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Abstract
This study presents a practical method for estimating the extreme value distribution of von Mises stress for ship structural 
strength evaluations. The previous methods of calculating this distribution require somewhat complicated numerical calcula-
tions, such as multi-dimensional integration. In contrast, the proposed method is based on an asymptotic approximation and 
can be easily calculated in a similar way to the conventional linear statistical prediction. A closed expression was derived 
in the case of stress components which have non-zero mean value. The formula is derived under approximations that reflect 
realistic stress conditions when ships are under severe sea states. Through a structural analysis of a whole ship, it was com-
prehensively verified that the proposed method has sufficiently high accuracy for structural strength evaluation. Furthermore, 
a parametric analysis was conducted to clarify its limit of applicability.
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List of symbols

General 
 In the following,�(t) =

{

G1(t),G2(t),G3(t)
}T

and 
�(t) =

{

H1(t),H2(t),H3(t)
}T

are dummy variables that represent

the vector process:

�̇(t)  Time derivative of �(t)

�  Realization of �(t)

�
�

  Mean value of �(t)

�
�

  Standard deviation of �(t)

�
��

  Covariance matrix between �(t) and �(t)

�GiHj
  Correlation coefficients between Gi(t) and 

Hj(t)

f
�
(�)  Joint probability density function between 

G1(t),G2(t), andG3(t)

Others
cij  Nondimensional coefficient related to the 

curvature of the isosurface of f
�
(�)

g  Gravity acceleration
QZ(z)  Extreme value distribution (probability that 

the maxima of Z(t) exceeds z)

Tze  Encountered mean zero-upcrossing wave 
period

TzYi  Mean zero-upcrossing period of Yi(t) − �Yi

U  Ship speed
v+
Z
(z)  Upcrossing rate at level Z(t) = z

�(t)  Gaussian vector process of plane stress con-
sisting of normal stress components ( X1,X2 ) 
and share stress component ( X3)

X̂i(𝜔, 𝛽)  Response amplitude operator of Xi(t)

�(t)  Gaussian vector process obtained by linear 
transformation of �(t)

yP
1
, yP

2
  Coordinates of y1 and y2 on plane-P satisfy-

ing y3 = �Y3

yM
1
(z), yM

2
(z)  Coordinates of yP

1
 and yP

2
 in which � takes 

maxima on the isoline Z(t) = z

Z(t)  Square of von Mises stress
Z0  Value of Z(t) in pre-load
z  Threshold of Z(t)
�  Wave angle ( = 0 : following sea, = � : head 

sea)
�Xi

(�, �)  Phase advance of X̂i(𝜔, 𝛽)

�  Latitude in �-space
Φ�� (�, �)  Wave spectrum
�  Longitude in �-space
�
(

yP
1
, yP

2

)

  Exponent of f
�
(�) on plane-P
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�  Wave frequency
�e  Encounter wave frequency

1 Introduction

A structural strength evaluation of a ship requires an estimate 
of the maximum response over the entire period of the ship’s 
operation. The short/long-term prediction method based on 
linear theory proposed by Fukuda [1] is widely used for ship 
design because it can be easily calculated from the response 
amplitude operation (RAO) in the frequency domain and 
gives reasonable results. However, the method cannot deal 
with nonlinear quantities such as von Mises stress because 
it assumes that the response is linear and its extreme value 
distribution follows a Rayleigh distribution. Even though an 
estimation of the maximum expected value for von Mises 
stress is quite important for structural strength evaluations, 
there are still no methods that are widely adapted for ship 
structural design.

The estimation of the extreme value distribution of von 
Mises stress can be interpreted as an outcrossing problem on 
a hypersurface in stress component space, and it is defined 
by the integral of the probability density function on the 
hypersurface [2]. The integral cannot be solved analytically 
in the general case, and numerical approaches are needed to 
some extent. Although the methods presented in previous 
studies provide reasonable results [2–4], their computational 
procedures are somewhat complicated, e.g., involving a 
multi-dimensional numerical integration, and it seems diffi-
cult to apply them in practice. For a method to be practical, it 
must be not only accurate, but also computationally efficient 
and robust. These features are even more important for ship 
design because the contributions of all possible sea states 
must be taken into account when calculating the long-term 
probability of exceedance.

In terms of computational cost and robustness, the 
asymptotic approximation of the integral is a very effective 
approach. There have been several studies on asymptotic for-
mulae of the extreme value distribution of non-Gaussian pro-
cesses [5–7]. However, closed-form expressions for them are 
limited to special cases. Specifically, a formula for von Mises 
stress has not been presented for the case that the stress com-
ponents have non-zero mean value, i.e., when stress in still-
water conditions is considered. Since the still-water loads 
acting on a ship can be as significant as wave-induced loads, 
it is essential to consider the mean value of stress components 
in a structural strength evaluation of a ship.

In light of the above background, the purpose of this 
paper is to develop a practical method for calculating the 
extreme value distribution of von Mises stress that is accu-
rate, computationally efficient, and robust. The method 

assumes that there are three stress components (plane stress 
conditions) which follow a narrow-band stationary Gauss-
ian process. Here, the author has developed a closed for-
mula for the extreme value distribution that is based on an 
asymptotic expansion of the integral by an extension of 
Laplace’s method. In particular, the proposed formula takes 
into account the non-zero mean values in closed form, which 
has not been shown in previous studies [5–7]. In deriving the 
formula, approximations are applied to the extent that accu-
racy does not deteriorate under realistic stress conditions in 
which the ship is under severe sea states. The applicability of 
proposed method is verified comprehensively by conducting 
a whole ship structural analysis in waves.

2  Formulation of extreme value distribution 
of von Mises stress

First, we define the random process of stress components 
and von Mises stress. Next, for the sake of simplicity, we 
introduce a variable transformation of the stress components 
and express von Mises stress in a sum-of-squares form. 
Then, we define the extreme value distribution in terms of 
the upcrossing rate and finally give a specific formulation 
of the extreme value distribution of von Mises stress using 
stochastic parameters of the stress components.

