Skip to main content

Advertisement

Log in

Relationship between oseteoporosis with fatty infiltration of paraspinal muscles based on QCT examination

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Introduction

To investigate the correlation between paraspinal muscles features and osteoporosis in lumbar spine.

Materials and methods

A total of 367 subjects who underwent quantitative computed tomography (QCT) examination were enrolled in this study. QCT pro workstation was used to obtain the mean bone mineral density (BMD) of the lower lumbar spine. Fat fraction (FF) and cross-section area (CSA) of the paraspinal muscles at the corresponding levels were measured. All participants were divided into normal, osteopenia, and osteoporosis groups. One-way ANOVA and independent samples t tests were performed to compare differences between groups. Pearson and Spearman correlation coefficients and partial correlation analysis after controlling for confounding factors were used to analyze the correlation between BMD and paraspinal muscles measurements.

Results

Among the 367 participants included, 116 were in the normal group, 130 in the osteopenia group and 121 in the osteoporosis group. There were significant differences among the three groups for the mean and multifidus FF. BMD showed negative correlations with the FF of the paraspinal muscles. Multifidus and mean FF showed the best correlation (r = − 0.654, − 0.777). There were also significant differences in the mean and multifidus FF between different age groups, while after controlling for confounding factors, there was no correlation between age and FF of the paraspinal muscles.

Conclusion

This preliminary study demonstrated the association of BMD with fatty infiltration of paraspinal muscles. Different muscles might have specific effects in different sex and age groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nih Consensus Development Panel on Osteoporosis Prevention D, Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  2. Fuggle NR, Westbury LD, Bevilacqua G, Titcombe P, Micheal OB, Harvey NC, Dennison EM, Cooper C, Ward KA (2021) Level and change in bone microarchitectural parameters and their relationship with previous fracture and established bone mineral density loci. Bone 147:115937. https://doi.org/10.1016/j.bone.2021.115937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van den Bergh JP, Szulc P, Cheung AM, Bouxsein M, Engelke K, Chapurlat R (2021) The clinical application of high-resolution peripheral computed tomography (HR-pQCT) in adults: state of the art and future directions. Osteoporos Int. https://doi.org/10.1007/s00198-021-05999-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M (2019) Sarcopenia: aging-related loss of muscle mass and function. Physiol Rev 99:427–511. https://doi.org/10.1152/physrev.00061.2017

    Article  PubMed  Google Scholar 

  5. Wang X, Wang S, Yan P, Bian Z, Li M, Hou C, Tian J, Zhu L (2018) Paravertebral injection of botulinum toxin-a reduces lumbar vertebral bone quality. J Orthop Res 36:2664–2670. https://doi.org/10.1002/jor.24029

    Article  CAS  PubMed  Google Scholar 

  6. Salimi H, Ohyama S, Terai H, Hori Y, Takahashi S, Hoshino M, Yabu A, Habibi H, Kobayashi A, Tsujio T, Kotake S, Nakamura H (2021) Trunk muscle mass measured by bioelectrical impedance analysis reflecting the cross-sectional area of the paravertebral muscles and back muscle strength: a cross-sectional analysis of a prospective cohort study of elderly population. J Clin Med. https://doi.org/10.3390/jcm10061187

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gandham A, Mesinovic J, Jansons P, Zengin A, Bonham MP, Ebeling PR, Scott D (2021) Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: a systematic review and meta-analysis. Obes Rev 22:e13187. https://doi.org/10.1111/obr.13187

    Article  CAS  PubMed  Google Scholar 

  8. Schaap LA, van Schoor NM, Lips P, Visser M (2018) Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J Gerontol A Biol Sci Med Sci 73:1199–1204. https://doi.org/10.1093/gerona/glx245

    Article  PubMed  Google Scholar 

  9. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695. https://doi.org/10.1002/jcb.25040

    Article  CAS  PubMed  Google Scholar 

  10. Karasik D, Kiel DP (2008) Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res 23:788–802. https://doi.org/10.1359/jbmr.080218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seo HS, Lee H, Kim S, Lee SK, Lee KY, Kim NH, Shin C (2021) Paravertebral muscles as indexes of sarcopenia and sarcopenic obesity: comparison with imaging and muscle function indexes and impact on cardiovascular and metabolic disorders. AJR Am J Roentgenol 216:1596–1606. https://doi.org/10.2214/AJR.20.22934

