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Abstract
The goal of this study is to develop a prediction method to recognize the wake field behind a ship using a convolutional 
neural network (CNN) model. First, a new representation method for a 3D curved surface is proposed suitable for the CNN, 
called an image-based hull form representation (IHR). The advantages of the proposed method are the high fidelity of its 
hull form representation using more than 20,000 input data points and its fast prediction speed, which requires less than 
0.01 s for a task that traditionally took more than an hour to estimate by physics-based simulation. The IHR regards that 
a two-dimensional grid formed on the 3D curved hull surface, which is used for structured-grid-based CFD, as a data set 
with the same data structure as the image data. Because CNNs recognize image data at accuracy rates higher than humans, 
a CNN is also be expected to recognize 3D surface characteristics with higher accuracy than humans. The image data are 
represented by three primary colors (cyan, magenta, yellow) in vertical and horizontal (i × j) pixels. The hull-form-structured 
grid can also be expressed as an i × j structure data with (x, y, z) coordinates that have the same data structure as the three 
primary colors in the image data. A CFD calculation data set of 2730 ship types with different stern shapes was constructed 
to verify the proposed method. The validation results proves that the root mean squared error of the proposed model is 0.005 
to predict axial wake velocity on a propeller plane, and the coefficient of determination R2 achieves 0.986. In addition, the 
estimation speed for each hull-form prediction is 100,000 times faster than are physics-based simulations. The results lead 
to the conclusion that the representation method of a curved surface and the proposed prediction method of the stern wake 
field is a promising tool in the initial hull form design.
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List of symbols
LPP  Length between perpendiculars (m)
B  Breadth (m)
d  Draft (m)
∇   Displacement  (m3)
x, y, z  Nondimensional Cartesian coordi-

nates, normalized by LPP
S.S.  Square station, station number starting 

from 0: A.P. to 10: F.P.
C
B
= ∇∕(L

PP
Bd)   Block coefficient

VS  Ship speed (m/s)
ν   Kinematic viscosity (m/s)
R
n
= V

S
L
PP
∕�   Reynolds number

u, v, w  Nondimensional velocity vector com-
ponent, normalized by VS

r  Radial position in propeller coordinate
�   Circumferential position in propeller 

coordinates; 0 degrees indicates the 
top position

R  Propeller radius (m)

1 Introduction

Recently, environmental regulations such as EEDI and labor 
shortages have produced a strong demand to shorten ship 
design times. Simulation-based design (SBD) has been a 
prevalent technique in hydrodynamic hull-form design, and 
many hull-form optimization methods based on computa-
tional fluid dynamics (CFD) have been utilized in hull-form 
design. However, physically based simulations are still slow; 
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large-scale calculations of hull-form optimization can take 
up to several weeks.

In contrast, artificial neural network (ANN) technologies 
have advanced rapidly. Kim et al. [1] proposed a generative 
neural network for parameterized Eulerian fluid simulations 
intended to create animations rapidly; this model performed 
up to 700 times faster than techniques to simulate data with a 
CFD solver. Thus, this approach can be applied to hydrody-
namic ship design, especially during the preliminary design 
stage, because the model error caused by not using the physi-
cal model is relatively tolerable and the fast prediction speed 
is required.

The application of ANNs to the hydrodynamics of ships 
has been discussed starting from the second AI boom, in 
early 2000, Matumura and Ura [2] applied ANN technique 
to predict wave marking resistance from the input param-
eters of ship length, width, Froude number. Following this, 
Kanai [3], Mesbahi and Bertram [4], Bertram and Mesbahi 
[5] and Mason et al. [6] presented some models to predict 
calm sea propulsive performances using ANNs. These 
ANNs handle only up to ten input parameters of principal 
dimensions that cannot represent complex three-dimensional 
hull forms. Radojcic and Kalajdzic [7] proposed an ANN 
model to estimate resistance and trim based on the system-
atic generated hull form database, called the Naples Hard 
Chine Systematic Series, and Margari et al. [8] also modeled 
another series tank-test results, called MARAD systematic 
series. The MARAD comprises 16 full hull forms, specifi-
cally designed for use as bulk carriers and tankers. Although 
the ANN technique has been advanced in the last 20 years, 
input parameters of these models are still dimensional 
information of ship, such as length beam ratio, slenderness 
ratio, longitudinal center of gravity (LCG). Kazemi et al. 
[9] designed a stepped planning craft using ANN trained by 
CFD database, which can estimate resistance from loading 
weight, LCG position, step type and step position. In this 
model, some local shape parameters began to be applied 
that is easy to parameterize in the hull form. Cepowski [10] 
applied an ANN to estimate added resistance by means of 
ship’s principal dimensions, block coefficient and Froude 
number. Another approach to apply an ANN technique to 
ship design is presented by Eric et al. [11], they develop a 
neural network-based response surface method for reduc-
ing the cost of time-consuming CFD optimizations in ship 
design.

