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Abstract
This paper presents an automatic collision avoidance algorithm for ships using a deep reinforcement learning (DRL) in con-
tinuous action spaces. Obstacle zone by target (OZT) is used to compute an area where a collision will happen in the future 
based on dynamic information of ships. Agents of DRL detects the approach of multiple ships using a virtual sensor called 
the grid sensor. Agents learned collision avoidance maneuvering through Imazu problem, which is a scenario set of ship 
encounter situations. In this study, we propose a new approach for collision avoidance with a longer safe passing distance 
using DRL. We develop a novel method named inside OZT that expands OZT to improve the consistency of learning. We 
redesign the network using the long short-term memory (LSTM) cell and carried out training in continuous action spaces 
to train a model with longer safe distance than the previous study. The bow cross range in collision detection proposed in 
this paper is effective to COLREGs-compliant collision avoidance. The trained model has passed all scenarios of Imazu 
problem. The model is also validated by a test scenario which includes more ships than each scenario of Imazu problem.

Keywords  Collision avoidance · Multiple ships · Reinforcement learning · OZT

1  Introduction

In recent years, there has been a lot of research and devel-
opment on automated ships. The regulation of Maritime 
Automatic Surface Ship (MASS) is under discussion at the 
International Maritime Organization (IMO) [1]. For automa-
tion of maritime transportation, it is important to improve 
the safety of navigation. It is reported that collision accidents 
of ships were mainly caused by human errors such as[2]. By 
supporting human or automating operations, the number of 
collision accidents can be decreased.

Automatic collision avoidance has been studied for a long 
time, and a number of algorithms have been proposed [3]. In 
1980s, Imazu and Koyama utilized a dynamic programming 
[4–6]. In this method, the ship’s speed and heading angle 
are defined in a discrete action space, and collision avoid-
ance is performed by selecting the optimal action with an 
evaluation function based on the International Regulations 
for Preventing Collisions at Sea (COLREGs) and rules of 

collision risk assessment. Kouzuki and Hasegawa developed 
an fuzzy controller for collision avoidance [7]. They defined 
collision risk (CR) calculated from the distance to a clos-
est point of approach (DCPA) and time to a closest point 
of approach (TCPA). CR is used to determine the timing to 
steer for collision avoidance navigation. Hu et al. studied a 
COLREGs-compliant path planning approach using parti-
cle swarm optimization (PSO) [8]. Kuwata et al. proposed 
an automatic collision avoidance method using velocity 
obstacles (VO) [9]. In this method, a collision is prevented 
by calculating a safe heading based on VOs which is cal-
culated from velocity vectors of an own ship and a target 
ship. As a method without explicit implementation of the 
COLREGs, the Nagasawa model, which uses an evaluation 
function defined on the steering space with rudder angle and 
speed, has also been studied [10, 11]. Woerner et al. imple-
mented the rule-based algorithm based on the COLREGs 
for evaluation of autonomous vessels [12]. In recent years, 
since techniques of machine learning are developing rapidly, 
reinforcement learning, which is one of the machine learn-
ing, is begun to be applied to automatic collision avoidance. 
There are research which used Q-learning which is one of the 
reinforcement learning algorithms [13–15]. In the last few 
years, collision avoidance methods using DRL have also been 
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proposed. Shen et al. [16] used Deep Q-Network (DQN) for 
collision avoidance of multiple ships. DQN is one of the DRL 
algorithms. They tested trained model for encounters with up 
to three target ships. One of the authors also proposed an 
automatic collision avoidance algorithm using proximal pol-
icy optimization (PPO) and a novel virtual sensor [17]. PPO 
is also one of the DRL algorithms and is used in not only 
playing video games but also controlling robots. The trained 
model can avoid all encounter situations of up to three target 
ships and arrive at a given waypoint in simulations.

In the previous study [17], one of the authors used obsta-
cle zone by target (OZT) [18] for collision risk assessment. 
OZT represents an area where a collision will happen in the 
future based on dynamic information of ships. The radius of 
OZT is defined as the safe passing distance. The previous 
method was able to avoid collision in complex scenarios 
called Imazu problem [19] . Imazu problem is a scenario set 
including basic situations of 2-ship encounters and rather 
difficult situations of 3–4-ship encounters. There was a limit 
to the safe passing distance which could be set for learning 
using the previous method. In the previous study, the model 
learned collision avoidance maneuvering at a safe passing 
distance of 0.3 NM, but in actual ship operation, ships are 
required to have a longer safe passing distance from target 
ships. Besides, in some cases of Imazu problem, the own 
ship had passed the front of other ships. This kind of maneu-
ver is dangerous. In fact, as three basic encounter situations 
shown in Fig. 1 stipulated in the COLREGs article, ships 
do not perform avoidance maneuvers across in the front of 
other ships.

