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Abstract Defining numerical uncertainty is an important

part of the practical application of a numerical method. In the

case of a ship advancing in short and steep waves, little

knowledge exists on the solution behaviour as a function of

discretisation resolution. This paper studies an interface-

capturing (VOF) solution for a passenger ship advancing in

steep (kA = 0.24) and short waves (Lw/Lpp = 0.16). The

focus is to estimate quantitative uncertainties for the longi-

tudinal distributions of the first–third harmonic wave loads in

the ship bow area. These estimates are derived from the

results of three systematically refined discretisation resolu-

tions. The obtained uncertainty distributions reveal that even

the uncertainty of the first harmonic wave load varies sig-

nificantly along the ship bow area. It is shown that the largest

local uncertainties of the first harmonic wave load relate to

the differences in the local details of the propagating and

deforming encountered waves along the hull. This paper also

discusses the challenges that were encountered in the quan-

tification of the uncertainties for this complex flow case.

Keywords Numerical uncertainty � Volume-of-fluid

method � First–third harmonic ship wave loads �
Short and steep waves

1 Introduction

In recent years, a ship advancing in waves has become a

popular flow case for the users and the developers of

interface-capturing methods, e.g. [1–14]. In such a flow

case, the interface-capturing methods are advantageous,

because they enable modelling the effect of arbitrary free-

surface behaviour. In practice, the development of both the

interface-capturing methods and the computational resour-

ces has been required to run computations on a ship

advancing in waves.

The previous publications cover several examples on the

computational modelling of a ship advancing in waves.

These studies have considered both global [1–9] and more

local wave loads [2, 10–13]. As for the harmonic content of

these wave loads, the focus has mainly been on the zeroth

[3–6, 9] and on the first [2–6] harmonic wave loads, but

some examples also on higher harmonic results exist:

second and third harmonic wave loads in [11] and spectral

analysis of wave loads in [5, 8].

In order to have confidence in computational predic-

tions, they are compared with measured results. However, a

computational solution depends on the selected discretisa-

tion resolution. Therefore, the behaviour of the numerical

solution in this respect should be studied before validating

the computations against measured results.

When analysing the solution behaviour as a function of

the discretisation, the computations need to be repeated with

several discretisation resolutions (usually three in mini-

mum) in order to find out the dependence of solution on the

selected resolutions. Previous numerical studies on a ship

advancing in waves have been based on the results of three

discretisation resolutions [2, 5, 6, 9–11]. Most of these

studies have considered the solution behaviour by simply

giving or comparing the three results [2, 9–11]. Such com-

parisons give an idea on the variation of the results within the

selected discretisation range and may show sufficiently

similar solution behaviour on the selected discretisations.

However, these kinds of qualitative comparisons do not

give a quantitative estimate for the difference between the
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obtained solution and the exact solution of the continuous

mathematical model. The difference between the obtained

solution and the exact solution of the numerical method is

called numerical error. In practice, the numerical error is

taken into account as an uncertainty. Estimating this error

is important when judging the capability of the method to

predict flow behaviour. This is especially important when

considering, if the selected models within a method are

adequate for predicting certain flow behaviour.

In the case of a ship advancing in waves, little results

have been published on the numerical uncertainty. In the

studies [5, 6], quantitative uncertainty has been analysed

for one very moderate wave condition Lw/Lpp = 1.5 and

kA = 0.025 in the case of a surface combatant. This

uncertainty estimation has been restricted to the zeroth

harmonic global wave loads and that of the first harmonic

results has been omitted due to oscillating results. The

choice of the authors of [5, 6] not to give uncertainty

estimates for oscillating results relates to the difficulty of

treating non-monotonically converging results. The dif-

ferent uncertainty estimation approaches have different

attitudes towards such results.

The present study considers the solution behaviour of

first–third harmonic wave load distributions on a ship bow

area as a function of the discretisation using three discreti-

sation resolutions. The results are studied both by simple

comparisons and by estimating the numerical uncertainties

of the solution of the fine discretisation resolution. In this

case, the encountered waves are steep kA = 0.24 and short

in comparison to the ship length Lw/Lpp = 0.15. Almost

similar flow conditions (kA = 0.24, Lw/Lpp = 0.16) have

been applied for a less full bow form in [11] to estimate total

forces on the bow area. The focus of this study is in the

estimation of the quantitative uncertainty for first–third

harmonic wave load distributions and in the encountered

challenges of quantifying the uncertainty.

Little knowledge exists on similar computational cases.

Both the flow conditions and the load parameters of interest

are different from most of the previously published simula-

tions on a ship advancing in waves. It is assumed that the

different flow conditions and the interest in higher harmonic

components require higher time resolution than in the case of

the zeroth and first harmonic wave loads studied previously.

Furthermore, the numerical behaviour of the distributions of

the predicted wave loads as a function of discretisation res-

olution has been seldom presented. As regards different

harmonic components, there are some indications that hav-

ing converging results for even the first harmonic global

wave loads in moderate conditions can be challenging, see

[5, 6]. In the case of the second and third harmonic compo-

nents, there is even less previous knowledge.

The analysis of the present results differs from the

previous similar studies, because of the motivation on the

selected wave conditions. This flow case is interesting

because it can cause springing vibration. This fact affects

the analysis of the numerical uncertainty of the wave loads.