Looking at other ANN adaptations in the field of ships 
other than hull form design, Bal Beşikçi et al. [12] esti-
mated ship fuel consumption for various operational con-
ditions from inputs of ship speed, revolutions per minute, 
mean draft, trim, cargo quantity on board, wind, and sea 
conditions. Nowruzi et al. [13] investigated the lift to drag 
ratio of conventional 2D and 3D NACA hydrofoils by envi-
ronmental and geometrical conditions, such as Reynold’s 

Number, angle of attack, aspect ratio and taper ratio of 
hydrofoil. Shora et al. [14] proposed an ANN model which 
predicts the performance and cavitation volume of the pro-
peller, by inputs of pitch ratio, rake angle, and skew angle, 
advance velocity ratio and cavitation number. Najafi et al. 
[15] designed hydrofoil-supported catamarans based on an 
ANN model which predicts resistance and trim sinkage by 
Froude number, hydrofoil type.

These applications are useful for the decision-making of 
ship design and operation, but there are still limitations of 
application of complex three-dimensional hull form surface 
design, that cannot capture 10–100 parameters. The cause 
of this limitation of ANN is the problem of overfitting in 
the training when the inputs of the model increased. Espe-
cially in the design of the local shape of a hull form with a 
complex three-dimensional shape, this limit becomes a con-
straint of the design. While the shape of the propeller can be 
easily defined by parameters, such as pitch distribution, there 
is no method for parametrizing the hull form in detail with a 
small number of parameters, and hull form information was 
lost in the parametrization of the past studies.

In the field of hull-form expression and parametrization in 
design, many methods have been developed and discussed. 
Khan et al. [16] introduced a method to represent yacht hull 
surfaces by parametrized feature curves on conns patches 
defined for each section. Nam and Si Bang [17] proposed 
hull variation method that modifies the boundary shape with 
geometric constraints of area and centroid. Hong et al. [18] 
developed a method of transforming the surface of ship hull 
using self-bending method, and Zong et al. [19] applied the 
self-blending method to CFD-based optimization of a tri-
maran. However, these methods have been developed with 
consideration for hull form optimization using CFD and 
optimization theory and are not optimal for ANN adaptation.

Trying to solve the limitation problem of the ANN inputs, 
Habu and Egami [20] applied the deep learning method to 
estimate wave-making resistance. This model can treat offset 
data, which has 1950 data points. Takagi et al. [21] proposed 
a prediction model using image data obtained by projecting 
the hull shape from various angles as input. These studies 
show good approximation results for predicting scalar value, 
but the question has remained unanswered how to express 
the detailed hull forms suitable for ANNs.

In such situations, a hull form surface design method-
ology using data science technology has been developed. 
This design methodology directly handles and analyzes 
hull-surface grid information which is over 20,000 data 
points and captures all the detail and local information of 
the hull surface. This method utilizes CFD simulation data 
accumulated at the design location; however, these data are 
not currently being used as effectively as possible during 
project design. Ichinose and Tahara [22] introduced a wake 
field design method that applied the CFD result database 
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and a hull-form blending (morphing) method that solves the 
inverse problem of the Navier–Stokes equation; namely, this 
method can generate a hull form that yields the desired wake 
field behind the ship. The advantage of combining hull form 
manipulations with data analysis is that this approach does 
not constrain the hull representation.

In this study, a hull representation method suitable for a 
convolutional neural network (CNN) is proposed. The pro-
posed method can capture the local and detailed hull-form 
surface information using over 20,000 points of input data, 
and CNN technique enables us to overwhelm the problem of 
the limitation of the input dimension. CNNs are widely used 
in image data recognition and have recorded higher recogni-
tion accuracy than humans; thus, CNNs have the potential to 
recognize features of more than 20,475 (65 × 105 × 3) input 
data on hull form surfaces. Initial validation results using a 
data set of 2730 hull form and flow field CFD data demon-
strate the proposed method’s ability to make precise wake 
predictions.