In this paper, the maneuverability of ships used in sim-
ulation is not changed in comparison with the previous 
studies, but the safe passing distance of an OZT is set to 
a larger value to accommodate a wider range of sizes of 
ships and improve collision avoidance maneuver of new 
trained models. There is no standard way to determine the 
safe passing distance for OZT. On the other hand, several 

methods for detection of ship collision were proposed. One 
of them is a bumper model [20]. Figure 2 shows the bumper 
model. Bumper model is an area surrounding a ship and 
gives the minimum of safe passing distance between ships. 
Ships navigate to keep other ships out of their bumpers. The 
lengths L1 and L2 in Fig. 2 are usually taken as 6.4L and 
1.6L, respectively, where L is the ship’s length. According 
to Inoue [21], for international ships, the lengths L1 and L2 
of bumper model are taken about twice as long as as recent 
ships become larger and faster. Thus, in this paper, we deter-
mine the safe passing distance for ships up to around 300 
m in length and the distance is set at 0.5 NM as about twice 
the distance of 1.6L. This is that L1 = 0.5 NM, which cor-
responds to the length of the bumper model for a ship with 
exactly 289.375 m length.

The purpose of this study is to construct a new trained 
model which performs automatic collision avoidance with 
a longer safe passing distance at 0.5 NM. One possible rea-
son why learning does not progress when the safe passing 
distance is increased is that the ship has to turn around too 
much due to the longer safe passing distance to avoid col-
lisions and may lose the course to the given waypoint. To 
solve this problem, we introduce a recurrent neural networks 
(RNN) in continuous action spaces. The learning environ-
ment was implemented according to the OpenAI Gym [22], 
which is one of the standard environmental frameworks used 
in deep reinforcement learning research in recent years. This 
environment provides a flexible simulation environment of 
numerical simulation in various scenarios. The performance 
of the training model is verified by numerical simulations 
for the Imazu problem and a test scenario.

This paper is organized as follows: in the next section, 
we explain OZT and introduced a novel method named the 
inside OZT and the bow crossing distance to expand OZT. 
In Sect. 3, we explain algorithm to detect OZT and DRL, 
followed by a learning method and the environment of DRL 
in Sect. 4. The scenario used for training using DRL is also 
described in this section. We describe the results and evalu-
ation of collision avoidance simulation using trained models 

Fig. 1   Basic encounter situations and actions to avoid collision as 
specified in the COLREGs

Fig. 2   Bumper model [20]
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for Imazu problem and a test scenario in Sect. 5. Section 6 is 
devoted to discussion. Finally, we conclude the paper.

2 � OZT

2.1 � Computation of OZT

In this study, OZT is used for collision risk assessment. In 
actual operation, a ship’s operator usually makes a decision 
to avoid collision based on the distance to a target ship and 
the change in azimuth of the target ship from the own ship. 
In addition, the closest point of approach (CPA) analysis is 
also used for collision avoidance. The time margin to colli-
sion is expressed by time to CPA (TCPA) and the distance to 
collision by the distance to CPA (DCPA). If DCPA is short, 
a ship officer will steer the ship to avoid other ships. The 
timing of steering will be determined by TCPA. Informa-
tion obtained by CPA analysis is useful for safety naviga-
tion. However, results of CPA analysis do not tell which 
directions are safe. It is necessary for the operator to check 
whether a sufficient distance can be secured by actually 
changing the course of the own ship. This is the same for 
the automatic collision avoidance problem using TCPA and 
DCPA. To avoid a collision, it is necessary to predict the rel-
ative motion of the target ship and the possibility of a colli-
sion in the future. Then, we use OZT which is an area where 
a collision will happen in the future based on dynamic infor-
mation of ships. The dynamic information including each 
target ship’s position, speed and heading angle is assumed 
to be obtained from automatic identification system (AIS). 
There are several versions of OZT. In this study, an OZT is 
defined as a capsule-shaped area calculated using collision 
courses CO as shown in Fig. 3. The collision course CO of the 
own ship that may collide with the target ship in the future 
is calculated by Eq. (1) [23].

where � = arcsin
(
rs∕d

)
 . rs is the safe passing distance and 

d is the distance between the own ship and the target ship. 
VO is the own ship’s speed and VT is the target ship’s speed. 
Az is the azimuth of the target ship’s position from the own 
ship and CT is the course of the target ship. Relative motion 
is computed when the own ship takes the collision courses 
CO as follows.

where VR and CR are the relative speed and course of a target 
ship against CO , respectively. Then, DCPA and TCPA for 
each CO can be obtained as follows.

2.2 � Inside OZT

We introduce Inside OZT, which expands the scope of the 
original OZT. OZT is an evaluation method originally intro-
duced to determine the behavior of avoidance maneuvering 
in advance, and it is an indicator to be used when avoiding 
a collision. According to Eq. 1, to calculate the collision 
course, it is necessary for the distance between the own ship 
and the target ship to be more than the safe passing dis-
tance, and if not, OZT cannot be calculated. As a result, it 
is not possible to assess the risk of collision with the target 
ship when the ship is unavoidably close to the specified safe 
passing distance in congested water areas. To extend the 
safe passing distance, this problem should be solved. It is 
noted here that this characteristic is not a practical problem 
in usual use, especially in the case of human-operated ships. 
However, when OZT is used as a decision-making of colli-
sion avoidance, it is not possible to make a correct decision 
depending on OZT when the ship is extremely close to the 
target ship. To avoid this, it is necessary to supplement OZT 
when the distance to the target ship is less than the set safe 
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Fig. 3   Computation of OZT
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passing distance. In this study, we develop a method to com-
pute the supplementary OZT in a simple way. We call it the 
inside OZT and distinguish it from original OZT. The inside 
OZT is defined as that an OZT with TCPA when the distance 
between the ship and the target ship is less than or equal to 
the safe passage distance, d ≤ rs , an area of distance rs or 
less centered on the line segment that the target ship moves 
from at TCPA = 0 to TCPA = rs∕|VO − VT| on the heading 
direction of the target ship. The red area in Fig. 4 represents 

