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Abstract
Measurement uncertainty (MU) arising at different stages of a measurement process can be estimated using analysis of vari-
ance (ANOVA) on replicated measurements. It is common practice to derive an expanded MU by multiplying the resulting 
standard deviation by a coverage factor k. This coverage factor then defines an interval around a measurement value within 
which the value of the measurand, or true value, is asserted to lie for a desired confidence level (e.g. 95 %). A value of k = 2 
is often used to obtain approximate 95 % coverage, although k = 2 will be an underestimate when the standard deviation is 
estimated from a limited amount of data. An alternative is to use Student’s t-distribution to provide a value for k, but this 
requires an exact or approximate degrees of freedom (df). This paper explores two different methods of deriving an appropri-
ate k in the case when two variances from an ANOVA (classical or robust) need to be combined to estimate the measurement 
variance. Simulations show that both methods using the modified coverage factor generally produce a confidence interval 
much closer to the desired level (e.g. 95 %) when the data are approximately normally distributed. When these confidence 
intervals do deviate from 95 %, they are consistently conservative (i.e. reported coverage is higher than the nominal 95 %). 
When outlying values are included at the level of the larger variance component, in some cases the method used for robust 
ANOVA produces confidence intervals that are very conservative.

Keywords Measurement uncertainty · Expanded uncertainty · Duplicate method · Robust ANOVA · Coverage factor · 
Sampling

Introduction

Measurement uncertainty (MU) can be defined as ‘a param-
eter, associated with the result of a measurement that char-
acterises the dispersion of the values that could reasonably 
be attributed to the measurand’ [1]. The requirement for 
reliable estimates of the measurement uncertainty (MU) in 
chemical measurements is well known, and there is increas-
ing awareness that the sampling process often adds a sig-
nificant contribution to the value of MU. A well-established 
method of calculating MU, including the contribution from 
sampling, is provided by the duplicate method [2]. This is 
an empirical method of uncertainty estimation, requiring 

repetition of the sampling protocol at a number of (ideally 
randomly selected) sampling targets. A formal definition of 
a sampling target is given as the ‘portion of material, at a 
particular time, that the sample is intended to represent’, and 
should be defined prior to designing the sampling plan [2]. 
Each of the resultant samples is chemically analysed two or 
more times, typically in a laboratory, although potentially 
in situ using mobile measuring tools (e.g. portable X-ray 
fluorescence), or using on-site laboratory methods, which 
are increasingly being employed [3].

Most commonly, the duplicate method is applied to a 
number of sampling targets, eight sampling targets being the 
recommended minimum [4]. Two physical samples are then 
acquired from each target, either by using a reinterpretation 
of the sampling protocol, or sometimes in the case of spa-
tial sampling, by separating the location of the two samples 
around the nominal location by a distance that is assessed 
to be a reasonable representation of the effect of the hetero-
geneity of the analyte(s) of interest on that reinterpretation. 
Each of the two samples so acquired is then analysed twice. 
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So, in the case of I = 8 (where I is the number of targets or 
duplicate sampling locations, and if the duplicate samples 
are acquired from I locations on the original sampling plan) 
there is a total overhead of 3 × 8 = 24 additional measure-
ments. This balanced experimental design (abbreviated to 
I × 2 × 2 here) is used in most cases.

Subsequent data analysis is carried out using nested anal-
ysis of variance (ANOVA), resulting in values representing 
estimates of the uncertainty due to the sampling process, 
the uncertainty from the analysis, and also the combined 
MU which is calculated from the sums of squares of the 
sampling and analytical components. The ANOVA itself can 
be carried out in one of two ways, either using a standard 
formulaic or classical approach, or alternatively with the use 
of a robust algorithm. The robust method can be useful when 
the measurement set may contain a small proportion (up to 
10 %) of outlying values, as these can have a disproportion-
ate effect on the means and standard deviations calculated by 
the classical form of ANOVA [2]. When outliers are present, 
robust ANOVA can provide better estimates of the param-
eters of the underlying population of measurements.

In uncertainty estimation, it is common practice to multi-
ply the standard deviation of the measurements by a cover-
age factor (a k-factor). The value k = 2 is often considered to 
be a suitable approximation for a confidence level of 95 % if 
the probability distribution is approximately normal and the 
effective degrees of freedom is suitably large [1]. The value 
k = 2 is used because for a normal distribution 95 % of the 
area beneath the normal curve is within 1.96 standard devia-
tions from the mean. However, we are almost always using 
an estimate of the standard deviation, and k = 2 can only be 
considered a good approximation when the exact or approxi-
mate degrees of freedom of this estimate is large. Typically, 
n = 30 is considered to be large enough. The ideal case where 
n is larger than 30 is often not practical, because of the costs 
of additional sample collection and the additional labora-
tory analyses needed to produce the uncertainty estimate. 
In these situations, the expanded uncertainty derived using 
k = 2 will be an underestimate. An alternative approach is 
to use percentage points on a Student’s t-distribution to cal-
culate the k-factor. This approach is straightforward for a 
simple experiment taking n replicates, where the degrees of 
freedom used in the t calculation is n – 1. However, when the 
standard deviation is calculated from a linear combination 
of variances that have been derived from an ANOVA, the 
resultant distribution does not have a standard form. Then 
the degrees of freedom to use in the t calculation needs to 
be approximated in some way.

