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Abstract
This article is a response to the preceding paper by Huang, who considers a recent result of Willink (Measurement: Sen-
sors, 24:100416, 2022) and who describes the result as a paradox. The result implied that a set of information or a “state of 
knowledge” about a measurand cannot be identified with a unique probability distribution for the measurand, contrary to what 
seems suggested in the literature surrounding the revision of the Guide to the Expression of Uncertainty in Measurement. 
The result is restated and viewed in the context of CIPM Recommendation INC-1, which was foundational in the original 
development of the Guide. It is argued that the result is a proof, not a paradox, and that it will only appear paradoxical to 
those who have adopted an incorrect premise about probability. The idea of having “information” about the true value of 
a measurand is discussed and contrasted with the idea of having “belief” about it. The material supports the view that the 
analysis of measurement uncertainty is to be based on classical statistical principles.

Introduction

I am grateful to Accreditation and Quality Assurance for the 
opportunity to respond to this paper by Hening Huang, and 
I thank Dr Huang for his interest in the logical contradic-
tion described in my earlier paper [1]. Dr Huang accepts the 
accuracy of the mathematical and logical result, but he and I 
seem to have a different view of its significance for the met-
rological community. He calls the contradiction a paradox, 
but I shall argue that it is not a paradox—it is just a proof, 
and it has profound implications for the role of probability 
in metrological data analysis.

A presumption

The contradiction in question follows from the presumption 
that a probability distribution about a constant can or does 
encode information about that quantity. In the language and 
notation of the literature relating to the Guide to the Expres-
sion of Uncertainty in Measurement (GUM), such a constant 
is an input quantity X or an output quantity Y. So the result 

applies directly to the mode of reasoning advocated in the 
documents of Working Group 1 of the Joint Committee for 
Guides in Metrology (JCGM-WG1), which build upon and 
(arguably) reinterpret the original GUM [2] and which pro-
mote a non-classical, Bayesian, form of uncertainty analysis. 
For example, the first published supplement to the GUM [3, 
Introduction] states:

The PDF for a quantity expresses the state of knowl-
edge about the quantity, i.e. it quantifies the degree 
of belief about the values that can be assigned to the 
quantity based on the available information.

So a probability distribution about a constant is being identi-
fied with a set of information about that constant. Thus, there 
is a premise which can be expressed as:

P: To any set of information about a quantity, there is 
a unique pdf to represent that quantity.

However, a logical contradiction ensues from this prem-
ise when we legitimately manipulate distributions that are 
deemed to correspond to different sets of information about 
the same quantity [1].

The contradiction

Specifically, we envisage two disjoint sets of information 
about a quantity X, with corresponding proposed probability 
density functions (pdfs) f1X(x) and f2X(x) . It can be shown 
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that if we combine the two sets of information then the result-
ing pdf must obey the natural result f12X(x) ∝ f1X(x)f2X(x) [1, 
Sec. 3.2]. Now suppose that the measurand is Y = g(X) . It is 
well known that fjY (y) = fjX(x) |dx∕dy| , where y = g(x) . By 
combining the two pdfs before transforming from X to Y, 
we obtain f12Y (y) ∝ f1(x)f2(x) |dx∕dy| , but by transforming 
before combining we obtain f12Y (y) ∝ f1(x)f2(x) |dx∕dy|

2 . 
The difference in the exponent means that the two resulting 
pdfs differ if g is nonlinear, as with Y = log(X) . Thus, the 
presumption that a set of information can be accurately and 
meaningfully encoded as a probability distribution leads to 
an internal inconsistency [1, Sec. 3.3]. Therefore, this pre-
sumption must be incorrect. Huang calls the inconsistency 
the ‘Willink paradox’. I think of it simply as a proof that the 
premise of the analysis, P, is untenable.

Huang accepts the accuracy of the result, but his approach 
is to ask which of the pdfs f12Y (y) ∝ f1(x)f2(x) |dx∕dy| and 
f12Y (y) ∝ f1X(x)f2X(x) |dx∕dy|

2 is to be used in a practical 
analysis. That is to miss the point, which is that any pdf 
would be wrong because it would be based on a wrong 
presumption. Neither of the two pdfs is to be used, and—to 
be logical—no other pdf can be used. The result simply 
shows that a pdf does not encode information. The metrol-
ogy community cannot attribute pdfs to input quantities 
while retaining scientific credibility, and it does not matter 
which of the two pdfs is chosen here because they are both 
as bad as each other.