the inside OZT. The orange area in Fig. 4 shows a normal 
OZT (Sect. 2.1). If the speed of the own ship and the target 
ship are the same, the inside OZT extends to infinity farther 
on the target ship’s heading direction. In the process of the 
simulation using deep reinforcement learning, when OZT of 
the target ship is not displayed, it is difficult to distinguish 
between “the case where there are no target ships around 
that may collide” and “the case where OZT is not displayed 
because the distance to the target ship is less than the safe 
passing distance”. In some of the DRL algorithms, the 
value of an observed state is expressed as a value function. 
A vector of an observed state includes information of OZT 
distributions. The learning curve may be adversely affected 
because the value of the loss function for value functions 
may not decrease as the learning progresses. The value of 
loss function corresponds to the error between prediction 
by the network and actual data. Figure 5 is a comparison of 
the loss function during learning with and without the inside 
OZT. In the figures, each blue solid line shows the moving 
average of the loss function and the light blue area shows the 
standard deviation of the loss function for each iteration. By 
introducing the inside OZT, the value of the loss function of 
the value function decreases stably because the association 
between the reward obtained in collision and the state vector 
containing the OZT detection result can be consistent, then 
the learning becomes more stable as shown in Fig. 5. 

2.3 � Bow crossing range

During actual maneuvering on the sea, it is usually avoided 
to pass in front of a target ship. However, if the distance 
between the own ship and the target ship is sufficient large, 
it may be possible to pass in the front of the target ship. Basi-
cally, it is known statistically that it is natural and safe for a 

Fig. 4   Inside OZT (the red area is an inside OZT of TargetShip1. 
An OZT is shown as an orange area. Each circle surrounding a ship 
shows the safe passing distance set to compute OZT and the inside 
OZT) (colour figure online)

Fig. 5   Comparison of changes of the loss function for value network during learning with/without inside OZT (left: not using inside OZT, right: 
using inside OZT)
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ship to have a longer distance ahead of it than in other direc-
tions such as both sides and stern of the ship, as represented 
by methods such as the bumper model, the ship domain 
and effective domain [24]. There are two possible ways to 
introduce the bow crossing range into OZT: first, there is a 
virtual ship that goes ahead of the target ship at the same 
speed and its distance is equal to the bow crossing range 
minus the safe passing distance. Then, the original OZT is 
extended by the TCPA of the collision course calculated by 
this virtual ship. As a simpler way, it is also possible to cor-
respond by extending the area of OZT by subtracting the safe 
passing distance from the bow crossing range. In this study, 
we adopt the latter simple method because of the simplicity 
of the implementation. To perform detection of collision 
corresponding to OZT distribution with the bow crossing 
range, we additionally defined a region like the ship domain 
for collision detection with the bow range corresponding to 
the definition of OZT as the area enclosed by the solid line 
in Fig. 6. A collision is judged when the own ship enters 
this domain of target ships. As shown in Fig. 6, this area is 
a capsule-shaped region with a radius of the safe passing 
distance and the bow crossing range is set to 1.0 NM.

3 � Algorithm

3.1 � Detection of OZT

To process information of OZT, we use a virtual sensor 
called the grid sensor [17]. It is required to detect OZT and 
convert it into a form that can be easily used as an input of 
deep neural networks used in DRL. Because, networks in 
reinforcement learning only accept vectors, the dimension 
of which is fixed. However, to avoid multiple ships, the auto-
matic collision avoidance system should track more than one 
OZT simultaneously and the number of ships maybe change 

during navigation. In addition, it also needs to be able to 
detect OZT with a high resolution over a wide area of sev-
eral nautical miles. Ships at sea avoid a collision according 
to the COLREGs. The rule 8 of the COLREGs states that 
action to avoid a collision should be positive and made in 
ample time. It is necessary to observe the situation from an 
ample distance and choose an appropriate action in ample 
time. For this reason, one of the authors designed the grid 
sensor. The schematic diagram of detection of OZTs using 
a grid sensor is shown in Fig. 7. The grid sensor is a virtual 
sensor that extends from the center of the own ship and is 
separated by evenly spaced intervals of the angle direction 
and the radius direction in a concentric circle grid. When 
a grid cell overlaps with an OZT, it is judged detecting the 
OZT on each grid cell of the grid sensor. After detection, the 
grid sensor returns a state vector, the dimension of which is 
equal to the number of its grid cells. Each component of the 
state vector by the grid sensor is set to 1 if the corresponding 
grid cell detects OZT, 0 otherwise. In this way, the collision 
avoidance system recognizes OZTs as a vector with a fixed 
dimension regardless of the changes of OZT distribution.