2.1  Definition of a random process

Let X1(t) and X2(t) be normal stress components and X3(t) 
be the shear stress component of the plane stress at a certain 
position in a ship structure. Furthermore, let us assume them 
to be random variables following a stationary Gaussian dis-
tribution in short-term sea states. Their mean values 
�Xi

(

∶=E
[

Xi(t)
])

 are interpreted as the stress occurring in the 
still-water condition. Voigt’s notation for them, 
�(t)

(

∶=
{

X1(t),X2(t),X3(t)
}T

)

 , is a Gaussian vector process 

with mean value vector �
�

(

∶=
{

�X1
,�X2

,�X3

}T
)

 and covari-

ance matrix �
��

(

ΣXiXj ∶=E
[(

Xi(t) − �Xi

)

−
(

Xj(t) − �Xj

)])

 
. The joint probability density function (PDF) of �(t) is

The state is also denoted as �(t) ∼ N
(

�
�
,�

��

)

 . The time 
derivative of �(t) , denoted as �̇(t) , is a stationary Gaussian 
vector process with zero mean, i.e., �̇(t) ∼N

(

0,�
�̇�̇

)

 . In 
addition, the covariance matrix between �(t) and �̇(t) is 

(1)

f
�
(�) =

1
√

(2�)3 det |
|

�
��

|

|

× exp
[

−
1

2

(

� − �
�

)T
�
−1
��

(

� − �
�

)

]

.
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Σ
𝐗�̇�

(

= ΣT

�̇�𝐗
,ΣXiẊj

∶=E
[(

Xi(t) − 𝜇Xi

)

Ẋj(t)
]

)

 .  Since the 
Gaussian process Xi(t) and its time derivative Ẋi(t) are mutu-
ally independent, the diagonal components of �

��̇
 are all 

zero.
The square of the von Mises stress Z(t) is expressed in the 

following quadratic form of the stress components.

The symbol for the time variable (t) of the random pro-
cess is omitted hereafter.

2.2  Variable transformation

To simplify the extreme value distribution of Z in Eq. (2), 
we will transform the stress component vector � into another 
Gaussian vector process � such that Z can be expressed in 
sum-of-squares form, according to the procedure presented 
by Segalman [8, 9].

The vector process � follows � ∼ N
(

�
�
,�

��

)

, where 
�
��

 is the following diagonal matrix:

The variable transformation � → � can be applied when 
Z is a quadratic form of � . Appendix 1 shows the procedure 
of the transformation, which is a modification of Segalman’s 
in which only one diagonalization is required. Furthermore, 
Appendix 1 shows how to obtain the covariance matrixes 
�
��

 , �
��̇

 , and �
�̇�

 from the RAOs of the stress components 
for the case of a ship has advancing speed in short-crested 
irregular waves.

The mean value of Z can be expressed as follows.

where

Z0 means the value of Z  in pre-load, i.e., in still-water 
condition.

(2)Z(t) = �(t)T��(t),

(3)where � =

⎡

⎢

⎢

⎣

1 −1∕2 0

−1∕2 1 0

0 0 3

⎤

⎥

⎥

⎦

.

(4)Z =

3
∑

i=1

Y2
i
.

(5)�
��

= diag
(

�2
Y1
, �2

Y2
, �2

Y3

)

.

(6)�Z = Z0 +

3
∑

i=1

�2
Yi
,

(7)Z0 ∶=

3
∑

i=1

�2
Yi
= �

T
�
��

�
,

2.3  Definition of extreme value distribution

As it is well known, the number of maxima can be approxi-
mated by the number of upcrossings for a narrow-band pro-
cess whose minima are not so high in value. Therefore, the 
extreme value distribution QZ(z) , i.e., the probability that 
an extreme value exceeds Z = z , can be approximated as 
follows.

where Tp is the mean period between maxima of Z , and v+
Z
(z) 

is the upcrossing rate at level z . The definition of (2.8), how-
ever, is not suitable for a statistical prediction of von Mises 
stress, because it is difficult to formulate Tp . In addition, the 
number of maxima of von Mises stress is about twice that 
of the maxima of the stress component; hence, definition by 
Eq. (8) is a different index from the exceedance probability 
of the conventional short/long-term prediction method.

Instead, the following definition is used in this study.

where Tze is the encountered mean zero-upcrossing wave 
period, which considers the effect of the ship advancing into 
waves,

where

is the encounter wave frequency and Φ�� , � , � , U , and g are 
the wave spectrum, wave frequency, wave angle, ship speed, 
and gravity acceleration, respectively. Tze is approximately 
equal to the mean zero-upcrossing period of the fluctuation 
components of stress Xi − �Xi

.
As defined in Eq. (9), the maximum expected value of 

Z occurring once in N-waves coincides with z satisfying 
QZ(z) = 1∕N and can be treated in the same way as the index 
of the exceedance probability used in the conventional short/
long-term prediction method. Strictly speaking, it is not accu-
rate to call it an exceedance probability because Eq. (9) is an 
expected value of upcrossings in terms of Tze and can exceed 
1. However, for the purpose of estimating the maximum 
expected value of Z in a certain duration, which is used for 
short/long-term prediction, definition by Eq. (9) is appropriate 
and the fact that Qz(z) exceeds 1 does not cause any problems.

(8)

QZ(z) ≅

(

Number of upcrossings atZ = z

per unit time

)

(

Number of maxima per unit time
) = Tpv

+
Z
(z),

(9)QZ(z) ∶= Tzev
+
Z
(z),

(10)Tze ∶= 2�

√

√

√

√

∫ �

−�
∫ ∞

0
Φ�� (�, �)d�d�

∫ �

−�
∫ ∞

0
�2
e
Φ�� (�, �)d�d�

,

(11)�e = � −
U

g
�2 cos �,
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2.4  Formulation of the upcrossing rate

Upcrossing rate v+
Z
(z) can be calculated using Rice’s formula 

[10]:

where fZŻ(z, ż) is the joint PDF of Z and its time deriva-
tive Ż . Gupta proposed a direct way to find fZŻ(z, ż) for von 
Mises stress [4].

Veneziano generalized Rice’s formula (12) and presented 
the following equation for the case, where Z is expressed as 
a general scalar function of Xi [2].

where �B(z) is an isosurface of Z = z in �-space, Ẋn is the 
component of �̇ at a point � ∈ �B(z) in the direction normal 
to the ellipsoid and directed outward, and fẊn|�=�

(

ẋn|�
)

 is 
the conditional PDF of Ẋn.

Madsen derived a specific form for Eq. (13) in the case 
that Z is the square of von Mises stress and � consists of 
three stress components [3]. For Madsen’s expression, using 
the variable � in Eq. (4) instead of � , the upcrossing rate 
can be expressed as

where

(12)v+
Z
(z) = ∫

∞

0

żfZŻ(z, ż)dż,

(13)v+
Z
(z) = ∫𝜕B(z)

f
�
(�)∫

∞

0

ẋnfẊn|�=�

(

ẋn|�
)

dẋnd𝜕B,

(14)

v+
Z
(z) = z∫

𝜋

0

d𝜃 sin 𝜃 ∫
2𝜋

0

d𝜙f
�
(�)

×

⎡

⎢

⎢

⎢

⎣

𝜇Ẏn

2

⎧

⎪

⎨

⎪

⎩

1 + erf

⎡

⎢

⎢

⎣

𝜇Ẏn
√

2𝜎Ẏn

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

+
𝜎Ẏn
√

2𝜋
exp

⎡

⎢

⎢

⎣

−
1

2

�

𝜇Ẏn

𝜎Ẏn

�2
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

,

(15)f
�
(�) =

3
�

i=1

1
√

2��Yi

exp

⎡

⎢

⎢

⎣

−

�

yi − �Yi

�2

2�2
Yi

⎤

⎥

⎥

⎦

,

(16)� =

⎧

⎪

⎨

⎪

⎩

√

z sin � cos�
√

z sin � sin�
√

z cos �

⎫

⎪

⎬

⎪

⎭

,

(17)𝜇Ẏn
= �

T
�
�̇�

�
−1
��

(

� − �
�

)

