Skip to main content

Advertisement

Log in

Secreted microRNAs in bone metastasis

  • Invited Review
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Bone metastasis is a common complication in several solid cancers, including breast, prostate, and lung. In the bone microenvironment, metastatic cancer cells disturb bone homeostasis leading to osteolytic or osteosclerotic lesions. Osteolytic lesions are characterized by an increased osteoclast-mediated bone resorption while osteosclerotic lesions are caused by enhanced activity of osteoblasts and formation of poor-quality bone. A common feature in bone metastasis is the complex interplay between the cancer cells and the cells of the bone microenvironment, which can occur already before the cancer cells enter the distant site. Cancer cells at the primary site can secrete soluble factors and extracellular vesicles to bone to create a “pre-metastatic niche” i.e., prime the microenvironment permissive for cancer cell homing, survival, and growth. Once in the bone, cancer cells secrete factors to activate the osteoclasts or osteoblasts and the so called “vicious cycle of bone metastases”. These pathological cell–cell interactions are largely dependent on secreted proteins. However, increasing evidence demonstrates that secreted RNA molecules, in particular small non-coding microRNAs are critical mediators of the crosstalk between bone and cancer cells. This review article discusses the role of secreted miRNAs in bone metastasis development and progression, and their potential as non-invasive biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11:411–425. https://doi.org/10.1038/nrc3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  3. Peinado H, Zhang H, Matei IR et al (2017) (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317. https://doi.org/10.1038/nrc.2017.6

    Article  CAS  PubMed  Google Scholar 

  4. Kim JM, Lin C, Stavre Z et al (2020) Osteoblast-osteoclast communication and bone homeostasis. Cells. https://doi.org/10.3390/CELLS9092073

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ponzetti M (2021) Rucci N (2021) Osteoblast differentiation and signaling: established concepts and emerging topics. Int J Mol Sci 22:6651. https://doi.org/10.3390/IJMS22136651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taipaleenmäki H (2018) Regulation of bone metabolism by microRNAs. Curr Osteoporos Rep 16:1–12. https://doi.org/10.1007/s11914-018-0417-0

    Article  PubMed  Google Scholar 

  7. Elango R, Alsaleh KA, Vishnubalaji R et al (2020) MicroRNA expression profiling on paired primary and lymph node metastatic breast cancer revealed distinct microRNA profile associated with LNM. Front Oncol 10:756. https://doi.org/10.3389/FONC.2020.00756/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ravegnini G, Serrano C, Ricci R et al (2021) miRNA landscape in primary tumors and matched metastases in gastrointestinal stromal tumors. Epigenomics 13:369–377. https://doi.org/10.2217/EPI-2020-0303

    Article  CAS  PubMed  Google Scholar 

  9. Hesse E, Taipaleenmäki H (2019) MicroRNAs in bone metastasis. Curr Osteoporos Rep 17:122–128. https://doi.org/10.1007/s11914-019-00510-4

    Article  PubMed  Google Scholar 

  10. Haider M-T, Taipaleenmäki H (2018) Targeting the metastatic bone microenvironment by microRNAs. Front Endocrinol (Lausanne) 9:202. https://doi.org/10.3389/fendo.2018.00202

    Article  PubMed  Google Scholar 

  11. Haider MT, Smit DJ, Taipaleenmäki H (2022) MicroRNAs: emerging regulators of metastatic bone disease in breast cancer. Cancers (Basel). https://doi.org/10.3390/CANCERS14030729

    Article  PubMed  PubMed Central  Google Scholar 

  12. Browne G, Taipaleenmäki H, Stein GS et al (2014) MicroRNAs in the control of metastatic bone disease. Trends Endocrinol Metab 25:320–327. https://doi.org/10.1016/j.tem.2014.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang J, Xu Q (2015) Differences of osteoblastic bone metastases and osteolytic bone metastases in clinical features and molecular characteristics. Clin Transl Oncol 17:173–179. https://doi.org/10.1007/S12094-014-1247-X

    Article  CAS  PubMed  Google Scholar 

  14. Guise TA, Mohammad KS, Clines G et al (2006) Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-06-1007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Puppo M, Taipaleenmäki H, Hesse E, Clézardin P (2021) Non-coding RNAs in bone remodelling and bone metastasis: mechanisms of action and translational relevance. Br J Pharmacol 178:1936–1954. https://doi.org/10.1111/BPH.14836

    Article  CAS  PubMed  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. https://doi.org/10.1016/0092-8674(93)90529-Y

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Kolb FA, Jaskiewicz L et al (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68. https://doi.org/10.1016/j.cell.2004.06.017