3.2 � Deep reinforcement learning algorithm

The proposed collision avoidance algorithm is based on 
DRL. DRL is a kind of machine learning, and a combina-
tion of reinforcement learning (RL) and deep learning. 
RL algorithm uses an environment and agents. Agents 
and the environment interact with each other to promote 
learning. Agents receive information from the environ-
ment called the state and take an action. Then, each agent 
receives a reward for its action and a new state of envi-
ronment. Agents learn in the environment to maximize 
the cumulative reward. In collision avoidance tasks, an 
agent corresponds to the own ship and an environment 
consists of some components such as target ships and way-
points. There is a wide variety of DRL algorithms. The 

Fig. 6   Domain for collision detection
Fig. 7   Detection of OZT by the grid sensor (the unit of radius is nau-
tical mile and size of ships’ plots is 4 times of full scale)
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differences in these DRL algorithms depend on how the 
agent learns and how it chooses its actions. For some kinds 
of algorithms such as on-policy Actor-Critic method, 
probability distributions of actions is given by a policy 
function (Actor) and the value of the action is represented 
by the value function (Critic). In DRL, these functions are 
represented as deep neural networks. It is called the func-
tion approximation, which is approximation of a policy 
function or a value function with parameterized functions. 
Using expressive power of deep learning, DRL algorithms 
can control an agent based on high-dimensional inputs like 
images and the grid sensor.

As mentioned above, there are many kinds of DRL algo-
rithms depending on processes such as update policy/value 
functions, evaluation of a state and determination of action. 
In this paper, we used proximal policy optimization algo-
rithm (PPO) [25] because PPO outperforms other algorithms 
such as DQN and is applied to tasks in real world includ-
ing robotic locomotion. The code of PPO in this paper was 
implemented using DRL library machina coded by PyTorch 
[26] which is a deep learning framework for Python. PPO is 
an algorithm that has its origins in reinforcement learning of 
two Actor-Critic methods: Trust Region Policy Optimization 
(TRPO) [27], which restricts policy updates according to the 
Kullback–Leibler divergence of the probability distribution 
before and after the update, and Asynchronous Advantage 
Actor-Critic (A3C) [28], which uses distributed learning 
and the advantage to update the probability distribution. 
Actor-critic method uses two networks basically. One is a 
policy function �(a

t
|s

t
;�) which is formulated in the form 

of a posterior probability distribution for a given state vec-
tor to determine a next action. The other is a value function 
V(s

t
;�

v
) to evaluate a state of an environment, where a

t
 is 

an action and s
t
 is a state at step t. A policy function and a 

value function are parameterized by � and �
v
 , respectively. 

In our implementation, these two networks are independ-
ent and do not share any part of them. An update using the 
advantage, if without using the state-action value func-
tion directly, performs via ∇𝜃 log𝜋𝜃

(
a
t
|s

t
;𝜃
)
Â
(
s
t
, a

t
;𝜃, 𝜃
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)
 

obtained from an estimate of the advantage given by 
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i=0
𝛾 ir

t+i + 𝛾kV
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s
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�
− V(s
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;𝜃

v
) , where 

k can vary from a state to a state and is upper-bounded by 
max step of each episode. In the implementation of machina, 
a set of estimates of the advantage in a batch is normalized 
with its variance and mean. The distinctive feature of PPO 
is to use the modified objective function after the idea of 
TRPO to update policy with the simple implementation. A 
primary variant of PPO called PPO-clip stabilizes policy 
update by Eq. 6.

Here, objective function L is given by

(6)�
t+1 = argmax� Es,a∼��t

[
L
(
s, a, �

t
, �
)]
.

where r
t
(�

t
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;�)∕�(a

t
|s

t
;�

t
) , � is a hyperparameter 

and Â
t
(s, a) is an estimate of advantage at the step t. For 

updates of the value function, the Monte-Carlo method is 
adopted. Specifically, the Monte-Carlo method minimizes 
the mean squared error between the cumulative discounted 
reward GT

t
= r

t+1 + �r
t+2 +⋯ + �T−1rT and the current value 

function V(s
t
|�

v
).

4 � Learning method

4.1 � Environment for learning of collision avoidance

The environment consists of target ships, a waypoint and 
a target area. In this paper, it was assumed that the target 
area was an open sea with no obstacles such as coast lines, 
buoys. A waypoint was set as a destination of the own ship 
which was a controllable agent. The own ship must go to a 
waypoint while avoiding target ships. Target ships were set 
in the target area according to a set of encounter situations. 
The motion of ships was calculated by Nomoto’s equation 
[29] for the heading and a primary delay equation for the 
rudder motion as Eq. 8 and the coordinate system of ship 
motion is shown in Fig. 8.

 where � is a heading angle. r is a rate of turn. � is a rudder 
angle of a ship and �

C
 is a command rudder angle. T and T

E
 

are time coefficients of heading and rudder motion. K is a 
gain. All of own and target ships had the same parameter 
for motion calculation assuming a kind of cargo ships. The 
own ship and target ships cannot change their speed. The 
Runge–Kutta method was used to integral motion equations. 
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Fig. 8   Coordinate system of ship motion
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In this study, two types of control methods are used to train 
model in the continuous action spaces: a rudder control 
model that outputs the command rudder angle and an auto-
pilot model that outputs the command heading angle. For the 
model of rudder angle control, the command rudder angle is 
determined based on the current policy in the range of − 10 ° 
to +10°. The autopilot model selects a change of the heading 
angle of autopilot in the range of − 10 ° to +10° based on the 
current policy at each time step. Table 1 shows a summary 
of the vessels used in this calculation. These are the same for 
all ships in the simulation, whether their own or target ships.

