography. J Bone Miner Res. https://doi.org/10.1002/jbmr.4808

    Article  PubMed  Google Scholar 

  15. Popp AW, Buffat H, Eberli U, Lippuner K, Ernst M, Richards RG, Stadelmann VA, Windolf M (2014) Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women. PLoS ONE. https://doi.org/10.1371/journal.pone.0088946

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amstrup AK, Jakobsen NFB, Moser E, Sikjaer T, Mosekilde L, Rejnmark L (2016) Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab 34:638–645

    Article  PubMed  Google Scholar 

  17. Silva BC, Walker MD, Abraham A, Boutroy S, Zhang C, McMahon DJ, Liu G, Hans D, Bilezikian JP (2013) Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and White women. J Clin Densitom 16:554–561

    Article  PubMed  Google Scholar 

  18. Palomo T, Muszkat P, Weiler FG, Dreyer P, Brandão CMA, Silva BC (2022) Update on trabecular bone score. Arch Endocrinol Metab 66:694–706

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang J, Yang J, Mao Y, Nieves JW (2020) Identification of prevalent vertebral fractures using Vertebral Fracture Assessment (VFA) in asymptomatic postmenopausal women: a systematic review and meta-analysis. Bone 136:115358

    Article  PubMed  Google Scholar 

  20. Whittier DE, Boyd SK, Burghardt AJ, Paccou J, Ghasem-Zadeh A, Chapurlat R, Engelke K, Bouxsein ML (2020) Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 31:1607–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boutroy S, Bouxsein ML, Munoz F, Munoz F, Delmas PD, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515

    Article  CAS  PubMed  Google Scholar 

  22. Zerbini CA, Szejnfeld VL, Abergaria BH, McCloskey EV, Johansson H, Kanis JA (2015) Incidence of hip fracture in Brazil and the development of a FRAX model. Arch Osteoporos 10:1–7

    Article  Google Scholar 

  23. Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62

    Article  PubMed  Google Scholar 

  24. Nicks KM, Amin S, Atkinson EJ, Riggs BL, Melton LJ, Khosla S (2012) Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res 27:637–644

    Article  PubMed  Google Scholar 

  25. Sornay-Rendu E, Cabrera-Bravo J-L, Boutroy S, Munoz F, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24:737–743

    Article  PubMed  Google Scholar 

  26. Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R (2011) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: The STRAMBO study. J Bone Miner Res 26:1358–1367

    Article  PubMed  Google Scholar 

  27. Mikolajewicz N, Bishop N, Burghardt AJ, Folkestad L, Hall A, Kozloff KM, Lukey PT, Molloy-Bland M, Morin SN, Offiah AC, Shapiro J (2020) HR-pQCT measures of bone microarchitecture predict fracture: systematic review and meta-analysis. J Bone Miner Res 35:446–459

    Article  PubMed  Google Scholar 

  28. Alvarenga JC, Fuller H, Pasoto SG, Pereira RMR (2017) Age-related reference curves of volumetric bone density, structure, and biomechanical parameters adjusted for weight and height in a population of healthy women: an HR-pQCT study. Osteoporos Int 28:1335–1346

    Article  CAS  PubMed  Google Scholar 

  29. Alvarenga JC, Caparbo VF, Domiciano DS, Pereira RMR (2022) Age-related reference data of bone microarchitecture, volumetric bone density, and bone strength parameters in a population of healthy Brazilian men: an HR-pQCT study. Osteoporos Int 33:1309–1321. https://doi.org/10.1007/s00198-021-06288-5

    Article  CAS  PubMed  Google Scholar 

  30. McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948

    Article  PubMed  Google Scholar 

  31. Camargos B, Elizondro Alan L, Albergaria B, Clark P, Magro CE, Molina FC (2014) Normative spine TBS data for Latin American women. Annu Meet Am Soc Bone Miner Research Houston, TX September 12–15, 29(S1):S1–S1

  32. Nandiraju D, Ahmed I (2019) Human skeletal physiology and factors affecting its modeling and remodeling. Fertil Steril 112:775–781

    Article  CAS  PubMed  Google Scholar 

  33. Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, Udesky J, Cremers S, Sarquis M, Guo XD, Hans D (2013) Trabecular bone score (TBS)—a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 98:1963–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramalho J, Marques ID, Hans D, Dempster D, Zhou H, Patel P, Pereira RM, Jorgetti V, Moyses RM, Nickolas TL (2018) The trabecular bone score: Relationships with trabecular and cortical microarchitecture measured by HR-pQCT and histomorphometry in patients with chronic kidney disease. Bone 116:215–220

    Article  CAS  PubMed  Google Scholar 

  35. Torres GHF, Guzman LFE, Alvarenga JC, Lopes N, Pereira RMR (2019) Association of moderate/severe vertebral fractures with reduced trabecular volumetric bone density in older women and reduced areal femoral neck bone density in older men from the community: a cross-sectional study (SPAH). Maturitas 120:61–67

    Article  PubMed  Google Scholar 

  36. SoreeRyang Y, Jeon T, Goh IK, Kim K (2023) Trabecular bone score and central quantitative computed tomography for the prediction of vertebral fragility fractures in postmenopausal women. J Bone Metab. 30:77–86. https://doi.org/10.11005/jbm.2023.30.1.77

    Article  Google Scholar 

  37. Leslie WD, Lix LM, Tsang JF, Caetano P (2007) Single-site vs multisite bone density measurement for fracture prediction. JAMA Intern Med 167:1641–1647

    Article  Google Scholar 

  38. Liu XS, Cohen A, Shane E, Yin PT, Stein EM, Rogers H, Kokolus SL, McMahon DJ, Lappe JM, Recker RR, Lang T (2010) Bone density, geometry, microstructure, and stiffness: Relationships between peripheral and central skeletal sites assessed by DXA, HR-pQCT, and cQCT in premenopausal women. J Bone Miner Res 25:2229–2238

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the postgraduate students who selected individuals as control group for their studies: Aline Moraes, Felipe Oliveira, Eduardo Madeira and Graziella Mendonça.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Eduardo Medeiros Ferreira da Gama, Maria Lucia Fleiuss Farias and Leonardo Vieira Neto. The first draft of the manuscript was written by Eduardo Medeiros Ferreira da Gama, Maria Lucia Fleiuss Farias and Leonardo Vieira Neto and all authors commented on previous versions of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to E. M. F. Gama.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gama, E.M.F., Mendonça, L.M.C., Paranhos-Neto, F.P. et al. TBS correlates with bone density and microstructure at trabecular and cortical bone evaluated by HR-pQCT. J Bone Miner Metab 42, 352–360 (2024). https://doi.org/10.1007/s00774-024-01508-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-024-01508-4

Keywords

Navigation