Firstly, the wave load is analysed as a longitudinal distri-

bution in the ship bow area. Analysis of the distributions is

important when studying springing, because the actual

vibratory excitation results from both the longitudinal wave

load distribution and the longitudinal distributions of the

hull eigenmodes. Secondly, the present analysis of the

wave load distribution covers the first–third harmonic

components. The second harmonic wave load is the actual

load that causes springing in the selected flow case, but the

first and the third harmonic components are included to get

a more general idea of the solution behaviour. Thirdly, we

compare the behaviour of the first–third harmonic single

frequency components with the behaviour of the respective

components that include the effect of their surrounding

frequency components. This is reasonable from the point of

view of springing, because several frequencies around the

critical frequency contribute to the vibratory excitation.

This is reasonable also from the point of view of studying

numerical uncertainty, because the wave energy may

spread differently in the frequency domain with different

discretisation resolutions. Fourthly, the local uncertainties

of the load distributions are compared with the uncertainty

of the respective global load. This is done to study whether

the uncertainty level of a global quantity can represent the

uncertainty level of a local quantity.

In this paper, the interface-capturing solution method

applied is presented in Sect. 2. The computational case of

the study is described in detail in Sect. 3. The approaches

used in the analysis of the results are presented in Sect. 4.

The results are presented in Sect. 5 and discussed in Sect.

6. Finally in Sect. 7 the conclusions are given.

2 Numerical method

The computations were performed with the commercial

flow solver ISIS-CFD. The solver is an unstructured finite

volume solver. It includes a volume-of-fluid-type interface-

capturing method to simulate free-surface flows. The flow

is treated as incompressible and without surface tension.

The flow solution (velocity U~, pressure p and volume

fraction c distributions) is obtained for each time step by

iterating the solution of the momentum equations, the

pressure equation and the volume fraction concentration

equation. The numerical method is published in [15] and

some further and updated details on it are given in [16]. In

the present study, the solver is used as an Euler-solver: in

other words the viscosity of the fluid is ignored.

The volume fractions ci of fluids i (e.g. water and air)

define the average density q in each control volume [15]
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q ¼
X2

i¼1

ciqi: ð1Þ

The sum of the volume fractions is always 1 in each

control volume. They are solved from the volume fraction

conservation equation [15]

o

ot

Z

VðtÞ

ci dV þ
Z

SðtÞ

ciðU~ � U~dÞ � n~dS ¼ 0; ð2Þ

where V(t) denotes the control volume, S(t) its closed

surface and U~d the velocity of the surface of the control

volume. As the solution contains only two fluids, it is

sufficient to use only one volume fraction (the volume

fraction of water) because the other volume fraction can be

resolved from c2 = 1 - c1. In the following, the symbol c

is used for the volume fraction of water. The location of the

free-surface level is selected to coincide with the isosurface

where the volume fraction has the value 0.5. It is not

necessary to solve the location within the numerical

method, but when necessary it can be resolved during the

post-processing of the results.

The velocity U~ is solved from the momentum conser-

vation equations [15]

o

ot

Z

VðtÞ

qU~ dV þ
Z

SðtÞ

qU~ðU~ � U~dÞ � n~dS

¼ �
Z

SðtÞ

pn~dSþ
Z

VðtÞ

qg~dV; ð3Þ

where g~ is the component of the gravity vector and n~ the

outwards-directed unit normal vector.

The pressure p is solved from the pressure equation,

which is derived from the mass conservation equation. The

simplified form of the mass conservation equation
Z

S

U~ � n~dS ¼ 0 ð4Þ

is used within the present flow solver, because the phases

are considered incompressible with constant densities qi.

In the present study, a second order backward discreti-

sation was chosen for the time derivatives. For the velocity

and the volume fraction discretisations the second order

GDS-scheme and the BICS-scheme [16] were respectively

selected. In the numerical method, a special discretisation is

used for the pressure to take into account the discontinuity

of the density on the interface of the air and water [15].

3 Simulation case

The selected simulation case was chosen because of an

interest in the second-order springing excitation. In practice

this means that the encounter frequency of the ship and the

waves was chosen such that the second harmonic wave

load could excite the vertical two-node mode of the full-

scale hull. The wave was chosen to be very steep, which

should ensure significant higher harmonic excitation. As

the main purpose of this paper is to study the behaviour of

the numerical solution as a function of the discretisation

resolution, the simulation was repeated three times with

systematically refined discretisations to enable the uncer-

tainty estimation.

3.1 Case conditions

The frames of the passenger ship are given in Fig. 1 and

the model-scale ship main parameters in Table 1. The scale

of the model is 1:49. The selected ship speed, 20 kn, is the

normal service speed of a cruise ship. Table 1 also includes

the wave information.

3.2 Spatial domain

The boundaries of the selected spatial domain are illus-

trated in Fig. 2 and their locations with respect to the ship

fore perpendicular (xFPP, yFPP, zFPP) are given in Table 2.

Figure 2b also illustrates the boundaries of the area of the

ship hull in which the wave load is analysed.

The selected locations of the boundaries of the spatial

domain are related to the applied boundary conditions. The

encountered waves are generated with a numerical wave

boundary condition on the inlet. The boundary condition is

implemented by giving the velocity and the mass fraction

distribution on the wave boundary as a function of time.