The policy and value networks of PPO get a state vector 
from environment. A state vector consist of as follows: (1) 
OZT information by a grid sensor detection results, (2) 
normalized values of a heading angle, a rate of turn, a 
speed and a rudder angle of the own ship and (3) normal-
ized values of an azimuth angle and a distance to a way-
point and a command rudder angle from autopilot toward a 
waypoint. In this algorithm, dynamic information of target 
ships is grasped only from a detection result of a gird sen-
sor. Thereby, it is a feature of the proposed algorithm that 
the dynamic information of the target ships and position 
information of the own ship are not handled directory. To 
reduce the computational complexity, detection of a grid 
sensor and updating of a command rudder angle were car-
ried out every 10 s in the simulation time, and for the 
motion calculation, the interval of the integration was set 
to 1 s. The setting of other learning environments is shown 
in Table 2. A grid sensor is assumed to use information 
provided by AIS. The practical range of shipborne AIS 

communication is about 12 NM [30]. We determined the 
radius of the grid sensor based on this. In this study, we 
implemented the environment using Python with OpenAI 
Gym which is used as a standard platform for development 
and evaluation for RL algorithms. By this implementa-
tion, it is easy to apply any other DRL algorithms to this 
environment.  

4.2 � Design of rewards

The rewards are designed by dividing them into two kinds 
of rewards: basic rewards, which are added at each step, 
and achievement rewards, which are given at the end of 
each episode. An episode is defined as a sequence from 
a start of a simulation to a termination of the simulation 
by satisfying terminal conditions. The terminal conditions 
of an episode are that the distance to a waypoint becomes 
less than or equal to a specified distance, or the simulation 
reaches the set maximum steps. The basic rewards Costs 
are defined as shown in Eqs. 9–12. The Costswp calculated 
by Eq. 10 is a positive reward that is given more as the 
own ship approaches a given waypoint. For compliance 
with the COLREGs, a small positive reward is given as 
Costsstarboard to encourage the own ship to pass through 
the area on the right side of the line connecting the initial 
position of the own ship with a given waypoint, so that an 
agent basically learns to avoid toward the starboard side. 
Costsstable is defined to stabilize heading control by trained 
models. In this study, an additional reward of − 5 is given 
instead of terminating the episode at the step where the 
collision was judged.

where dwp and Azwp are the distance and the azimuth to a 
given waypoint from the own ship. Results are set according 
to the end condition of each episode: − 50 for deviation from 
the target area, − 50 for a collision, and + 50 for reaching 
within the specified distance from a given waypoint without 
collisions. The scale of achievement rewards is determined 
based on the result of the preliminary learning carried out 
beforehand as the scale for that the effect of Costsstarboard with 
a small value does not disappear, while encouraging the own 
ship to avoid collision.

(9)Costs =Costswp + Costsstarboard + Costsstable,

(10)Costswp =0.9 tanh(1∕dwp),

(11)Costsstarboard =

{
0.05, Azwp ≥ 0

0.0, Azwp < 0,

(12)Costsstable = − 0.01|r∕�|,

Table 1   Subjects of ships for learning

K (1/s) 0.05
T (s) 50.0
T
E
 (s) 2.5

Ship’s speed, U (kt) 12.0, 8.4 (for 
ships over-taken 
only)

Ship length between perpendiculars, L
PP

 (m) 106.0
Ship breadth, B (m) 16.2

Table 2   Configurations of environment

Subjects Value

Safe passing distance (NM) 0.5
Grid sensor
  Angle of detection (°) 360
 Grid space on angular direction (°) 2.0
 Radius of sensor (NM) 12.0
 Grid space on radius direction (NM) 0.2
 Detection intervals (s) 10.0
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4.3 � Structure of networks and update method

The policy and value function used in PPO are represented 
by deep neural networks. In the present study, we set a safe 
distance of 0.5 NM in the discrete action space in advance, 
but the trained model by previous approach [17] did not 
reach the sufficient performance. One of the possible reasons 
is that networks consist of only convolutional layers and full-
connected layers (FC) cannot store historical information of 
the environment. We introduced the recurrent neural network 
(RNN), which can deal with time series data. Specifically, 
we used the long short-term memory (LSTM), which is a 
kind of RNN. Among the input states, the detection result 
of the grid sensor and the dynamic information of the own 
ship and information of the waypoint are different in nature, 
and the results of the grid sensor needs to be processed by 
the convolutional layer used in image learning. On the other 
hand, real numerical data, such as dynamic information and 
information of waypoint, can be processed in the layer of 
all joins because of its small number of dimensions. For 
this reason, as shown in Fig. 9, we divided the state vectors 
of the grid sensor and the state vectors of other numerical 
information and input them separately in the convolutional 
layer and the full-connected layer in the input layer, respec-
tively, and finally combined the results of each output into 
one network. To learn in a continuous action spaces, we 

introduce a network structure as shown in Fig. 9, which has 
different output layers from those for the discrete action 
spaces. In this network, the LSTM cell is placed before the 
output layer. In our implementation, the two networks have 
no shared parts. Here, the rudder control model, the net-
work of policy has two convolutional layers, and the value 
function has only one convolutional layer. We used Adam 
[31] to update the network. The hyperparameters for PPO 
in continuous action spaces are provided in Table 3. The 
hyperparameters of the previous model in discrete action 
spaces are described in [17].