The objective of this study is to provide more reliable 
estimates of measurement uncertainty that include the 
extra contribution that arises from using estimated, rather 
than true, values of the standard deviations. In the case 
of classical ANOVA, it is feasible to derive an improved 

coverage factor (k-factor) for the combined measurement 
uncertainty using the t-distribution and a value for degrees 
of freedom based on the Satterthwaite approximation [5]. 
Calculating an appropriate coverage factor for linear com-
binations of estimated variances from robust ANOVA is 
more complex, but can be achieved using a method based 
on bootstrapping.

Improved estimate of measurement 
uncertainty from classical ANOVA

For the nested ANOVA described above, where I = the 
number of targets, J = the number of samples and K = the 
number of analyses, the ANOVA table can be represented 
as shown in Table 1. Here the subscripts T, S and A also 
correspond to target, sampling and analysis, SS is sum of 
squares, df is degrees of freedom, MS is mean square and 
EMS is expected mean square. Variances at the target, 
sampling and analysis levels are shown as �2

T
 , �2

S
 and �2

A
 , 

respectively.
In the case of a single analysis of a single sample, an 

unbiased estimator of the combined variance representing 
the square of the measurement uncertainty is [6]:

The distribution of the linear combination of two inde-
pendently distributed mean squares in Eq. 1 does not have 
a standard form. An established method of tackling this 
problem is to approximate its distribution by a simple mul-
tiple of χ2, with degrees of freedom calculated using the 
Satterthwaite approximation [5]. The approximate degrees 
of freedom can then be used to calculate a percentage 
point from a Student’s t-distribution that can further be 
used as a multiplication factor on the standard uncertainty 
to obtain an approximate 95 % coverage.

In general, if V is an estimate of variance derived from a 
number, n, of independent mean squares  MSi with degrees 
of freedom νi such that V =

∑n

i
(a

i
MS

i
) for constants ai, 

then Satterthwaite’s approximate degrees of freedom for 
V is given by:

(1)�̂2
M = �̂2

A + �̂2
S = MSA +

MSS −MSA

K
= K − 1

K
MSA +

1
K
MSS

Table 1  ANOVA table for nested design

Source SS df MS EMS

Target SST I – 1 MST �
2

A
 + K �2

S
+JK �2

T

Sampling SSS I(J – 1) MSS �
2

A
 + K �2

S

Analysis SSA IJ(K – 1) MSA �
2

A
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In Eq. 2 there are just two mean square values  MSA 
and  MSS, with degrees of freedom IJ(K − 1) and I(J − 1), 
respectively. The constants in the linear combination are 
a1 = (K − 1)/K and a2 = 1/K (Table 1). Substituting into Eq. 2 
gives:

In the special case that J = K = 2, Eq. 3 reduces to:

Simulations were run in Matlab R2016b software sup-
plied by MathWorks to investigate the performance of the 
method in this special case. The aim was to estimate the cov-
erage probability of a 95 % confidence interval x ± t

�M,0.975
�̂M 

when a measurement x is sampled from N(�, �2

M
) , and when 

the measurement variance is estimated as in the ANOVA 
above and degrees of freedom νM calculated using Eq. 4.

Simulations were run with J = K = 2 and for values of I 
equal to 2, 4, 8 and 16. In each case µ, the value of which does 
not affect the result was set to 0. Since the variances �2

A
 and �2

S
 

will only affect the results by their quotient, �A was set to 1, 
and �S was varied on a  log2 scale from − 4 to 4. On this scale, 
a step of one unit corresponds to a doubling of the quotient of 
standard deviations. For each simulation, a measurement x was 
sampled from N(�, �2

M
) .  MSA and  MSS were sampled from the 

appropriate χ2 distributions, and used to obtain an estimate of 
νM using Eq. 4. This enabled a confidence interval to be cal-
culated, and compared with µ. The coverage probability was 

(2)� ≈

�
∑n

i=1
a
i
MS

i

�2

∑n

i=1

(aiMS
i)

2

�
i

(3)�
M
≈

(

K−1

K
MS

A
+

1

K
MS

S

)2

(

K−1

K
MS

A

)2

IJ(K−1)
+

(

1

K
MS

S

)2

I(J−1)

(4)�
M
≈

I
(

MS
A
+MS

S

)2

MS
2

A

2
+MS

2

S

estimated by the proportion of times µ was found to be within 
this interval in  107 repetitions. An average value of νM was 
also calculated. Results for the case I = 8 are shown in Fig. 1.