    Article  PubMed  Google Scholar 

  12. Takahashi S, Hoshino M, Takayama K, Sasaoka R, Tsujio T, Yasuda H, Kanematsu F, Kono H, Toyoda H, Ohyama S, Hori Y, Nakamura H (2020) The natural course of the paravertebral muscles after the onset of osteoporotic vertebral fracture. Osteoporos Int 31:1089–1095. https://doi.org/10.1007/s00198-020-05338-8

    Article  CAS  PubMed  Google Scholar 

  13. Biltz NK, Collins KH, Shen KC, Schwartz K, Harris CA, Meyer GA (2020) Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J Physiol 598:2669–2683. https://doi.org/10.1113/JP279595

    Article  CAS  PubMed  Google Scholar 

  14. Beasley LE, Koster A, Newman AB, Javaid MK, Ferrucci L, Kritchevsky SB, Kuller LH, Pahor M, Schaap LA, Visser M, Rubin SM, Goodpaster BH, Harris TB, Health ABCs (2009) Inflammation and race and gender differences in computerized tomography-measured adipose depots. Obesity 17:1062–1069. https://doi.org/10.1038/oby.2008.627

    Article  PubMed  Google Scholar 

  15. Pinter ZW, Wagner S, Fredericks D Jr, Xiong A, Helgeson M, Currier B, Freedman BA, Kepler C, Elder BD, Bydon M, Nassr A, Sebastian AS (2021) Cervical paraspinal muscle fatty degeneration is not associated with muscle cross-sectional area: qualitative assessment is preferable for cervical sarcopenia. Clin Orthop Relat Res 479:726–732. https://doi.org/10.1097/CORR.0000000000001621

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lloyd JT, Alley DE, Hawkes WG, Hochberg MC, Waldstein SR, Orwig DL (2014) Body mass index is positively associated with bone mineral density in US older adults. Arch Osteoporos 9:175. https://doi.org/10.1007/s11657-014-0175-2

    Article  PubMed  Google Scholar 

  17. Linge J, Heymsfield SB, Dahlqvist Leinhard O (2020) On the definition of sarcopenia in the presence of aging and obesity-initial results from UK biobank. J Gerontol A Biol Sci Med Sci 75:1309–1316. https://doi.org/10.1093/gerona/glz229

    Article  PubMed  Google Scholar 

  18. Loomes KM, Spino C, Goodrich NP, Hangartner TN, Marker AE et al (2019) Bone density in children with chronic liver disease correlates with growth and cholestasis. Hepatology 69:245–257. https://doi.org/10.1002/hep.30196

    Article  CAS  PubMed  Google Scholar 

  19. Vaananen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24:125–134. https://doi.org/10.1016/j.media.2015.06.001

    Article  PubMed  Google Scholar 

  20. Xu XM, Li N, Li K, Li XY, Zhang P, Xuan YJ, Cheng XG (2019) Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Translat 18:59–64. https://doi.org/10.1016/j.jot.2018.11.003

    Article  PubMed  Google Scholar 

  21. Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, Kaplan LM, Finkelstein JS (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29:542–550. https://doi.org/10.1002/jbmr.2063

    Article  CAS  PubMed  Google Scholar 

  22. Mao SS, Li D, Syed YS, Gao Y, Luo Y, Flores F, Child J, Cervantes M, Kalantar-Zadeh K, Budoff MJ (2017) Thoracic Quantitative Computed Tomography (QCT) can sensitively monitor bone mineral metabolism: comparison of thoracic QCT vs lumbar QCT and dual-energy X-ray absorptiometry in detection of age-relative change in bone mineral density. Acad Radiol 24:1582–1587. https://doi.org/10.1016/j.acra.2017.06.013

    Article  PubMed  Google Scholar 

  23. Cheng X, Zhao K, Zha X, Du X, Li Y et al (2021) Opportunistic screening using low-dose ct and the prevalence of osteoporosis in China: a nationwide, multicenter study. J Bone Miner Res 36:427–435. https://doi.org/10.1002/jbmr.4187