4.4 � Scenario

The encounter situations used during learning affect the 
quality of the collision avoidance model. It is suitable that 
the set of situations includes from easy one like 1 on 1 
encounters to difficult one like encounters of many ships. 
There is a scenario set for collision avoidance tests. Woerner 
et al. proposed the scenario set [32]. This scenario has six 
situations of ship encounters. Cai and Hasegawa proposed 
an evaluation method of performance of automatic collision 
avoidance systems [33]. In this method, they used Imazu 
problem [19] as a benchmark which is a set of ship encoun-
ter situations as shown in Fig. 10. Imazu problem consists 
of basic ship encounters of 1 on 1 and difficult situations 
of multiple ships. In this paper, we used Imazu problem as 
scenario for learning. In Fig. 10, numbers on the top left in 
each of boxes indicate the number of cases of Imazu prob-
lem. Each of short bars from triangles (the own ship) or cir-
cles (target ships) is a velocity vector of each ship. Accord-
ing to the report by Cai and Hasegawa, the problem may 
become easier by the elimination of the collision risk when 
the avoidance maneuvering by a target ship is permitted. In 
this paper, target ships are able to only go straight without 
making any changes to their course by waypoint navigation 

Fig. 9   Structures of networks used in PPO (top: network for continu-
ous action space with rudder control, middle: network for continuous 
action space with autopilot, bottom: network for discrete action space 
in [17]) Fig. 10   Imazu problem [19]
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or avoidance maneuvering. In addition, to improve the gen-
eralization performance of the learned model, one random 
case that 3 ships are randomly arranged is prepared, and the 
learning was carried out under the problem of total 23 cases 
including 22 cases of the Imazu problem and a random case. 
The position and course of each ship for every case were set 
so as to collide at the origin of the space fixed coordinates. 
In learning, 1 case out of 23 case was chosen randomly when 
it was initialized in each episode start, and target ship was 
arranged according to the configurations of each case. For 
the initial position and heading angle of target ships in each 
case in Imazu problem, see Appendix 1. Each target ship is 
positioned at the speed so that the TCPA is 30 mins. The 
own ship is positioned at (X [NM], Y [NM]) = (− 6.0 , 0.0) 
and its heading angle is randomly set in the range of − 5 ° to 
+ 5° for every episode for generalizability.

5 � Results

In this section, we describe the results of automatic col-
lision avoidance using the trained model by the proposed 
approach. First, we show the results for all scenarios of 
Imazu problem using the two trained models of continuous 
action spaces and the previous trained models used in the 
previous study [17]. This previous model is trained at the 
safe passing distance of 0.3 NM and OZT is not extended 
to the bow crossing distance in learning and this valida-
tion. Using these models, a total of 22 cases of the Imazu 
problem were simulated to verify the performance of col-
lision avoidance. In all scenarios, the waypoints are placed 
at (X (NM), Y (NM)) = (6.0, 0.0). Trajectories by the three 
trained models in all 22 cases of Imazu problem are shown 

in Figs. 11, 12 and 13. The corresponding bar graphs of 
the minimum passing distance in each case of the two 
continuous action space models and the discrete action 
spaces model are shown in Fig. 14. In the case of the dis-
crete action spaces model, the safe passage distance during 
learning was set to 0.3 NM, which results in monotonous 
trajectories with small heading angle changes overall. On 
the other hand, the two models of continuous action spaces 
learned at a safe distance of 0.5 NM have been learned to 
take a longer distance to the target ships than the previ-
ous model. From the point of view on the COLREGs, the 
discrete action spaces model cannot find a path to avoid 
ship according to the COLREGs in some cases such as 
case 6. The model of continuous action spaces with rud-
der control found paths to avoid target ships by starboard 
turning, which is appropriate avoidance maneuvering for 
almost cases. In the almost results in Figs. 11 and 12, the 
own ship passed behind the target ships. This can be due 
to the setting of bow crossing range of OZT and collision 
detection. However, the autopilot model may maneuver 
from the initial OZT such as case 12 and case 17, which 
deflects the course significantly at the beginning, and the 
minimum safe passing range is also large. For all cases of 
Imazu problem, the minimum passing distance of autopilot 
model tends to be larger than that of the rudder control 
model. Moreover, it can be inferred from the trajectories in 
Fig. 12 that the effect of Costsstable is longer for the autopi-
lot model than for the rudder control model. On the other 
hand, the rudder control model has mastered advanced 
control such as turning to the destination as shown in 
Fig. 15. Such a drastic change of course was not observed 
in the trained model of discrete action spaces at all. This is 
a major feature of the continuous action space model. This 

Fig. 11   Trajectories through 
Imazu problem using the con-
tinuous action space model with 
rudder control
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may be due to the reward design that there is no negative 
reward for the elapsed time, so there is a less need to hurry 
to arrive at the waypoint. Nevertheless, it is necessary to 
design the reward so that the model can be constructed in a 

time-efficient manner while retaining this flexible control, 
since it is necessary to consider the economy in actual ship 
operation.