For each cell, whose cell centre is below the instant free-

surface level on the boundary, the mass fraction value is set

to one (water) and the velocities are set according to the

linear Airy wave theory. The distance between the inlet

boundary and the ship bow was chosen to be small, because

it minimises the simulation time required to transport the

waves to the ship bow area. The computational domain

0.0

0.4

0.0 0.55

z 
[m

]

y [m]

Fig. 1 Ship frames between the ship fore perpendicular and the mid

ship
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includes one half of the hull since the case is symmetric. A

symmetry boundary condition is applied on the symmetry

wall. The upper and lower boundaries of the grid are set far

from the water line to minimise the effect of those bound-

aries on the solution. The location of the lower boundary is

at least 7 times the wave length from the free-surface level

in order to prevent the grid bottom boundary affecting the

wave properties (shallow water effect caused by grid bot-

tom). For practical reasons, the locations of the upper and

lower boundaries are not the same with the three grid

densities. It was necessary to make this choice to ensure that

the location of the initial free-surface level coincides with a

cell face level with each grid. This is a limitation of the

hexahedral grid generator, which was used. The boundary

conditions applied are given in Table 3.

The computational domain was discretised with the

hexahedral grid generator Hexpress. The three grids were

generated systematically in a similar way. The refinement

ratios were 1.25 for the coarse/medium grid ratio and 1.20

for the medium/fine grid ratio. Figure 3 shows some details

of the three grids on the symmetry plane y = 0 and on a

plane near the design water line depth.

The grids include two refinement boxes: one to transport

the waves in the computational domain (b1), and one to

refine the domain near the bow in y-direction (b2), Fig. 2.

The locations of the boundaries of the refinement boxes are

given in Table 4. The length and the height of the cells

were equal inside the two refinement boxes. They are given

in Table 5. The entire grid was refined in z-direction

around the free-surface level with the cell height similar to

those in the refinement boxes. The total number of cells in

each grid is given in Table 5.

The discretised domain moved during the simulation

with the ship velocity along the positive x-axis. The ship

hull and the domain were kept fixed in the other degrees of

freedom, because the wave-induced ship motions are

insignificant in the waves that are very short in comparison

to the ship length (about Lw/Lpp = 0.16).

3.3 Time domain

The length of the simulation in the time domain was chosen

such that it ensures a sufficiently long analysis period in the

regular waves with the selected ship speed.

The duration of the simulation (0.0–10.8 s) includes

three parts: the acceleration ramp for the ship speed with a

one half sinusoidal ramp profile (0.0–3.0 s), the time

required for the propagation of the waves to the ship bow

area (0.0–7.0 s) and the analysed time interval (7.0–

10.8 s = 10*Te).

The time steps were chosen such that there are at least

80 time steps per third harmonic period, Table 5. They

were refined systematically with the same ratios as the

computational volumes.

Table 1 Ship and wave particulars in the model scale

Length Lpp 6.69 m Wave length Lw 1.05 m

Breadth 1.10 m Wave height Hw = 2A 0.08 m

Draught 0.18 m Wave steepness kA 0.24

Block coefficient 0.72 Encounter period Te 0.38 s

Lpp denotes the length between the ship perpendiculars

ymin

ymax

y

x

xFPPxmin xmax

xb2,2xb2,1xb1,1=yFPP=ybi,1

=
yb1,2

yb2,2

=
xb1,2

zmin

zFPP

zmax

x1 x2

z

x

≈z1

z2 zb1,2

zb1,1

zb2,2

zb2,1

xFPPxmin xmax

a

b

Fig. 2 Coordinate axes, boundaries of the computational domain

(xmin, xmax, ymin, ymax, zmin, zmax), boundaries of the refinement boxes

b1 and b2 (xbi,1, xbi,2, ybi,1, ybi,2, zbi,1, zbi,2), a xy-level, b xz-level,

boundaries of the observation area (x1, x2, z1, z2)

Table 2 Locations of the grid boundaries

Coarse Medium Fine

|xFPP - xmin|/Lw 14.70 14.70 14.70

|xFPP - xmax|/Lw 2.86 2.86 2.86

|yFPP - ymin|/Lw 0.00 0.00 0.00

|yFPP - ymax|/Lw 6.63 6.63 6.63

|zFPP - zmin|/Lw 7.14 8.57 7.95

|zFPP - zmax|/Lw 2.61 1.18 1.80

Table 3 Boundary conditions

xmin Imposed velocity xmax Numerical wave

boundary condition

ymin Symmetry condition ymax Imposed velocity

zmin Wall with slip condition zmax Imposed pressure

Hull Wall with slip condition
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Within each time step, the convergence of the results is

controlled by two input-parameters: maximum number of

iterations (10) and orders of magnitude (2) by which the

residual is reduced.

3.4 Computational resources

The computations were performed on a high-performance

HP CP4000 BL ProLiant supercluster called Murska

(CSC—the Finnish IT Center for Science), [17]. Ten pro-

cessors were used for the coarse-grid, 18 for the medium-

grid and 32 for the fine-grid computations. The usage of the

computational resources is given in Table 6.