,

(18)𝜎2

Ẏn
= 𝐧

T
(

𝚺
�̇��̇�

− 𝚺
�̇�𝐘

𝚺
−1
𝐘𝐘

𝚺
𝐘�̇�

)

𝐧,

Although it is an exact formula without any special 
assumptions, this formula is not so practical because it 
requires a numerical solution of the double integral. Moreo-
ver, it is difficult to ensure its reliability for cases where the 
matrix �

��
 ( = diag(�2

Y1
, �2

Y2
, �2

Y3
) ) is close to being singular, 

as is often the case.

3  Asymptotic formula of the upcrossing rate

This section derives a practical closed formula for the 
upcrossing rate v+

Z
(z) by adapting an asymptotic expansion 

and making some approximations of the integral in Eq. (14).

3.1  Formulation assuming that components are 
mutually independent

Let us assume that Y and their time derivatives �̇� are mutu-
ally independent. In this case,

 and Eq. (14) can be simplified as

where

It can be confirmed that the same result is derived by 
Fukuda’s derivation procedure [11], which makes the same 
approximations as in Eqs. (20) and (21). It has been theoreti-
cally shown by Hagen that the effect of the approximation in 
Eq. (20) on v+

Z
(z) is secondary, and the loss of accuracy can 

be ignored [6]. On the other hand, Eq. (21) is not general and 
does not hold in all cases. However, as we will see in Sect. 4, 
Eq. (21) holds in most cases without any problem, because 
when � is orthogonally transformed, the covariance matrix 
�
�̇�̇

 is almost diagonalized.

(19)� =

⎧

⎪

⎨

⎪

⎩

sin � cos�

sin � sin�

cos �

⎫

⎪

⎬

⎪

⎭

.

(20)𝚺
�̇�𝐘

≅ 0,𝚺
𝐘�̇�

≅ 0,

(21)𝚺
�̇��̇�

≅ diag
(

𝜎2

Ẏ1
, 𝜎2

Ẏ2
, 𝜎2

Ẏ3

)

,

(22)v+
Z
(z) ≅

z
√

2𝜋 ∫
𝜋

0

d𝜃 sin 𝜃 ∫
2𝜋

0

d𝜙𝜎Ẏn f�(�),

(23)
𝜎2

Ẏn
≅ 𝐧

T
𝚺
�̇��̇�

𝐧

≅ 𝜎2

Ẏ1
sin2 𝜃 cos2 𝜙 + 𝜎2

Ẏ2
sin2 𝜃 sin2 𝜙 + 𝜎2

Ẏ3
cos2 𝜃.
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When �Y2∕�Y1 and �Y3∕�Y1 are close to zero, the exponen-
tial part of Eq. (22) changes sharply, making it difficult to 
ensure the accuracy of the numerical integration. In particu-
lar, �Y3∕�Y1 often takes a very small value. Consequently, we 
next derive the asymptotic formulae of Eq. (22) for the case 
where �Y3∕�Y1 are close to zero.

When �Y3∕�Y1 → 0 , the integral on the right-hand side of 
Eq. (22) is dominated by the contribution of the integrand 
from the vicinity of the plane-P formed by y3 = �Y3

 . In this 
case, except for the exponential function of y3 , the change with 
respect to y3 is gradual, so it can be represented by the value 
on the plane-P. Hence, the following asymptotic approxima-
tion is derived by applying the Gaussian integral formula.

Accordingly, the upcrossing rate asymptotically follows as

where

yP
1
 and yP

2
 are the coordinates of y1 and y2 on plane-P, as 

shown in Fig. 1. In this case, v+
Z
(z) = 0 when z ≤ �2

Y3
 because 

Z cannot be less than �2
Y3

.
In addition to �Y3∕�Y1 → 0 , if �Y2∕�Y1 → 0 , the following 

equation can be derived because the integral of Eq. (25) is 
dominated by the contribution of the integrand in the vicin-
ity of line-L formed by 

(

y2, y3
)

= (�Y2
,�Y3

).

(24)

√

z∫
�

0

d� sin � exp

⎡

⎢

⎢

⎣

−

�

y3 − �Y3

�2

2�2
Y3

⎤

⎥

⎥

⎦

∼
√

2��Y3

as �Y3∕�Y1 → 0.

(25)
v+
Z
(z) ∼

𝜁

(2𝜋)3∕2𝜎Y1𝜎Y2
∫

2𝜋

0

𝜎P

Ẏn
exp [𝜓]d𝜙

as 𝜎Y3∕𝜎Y1 → 0,

(26)𝜎P

Ẏn
∶=

√

𝜎2

Ẏ1
cos2 𝜙 + 𝜎2

Ẏ2
sin2 𝜙,

(27)�
(

yP
1
, yP

2

)

∶= −

(

yP
1
− �Y1

)2

2�2
Y1

−

(

yP
2
− �Y2

)2

2�2
Y2

,

(28)
{

yP
1
(z,�) = � cos�

yP
2
(z,�) = � sin�

,

(29)� ∶=
√

z − �2
Y3
.

(30)
v+
Z
(z) ∼

2

TzY1

exp

[

−
(yL

1
)2 + �2

Y1

2�2
Y1

]

cosh

(

yL
1
�Y1

�2
Y1

)

as �Y2∕�Y1 → 0 and �Y3∕�Y1 → 0,

and TzY1
(

∶= 2𝜋𝜎Y1∕𝜎Ẏ1

)

 is the mean zero-upcrossing period 
of Y1 − �Y1

 . In this case, v+
Z
(z) = 0 when z ≤ �2

Y2
+ �2

Y3
 . 

Expression of Eq. (30) is simple and is suitable for a rough 
order evaluation of z . When we set QZ(z) ≅ TzY1v

+
Z
(z) and 

solve for z , we get

This formula is not accurate, but it is useful as a refer-
ence value for calculating the distribution of QZ(z) while 
varying z.

3.2  Asymptotic expansion of Eq. (25)

Here, we derive a more practical formula without an integral 
or case separation on the basis of an asymptotic expansion 
using Laplace’s method.

Even though the Laplace’s method is a series representa-
tion of the Laplace integral under the assumption that z is 
sufficiently large, it is known to be a good approximation 
over a wide range even if only the first term is considered 
[14]. When �

�
= 0 , the integral in Eq. (22) becomes the 

Laplace integral, so we can directly apply Laplace’s method. 
Appendix 2 derives the following asymptotic formula:

where

(31)where yL
1
(z) ∶=

√

z − �2
Y2
− �2

Y3

(32)z
(

QZ

)

≅

{

�Y1

√

−2 ln
(

QZ

)

+ �Y1

}2

+ �2
Y2
+ �2

Y3
.