Fig. 12   Trajectories through 
Imazu problem using the con-
tinuous action space model with 
autopilot

Fig. 13   Trajectories through 
Imazu problems using the dis-
crete action space model with 
rudder control [17] (the safe 
passing distance is 0.3 NM)

Fig. 14   Minimum passing dis-
tance of trained models (the safe 
passing distance for the trained 
models in continuous action 
spaces is 0.5 NM, and it for the 
trained model in discrete action 
spaces is 0.3 NM [17])
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For validation of the rudder control model, we have pre-
pared a test scenario shown in Fig. 16. In the test scenario, 
there are five target ships at different speed from 12.0 to 
15.0 kt. The waypoint of the own ship is set at (X [NM], Y 
[NM]) = (0.0, 10.0). From the initial OZT distribution, one 
of the desirable paths to arrive at the waypoint is way on the 
starboard of the own ship through the gaps of OZTs. The 
trajectory in Fig. 17 shows the trained model with rudder 
control learned such desirable way to avoid collision and 

arrive at the waypoint. The minimum passing distance of 
this scenario is 0.753 NM. Although the own ship’s speed 
is lower than the target ships 2 and 3, the trained model 
avoided them. As shown in this test, the trained model with 
rudder control in continuous action spaces learned general-
ized maneuvering to avoid ships and arrive at the waypoint 
with the longer safe passing distance is 0.5 NM. 

6 � Discussion

By introducing negative rewards for the collision detection 
with the bow crossing range and the small positive rewards 
of the right-handed rewards Costsstarboard , the trained model 
of rudder control is able to learn to control the own ship in 
a way that does not violate the three rules of the COLREGs 
described in the Introduction. For instance, the previous 
trained model of discrete action spaces had crossed the front 
of the target ships in some cases of Imazu problem such as 
case Nos. 4, 6 and 12. Conversely, these results indicate 
that there is the possibility that the basic collision avoidance 
behavior for head-on, crossing and overtaking situations 
defined by the COLREGs can be composed of the principle 
for securing the bow crossing range and passing on the right 
side of the original course to the waypoint. Several studies 
by Imazu [4–6], Hu et al. [8], and Woerner et al. [12] defined 
detailed functions to evaluate the legality for the COLREGs. 
In contrast, our method shows that only OZT with the bow 
crossing range (and the cost term Costsstarboard of rewards) 
is enough for COLREGs-compliant collision avoidance for 

Fig. 15   Turning behavior in case 4 of Imazu problem in Fig. 11

Fig. 16   Initial position and OZT distributions of the test scenario

Fig. 17   Trajectory by the continuous action space model with rudder 
control for the test scenario
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multiple ships navigation problems. This also means we can 
improve methods of collision avoidance by modifying not 
only functions but also representations of collision detection 
based on the statistical models such as the bumper model. 
Imazu problem is a set of short-term scenarios that are easy 
to maneuver in response to the COLREGs, but in the test 
scenario prepared this time, if the ship tries to proceed in the 
one of the shortest path, the course that passes in the front 
of target ships is selected. The question here is whether the 
trajectory generated by the trained model which takes action 
in compliance with the COLREGs in short-term scenarios is 
acceptable in practice. The choice of such a course is deter-
mined by various factors such as the degree of congestion 
of the sea, the shape of the navigable area, and the distance 
to the waypoint. One of the future research agendas is to 
examine whether the trajectory from the trained model is 
realistic using more complex scenarios and real traffic data, 
while at the same time investigating the essential elements 
needed to bridge the difference with real ship operations in 
the DRL framework.

A characteristic of DRL for ship control problems is that 
the two control methods, rudder control and autopilot, show 
significant differences in the same reward design. These 
models differ in the number of convolutional layers in the 
network structure, but the presence or absence of this effect 
is unknown. Nevertheless, the linear trajectory inherent in 
the results by the model of autopilot indicates that the reward 
design may need to be determined according to how the 
vessel is controlled. The reason why the trained model of 
autopilot could not learn in the same network as the trained 
model of rudder control in continuous action spaces is that 
the deviation from the original course is too large for colli-
sion avoidance maneuvers, which corresponds to the reason 
why the discrete model could not learn. From the learning 
process of these two models, we consider that it is neces-
sary to design state vectors and rewards that limit the devia-
tion from the course to learn collision avoidance maneuvers 
while maintaining the performance of waypoint navigation. 
In the future research, we will design learning algorithms 
that take these factors into account.

7 � Conclusion

In this study, we proposed a novel approach of automatic 
collision avoidance using DRL in continuous action spaces 
with the longer safe passing distance at 0.5 NM. By our pre-
vious approach, when the safe passing distance was set to 0.5 
NM, the learning did not progress and the performance of 

the trained model was not satisfying. The proposed method 
solves this problem by developing new OZT representa-
tions, changing the network structure, and learning in con-
tinuous action spaces. We extend OZT by introducing the 
inside OZT and the bow crossing range. The inside OZT 
promotes the reduction of the loss of the value function dur-
ing learning using DRL. We continued to investigate the 
combination of OZT detection by grid sensors and deep 
reinforcement learning as a method to perform collision 
avoidance and waypoint navigation of multiple ships at the 
same time. Using OZT and collision detection with the bow 
crossing range, the model learned safer maneuvering that 
the ship is less likely to cross the front of the target ships. 
This result shows the bow crossing range in collision detec-
tion is effectual for realizing safe and COLREGs-compliant 
maneuvering in a simple way. By introducing the LSTM 
cell in the continuous action spaces into network of PPO, 
the new trained model shows that it can make complex deci-
sions such as giving up collision avoidance and returning 
to a waypoint in the midst of operation, which has not been 
seen in behaviors by trained model learned in the discrete 
action spaces. The trained model has found an appropriate 
course to weave its way through OZTs even in unknown test 
scenarios and has learned collision avoidance maneuvering 
with generalization performance.