4 Analysing the computational results

The results presented in this paper are mainly derived from

the pressures p and volume fractions c on the hull. The wall

values of the pressure are the same as the ones in the

closest computational volume, in other words the pressure

gradient over a wall is set to zero, (Queutey P, personal

communication, September 2008). In addition to the pres-

sure and volume fraction values on the faces, the infor-

mation on the locations of the face central points (x, y, z) is

used. The data to be analysed consists of the values at an

unstructured set of points without information on the

locations of the cells with respect to each other and without

information on the location of the corners of faces. For the

calculation of the total pressure, the information on the

surface area of each face on the wall is also utilised.

4.1 Wave excitation

4.1.1 Frame force

Vertical force is analysed on a set of ship frames. As

unstructured grids are used, the grid points are not in

practice located on vertical intersections that present

frames. Instead, points Np,f within thin vertical sections are

Fig. 3 Grids, a–c y = 0.0-plane, d–f z-directional plane near the design water line, from left to right coarse, medium and fine grid

Table 4 Locations of the boundaries of the refinement boxes

b1 b2 b1 b2

|xFPP - xbi,1|/Lw 8.12 1.93 |xFPP - xbi,2|/Lw 2.86 0.13

|yFPP - ybi,1|/Lw 0.00 0.00 |yFPP - ybi,2|/Lw 6.63 0.95

|zFPP - zbi,1|/Lw 0.12 0.06 |zFPP - zbi,2|/Lw 0.23 0.38

Table 5 Cell sizes in the refinement boxes, time steps and total

number of cells

Lw/Lc
a Hw/Hc

b Te/Dtc Number of cells (M)

Coarse 58.32 8.00 245.16 2.06

Medium 72.90 10.00 306.45 3.41

Fine 87.49 11.94 367.86 6.09

a Cell length
b Cell height
c Time step

Table 6 Average CPU time/one time step and number of time steps

CPU (s) Time steps

Coarse 406.8 6967

Medium 2509.4 8700

Fine 6886.9 10500
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selected and used to calculate the instantaneous force on a

frame.

The calculation of a vertical frame force history consists

of two steps. First, the points Np,f representing the frame

need to be organised. In general, the point closest to the

ship centre line is chosen to be the point iy = 1, the second

closest point is iy = 2 and so forth. The bulb area is an

exception. There, the points closest to each other are

adjacent. Second, the vertical frame force is calculated

using the trapezoidal rule:

Fz;f ðtÞ ¼
1

2

XNp;f

iy¼2

ðpiyðtÞ þ piy�1ðtÞÞ � ðyiy � yiy�1Þ: ð5Þ

4.1.2 Force on the total observation area

Vertical force on the total observation area of the hull is

calculated as an average using the information on the

pressure and the vertical surface area Az,i of each face

Fz;aðtÞ ¼
XNp;a

i¼1

piðtÞ � Az;i: ð6Þ

Np,a indicates the number of cell centres that are situated

within the observation area.

4.2 Harmonic components

The force histories are subjected to discrete Fourier

transformation DFT (e.g. [18]) to obtain the first–third

harmonic amplitudes. The denotation F is used here for a

force history from which its mean value Fmean has been

subtracted.

From the point of view of the signal analysis, the time

histories given by the computations are data sequences

F = F(n) of discrete times n = 1,2,…,Nt. The length of the

time history Lt = NtDt defines the spacing Dx
([Dx] = rad/s) of the frequency domain by Dx = 2p/Lt.

The total number of points Nx in the frequency domain is

limited by the Nyquist frequency p/Dt.

The Fourier series of a real-valued time history F can be

written as

FðnÞ ¼
XNx

k¼1

ak cos
2pk

Nt
n

� �
þ
XNx

k¼1

bk sin
2pk

Nt
n

� �
ð7Þ

with

ak ¼
2

Nt

XNt

n¼1

pðnÞ cos
2pk

Nt
n

� �
ð8Þ

and

bk ¼
2

Nt

XNt

n¼1

pðnÞ sin
2pk

Nt
n

� �
: ð9Þ

The focus of the present Fourier analysis is on the

components that correspond to the first, second and third

harmonic encounter frequencies. As the length of the time

histories is 10 times the encounter period, the respective

indices in the frequency domain are 10, 20 and 30. Thus, the

amplitudes nsingle,i corresponding to the first, second and

third harmonic encounter frequencies are calculated with

nsingle;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

10i þ b2
10i

q
: ð10Þ

To study the effect of the discretisation resolution on the

energy spreading in the frequency domain, the amplitudes

are also calculated using a wider frequency span. The

harmonic amplitudes nspan,i, that include the energy in the

frequency span of width xe around the harmonic

frequencies, are calculated with

nspan;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X10iþ4

k¼10i�5

ða2
k þ b2

kÞ

vuut : ð11Þ

4.3 Uncertainty estimation

Generally speaking, the numerical uncertainty consists of

contributions from the iteration number, the grid resolu-

tion, the time step, the round-off and the other parameters,

e.g. [19]. In the present study, the presented uncertainties

include the effect of the grid resolution and of the time

step. These two uncertainty sources are studied simulta-

neously as the Courant number is fixed in the computa-

tions. The effect of round-off is assumed to be negligible in

comparison to the other sources of uncertainty.

The following ratio R based on the numerical solution of

the fine /1, medium /2 and coarse /3 discretisations is

used to define the convergence conditions [19]:

R ¼ /2 � /1

/3 � /2

: ð12Þ

The convergence conditions are:

• Monotonic convergence: 0 \ R \ 1

• Oscillatory convergence: -1 \ R \ 0

• Divergence: R [ 1 or R \ -1.