(33)
v+
Z
(z) ∼

2

TzY1

√

c21c31 exp

�

−
z

2�2
Y1

�

when �
�
= 0, as z → ∞,

Fig. 1  Schema of plane-P and line-L in �-space
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 is a nondimensional coefficient related to the curvature of 
the isosurface of f

�
(�) on yiyj-plane. Equation (33) coincides 

with Breitung’s result [5].
On the other hand, the derivation is not straightforward 

when �
�
≠ 0 , because it is difficult to explicitly express the 

coordinates of the reference points for the Taylor expan-
sion. In this study, the coordinates of the reference points are 
approximated. Equation (25) is used as the base formula of 
the asymptotic expansion, because �Y3∕�Y1 usually does not 
take a large value, as will be shown in Sect. 4.

In taking the asymptotic expansion of Eq. (25), we must 
find the angle �M where � is maximized on the isosurface 
of Z (the circle formed by the intersection of the plane-P 
and the isosurface of Z ) and consider the contribution of 
the integrand only in the vicinity of �M . In the case of the 
integral in Eq. (25), there are usually two maxima of � and 
the contribution of the second largest maximum cannot be 
ignored in the case 𝜇Y1

≪ 𝜎Y1 . Therefore, to consider both 
two maxima, let us denote the (yP

1
, yP

2
)-coordinates where � 

is at a maximum by 
(

yM+
1

, yM+
2

)

 and 
(

yM−
1

, yM−
2

)

 . The sign of 
M± corresponds to the sign of yP

1
.

According to Laplace’s method, Eq. (25) is expanded as 
follows (see Appendix 2):

where

The coefficient 
√

c31 is additionally taken into account to 
consider the effect of �Y3∕�Y1 by referring to the asymptotic 
formula (33)with zero mean.

Next, we find the points (yM±
1

, yM±
2

) where � reaches max-
imal value. They are at the intersections of the isoline of z

(34)cij ∶=
1

1 −
(

�2
Yi
∕�2

Yj

)

(35)

v
+
Z
(z) ∼

√

c31

2𝜋𝜎
Y1
𝜎
Y2

⎧

⎪

⎨

⎪

⎩
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Ẏ
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Ẏ
n
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�

�

�

�

�(yP1 ,y
P

2 )=(y
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2 )

⎫

⎪

⎬

⎪

⎭

as z → ∞,

(36)
���

(

yM±
1

, yM±
2

)

=

(

1

�2
Y2

−
1

�2
Y1

)

×
{

(

yM±
2

)2
− c21�Y2

yM±
2

−
(

yM±
1

)2
+ c12�Y1

yM±
1

}

,

(37)𝜁𝜎P

Ẏn

(

yM±
1

, yM±
2

)

=

√

𝜎2

Ẏ1

(

yM±
1

)2
+ 𝜎2

Ẏ2

(

yM±
2

)2
.

 and the curve on which gradient of �(yP
1
, yP

2
) is directed to 

the origin of the plane-P, that is,

Equation (40) is the hyperbola that passes through the 
origin 

(

yP
1
, yP

2

)

= (0, 0) as well as the mean value point 
(

yP
1
, yP

2

)

= (�Y2
,�Y3

) and is asymptotic to the two lines: 
yP
1
= c12�Y1

 , and yP
2
= c21�Y2

 . The schema of the contour of 
z and � on plane-P and hyperbola of Eq. (40) which � takes 
an extreme value is shown in Fig. 2. From Fig. 2, it can 
be understood that � has two maxima and two minima on 
the contour line of Z and the maximum is in the region of 
sign(�Y1

) yP
1
≥ 0.

To obtain an explicit expression for (yM±
1

, yM±
2

) , which is 
defined as the points that satisfy Eqs. (38) and (40) simul-
taneously, it is necessary to solve a quartic function and the 
closed formula of (yM±

1
, yM±

2
) becomes quite complicated. 

Therefore, we will treat this problem approximately. First, 
for simplicity, let us approximate the hyperbola of Eq. (40) 
as a symmetric curve which mirrors the hyperbola on the 
side of sign(�Y1

) yP
1
≥ 0 with respect to the yP

2
-axis, i.e., 

yM+
2

= yM−
2

= yM
2

 . Then, as an explicit function of z , yM
2

 can 
be approximated as follows:

(38)
(

yP
1

)2
+
(

yP
2

)2
= �2

(39)

⎧

⎪

⎨

⎪

⎩
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2
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⎫

⎪

⎬

⎪

⎭

×

⎧

⎪

⎨

⎪

⎩

yP
1

yP
2

0

⎫

⎪

⎬

⎪

⎭

= 0,

(40)↔

(

yP
1
− c12�Y1

)(

yP
2
− c21�Y2

)

= c12�Y1
c21�Y2

.

Fig. 2  Schema of maxima and minima of � on z-contour on the 
plane-P
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This formula has the following value when �Y1
= 0 , as 

can be seen by taking the limit �Y1
→ 0.

The derivation of Eq. (41) is shown in Appendix 3. The 
approximation formula (41) is a curve whose asymptotic 
behavior as z → ∞ is correct on the order of O(1∕�) com-
pared to the true solution, and the curve passes through 
the origin and the mean value point (�Y1

,�Y2
) at z = 0 and 

z = Z0 , respectively. Furthermore, it always satisfies yM
2
< 𝜁 

when z ≥ Z0 so that the square root of yM
1

 does not become 
negative. Once yM

2
 is obtained, yM±

1
 is determined from 

Eq. (38) to be

After substituting the above formulae for 
(

±yM
1
, yM

2

)

 into 
Eqs. (35)–(37), the following approximation for the coeffi-
cient part ( 𝜁𝜎P

Ẏn
∕
√

−𝜓𝜙𝜙 ) is applied.

This approximation is valid because the coefficient part has 
less impact than the exponential part exp[�] and is meaning-
ful in the sense of avoiding a singularity ( 1 − c12

|

|

|

�Y1

|

|

|

∕yM
1

 
always takes positive value). Accordingly, the upcrossing 
rate in Eq. (35) can be rewritten as follows.

This is a practical formula that does not require numerical 
integration and is valid in the region z ≥ Z0 . Equation (46) 
coincides with Eq.  (33) when �Yi

= 0 . To calculate the 

(41)
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2
(z) ≅

�Y2

2�

{

� − c12
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|

|

�Y1

|

|

|

+ �c21
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√
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� − c12
|

|

|
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|

|

|
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}

,

(42)where � ∶=
√
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−
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�Y1

|

|

|

.
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)
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= 0.
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(Proposed)

extreme value distribution QZ(z) , Eq. (46) requires only �Yi 
and �Yi

 when QZ(z) ≅ TzY1v
+
Z
(z) holds (in Sect. 4 indicates 

that this approximation is usually valid).