On the other hand, the trained model of the continuous 
action spaces tends to have low course stability. As a result, 
the ship’s operation may cause anxiety to the other ship. 
In the next stage of this research, we would like to build 
a model with more course stability by various approach 
including a review of the structure of state vectors and net-
works, as well as reward design. In addition, it is future work 
to build the automatic collision avoidance model which can 
deal with ship encounters including changes of ships’ speeds 
and courses.
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Appendix 1: Learning settings of PPO

The hyperparameters of the neural network structure and 
learning used in the learning of continuous action spaces in 
this study are shown in Table 3. As for the learning rate, it 
does not decay and is fixed during learning. In this study, we 
used Pytorch to perform operations around neural networks 
on a GPU using CUDA 9.0 to shorten the learning time. 
Computations of the environment, including ship motion 
calculations and grid sensor detection, were performed on 
CPU. For the calculations, we used a Windows 10 desktop 
machine (core i7 8700K, NVIDIA GeForce 1060 6GB). 
Note that machina used in this study officially supports only 
Ubuntu as an OS, and Windows is not officially supported. 
For this reason, some of the implementations of multiproc-
essing and log output for Pytorch and Python in parallel were 
changed for Windows and the machina code was modified.

Settings of Imazu problem

Imazu problem proposed in [19] has two group of encoun-
ter scenarios. Group 1 includes relative difficult situation 
Table 4 shows the initial settings of the Imazu problem used 
in learning and test of the model. The coordinates in Table 4 
are the spatial fixed coordinates. Numbers of target ships 
in Table 4 is not always corresponding to them used in the 
simulations of this paper. Figure 18 shows the initial condi-
tions for each case set in Table 4. However, to make the dis-
play of the ship easier to see, it is drawn at a size equivalent 
to 10 times the actual ship scale.

Table 3   Hyperparameters for PPO

Parameters Value

Optimizer Adam
Learning rate
 Actor 1.0 ⋅ 10

−4

 Critic 3.0 ⋅ 10
−4

Discount gamma 0.995
1st convolutional layer for grid sensor
 Number of output channel 256
 Kernel size 8
 Stride 4
 Padding 8
 The number of channels of output 32
2nd convolutional layer for grid sensor
 Number of output channel 128
 Kernel size 4
 Stride 2
 Padding 4
 The number of channels of output 32
LSTM cell
 Input size 1024
 Hidden size 512
Hidden units of fully connected layers for other state 

vector
256

Hidden units of fully connected layers for merged output 128
Size of clipping gradient norm 20.0
Nonlinearity ReLU
Number of processes to parallel sampling 6
Batch size 8
Number of epoch in a iteration 10
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Table 4   Settings of Imazu 
Problem (own ship starts from 
(X [NM], Y [NM]) = ( − 6.0 , 
0.0) with � = 0(°))

Ship Target ship 1 Target ship 2 Target ship 3

Case no. X (NM) Y (NM) � (°) X (NM) Y (NM) � (°) X (NM) Y (NM) � (°)

1 6.000 0.000 180.0 – – – – – –
2 0.000 6.000 – 90.0 – – – – – –
3 − 4.200 0.000 0.0 – – – – – –
4 − 4.243 − 4.243 45.0 – – – – – –
5 6.000 0.000 180.0 0.000 6.000 − 90.0 – – –
6 − 5.909 1.042 − 10.0 − 4.243 4.243 − 45.0 – – –
7 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 – – –
8 6.000 0.000 180.0 0.000 6.000 − 90.0 – – –
9 − 5.196 3.000 − 30.0 0.000 6.000 − 90.0 – – –
10 0.000 6.000 − 90.0 − 5.796 − 1.553 15.0 – – –
11 0.000 − 6.000 90.0 − 5.196 3.000 − 30.0 – – –
12 − 4.243 4.243 − 45.0 − 5.909 1.042 − 10.0 – – –
13 6.000 0.000 180.0 − 5.909 − 1.042 10.0 − 4.243 − 4.243 45.0
14 − 5.909 1.042 − 10.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0
15 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0
16 − 2.970 − 2.970 45.0 0.000 − 6.000 90.0 0.000 6.000 − 90.0
17 − 4.200 0.000 0.0 − 5.909 − 1.042 10.0 − 4.243 4.243 − 45.0
18 4.243 4.243 − 135.0 − 5.796 1.553 − 15.0 − 5.196 3.000 − 30.0
19 − 5.796 − 1.553 15.0 − 5.796 1.553 − 15.0 4.243 4.243 − 135.0
20 − 4.200 0.000 0.0 − 5.796 1.553 − 15.0 0.000 6.000 − 90.0
21 − 5.796 1.553 − 15.0 − 5.796 − 1.553 15.0 0.000 6.000 − 90.0
22 − 4.200 0.000 0.0 − 4.243 4.243 − 45.0 0.000 6.000 − 90.0
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Fig. 18   The initial state of Imazu problem and OZT detection by the grid sensor (the safe passing distance of OZT is 0.5 NM)
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