The applied uncertainty estimation approach is pre-

sented in [20]. Its application in the present study differs

from that in the study [20] by using only three discretisa-

tion resolutions. The approach utilises the order of accu-

racy q, the difference dRE,1 between the fine grid solution

/1 and the estimated exact solution /0 and the data range

DM to estimate the uncertainty.

Richardson extrapolation is applied to estimate the exact

solution /0 assuming a single term estimate and dropping

the higher order terms. As the grid refinement ratio is not

constant in the present case, the order of accuracy q cannot
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be evaluated analytically. Thus, both the estimated exact

solution and the order of accuracy are obtained using the

least square fitting on

/i � /0 ¼ dRE;i ¼ ahq
i ; ð13Þ

where a is a coefficient and h a parameter representing grid

cell size.

The definition of the data range is

Dm ¼ maxðj/j � /ijÞ; 1� i; j�Ngrids: ð14Þ

In the case of monotonic convergence, the evaluation of

the uncertainty estimate U/ depends on the order of

accuracy:

• For 0:95� q� 2:05;U/ ¼ 1:25dRE;1: ð15Þ

• For 0� q� 0:95;U/ ¼ minð1:25dRE;1; 1:25DMÞ: ð16Þ

• Forq� 2:05;U/ ¼ maxð1:25d�RE;1; 1:25DMÞ: ð17Þ

d�RE;1 is obtained with Richardson extrapolation using

q equal to the theoretical value.

Otherwise (oscillatory convergence, monotonic or

oscillatory divergence), the uncertainty is estimated with

U/ ¼ 3DM: ð18Þ

4.4 Free-surface levels on the hull

This study includes instant and average free-surface levels

on the hull at certain time instants denoted here as tobs.

These free-surface levels are obtained by interpolation

from the volume fraction distributions. For the average

free-surface levels, the average cave(tobs) of the ten volume

fractions cn(t) on each unstructured point is calculated with

caveðtobsÞ ¼
1

10

X10

n¼1

cðtobs þ ðn� 1ÞTeÞ: ð19Þ

For the interpolation of the free-surface levels, the hull

surface is constructed from the unstructured set of points

using Triangle, [21, 22]. (The y-coordinates were ignored

during the construction and their effect was added

afterwards.) As a result, there is a surface that consists of

Delaunay triangulations with corner points that are the

central points of the original surface grid. The interpolation

of the free-surface levels on the hull is done with the

postprocessor tool Ensight.

5 Results

Section 5.1 presents the vertical force distributions given by

the three discretisation resolutions, while their uncertainties

are given in Sect. 5.2. In addition, Sect. 5.3 studies the

source of the largest first harmonic uncertainties.

The observation area is limited between x1 = 5.20

m = 0.78Lpp (close to the ship fore shoulder) and

x2 = 6.63 m = 0.99 Lpp (close to the ship fore perpen-

dicular). The length of this observation area is 1.4 times the

length of the encountered waves. To have the force dis-

tribution as a function of x, 36 equally spaced frames are

selected within the observation area. One frame consists of

the points, which are within ±0.67 times the cell length on

the coarse grid from the specified x-coordinate. This

ensures that there are enough points on each frame with

each discretisation resolution.

5.1 Force amplitude distributions with the three

discretisation resolutions

Figure 4 shows the distributions of the first–third harmonic

vertical force amplitudes given by the three discretisation

resolutions. These results behave relatively similarly, even

if their agreement varies as a function of x. The differences

between the resolutions become especially pronounced

around x = 5.7 m in the case of the first and the second

harmonics.

The results in Fig. 4 include both the first–third har-

monic amplitudes nspan,i describing the energy within the

frequency spans and the amplitudes nsingle,i describing the

energy of the single frequency components. The differ-

ences between the discretisation resolutions given by these

two widths of frequency span do not deviate significantly,

even if the effect of the frequency span becomes more

distinct in some locations the higher the harmonic com-

ponent is. The amplitude distributions show that the use of

the wider frequency span slightly increases the amplitudes

in a rather systematic manner for all the three discretisation

resolutions.

5.2 Uncertainty of force

The harmonic vertical force amplitudes with the uncer-

tainties for the fine resolution results are given in Fig. 5.

The results corresponding to both amplitudes nspan,i and

nsingle,i are given. The effect of the frequency span on the

uncertainties seems to be generally minor, but it becomes

more distinguishable the higher the order of the observed

harmonic amplitude is. The two uncertainty distributions of

the first harmonic amplitude hardly differ from each other.

The local uncertainties of the second harmonic amplitude

depend slightly on the frequency span. Some local uncer-

tainties of the third harmonics amplitude depend signifi-

cantly on the frequency span. With the increasing order of

the harmonic component, the fact that the wider frequency

span gives smaller uncertainties becomes pronounced.
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The monotonic or non-monotonic convergence of each

local result is denoted in Fig. 5. Most (nspan,i 56% and nsingle,i

53%) of the local first harmonic amplitudes converge

monotonically. The non-converging results are mainly

located near the ship fore perpendicular (xFPP = 6.69 m).

Some (nspan,i: 33% and nsingle,i: 31%) of the second harmonic

amplitudes converge monotonically. The converging results

are located around x & 5.7 m and in the vicinity of

x & 6.3 m. As for the third harmonic results, the results with

the monotonic (nspan,i 50%, nsingle,i 47%) and the non-

monotonic convergence are spread over the observation area.