4  Numerical validations

4.1  Target ship structural model for analysis

To validate the applicability of the proposed extreme value 
distribution formula (46) to ship structural design, a direct 
load and structure analysis of a whole ship FEM model was 
conducted using the DLSA-Basic system [15], wherein 
wave-induced stresses and still-water stresses were obtained 
of all shell elements. The target model was a bulk carrier 
with L = 280m, and the full load condition with homogene-
ous loading (homo.) and alternative loading (alt.) were con-
sidered. For each condition, conventional short/long-term 
predictions were performed for the three stress components 
in the neutral plane of all shell elements, and the top 100 
elements of the long-term maximum expected value (includ-
ing the still-water component) were selected for each seven-
element group where the mean wave angle in the MSS (Most 
Severe Short-term sea states) [16] was 0°, 30°, …, 180°. The 
selected 700 elements can be regarded as the primary struc-
tural members affected by various load factors in all wave 
directions and are considered suitable for comprehensive 
verification. Figure 3 shows the ship FEM model with the 
selected elements highlighted in the homo./alt. conditions.

4.2  Histogram of stochastic parameters of selected 
elements in the most severe short‑term sea 
state

Before the numerical validation, in order to capture a realis-
tic range of stochastic parameters of the stress vector process, 

Fig. 3  700 elements selected for numerical validation (above: homo., 
below: alt.)
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the mean value �
�
 and covariance matrixes �

��
,�

��̇
,�

�̇�̇
 

of the vector process � in the MSS, which is converted from 
the stress component vector � as presented in Appendix 1, 
were calculated for each of the 2 loading conditions × 700 
elements.

Figure 4 shows scatter plots on the �Y2∕�Y1-�Y3∕�Y1 plane 
of 700 elements × 2 conditions. From the figure, almost all 
values of �Y2∕�Y1 are less than 0.5 and almost all values of 
�Y3∕�Y1 are less than 0.1 (maximum 0.33). When the stand-
ard deviation ratio �Y2∕�Y1 is close to 1, the element is 
affected by two or more uncorrelated and comparable domi-
nant load factors, e.g., vertical bending moment and roll 
motion under the MSS. The fact that �Y3∕�Y1 is generally 
very small implies that the hull structural members are dom-
inated by only two uncorrelated (and comparable) load fac-
tors. This fact might also hold in the case of a 3-dimensional 
stress condition. That is, when the six standard deviations 
�Y1 ,… , �Y6 are obtained from the orthogonal transformation 
of six stress components of solid element and arranged in 
descending order, �Yi∕�Y1 ( i ≥ 3 ) might be negligible. Hence, 
we infer that the proposed formula (46), in which � is defined 

as � ∶=
√

(z −
∑6

i=3
�2
Yi
) , is also applicable to a solid 

element.
Figure 5 shows histograms of ratios of the mean value of 

Yi against the square root of the mean value of Z . Since the 
mean value of Z  is �Z =

∑3

i=1
(�2

Yi
+ �2

Yi
), as written in 

Eq. (6), the fact that the ratio is close to ±1 means that the 
mean value �Yi

 is very large compared to the wave-induced 
component. Figure 5 confirms that their ratios are in wide 
range and are close to ±1 for some elements; therefore, it is 
essential to consider the mean value to estimate the maxi-
mum value of stress in the ship structure. These absolute 
values are roughly in the order ||

|

𝜇Y1

|

|

|

>
|

|

|

𝜇Y2

|

|

|

>
|

|

|

𝜇Y3

|

|

|

 , which 
is due to the correlation between the wave-induced load and 
still-water load. In addition, the absolute value of the alt.-
condition is larger than that of the homo.-condition because 
under the alternative loading, high stress is likely to occur 
even in the still-water condition.

Figure 6 shows histograms of the ratios of the mean zero-
upcrossing period between Yi-component TzYi( ∶= 2𝜋𝜎Yi∕𝜎Ẏi) 
and incident wave Tez . Here, it can be seen that TzYi takes a 
value close to Tez and differs by 20% at most. Therefore, 

Fig. 4  Scatter plots on plane of the standard deviation ratio �
Y
2
∕�

Y
1
 

and �
Y
3
∕�

Y
1
 for the 700 selected elements (left: homo., right: alt.)

Fig. 5  Histograms of mean values �
Y
i

 normalized by square root of �
Z

(=
∑3

i=1
(�2

Y
i

+ �2

Y
i

) ) for the 700 selected elements (left: homo., right: 
alt.)

Fig. 6  Histograms of ratios of mean zero-upcrossing period of Y
i
 and 

incident wave for the 700 selected elements (left: homo., right: alt.)

Fig. 7  Histograms of correlation coefficients of Ẏ
i
 for the 700 selected 

elements (left: homo., right: alt.)
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considering that Tez in QZ(z) has a logarithmic effect on z , 
it can be approximated as Tez ≅ TzYi . Furthermore, we can 
say that 𝜎Ẏ1∕𝜎Y1 ≅ 𝜎Ẏ2∕𝜎Y2 ≅ 𝜎Ẏ3∕𝜎Y3 . The reason why the 
period of the main component TzY1 tends to be longer than Tez 
is that the dominant load factor has a slightly longer period 
than the wave period in the MSS. This depends on the scale 
of the ship, and TzY1 is expected to be shorter than Tez for 
smaller ships.

Figures 7 and 8 show histograms of correlation coeffi-
cients between Ẏi and Ẏj(i ≠ j ) (𝜌ẎiẎj ∶=ΣẎiẎj

∕𝜎Ẏi𝜎Ẏj) and 
between Yi and Ẏj(i ≠ j ) (𝜌YiẎj ∶=ΣYiẎj

∕𝜎Yi𝜎Ẏj) . It is found 
from Fig. 7 that the absolute value of 𝜌ẎiẎj is at most 0.3; 
hence, Eq. (21) is a reasonable approximation. On the other 
hand, Fig. 8 shows that Eq. (20) does not hold because 𝜌YiẎj 
can be large. However, the effect of 𝜌YiẎj is secondary for the 
upcrossing rate [6] and thus Eq. (20) does not cause any 
problems, as will be confirmed numerically below.

4.3  Generation of time series for von Mises Stress

The extreme value distribution obtained from the generated 
time series of von Mises stress was also used for verifica-
tion. The time series of � were generated from the RAOs of 
the stress components X̂i and wave spectrum Φ�� (�, �) with 
directional scatter, as follows.