    Article  CAS  PubMed  Google Scholar 

  24. Yu AH, Duan-Mu YY, Zhang Y, Wang L, Guo Z, Yu YQ, Wang YS, Cheng XG (2018) Correlation between non-alcoholic fatty liver disease and visceral adipose tissue in non-obese Chinese adults: a CT evaluation. Korean J Radiol 19:923–929. https://doi.org/10.3348/kjr.2018.19.5.923

    Article  PubMed  PubMed Central  Google Scholar 

  25. Guo Z, Blake GM, Li K, Liang W, Zhang W, Zhang Y, Xu L, Wang L, Brown JK, Cheng X, Pickhardt PJ (2020) Liver fat content measurement with quantitative CT validated against MRI proton density fat fraction: a prospective study of 400 healthy volunteers. Radiology 294:89–97. https://doi.org/10.1148/radiol.2019190467

    Article  PubMed  Google Scholar 

  26. Zheng R, Byberg L, Larsson SC, Hoijer J, Baron JA, Michaelsson K (2021) Prior loss of body mass index, low body mass index, and central obesity independently contribute to higher rates of fractures in elderly women and men. J Bone Miner Res. https://doi.org/10.1002/jbmr.4298

    Article  PubMed  Google Scholar 

  27. Xiao Z, Xu H (2020) Gender-specific body composition relationships between adipose tissue distribution and peak bone mineral density in young Chinese adults. Biomed Res Int 2020:6724749. https://doi.org/10.1155/2020/6724749

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhao Y, Huang M, Serrano Sosa M, Cattell R, Fan W, Li M, Chen J, Gao M, Zhou Q, Li S, Zhang X, Huang C (2019) Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos 14:99. https://doi.org/10.1007/s11657-019-0639-5

    Article  PubMed  Google Scholar 

  29. Wang X, Jia R, Li J, Zhu Y, Liu H, Wang W, Sun Y, Zhang F, Guo L, Zhang W (2021) Research progress on the mechanism of lumbarmultifidus injury and degeneration. Oxid Med Cell Longev 2021:6629037. https://doi.org/10.1155/2021/6629037

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takashima H, Takebayashi T, Ogon I, Yoshimoto M, Morita T, Imamura R, Nakanishi M, Nagahama H, Terashima Y, Yamashita T (2018) Analysis of intra and extramyocellular lipids in the multifidus muscle in patients with chronic low back pain using MR spectroscopy. Br J Radiol 91:20170536. https://doi.org/10.1259/bjr.20170536

    Article  PubMed  Google Scholar 

  31. Habibi H, Takahashi S, Hoshino M, Takayama K, Sasaoka R, Tsujio T, Yasuda H, Kanematsu F, Kono H, Toyoda H, Ohyama S, Hori Y, Nakamura H (2021) Impact of paravertebral muscle in thoracolumbar and lower lumbar regions on outcomes following osteoporotic vertebral fracture: a multicenter cohort study. Arch Osteoporos 16:2. https://doi.org/10.1007/s11657-020-00866-6

    Article  PubMed  Google Scholar 

  32. Cholewicki J, Simons AP, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385. https://doi.org/10.1016/s0021-9290(00)00118-4

    Article  CAS  PubMed  Google Scholar 

  33. Kim JY, Chae SU, Kim GD, Cha MS (2013) Changes of paraspinal muscles in postmenopausal osteoporotic spinal compression fractures: magnetic resonance imaging study. J Bone Metab 20:75–81. https://doi.org/10.11005/jbm.2013.20.2.75

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sollmann N, Franz D, Burian E, Loffler MT, Probst M, Gersing A, Schwaiger B, Pfeiffer D, Kirschke JS, Baum T, Riederer I (2020) Assessment of paraspinal muscle characteristics, lumbar BMD, and their associations in routine multi-detector CT of patients with and without osteoporotic vertebral fractures. Eur J Radiol 125:108867. https://doi.org/10.1016/j.ejrad.2020.108867

    Article  PubMed  Google Scholar 

  35. Crawford RJ, Filli L, Elliott JM, Nanz D, Fischer MA, Marcon M, Ulbrich EJ (2016) Age- and level-dependence of fatty infiltration in lumbar paravertebral muscles of healthy volunteers. AJNR Am J Neuroradiol 37:742–748. https://doi.org/10.3174/ajnr.A4596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Urrutia J, Besa P, Lobos D, Campos M, Arrieta C, Andia M, Uribe S (2018) Lumbar paraspinal muscle fat infiltration is independently associated with sex, age, and inter-vertebral disc degeneration in symptomatic patients. Skeletal Radiol 47:955–961. https://doi.org/10.1007/s00256-018-2880-1