The local values of the uncertainty distributions of the

harmonic amplitudes vary significantly around their aver-

age values, Fig. 5. In the case of all three harmonics, the

smallest values are located in the vicinity of x = 6.1–6.2 m.

The largest values are located near the ship fore perpen-

dicular and towards the rear end of the observation area.

The uncertainty distributions are compared with the

respective uncertainties of the harmonic amplitudes of the

vertical force integrated over the total observation area in

Fig. 5. The first harmonic amplitude of the integrated

quantity does not converge monotonically, whereas the

second and third harmonic amplitudes do, except nsingle,2.

The uncertainty of the first harmonic component of the

integrated quantity (non-converging) is closest to the

average of the uncertainty distribution, but the difference

(calculated: (integrated quantity minus average of the dis-

tribution) divided by average of the distribution) is still

significant (nspan,i 36% and nsingle,i 41%). The uncertainties

of the second and the third harmonics of the integrated

quantity (converging except nsingle,2) are smaller than

almost all the local uncertainties of the respective uncer-

tainty distribution.

5.3 Impact of local flow detail on local uncertainties

The results in Sect. 5.2 show that the uncertainties of the

first harmonic force components are especially large

around x = 5.7 m. The results in Sect. 5.1 show that this is

a consequence of the diminution of the first harmonic force

amplitudes with discretisation refinements in this area. This

section studies why the first harmonic uncertainties are

especially large there.

The force histories at x = 5.7 m with the three discret-

isation resolutions are presented in Fig. 6. The influence of

the diminution of the amplitudes as a function of refining

resolution is the most distinct at the minimums and maxi-

mums of the time history, e.g. t = 10.41 s. Both an instant

period and an average period are shown to demonstrate that

their agreement is reasonable.

To find out why these instant forces are different, pie-

zometric pressure distributions at four time instants are

shown in Fig. 7. The instants are indicated in the force

histories in Fig. 6. The results show that the differences in

the piezometric pressure distributions are the largest at

t = 10.41 s above z = 0.1 m. The respective mass fraction

distributions in Fig. 8j–l show that the higher pressure with

the finer discretisations relates to the larger mass fraction of

the fluid around the area of different piezometric pressures.

To understand why the mass fraction distributions are

different at x = 5.7 m at t = 10.41 s, their propagation to

this cross-section is followed according to the ship velocity.
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Fig. 4 First–third harmonic vertical force amplitudes on the ship bow.

The amplitudes (nsingle) corresponding to the encounter frequency or

its multiples are given with lines, while the amplitudes (nspan)

corresponding to the larger span around the encounter frequency or its

multiples are given with dots. a–c amplitudes with the three

discretisation resolutions, d–f differences between the resolutions
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The locations of the observed cross-sections on the hull are

given in Fig. 9. These results show that the locations follow

the propagation of the water splash that originates near the

ship fore perpendicular. By the time the water splash has

reached the location x = 5.7 m (t0 ? 0.72te), the water

splash has collapsed, but according to Fig. 8 some mixture

of water and air remains above the free-surface level. The

propagation of the mass fraction distributions in Fig. 8

shows that the splash contains more water the finer the

discretisation resolutions. During the propagation of the

water splash, this water falls towards the free-surface level.

At x = 5.7 m at t = 10.41 s = t0 ? 0.72te, the area above

z = 0.1 m has more mixed water and air the finer the dis-

cretisation resolution is.

6 Discussion

The aim of this study was to estimate the quantitative

numerical uncertainty for the first–third harmonic wave

load distributions. This section discusses the challenges

that were encountered when estimating the uncertainties.

It was decided that the iterative error is ignored, because

its definition would have required such significant com-

putational resources. In a time accurate case, estimating

iterative error is challenging, because, on one hand, it

accumulates from the previous time steps during some time

spans of the solution. On the other hand, the oscillatory

behaviour of the solution can also diminish it during some

other time spans of the solution. In practice, its estimation

would have required repeating the computations with

several iterative parameters. The comparison of the

obtained results would have revealed the iterative error.

The omission of the iterative error can make the uncer-

tainty estimates too small.

The reliability of an uncertainty estimate is affected

by the convergence behaviour of the solution. The cur-

rent uncertainty estimation approaches focus mainly on

the converging solutions while the estimates for non-

converging results are less well justified. The number of
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Fig. 5 First–third harmonic vertical force amplitudes on the ship bow

from the fine discretisation resolution and the uncertainties. a–f nspan-

and nsingle-distributions with the uncertainty bars. Monotonic and non-

monotonic convergences are denoted. g–i Uncertainty distributions

(distr.) with their averages (av.) and with the respective uncertainties

of the pressure integrated over the observation area (int.). The usage

of the lines and dots is described in the caption of Fig. 4
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non-converging results in this study and the previous

observation in e.g. [5, 6] indicate that it is very difficult to

avoid non-converging results in a case of a ship advancing

in waves. This underlines the need for having uncertainty

estimation approaches that would pay more attention to

non-monotonically converging results.

It was also demonstrated that having the results of only

three discretisation resolutions leaves some uncertainty on

the obtained convergence conditions. The present mono-

tonically converging results relates to the largest data

ranges while some non-monotonically converging results

are even very close to each other. Both in theory and in

practice, it is possible that three results that are close to

each other oscillate or even diverge, but a larger set of

results could show that the general trend is converging.