    Article  CAS  PubMed  Google Scholar 

  18. O J, H H, Z Y, P C (2018) Overview of microRNA Biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). https://doi.org/10.3389/FENDO.2018.00402

    Article  Google Scholar 

  19. Broughton JP, Lovci MT, Huang JL et al (2016) Pairing beyond the seed supports microRNA targeting specificity. Mol Cell 64:320–333. https://doi.org/10.1016/J.MOLCEL.2016.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–435. https://doi.org/10.1038/NCB2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zarrer J, Haider M-T, Smit DJ, Taipaleenmäki H (2020) Pathological crosstalk between metastatic breast cancer cells and the bone microenvironment. Biomolecules. https://doi.org/10.3390/biom10020337

    Article  PubMed  PubMed Central  Google Scholar 

  22. Erler JT, Bennewith KL, Cox TR et al (2009) Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche. Cancer Cell 15:35. https://doi.org/10.1016/J.CCR.2008.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoshino A, Costa-Silva B, Shen TL et al (2015) (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527:329–335. https://doi.org/10.1038/nature15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Probert C, Dottorini T, Speakman A et al (2019) Communication of prostate cancer cells with bone cells via extracellular vesicle RNA; a potential mechanism of metastasis. Oncogene 38:1751. https://doi.org/10.1038/S41388-018-0540-5

    Article  CAS  PubMed  Google Scholar 

  25. Yuan X, Qian N, Ling S et al (2021) Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 11:1429–1445. https://doi.org/10.7150/THNO.45351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Valencia K, Luis-Ravelo D, Bovy N et al (2014) miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol 8:689–703. https://doi.org/10.1016/J.MOLONC.2014.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ollodart J, Contino KF, Deep G, Shiozawa Y (2022) The impacts of exosomes on bone metastatic progression and their potential clinical utility. Bone Rep. https://doi.org/10.1016/J.BONR.2022.101606

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hashimoto K, Ochi H, Sunamura S et al (2018) Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A 115:2204–2209. https://doi.org/10.1073/PNAS.1717363115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ye Y, Li SL, Ma YY et al (2017) Exosomal miR-141–3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer. Oncotarget 8:94834–94849. https://doi.org/10.18632/ONCOTARGET.22014

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu L, Sui B, Fan W et al (2021) Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1–5p. J Extracell Vesicles. https://doi.org/10.1002/JEV2.12056

    Article  PubMed  PubMed Central  Google Scholar 

  31. Furesi G, de Jesus Domingues AM, Alexopoulou D et al (2022) Exosomal miRNAs from prostate cancer impair osteoblast function in mice. Int J Mol Sci. https://doi.org/10.3390/IJMS23031285

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo L, Zhu Y, Li L et al (2019) Breast cancer cell-derived exosomal miR-20a-5p promotes the proliferation and differentiation of osteoclasts by targeting SRCIN1. Cancer Med 8:5687–5701. https://doi.org/10.1002/CAM4.2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Z, Liu X, Wang H et al (2018) Lung adenocarcinoma cell-derived exosomal miR-21 facilitates osteoclastogenesis. Gene 666:116–122. https://doi.org/10.1016/J.GENE.2018.05.008

    Article  CAS  PubMed  Google Scholar 

  34. Zhang J, Wu J (2021) The potential roles of exosomal miR-214 in bone metastasis of lung adenocarcinoma. Front Oncol. https://doi.org/10.3389/FONC.2020.611054

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu J, Li D, Dang L et al (2017) Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep. https://doi.org/10.1038/SREP40487

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu K, Feng J, Lyu F et al (2021) Exosomal miR-19a and IBSP cooperate to induce osteolytic bone metastasis of estrogen receptor-positive breast cancer. Nat Commun. https://doi.org/10.1038/S41467-021-25473-Y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Taipaleenmäki H, Saito H, Schröder S et al (2022) Antagonizing microRNA-19a/b augments PTH anabolic action and restores bone mass in osteoporosis in mice. EMBO Mol Med. https://doi.org/10.15252/EMMM.202013617

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ell B, Mercatali L, Ibrahim T et al (2013) Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell 24:542–556. https://doi.org/10.1016/j.ccr.2013.09.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Deutsche Forschungsgemeinschaft (DFG), grant numbers TA 1154/1-2, and TA 1154/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Taipaleenmäki.

Ethics declarations

Conflict of interest

The author declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taipaleenmäki, H. Secreted microRNAs in bone metastasis. J Bone Miner Metab 41, 358–364 (2023). https://doi.org/10.1007/s00774-023-01424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-023-01424-z

Keywords

Navigation