2  Hull form data representation

Before introducing image-based hull form representation 
(IHR), this section briefly reviews basic CNN characteris-
tics. Figure 1 shows an overview of the convolution opera-
tion in a CNN. The convolution operation is performed on 
a filter of size k at intervals of stride s which compresses 
the region data at some scale data to enlarge the data char-
acteristics in the focused region. In Fig. 1, ch indicates the 
channel size of the input data which has two dimensions 
(h, w), and Floor denotes an operation to obtain the closest 
integer value.

The operation emphasizes the relationship of pixels to 
adjacent data rather than the absolute value of each pixel. 
A CNN performs these operations over multiple layers and 
then corrects the weights with the learning data so that a 
model emerges that automatically emphasizes the relation-
ships between adjacent pixel values. Thus, the convolu-
tion operation can automatically handle object positional 
differences.

In the case of hull-form surfaces, the relationship with 
adjacent offset data is important for representing the hull 

surface; for example, in a theoretical analysis of wave-mak-
ing resistance, the first-order differential value and curvature 
of a hull form are the basis of a solution. Hence, a CNN 
that can consider this relationship will be effective for ship-
hydrodynamic analysis.

Based on this idea, an IHR for ANNs that can directly 
process 3D hull surfaces was devised in this study.

Figure 2 shows an overview of the IHR. The main point 
of the representation is the two-dimensional grid format of 
the hull surface. A structured grid-based CFD format has the 
same structure as the image data. The image data are repre-
sented by three primary colors (cyan, magenta and yellow) 
on the vertical (i) and horizontal (j) pixels. The hull-form 
structured grid is also expressed as i × j structure data with 
(x, y, z) coordinates, which have the same data structure as 
the three primary colors in the image data.

For ANNs, this representation has two advantages 
over the conventional parametric hull-form representation 
method.

First, this representation has a higher degree of freedom 
in hull-form expression than do conventional hull-form 
representations based on hull parameters. The proposed 

Fig. 1  Convolution operation in a CNN

3D Hull surface grid
(2D data)

Nondimensionalized
(Lpp=1. etc)

X value Y value

Imaged hull form (65,105,3)

Z value

Fig. 2  Overview of image-based hull-form representation



640 Journal of Marine Science and Technology (2022) 27:637–647

1 3

method can practically describe any curved surface with no 
limitations.

Second, data augmentation can be achieved by placing 
different grids on the same hull form. In general, the num-
ber of CFD results is often limited, but machine learning 
needs large amounts of training data. Given that the number 
of grids of the database is sufficient and the CFD calcula-
tion result converges to the correct value even if the grid 
arrangement is changed, the proposed method can use data 
augmented by creating multiple grids with different hull sur-
face grids from a single CFD calculation result.

3  CNN architecture and prediction method

As our present method predicts image-liked wake flow data 
from image-based hull form data, the generative adversarial 
networks (GAN) model proposed by Radford et al. [23] has 
the same dimensional data set structure of input and output 
data. Therefore, the present CNN architecture was designed 
by the reference of the GAN architecture.

Figure 3 illustrates the input and output data for the pro-
posed CNN. Imaged hull-form data, which include 2730 
ships represented by a 3 × 65 × 105 data structure, are used 
as the input to the CNN, and the output is a CFD-calculated 
wake field value represented by 3 × 19 × 9 data structure 
in the output layer. Note that because the wake field in the 
resistance condition can assumed to be symmetric to the 
centerline for symmetric hull forms, only the port-side half 

of the hull form and wake data are used in this study. The 
details of this data set are provided in the next section.

The architecture of the proposed CNN is shown in Fig. 4. 
In this model, some original adjustments for the convolution 
layer and filter size are applied to the basic GAN model. In 
Fig. 4, the rectified linear unit activation function (ReLU) 
is a commonly used activation function in CNNs, and batch 
normalization (BN) is a technique for standardizing data to 
accelerate neural network training. In this architecture, the 
imaged hull-form data of the input data is on the left-side 
of the figure, and the model generates the value of the stern 
wake flow on the right-side. The first three processes in this 
model imply convolution operations to extract the high-level 
feature of each hull form, and the dense processes indicate 
fully connected layers to learn non-linear combination of 
the high-level features as represented by the output of the 
convolutional layers. It noted that the proposed CNN was 
coded using Keras [24].