Similarly, three converging results can be a small part of a

larger oscillating or diverging set of results. It was also

observed that the present monotonically converging results

vary significantly from the theoretical order of accuracy.

Furthermore, when considering small changes between the

results, it should be noted that the smaller the differences

between the results of the discretisation resolutions, the

larger the effect of small disturbance on the solution

behaviour. In the present case, one disturbing factor is the

simplistic implementation of the wave boundary condition.

Another is that the hexahedral grids may not be fully

topologically identical despite the systematic grid

refinement.

The above-mentioned issues indicate that the present

results may not fully disclose the solution behaviour of this
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flow case. The only way of confirming the findings would

be to repeat the computation with more discretisation res-

olutions. Then, the solution behaviour could be studied for

a larger scale of resolutions and the convergence behaviour

could be confirmed. The problem with this kind of option is

that a lot of computational resources would be required in

order to reveal for instant an oscillatory behaviour of the

solution.

Fig. 8 Mass fraction on different cross-section at four time instants. From left to right coarse, medium and fine grids
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A further purpose for increasing the number of the com-

putations would be to confirm the obtained uncertainty

estimates. For this purpose, the computations that are used

for the uncertainty estimation should be in or close to the

asymptotic range due to the uncertainty estimation approach.

As already mentioned, reaching the asymptotic range can be

very challenging in the case of ship-wave interaction.

In this study, one practical challenge is the requirements

for the computational resources, which limited the number

of runs to three. In this case, the computational require-

ments are affected by both the spatial and the time dis-

cretisation resolutions. Both of these resolutions were

systematically refined between the selected discretisations

to keep the Courant number fixed. Often, the spatial dis-

cretisation—the number of grid points—is used as a mea-

sure for the accuracy level of the computation and for the

demand of the computational resources. In the present case,

the time discretisation is equally an important measure,

because a very fine discretisation (245–368 time steps/

encounter period) is used to ensure a meaningful analysis

of the second and third harmonic wave loads. From the

point of view of running computations, the high time res-

olution may be a more demanding requirement than the

high spatial resolution. With a high spatial resolution,

adding number of processors can make the computations

faster, even if the increasing inter-processor communica-

tions with increasing number of processors limits this

benefit. In the case of a high time resolution, it is not

possible to accelerate the time stepping by an approach like

using multi-processors.

The complexity of the studied flow case, on its part,

makes the understanding of the variation of the obtained
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Fig. 9 Free-surface levels on hull
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uncertainty levels challenging. The present results dem-

onstrate that the resolution dependency of an apparently

small flow detail can affect significantly local uncertainty

levels. In this respect, the amount of the falling mixture of

air and water from a water splash was a critical factor that

made the first harmonic uncertainties locally significantly

larger than elsewhere.

7 Conclusions

The quantitative uncertainty was estimated for ship forward

speed diffraction problem in short and steep waves. The

present flow case is characterised by a strong deformation of

the encountered waves on the hull and by rapidly varying

longitudinal excitation distribution on the ship bow area.

The presented results show that the uncertainty levels of

the force amplitudes vary significantly along the hull. It

was also noticed that the energy around the first and the

second harmonic components was quite strictly focused on

the main components with all the three discretisations.

Thus, the use of a larger frequency span did not have a

significant effect on the estimated uncertainties. The local

uncertainties are poorly presented by the uncertainties of

the global quantities. Firstly, in the case of all the observed

harmonic components, any constant would represent the

local uncertainties poorly because of the large variation.

Secondly, in the case of the second and the third harmonic

components, the uncertainties of the global quantities are

much smaller than most of the local uncertainties.

It was noticed that estimating quantitative uncertainty is

challenging in the present case. From the point of view of

the current uncertainty estimation approaches, having

several non-monotonically converging results left some

uncertainty on the obtained uncertainties. The straightfor-

ward solution to this would be to repeat the computations

with more discretisation resolutions.

From the point of view of practical application of the

present results, their usability can be judged on the basis of

the obtained uncertainty levels. In this respect, the con-

clusions are different for the foremost half and the rearmost

half of the observation area. In the foremost half, the

uncertainty levels of the first and the second harmonic

results are low enough to assess the magnitudes and the

ratios of the first and the second force amplitudes. As a

practical example, the uncertainties in this area are low

enough in order to validate the results against measure-

ments and to take the conclusion whether the selected

modelling approach is reasonable for this flow case. In the

second half of the observation area, the uncertainties are

larger. Even if they are low enough to determine the order

of magnitude of the load, which may be sufficient in some

cases, decreasing the uncertainty in this area is relevant.

Then, the most straightforward task would be to continue

refining systematically the discretisation resolutions.

However, this could lead to unreasonable computational

efforts. Furthermore, it is reasonable to keep in mind that

the present results show that the splash behaviour has an

important effect on the first harmonic uncertainties.

Therefore, we think that one reasonable option is to further

study the effect of the spatial discretisation on the splash

behaviour. In this connection, the present modelling

assumptions, e.g. omitting fluid viscosity and surface ten-

sion, should be considered, too.