(47)

xi(t) =

N
∑

n=1

M
∑

m=1

|

|

|

X̂i

(

𝜔n, 𝛽m
)

|

|

|

×

√

2Φ𝜁𝜁

(

𝜔n, 𝛽m
)

Δ𝜔nΔ𝛽m

× cos
{

𝜔ent + 𝜀n,m + 𝜀xi

(

𝜔n, 𝛽m
)}

,

(48)where �en ∶=�n −
�2
n

g
U cos

(

�m
)

,

and �n,m , the phase advance of the incident wave component, 
is a uniform random number in the range [0, 2�] . The time 
series of the von Mises stress was calculated from the time 
series of the stress components at each time step, and its 
extreme value distribution was obtained by picking up the 
maxima.

The ISSC wave spectrum was used for Φ�� (�, �) [17]. 
Assuming an event in a short-term sea state, the duration of 
the time series and the number of repetitions are sufficiently 
large to numerically stabilize the extreme value distribution. 
Specifically, the spectrum was divided into 1000 equal areas 
against wave frequency ( N = 1000 ) and into 5 parts against 
wave direction ( M = 5 ). The duration of the time series was 
2000 Tez [s], and it was repeated 50 times with different ran-
dom numbers of �n,m.

4.4  Comparison of extreme value distributions 
of von mises stress

We compared the proposed formula (46) for the extreme 
value distribution of Mises stress with the Madsen’s exact 
formula (14) and the extreme value distribution obtained 

Fig. 8  Histograms of correlation coefficients between Y
i
 and Ẏ

i
 for the 

700 selected elements (left: homo., right: alt.)

Fig. 9  Comparison of exceedance probabilities of peak value of Z at 
element A. �

Y
2
∕�

Y
1
=0.23, �

Y
3
∕�

Y
1
=0.004, Z

0
∕�

Z
= 0.072

Fig. 10  Comparison of exceedance probabilities of peak value of Z at 
element B. �

Y
2
∕�

Y
1
=0.78, �

Y
3
∕�

Y
1
=0.24, Z

0
∕�

Z
= 0.98
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from the time series. First, we focused on the following three 
structural elements that have characteristic distributions.

(A) Typical element where the mean value and std. dev. 
ratio are small,

(B) Element where the still-water component Z0 is large 
relative to the variable component, and

(C) Element where the std. dev. ratio �Y2∕�Y1 is large.

The plot of the extreme value distribution QZ(z) for each 
method is shown in Figs. 9, Fig. 10, and 11 for elements 
A, B, and C, respectively. The range of the horizontal axis 
is limited to Z ≥ Z0 , because Z does not have to be esti-
mated in the region smaller than Z0 for practical use, and 
the upcrossing rate v+

Z
(z) peaks near Z = Z0 and is different 

from the actual distribution of QZ(z) in Z < Z0 . From these 
figures, it can be seen that the proposed formula (46) is in 
good agreement with the Madsen’s formula and the results 
of the time series. The wobble in the time series distribution 
for Q < 1∕1000 is due to statistical instability. The shape of 
the distribution of element B differs from those of elements 
A and C. This can be understood from the following rough 
estimation formula obtained by Eq. (32):

According to this equation, QZ

(

z − Z0
)

 is close to being the 
square of the Rayleigh distribution ( ≅ exp[−

(

z − Z0
)

∕2�2
Y1
] ) 

when Z0∕�Z → 0 , whereas it is close to a Rayleigh distribu-
tion ( ≅ exp[−

(

z − Z0
)2
∕2�2

Y1
�2
Y1
] ) when Z0∕�Z → 1.

Next, Figs. 12 and 13 compare Madsen’s formula and the 
proposed formula for the level z at which QZ(z) = 1∕10 and 
1∕1000 for the two conditions and 700 selected elements. 
Since the distribution of extremes in the time series showed 
variations due to randomness, the results are compared with 
those of Madsen’s formula (14), which is completely speci-
fied by the response spectrum. From these figures, it can be 
seen that the proposed formula (46) has very high accuracy. 
The small error at QZ(z) = 1∕10 was mainly caused by the 
asymptotic expansion, while the approximation by Eqs. (20) 
and (21) had extremely small error. In other words, there is 
negligible difference between the Madsen’s formula (14) and 
the integral on the plane-P in Eq. (22).

4.5  Applicable range of proposed formula

Finally, we investigated the applicable parameter range of 
the proposed formula (46). Here, we investigated the error 
distribution of the proposed formula in a five-parameter 
space: standard deviation ratios �Y2∕�Y1 , �Y3∕�Y1 and mean 
values �Y1

,�Y2
, and �Y3

 . The error rate � is defined as

where zFormula
Q=1∕1000

 is the value of z obtained from the pro-
posed formula (46) that satisfies QZ(z) = 1∕1000 , and 
zExact
Q=1∕1000

 is the value obtained from Madsen’s formula (14).
Figure 14 shows the contours of the error rate � on the 

�Y2∕�Y1-�Y3∕�Y1 planes for six combinations, where �Y1
 , �Y2

 , 
and �Y3

 are 0 or 3�Y1.The value of 3�Y1 was chosen because 
the error becomes relatively large. The upper limit of �Yi∕�Y1 

(49)z
(

QZ

)

− Z0 ≅ −2�2
Y1
ln
(

QZ

)

+ �Y1
�Y1

√

−2ln
(

QZ

)

.

(50)� ∶=
(

zFormula
Q=1∕1000

− zExact
Q=1∕1000

)

∕zExact
Q=1∕1000

,

Fig. 11  Comparison of exceedance probabilities of peak value of Z at 
element C. �

Y
2
∕�

Y
1
=0.65, �

Y
3
∕�

Y
1
=0.33, Z

0
∕�

Z
= 0.41

Fig. 12  Comparison of z levels of 700 selected elements when 
Q

Z
(z) = 1∕10 (left: homo., right: alt.)

Fig. 13  Comparison of z levels of 700 selected elements when 
Q

Z
(z) = 1∕1000 (left: homo., right: alt.)
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in Fig. 14 is set to 0.99 because the proposed formula goes 
to infinity as �Y2∕�Y1 → 1 , but this singularity does not cause 
a practical problem. Figure 15 shows the error rate � on the 
�Y1

∕�Y1-�Y2
∕�Y1 plane where �Y2∕�Y1 = 0.9, �Y3∕�Y1 = 0.2 , 

and �Y3
= 0.