The coverage probabilities in Fig. 1 (a) are all very close to 
0.95. The degrees of freedom in Fig. 1 (b) tends to I(J − 1) = 8 
when �S becomes much larger than �A . This behaviour is to be 
expected when the sampling variance increasingly dominates.

Simulations were also run for the cases I = 2, 4 and 16. 
In all cases, the coverage probabilities were close to 0.95. In 
the worst case (I = 2), these ranged between 0.93 and 0.96. It 
would be unusual (and not recommended [4]) for an experi-
ment to be performed with such a low number of targets.

Comparisons of the coverage probabilities for the improved 
k-factors, with those simulated for k = 2, are shown in Figs. 2 
and 3. For the case I = 16 (Fig. 3 (b)), coverage values for k = 2 
might be considered acceptable; in all other cases, k = 2 gives 
coverage values that are too small, the difference becoming 
more pronounced as I gets smaller.

Improved estimate of measurement 
uncertainty from robust ANOVA

In the case of robust ANOVA, using the algorithm described 
in [7], it is not possible to obtain a corrected estimate of the 
k-factor mathematically. However, we can use a large number 
of bootstrapped samples (in the statistical sense) generated as 
described in [7] to make an estimate of the k-factor.

To motivate our approach, consider the case where we have 
independent variables X and s where:

and:

for some degrees of freedom ν. Then it is a standard result 
that the random variable T = X∕s has a t-distribution with 
ν degrees of freedom. One way to derive this result would 

X ∼ N(0, �)

�s
2

�
2
∼ �

2

�

Fig. 1  a Estimated coverage 
probabilities and b average 
calculated degrees of freedom 
(df) for I = 8, J = 2, K = 2
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be to integrate W from the joint probability density function 
(pdf) of T and W, where W = �2∕s2.The integral involved, 
which is analytically tractable, results in the pdf of the t-dis-
tribution. We could obtain the same result numerically by 
taking a large sample of size N from the distribution of W 
= �2∕s2 and averaging N different normal pdfs, one for each 
value of W in the sample. If each of these pdfs is evaluated 
on a grid of discrete values, then the result will be a pdf of 
T tabulated on the same grid.

In the case of the robust ANOVA algorithm [7], the � 
becomes �M and the quotient �2

M
∕�̂2

M
 does not have a stand-

ard distribution, so that analytical integration is not possible. 
To carry out the numerical integration, we use a bootstrap-
ping method. A bootstrap sample of size 2000 from the 
observed data is used to generate a sample from the dis-
tribution of �̂2

M
 , which is converted into a sample from the 

distribution of the quotient �2

M
∕�̂2

M
 , using the mean of the 

values of �̂2

M
 as the numerator, i.e. replacing the unknown �2

M
 

by its bootstrap estimate. This sample from the quotient is 
then used to implement the numerical integration described 
above. This procedure would provide a sample from the cor-
rect t-distribution in the tractable case. The modest sample 
size of 2000 was chosen to enable implementation in Excel 
[8]. The distribution of T was tabulated in steps of 0.01, 
which is sufficient to determine a k-factor that is accurate to 

two decimal places. Because the distribution of T is sym-
metrical, the tabulation can begin at 0 (corresponding to a 
cumulative probability of 0.5) and increase until the cumu-
lative probability is greater than or equal to 0.975, when t 
will be equivalent to the k-factor for a coverage probability 
of 0.95.

Method validation/discussion

Further simulations were performed to test the performance 
of the modified uncertainty calculations by estimating the 
coverage provided by the modified k-factors.

In the case of normally distributed data, a simulation 
of 50,000 repetitions was run, smaller than the previous 
one because the robust ANOVA computations are more 
demanding. For each repetition, data were simulated from 
an 8 × 2 × 2 experimental design with mean = 100 and a top-
level (sampling target) standard deviation = 10. Both classi-
cal and robust ANOVA were applied and the variances esti-
mated, as well as the modified uncertainties and k-factors. 
Coverage was measured by counting the number of times 
µ was contained within the confidence limits centred on a 
single simulated observation from N(�, �2

M
) and with width 

given by the modified k-factors and the estimated variances. 