In the training of this CNN model, mean square errors 
(MSE) of each of the flow velocity is applied to the loss 
function; MSE is defined by the following equation:

where yi are the ground truth values, ŷi are predicted values 
of each point, and n is the number of data available for the 
training. As the solver of optimization to reduce the loss 
function in the training, Adam method (2015) [25] is applied 
in the present research. The learning rate is 2 ×  10–4 in the 
referenced paper [23], but because the number of images 
available for learning is limited, the learning rate of the pre-
sent paper is set to 1 ×  10–6 through trial and error observing 
the loss function of training and validation data.

Finally, from a design tool decision-making process view-
point, the advantages of this method are described in Fig. 5. 
In a physical model, the flow field is estimated directly from 
the hull-form data, and the hull surface pressure distribution 
is integrated to calculate the propulsive performance. Thus, 
the conventional proposed an ANN estimation method has a 
critical problem for use in hull design applications: because 
the propulsive performance is calculated from the intention-
ally determined hull-form parameters, designers cannot easily 

(1)MSE =
1

n

n−1∑
i=0

(
yi − ŷi

)2
,

CFD estimated flow fields

Wake value 

CNN output 
(2730,3,19,9)

CNN input
(2730, 3, 65,105)

Imaged hull form

Fig. 3  Input and output data set of the proposed CNN Fig. 4  CNN architecture of present prediction
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understand why a particular hull form improves the propulsive 
performance. In contrast, the present method further estimates 
the propulsive performance from the result of the estimated 
flow field; consequently, the designer can easily understand 
why a particular hull form achieves high performance.

4  Training data set

The data set of the present study is a CFD flow filed data-
base, which is solved by the three-dimensional incompress-
ible Reynolds averaged Navier Stokes (RaNS) equation. In 
this research an artificial compressibility approach is used for 
the velocity–pressure coupling as Eq. (2):

(2)
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+
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where (u, v, w) are the velocities in the Cartesian coordinate 
(x, y, z), respectively. The temporal step is expressed by t, 
and the pressure is p. � is the parameter of the artificial com-
pressibility approach. �ij is defined as follows:

where Rn is Reynolds number and −u,
i
u
,

j
 is the Reynolds 

stress component. This component is evaluated by one equa-
tion turbulent model, modified Spalart–Allmaras (MSA) 
[26] in this work.

Equation (2) is discretized by the finite volume method 
and Gauss integral theorem and solved by an in-house struc-
tured CFD solver, NAGISA [27].

This solver and turbulence model are normally used for 
hull form design at NMRI to estimate model-scale flow 
filed. The calculation grids of basic hull forms without 
any appendages at full loads and even keels were gener-
ated with HO topology, 0.9  million cells in half side 
(i × j × k = 174 × 64 × 80) at model scale as shown in Fig. 6. 
On the center plane of the hull, a symmetry condition is 
assigned, and the result is mirrored after the calculation. 
The minimum spacing normal to wall is set to be y+ < 1.0 
for constant Rn = 1.0 ×  107. The effect of free surface is con-
sidered to be small and ignored in all cases. An investigation 
on gird uncertainty for this calculative configuration was 
carried out in in the previous study [28], and we judged that 
the present grids have the same acceptable uncertainty level 
as in this research.

The training data set used to evaluate the proposed wake 
prediction method is the domestic-749-gross-tonnage DB2 
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Propulsive 
performance
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Flow field
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CNN
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Easy to 
understand 
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Fig. 5  Comparison between a conventional neural network for ship 
hydrodynamic prediction and the proposed network

Fig. 6  Example of CFD grid [28]
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data set [28], which contains 2730 hull forms and wake field 
data calculated by CFD. The goal of this study is to perform 
an initial evaluation of the proposed method; thus, this data 
set, which was compiled for another research project [28], is 
applied to gain a complete evaluation picture of the present 
method. The main dimensions of this data set are presented 
in Table 1; only the aft part (from S.S. 3.0 to the aft end) is 
deformed, as shown in Fig. 7.