Acknowledgments This study was carried out mainly within a

research project funded by Tekes, the Finnish Funding Agency for

Technology and Innovation, and Aker Yards (now STX Europe). Part

of it was done within a research project funded by the Academy of

Finland. Some of the work done by the first author was also funded by

The Finnish Graduate School in Computational Fluid Dynamics. The

financial support is gratefully acknowledged. The computational

resources provided by CSC—the Finnish IT Center for Science is also

gratefully acknowledged. The authors are thankful to Prof. Michel

Visonneau and the CFD-team of ECN-CNRS for the discussions and

the development of ISIS-CFD.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Sato Y, Miyata H, Sato T (1999) CFD simulation of 3-dimen-

sional motion of a ship in waves: application to an advancing ship

in regular heading waves. J Mar Sci Technol 4:108–116

2. Orihara H, Miyata H (2003) Evaluation of added resistance in

regular incident waves by computational fluid dynamics motion

simulation using an overlapping grid system. J Mar Sci Technol

8:47–60

3. Cura-Hochbaum A, Pierzynski M (2005) Flow simulation for a

combatant in head waves. CFD Workshop Tokyo 2005, Tokyo,

Japan

4. Deng GB, Guilmineau E, Queutey P, Visonneau M (2005) Ship

flow simulations with the ISIS CFD code. CFD Workshop Tokyo

2005, Tokyo, Japan

5. Carrica PM, Wilson RV, Stern F (2006) Unsteady RANS simu-

lation of the ship forward speed diffraction problem. Comput

Fluids 35:545–570

6. Carrica PM, Wilson RV, Noack RW, Stern F (2007) Ship motions

using single-phase level set with dynamic overset grids. Comput

Fluids 36:1415–1433

7. Carrica PM, Paik K, Hosseini HS, Stern F (2008) URANS

analysis of a broaching event in irregular quartering seas. J Mar

Sci Technol 13:395–407

8. Visonneau M, Quetey P, Leoroyer A, Deng GB, Guilmineau E

(2008) Ship motions in moderate and steep wave with an inter-

face capturing method. In: Proceedings of 8th International

Conference on Hydrodynamics, Nantes, France, pp 485–491

9. Deng GB, Queautey P, Visounneau M (2009) Seakeeping pre-

diction for a container ship with RANS computation. In: 22nd

Chinese Hydrodynamic Conference. Chengdu, China

J Mar Sci Technol (2012) 17:125–138 137

123



10. Klemt M (2005) RANSE simulation of ship seakeeping using

overlapping grids. Ship Technol Res 52:65–81

11. Hänninen SK, Mikkola T (2008) Wave excitation on a ship bow

in short waves. In: 11th Numerical Towing Tank Symposium,

Brest, France

12. Oberhagemann J, el Moctar O, Schellin T (2008) Fluid-structure

coupling to assess whipping effects on global loads of a large

containership. 27th Symposium on Naval Hydrodynamics, Seoul,

Korea

13. Oberhagemann J, Holtmann M, el Moctar O, Schellin TE, Kim D

(2009) Stern slamming of LNG carrier. J Offshore Mech Arctic

Eng 131:031103-1–031103-10

14. Zwart PJ, Godin PG, Penrose J, Rhee SH (2008) Simulation of

unsteady free-surface flow around a ship hull using a fully cou-

pled multi-phase flow method. J Mar Sci Technol 13:346–355

15. Queutey P, Visonneau M (2007) An interface capturing method

for free-surface hydrodynamic flows. Comput Fluids 36:

1481–1510

16. Numeca International (2007) Fine
TM

/Marine v2.0 Tutorial, Com-

prehensive description of the input data file for ISIS-CFD v2.0

17. CSC—the Finnish IT Center for Science (2010) Overview of the

Murska System. Murska user’s guide. http://www.csc.fi/english/

pages/murska_guide/introduction/overview

18. Chapra SC, Canale RP (1988) Numerical methods for engineers,

2nd edn. McGraw-Hill, Inc, Singapore

19. Stern F, Wilson RV, Coleman HW, Paterson EG (2001) Com-

prehensive approach to verification and validation of CFD sim-

ulations—Part 1: methodology and procedures. ASME J Fluids

Eng 123:793–802

20. Eca L, Hoekstra M (2008) On the numerical accuracy of the

prediction of resistance coefficients in ship stern flow calcula-

tions. J Mar Sci Technol 14:2–18

21. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh

generator and Delaunay triangulator. In: Applied computational

geometry towards geometric engineering. Springer, Berlin,

pp 203–222

22. Shewchuk JR (2002) Delaunay refinement algorithms for trian-

gular mesh generation. Comp Geom Theor Appl 22:21–74

138 J Mar Sci Technol (2012) 17:125–138

123

http://www.csc.fi/english/pages/murska_guide/introduction/overview
http://www.csc.fi/english/pages/murska_guide/introduction/overview

	On the numerical accuracy of the wave load distribution on a ship advancing in short and steep waves
	Abstract
	Introduction
	Numerical method
	Simulation case
	Case conditions
	Spatial domain
	Time domain
	Computational resources

	Analysing the computational results
	Wave excitation
	Frame force
	Force on the total observation area

	Harmonic components
	Uncertainty estimation
	Free-surface levels on the hull

	Results
	Force amplitude distributions with the three discretisation resolutions
	Uncertainty of force
	Impact of local flow detail on local uncertainties

	Discussion
	Conclusions
	Acknowledgments
	References