Fig. 2  Comparison of cover-
age probabilities where ▲ 
represents the improved k-factor 
derived using degrees of free-
dom from Eq. 4, and ● repre-
sents k = 2, for a I = 2, b I = 4
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Fig. 3  Comparison of cov-
erage probabilities where 
▲ represents the improved 
k-factor derived using degrees 
of freedom from Eq. 4, and ● 
represents k = 2, for a I = 8, b 
I = 16. Note the change in scale 
(coverage probability) from 
Fig. 2
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The results of these simulations are shown in Table 2. In 
all cases, the estimate coverage percentages are close to the 
nominal 95 %, indicating that the modified k-factors are able 
to provide a good estimate of the uncertainty value.

Further simulations were run on data that included outly-
ing values in the ANOVA input. These data were obtained 
by simulating data from normal distributions as before, and 
for each simulation selecting one target at random, and add-
ing 6 × the standard deviation either to one sample at the 
sampling stage (Table 3) or to one analysis to act as the 
outlier (Table 4).

All of the coverage probabilities in Tables 3 and 4 are 
greater than the nominal value of 0.95. In each of two cases, 
the last in Table 3 and the first in Table 4, the outlying value 
was applied to the smaller variance component, conse-
quently it had little effect overall, and the coverage prob-
ability is very close to 0.95. Where the outlier is applied to 
the sampling or analytical component with larger variance 
(i.e. standard deviation = 10 in Tables 3 and 4), the variance 

estimate for the classical analysis has been inflated by the 
outlying value, as would be expected. It is also known that 
variance estimates derived by the robust algorithm will tend 
to be greater than those of the underlying normal distribu-
tions, particularly when the outlier is at the sampling level, 
and there are only eight pairs of duplicates [7]. Tables 3 and 
4 show that when an outlier occurs in the larger variance 
component, the coverage probabilities estimated by both 
classical and robust ANOVA are very conservative, although 
the extent is a little disappointing in the robust case.

Conclusion

Empirical methods of uncertainty estimation are typically 
based on an estimated standard deviation. An improvement 
to the usual practice of obtaining an expanded uncertainty 
by multiplying the standard deviation by 1.96 or 2 for 95 % 
coverage is possible for smaller samples, by using the Stu-
dent’s t-distribution. When the uncertainty is calculated as a 

Table 2  Results of coverage simulations using 50,000 datasets, each 
randomly generated from normal distributions with no outlying val-
ues, showing results for both classical ANOVA using the Satterth-

waite method, and robust ANOVA using the numerical integration of 
bootstrap samples

Standard deviation Classical ANOVA Robust ANOVA

Sampling Analytical Average df Average k-factor Coverage Average k-factor Coverage

10 1 8.1 2.31 0.95 2.46 0.96
10 10 14.4 2.15 0.95 2.18 0.96
1 10 19.6 2.09 0.96 2.11 0.96

Table 3  Results of coverage simulations (50,000 datasets) each ran-
domly generated from a normal distribution with the random inclu-
sion of outlying values at the sampling level in the ANOVA. Show-

ing results for both classical ANOVA using the Satterthwaite method, 
and robust ANOVA using bootstrapping

Standard deviation Classical ANOVA Robust ANOVA

Sampling Analytical Average df Average k-factor Coverage Average k-factor Coverage

10 1 8.0 2.31 0.999 2.72 0.992
10 10 10.6 2.22 0.994 2.34 0.986
1 10 19.5 2.09 0.962 2.11 0.963

Table 4  Results of coverage simulations (50,000 datasets) each ran-
domly generated from a normal distribution with the random inclu-
sion of outlying values at the analytical level. Showing results for 

both classical ANOVA using the Satterthwaite method, and robust 
ANOVA using bootstrapping

Standard deviation Classical ANOVA Robust ANOVA

Sampling Analytical Average df Average k-factor Coverage Average k-factor Coverage

10 1 8.2 2.31 0.951 2.45 0.962
10 10 16.7 2.12 0.986 2.21 0.978
1 10 19.8 2.09 0.997 2.18 0.986
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linear combination of variances that have been derived from 
an ANOVA, the t-distribution does not hold exactly but it 
is possible to calculate an approximate degrees of freedom 
to use to find percentage points on a t-distribution. A math-
ematical solution has been used and validated for classical 
ANOVA, and performs well in simulated trials with nor-
mally distributed data.

An alternative solution, based on numerical integration 
using bootstrap samples, has also been devised for cases 
where the ANOVA is performed using a robust algorithm. 
The robust ANOVA down-weights outlying values when 
their number is small. Simulations suggest that robust 
ANOVA also performs well on normally distributed data, 
and is conservative, though less so than the classical analy-
sis, in the presence of outliers. The approaches that have 
been described for deriving a modified k-value for both clas-
sical and robust ANOVA are an improvement on the method 
of multiplying by k = 2, where the coverage would be less 
than 95 % for smaller sample sizes.
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