Figure 8 shows examples of wake fields at the propeller 
plane from the data set. These images demonstrate that the 
data set contains a varied wake flow field that is practically 
used in terms of the wake peak and strength of the vortex, 
which is comprise of a hook shape.

The 2730 CFD data set mentioned here is randomly 
divide by two components: training set, and test set. The 
20% of all 2730 data set (564) is held out as test set which 
is used to provide an unbiased evaluation on a final model. 
The other 80% (2184) data is used for training of the present 

CNN model to determine the parameters, this set is called 
training set.

5  Results and discussion

The training set is used for training of the present CNN 
model, and it takes 13 min for 8000 epochs using a com-
puter equipped as follows: CPU: AMD EPYC 7302P (16 
Core, 3 GHz) × 1; GPU: NVIDIA RTX3090 24 GB Memory 
GPU × 2.

In the training, the training set (2184) is divided further 
as 90% (1966) training data and 10% (218) validation data, 
randomly. This validation data is used to predict the response 
of the fitted model which is trained by the training data.

Figure 9 shows a convergence graph for the loss func-
tion of the proposed CNN. The abscissa represents epochs, 
which is the number of times all the training vectors are used 
once to update the weights, the ordinate represents the loss 
function value, and train and val denote historical training 
and validation data, respectively. The convergence history 
shows that overfitting did not occur with the proposed CNN 
on this training data.

To evaluate an unbiased performance of the present 
model using the test set, root mean squared error (RMSE) 
and coefficient of determination R2 is introduced. Each of 
them is defined by Eqs. (4) and (5), respectively:

where y is the averaged value of the ground truth (CFD 
evaluated) values.

The root mean squared error (RMSE) of the first trained 
model for the test set is 0.011, and the coefficient of deter-
mination R2 is 0.909. The R2 is a statistical measurement of 
how well the model predicts the real data and takes the range 
from − 1.0 to 1.0. The result of the present model, 0.909 
indicates that the model can predict the real data very well.

To determine the robustness of the present model, k-fold 
cross-validation is applied. The training set is split 10 folds. 
The model is trained using 9 folds as training data, and the 
resulting model is validated on the remaining part of the 
data, 10 times.

In the history in k-fold cross-validation of 10 times train-
ing, the coefficient of determination R2 evaluated by test 
set ranges from 0.838 to 0.954. Observing the history of 
prediction results in k-fold cross-validation in Fig. 10, the 
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Table 1  Main dimensions of the 
749 G/T general cargo data set

749 G/T general cargo

Ship length: LPP (m) 79.0
Ship breadth: B (m) 13.0
Design draft: d (m) 4.7
Block coefficient: CB (–) 0.72

Fig. 7  Examples of frame lines at S.S. 1.0 and aft profiles of hull 
forms in the data set
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prediction results in k-fold vary around the test result, and 
the averaged trained model is closing to the test result. The 
coefficient of determination R2 of the trained model value 

for the test data set achieves 0.986, and the RMSE is 0.005. 
The value of R2: 0.986 is slightly higher than that of the 
general CNN models, but since the constraints of the data 
of the hull form are stronger than the general image data, it 
is appropriate to consider that the value of the present model 

Fig. 8  Examples of wake fields 
at the propeller plane estimated 
by CFD from the data set

Fig. 9  Loss function convergence history for proposed CNN

Fig. 10  History of prediction results in k-fold cross-validation



644 Journal of Marine Science and Technology (2022) 27:637–647

1 3

is acceptable in modeling for ship designs. In addition, it is 
relatively easy to predict that the data set of the entire design 
space of the hull form are more correlated to the object of 
predictions than the data set used in the general objective 
recognition. It is also important to note that as this study 
focuses on the ability of the model to capture the local shape 
of the hull using the CNN method, the present data set is 
constrained in the main dimension.

To reveal the distribution of the variance of the predic-
tion results of the present model, the distribution of the pre-
diction results of the present model for all test set; all data 
points (9 × 19), all ship (564), is shown in Fig. 11. The graph 
indicates that the difference between the prediction results 
and test set is almost entirely within the range of ±5%.