Figure 14 and 15 indicate that the accuracy of 2% is guar-
anteed for a wide range of parameters. However, in Fig. 14, 
when �Y1

= 0 and �Y2
= 3�Y3 (upper right and lower right 

figures), the proposed formula over-estimates in the region 
𝜎Y2∕𝜎Y1 > 0.85 . This is because when ||

|

𝜇Y2
∕𝜇Y1

|

|

|

≪ 1 , the 
distance between the two points ( yM±

1
, yM±

2
 ), where � takes 

maximal value as shown in Fig. 2, becomes shorter, and 
these contributions overlap in the asymptotic Eq. (35). How-
ever, it is found from Fig. 15 that the region where � has a 
large value is very close to the �Y1

= 0 axis and it is 
extremely rare for both �Y1

≅ 0 and 𝜎Y2∕𝜎Y1 > 0.85 to be true 
(see Figs. 4 and 5). Therefore, although the proposed for-
mula over-estimates by more than 5% under the condition 

Fig. 14  Error rate distribution � (%) of proposed formula in �
Y
2
∕�

Y
1
-�

Y
3
∕�

Y
1
 plane

Fig. 15  Error rate distribution � (%) of proposed formula in �
Y
1
∕�

Y
1

-�
Y
2
∕�

Y
1
 plane
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that ||
|

𝜇Y2
∕𝜇Y1

|

|

|

< 0.02 (from Fig. 15) and 𝜎Y2∕𝜎Y1 > 0.85 , 
there is little problem in practice.

5  Conclusion

The author proposed a practical method for estimating the 
extreme value distribution of von Mises stress that can be 
easily applied to ship design. The proposed method com-
bines the variable transformation of stress components pre-
sented by Segalman and an asymptotic approximation for the 
integral of the upcrossing rate. The features of the proposed 
method are enumerated as follows.

 (i) A closed formula for the upcrossing rate is given by 
making an asymptotic approximation of the inte-
gral in the case of stress components with non-zero 
mean value. The formula is based on an idea like 
that of Laplace’s method, which is extended to the 
non-zero mean value case and the solution of the 
quartic equation of the reference point is simplified 
for an asymptotic expansion. Other approximations 
within realistic parameter ranges are applied; e.g., 
the transformed vector process and its time derivative 
are mutually independent and the standard deviation 
ratio between the variables is not large.

 (ii) The computational procedure of the proposed method 
does not differ much from the conventional linear short/
long-term statistical prediction. The only additional cal-
culations are for deriving the covariance matrix of the 
stress components from the RAOs and wave spectrum 
and diagonalizing the 3 × 3 covariance matrix. The pro-
posed method does not require the numerical integra-
tion commonly required by other methods; thus, robust 
results can be obtained at a low computational cost.

 (iii) Through the structural analysis of a whole structural 
model of a bulk carrier in waves, it was confirmed that 
the proposed method has sufficient accuracy for the 
maximum expected value of von Mises stress. Fur-
thermore, the parametric study clarified the application 
range of the proposed method and confirmed that the 
accuracy would not deteriorate for structures in waves.

6  Appendix 1. Variable Transformation 
of von Mises stress into Some of Squares 
Form

This appendix describes the procedure to obtain the covari-
ance matrixes �

��
,�

�̇�̇
 , and �

��̇
 from the RAOs of � and 

the wave spectrum of short-crested irregular waves. Using 

these matrices, � is transformed into another vector process 
� in which Z is expressed as a sum of squares.

Calculation of covariance matrix of X Let us denote the 
RAO of Xi as X̂i(�, �) (complex number), where � and � are 
wave frequency and wave angle, respectively, and denote the 
wave spectrum of short-crested irregular waves as Φ�� (�, �) . 
The components of the covariance matrix �

��
 in the short-

term sea state can be calculated as

 where the superscript “*” denotes the complex conjugate, 
�Xi

 is the phase advance of X̂i ( = arg
[

X̂i

]

 ). Similarly, �
�̇�̇

 and 

�
��̇

 can be derived by replacing X̂ → i�eX̂ in Eq. (51). The 
above equation defines the wave angle � such that � = 0 is a 
following sea and � = � is a head sea. Thus, �

�̇�̇
 and �

��̇
 

are calculated as

Sum of squares expression of von Mises stress The proce-
dure of standard normalization of the joint PDF of vector 
process � is commonly applied, but in addition, it is also 
possible to make its derivatives �̇ independent by orthogonal 
transformation. That is, without loss of generality, vector 
process � can be transformed into another vector process � 
which satisfies �

��
= � and �

�̇�̇
= diag(𝜎2

V̇1

, 𝜎2

V̇2

, 𝜎2

V̇3

) , or 

�
�̇�̇

= � and �
��

= diag(�2
V1
, �2

V2
, �2

V3
) as can be seen in, e.g., 

Ref. [2, 6, 7]. However, in this study, we follow Segalman’s 
method [8, 9], which standardizes the iso-ellipsoid of Z 
instead of the PDF of �̇ . The procedure presented in this 
study is a modification of Segalman’s method in which only 
one diagonalization is required.

First, we transform � so that the iso-ellipsoid of Z in �
-space becomes a sphere, as follows.

where 

(51)
ΣXiXj

= ∫
𝜋

−𝜋 ∫
∞

0

Φ𝜁𝜁Re
[

X̂iX̂
∗
j

]

d𝜔d𝛽

= ∫
𝜋

−𝜋 ∫
∞

0

Φ𝜁𝜁
|

|

|

X̂i
|

|

|

|

|

|

X̂j
|

|

|

cos
(

𝜀Xi
− 𝜀Xj

)

d𝜔d𝛽,

(52)ΣẊiẊj
= ∫

𝜋

−𝜋 ∫
∞

0

𝜔2
e
Φ𝜁𝜁

|

|

|

�Xi
|

|

|

|

|

|

�Xj
|

|

|

cos
(

𝜀Xi
− 𝜀Xj

)

d𝜔d𝛽,

(53)
ΣXiẊj

= ∫
𝜋

−𝜋 ∫
∞

0

𝜔eΦ𝜁𝜁
|

|

|

�Xi
|

|

|

|

|

|

�Xj
|

|

|

× cos
(

𝜀Xi
− 𝜀Xj

−
𝜋

2

)

d𝜔d𝛽.

(54)� = �
T
�,

(55)� ∶=�
�

�
�
�1∕2

=

⎡

⎢

⎢

⎢

⎣

1∕2 −
√

3∕2 0

1∕2
√

3∕2 0

0 0
√

3

⎤

⎥

⎥

⎥

⎦

.
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� is an orthogonal matrix which diagonalizes � , and �� 
is a diagonal matrix (= diag

(

�A
1
, �A

2
, �A

3

)

) where �A
i
 are the 

eigenvalues of � , i.e., �� = �
T
�� . Since Z in Eq. (2) can 

be expressed by a vector process �,

 the isosurface of Z is a sphere in �-space. The covariance 
matrix of � can be obtained from

 as can be understood from the transformation of the expo-
nent portion of the joint PDF of � , Eq. (1).

Next, we transform � into a vector process � whose com-
ponents are mutually independent by performing an orthogo-
nal transformation. To do so, the diagonalization was con-
ducted using an orthogonal matrix � as follows.

Here, the order is �Y1 ≥ �Y2 ≥ �Y3 . � can be obtained by 
transforming as follows.