    Article  PubMed  Google Scholar 

  37. Sions JM, Elliott JM, Pohlig RT, Hicks GE (2017) Trunk muscle characteristics of the multifidi, erector spinae, psoas, and quadratus lumborum in older adults with and without chronic low back pain. J Orthop Sports Phys Ther 47:173–179. https://doi.org/10.2519/jospt.2017.7002

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, Fujita S (2014) Resistance training restores muscle sex steroid hormone steroidogenesis in older men. FASEB J 28:1891–1897. https://doi.org/10.1096/fj.13-245480

    Article  CAS  PubMed  Google Scholar 

  39. Pollanen E, Kangas R, Horttanainen M, Niskala P, Kaprio J, Butler-Browne G, Mouly V, Sipila S, Kovanen V (2015) Intramuscular sex steroid hormones are associated with skeletal muscle strength and power in women with different hormonal status. Aging Cell 14:236–248. https://doi.org/10.1111/acel.12309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sheu Y, Marshall LM, Holton KF, Caserotti P, Boudreau RM, Strotmeyer ES, Cawthon PM, Cauley JA (2013) Abdominal body composition measured by quantitative computed tomography and risk of non-spine fractures: the osteoporotic fractures in men (MrOS) Study. Osteoporos Int 24:2231–2241. https://doi.org/10.1007/s00198-013-2322-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dallaway A, Kite C, Griffen C, Duncan M, Tallis J, Renshaw D, Hattersley J (2020) Age-related degeneration of the lumbar paravertebral muscles: systematic review and three-level meta-regression. Exp Gerontol 133:110856. https://doi.org/10.1016/j.exger.2020.110856

    Article  CAS  PubMed  Google Scholar 

  42. Dahlqvist JR, Vissing CR, Hedermann G, Thomsen C, Vissing J (2017) Fat replacement of paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc 49:595–601. https://doi.org/10.1249/MSS.0000000000001119

    Article  PubMed  Google Scholar 

  43. Dallaway A, Hattersley J, Diokno M, Tallis J, Renshaw D, Wilson A, Wayte S, Weedall A, Duncan M (2020) Age-related degeneration of lumbar muscle morphology in healthy younger versus older men. Aging Male 23:1583–1597. https://doi.org/10.1080/13685538.2021.1878130

    Article  CAS  PubMed  Google Scholar 

  44. Kalichman L, Carmeli E, Been E (2017) The association between imaging parameters of the paraspinal muscles, spinal degeneration, and low back pain. Biomed Res Int 2017:2562957. https://doi.org/10.1155/2017/2562957

    Article  PubMed  PubMed Central  Google Scholar 

  45. Roubenoff R, Hughes VA (2000) Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci 55:M716–M724. https://doi.org/10.1093/gerona/55.12.m716

    Article  CAS  PubMed  Google Scholar 

  46. Liew BXW, Rugamer D, Stocker A, De Nunzio AM (2020) Classifying neck pain status using scalar and functional biomechanical variables—development of a method using functional data boosting. Gait Posture 76:146–150. https://doi.org/10.1016/j.gaitpost.2019.12.008

    Article  PubMed  Google Scholar 

Download references

Funding

This study has received funding by the National Natural Science Foundation of China (81671652).

Author information

Authors and Affiliations

Authors

Contributions

LXW: conceptualization and writing—original draft. XYX: methodology, software, and writing—original draft. LR: conceptualization and methodology. ZYY: methodology and writing—review and editing. CS: funding acquisition, conceptualization, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shuang Chen.

Ethics declarations

Ethics approval

This study was approved by the Health Sciences Institutional Review Board of our hospital (Huashan Hospital Fudan University HIRB, 2015 M-010), which waived the requirement for informed consent.

Consent for publication

This manuscript has been approved by all co-authors and has not been published before.

Conflict of interest

All authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xie, Y., Lu, R. et al. Relationship between oseteoporosis with fatty infiltration of paraspinal muscles based on QCT examination. J Bone Miner Metab 40, 518–527 (2022). https://doi.org/10.1007/s00774-022-01311-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-022-01311-z

Keywords

Navigation