Figure  12 presents the histogram of the difference 
between test data and a predicted value for all the test set. 
The distribution is observed close to a normal distribu-
tion, and the standard deviation of it is 0.005. As an ideal 
standard deviation of wake measurement in a towing tank is 
0.0021 which is on the ITTC recommended procedures and 
guidelines of uncertainty analysis [29], and there is a paper 
reported that uncertainty of wake measurement of tank test 
achieves 0.04 [30], present prediction model’s performance 
is practically sufficient. It noted that there are some rooms to 
improve the fidelity of the CFD data set, such as using more 
detail grid and turbulent model.

The average estimation speed for each hull form predic-
tion is approximately 0.0015 s, which is more than 100,000 
times faster than are physics-based simulations, which 
require approximately an hour for each prediction.

Next, the distribution of the predict values at each posi-
tion of the propeller plane is evaluated. Figure 13 shows 

the evaluation points of the predicted axial velocity of 
the wake field on the propeller plane. Each point reflects 
a prediction point of the proposed method; the abscissa 
presents the breadth directional position; and the ordinate 
shows the water-depth directional position. First, prediction 
in the radius direction of the propeller plane at the center-
line (y = 1.0) is crucial for propeller design with regard to 
vibration.

Figure 14, which shows a comparison between the test set 
and the predicted data at the centerline, demonstrates that 
the proposed method precisely predicts the wake peak on 
the top of the propeller plane, which is valuable for propel-
ler design.

Figure 15 shows the evaluation results in the rotational 
direction of the propeller plane at a 70% propeller radius 
(r/R = 0.7). These results also indicate that the proposed pre-
diction method is consistent with the validation data.

Finally, the worst-case prediction results, which 
defined as the data with the maximum RSME, are shown 
in Fig. 16. The prediction results show some fluctuations 

Fig. 11  Distribution of the prediction results for all test data sets

Fig. 12  Histogram of difference between test and predict value in all 
test data set

Fig. 13  Evaluation points of the prediction on the propeller plane
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between adjacent data. This is because the loss function 
used in this study is composed of only the difference of 
each point. When the loss function is defined as consider-
ing the relationship between adjacent points, these fluctua-
tions will be able to be minimized. The maximum axial 
wake velocity differential is limited to approximately 0.05, 

which is acceptable for initial hull form design and predic-
tion. Hence, these validation results demonstrate that the 
proposed prediction method can predict the stern wake 
field remarkably faster than CFD calculation with practi-
cal accuracy in the initial hull form and propeller design 
processes.

Fig. 14  Comparison between the validation and predicted data at the 
hull centerline

Fig. 15  Comparison between the validation and predicted data at a 
70% propeller radius
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6  Concluding remarks

In this study, a prediction method for the wake field behind 
a ship using a CNN was developed, in which a proposed a 
curved surface representation method for ANN is used to 
directly process 3D hull surfaces. The main advantages of 
the proposed method are the high fidelity of its hull form 
representation using more than 20,000 input data points and 
its fast prediction speed, which requires less than 0.01 s for 
a task that has traditionally taken more than an hour to esti-
mate using physics-based simulation methods.

The IHR regards the two-dimensional grid formed on the 
3D curved hull surface, which is used for structured-grid-
based CFD, as a data set with the same data structure as 
the image data. Because CNNs can recognize image data at 
accuracy rates higher than those of humans, a CNN can be 
expected to recognize 3D surface characteristics better than 
humans. The image data are represented by three primary 
colors (cyan, magenta, yellow) on two-dimensional pixels. 
The hull-form-structured grid can also be expressed as a 
two-dimensional structure data with (x, y, z) coordinates that 
have the same data structure as the three primary colors in 
the image data.

A CFD calculation data set of 2730 ship types with differ-
ent stern shapes was adopted to verify the proposed method. 
A verification using the k-hold cross-validation method con-
firmed the robustness of the present. The validation results 
also showed that the root mean squared error of the predic-
tion axial wake velocity u on the propeller plane for the 
test data set of the proposed model is 0.005, and the coef-
ficient of determination R2 achieves 0.986. The value of R2 
is slightly higher than that of the general CNN models, but 
since the constraints of the data of the hull form are stronger 
than the general image data, the value of the present model is 
acceptable in modeling for ship designs. Thus, the results of 
this study reveal that the representation method of a curved 
surface and the proposed prediction method can predict the 
stern wake field remarkably faster than CFD calculation with 
practical accuracy during the initial hull form and propeller 
design processes.
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