The vector process � follows � ∼ N
(

�
�
,�

��

)

, where 
�
�
= �

T
�
T
�
�
 and �

��
 is a diagonal matrix as shown in Eq. 

(58). Furthermore, Z is expressed as a sum of squares of Yi:

The covariance matrix of �̇ , that is �
�̇�̇

 , can also be 
derived by transforming �

�̇�̇
 as

 The same transform is applicable to �
��̇

 and �
�̇�

.
Furthermore, the mean value of Z is expressed as the 

standard deviation and mean value of � , i.e.,

Thus, it turns out that a nonlinear quantity Z expressed 
in any quadratic form can be expressed as a sum of squares 
of mutually independent Gaussian vector process � which 

(56)Z = �
T
{

(

�
�
)−1∕2

�
T
��

(

�
�
)−1∕2

}

� = �
T
� =

3
∑

i=1

�2
i
,

(57)�
��
= �

T
�
��

�,

(58)�
��

= �
T
�
��
� = diag

(

�2
Y1
, �2

Y2
, �2

Y3

)

.

(59)� = �
T
� = �

T
�
T
�.

(60)Z = �
T
� = �

T
(

�
T
�
)

� =

3
∑

i=1

Y2
i
.

(61)�
�̇�̇

= �
T
�
T
�
�̇�̇

��.

(62)

�Z = E

[

3
∑

i=1

Y2
i

]

= ∫
∞

−∞ ∫
∞

−∞ ∫
∞

−∞

3
∑

i=1

y2
i
f
�
(�)dy1dy2dy3

=

3
∑

i=1
∫

∞

−∞

y2
i
fYi

(

yi
)

dyi =

3
∑

i=1

(

�2
Yi
+ �2

Yi

)

.

is obtained by making a linear transformation of � . A 
schematic diagram of the above derivation process for the 
two-dimensional case is shown in Fig. 16. Here, it can be 
understood that this method is applicable when the isosur-
face of Z is an ellipsoid, i.e., that Z is in quadratic form.

7  Appendix 2. Asymptotic expansion 
by Laplace’s method

General case Let us consider the bi-variable Laplace 
integral,

where f (�,�) and g(z, �,�) are continuous real functions 
and g(z, �,�) is an increasing function with respect to z . When 
g(z, �,�) takes a maximum value at a point (�,�) =

(

�0,�0

)

 
in the integration range, it can be asymptotically expanded 
using Laplace’s method [14]. In this case, when z is sufficiently 
large, the integrand is dominated by the contribution near 
(�,�) =

(

�0,�0

)

 . Therefore, substituting the Taylor expan-
sion of g(z, �,�) around (�,�) =

(

�0,�0

)

,

(63)I(z) = ∫
b

a ∫
d

c

f (�,�)exp
[

g(z, �,�)
]

d�d�,

Fig. 16  Schema of the derivation of the standard deviation of the 
quadratic form in the case of 2-dimension
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into the original integral (B.1), I(z) asymptotes as follows.

Since the ranges of integration with respect to � and � 
are allowed to expand to [−∞,∞], respectively, the fol-
lowing asymptotic expansion formula can be obtained by 
applying the Gaussian integral formula:

Zero-mean case Now, let us consider the case �Yi
= 0 

in the upcrossing rate formula (22), and let f (�,�) and 
g(z, �,�) be as follows.

When 𝜎Y1 > 𝜎Y2 , 𝜎Y3 , g(�,�) takes the maximum value 
at �0 = �∕2 and �0 = 0 . Accordingly, the following equa-
tions are derived.

(64)
g(z, �,�) = g

(

z, �0,�0

)

+
�2

2
g��

(

z, �0,�0

)

+
�2

2
g��

(

z, �0,�0

)

,

(65)

I(z) ∼ f
(

�0,�0

)

exp
[

g
(

z, �0,�0

)]

× ∫
b

a

exp

[

�2

2
g��

(

z, �0,�0

)

]

d�

× ∫
d

c

exp

[

�2

2
g��

(

z, �0,�0

)

]

d�

as z → ∞.

(66)

I(z) ∼
2�

√

g��
(

z, �0,�0

)

g��
(

z, �0,�0

)

× f
(

�0,�0

)

exp
[

g
(

z, �0,�0

)]

as z → ∞.

(67)
f (𝜃,𝜙) = (2𝜋)−2z sin 𝜃

×
√

𝜎2

Ẏ1
sin2 𝜃 cos2 𝜙 + 𝜎2

Ẏ2
sin2 𝜃 sin2 𝜙 + 𝜎2

Ẏ3
cos2 𝜃,

(68)

g(z, �,�) = −
z

2

(

sin2 � cos2 �

�2
Y1

+
sin2 � sin2 �

�2
Y2

+
cos2 �

�2
Y3

)

.

(69)f
(

𝜃0,𝜙0

)

= (2𝜋)−2z𝜎Ẏ1,

(70)g
(

z, �0,�0

)

= −
z

2�2
Y1

,

(71)g��
(

z, �0,�0

)

= z

(

1

�2
Y1

−
1

�2
Y3

)

,

(72)g��
(

z, �0,�0

)

= z

(

1

�2
Y1

−
1

�2
Y2

)

.

Substituting these into Eq. (66), we obtain the follow-
ing equation.

Considering that g(�,�) takes a maximum at two points 
�0 = 0,� and the integrands at them have the same value, 
I(z) must be doubled, i.e., v+

Z
(z) = 2I(z) . Thus, the asymp-

totic formula for the upcrossing rate, Eq. (33), is obtained.

8  Appendix 3. Derivation of Eq. (41)

Let us consider an explicit expression of (x, y) which satisfies 
the relationships of Eqs. (38) and (40). Here, we assume that 
�Y1

 is positive and consider yP
2
 in the region yP

1
> 0.

Equation (40) is transformed as follows.

From this expression, it is found that yP
2
(�) asymptotes as 

follows when � is sufficiently large.

Here, as a function yP
2
(�) which satisfies Eq. (75) and 

yP
2
(0) = 0 , the following expression can be considered

However, considering that Eq.  (38), yP
2
 must satisfy 

yP
2
≤ � , whereas Eq. (76) can be larger than � when � is 

small. Hence, we apply shear mapping to the curve of Eq. 
(76) in the yP

2
-� plane so that yP

2
≤ � holds in �2 ≥ �2

Y1
+ �2

Y2
 

and maintains the properties of Eq. (C.2); i.e., by transform-
ing � → � − �yP

2
∕�Y2

 , Eq. (76) becomes

where the real coefficient � is determined to pass through 
the point 

(

yP
1
, yP

2

)

= (�Y1
,�Y2

) . Equation  (41) is obtained 
by solving Eq. (77) for yP

2
 . Subsequently, by substituting 

(

yP
1
, yP

2

)

= (�Y1
,�Y2

) into Eq. (77), � is determined to be as 
in Eq. (42).
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