The role of probability in metrology

The logical error is associated with a misunderstanding of 
the role of probability and the nature of information. A prob-
ability can either represent a relative frequency or a subjec-
tive degree of belief, the former in the paradigm of frequen-
tist statistics and the latter in the contrasting paradigm of 
subjective Bayesian statistics. But the contradiction shows 
that a probability cannot represent ‘rational belief’, ‘infor-
mation’ or ‘knowledge’, which would correspond to a third 
possible role applicable in ‘objective Bayesian statistics’. 
Yet, in the documents that have appeared from JCGM-WG1 
since it took over maintenance of the GUM, that illegitimate 
role for probability is what metrologists are being encour-
aged and compelled to accept.

Huang seems to have accepted that constants can and 
must be given probability distributions, for he writes about 
the two pdfs “We must choose one or the other.” To this I 
respond,“Not at all! What must be chosen is a new prem-
ise. You cannot in good conscience continue to assign 
probability distributions to constants believing it to be a 
scientific thing to do.” If metrologists want to retain cred-
ibility in their data analysis then they must return to the 

classical paradigm of statistics, where distributions are not 
attributed to constants but are only used to model potential 
measurements and potential errors. That is the paradigm 
that brought us the ideas of confidence interval, level of 
confidence, minimum-variance unbiased estimation, 
least-squares linear regression, polynomial regression, 
chi-square tests of consistency and weighted-mean refer-
ence values, etc. That is the paradigm in which Type A 
evaluation of uncertainty has been carried out for many 
years and that is the paradigm in which Type B analysis 
was proposed via Recommendation INC-1 [4] [2, 0.7] and 
can be accommodated [5].

Recommendation INC-1 marked a watershed for our sub-
ject. A group of experts met in 1980 to discuss the difficult 
question of how to combine expressions of measurement 
uncertainty arising from systematic and random errors. How 
were systematic errors to be incorporated, given the existing 
formalism that dealt adequately with random, i.e., statisti-
cal, errors? In the report that accompanied Recommendation 
INC-1 [6, pp. 7, 8], we read:

The only viable solution to this problem, it seems, is 
to follow the prescription contained in the well-known 
general law of “error propagation”. The essential 
quantities appearing in this law are the variances (and 
covariances) of the variables (measurements) involved.

and

In these approaches it is necessary to make (at least 
implicitly) some assumption about the underlying 
population. It is left to the personal preference of 
the experimenter whether this is supposed to be for 
instance Gaussian or rectangular.

(Italicization added here.) From these and other sections 
of the report, it can be correctly inferred that the assumed 
variance (in what was to become known as a Type B evalu-
ation) is the variance of an imagined population of measure-
ment errors when measuring a constant, not the variance of 
a probability distribution attributed to such a constant. (So, 
the association of Type B evaluation with a Bayesian view 
of the role of probability seems to have followed a misinter-
pretation of Recommendation INC-1.)

A paradox of scientists?

In the result discussed by Dr Huang, there is no paradox. 
There is only a proof that constants cannot be attributed 
probability distributions in accurate response to informa-
tion about them. But perhaps there is a paradox or two to 
be found in such practices. I cherished an influential 1969 
book of Bevington [7] during my education. Bevington 
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died in 1980, but his book lives on in later editions co-
written by a former colleague, who has himself since died. 
In the third edition [8, p.63], but not in the first edition, 
we read:

Similarly, if we were to repeat the entire experiment 
many times, ... we should expect that approximately 
68% of our determinations of x̄ should fall within the 
range (𝜇 − s𝜇) < x̄ < (𝜇 + s𝜇) . ... [Then] we make a 
slight logical leap to state that there is approximately 
68% probability that the true value of the mean � lies 
in the range (x̄ − s𝜇) < 𝜇 < (x̄ + s𝜇) ...

(Emphasis added here.) The new author seems to have 
joined the party in which probability statements are to be 
made about constants! But in appearing to treat the con-
stant � as a random variable with a specified probability 
of actively lying in a specified numerical range he unwit-
tingly compromises the rest of the book, which is firmly 
based on classical principles, (which do not involve that 
practice). In the phrase “we make a slight logical leap”, 
he implies discomfort with this step, but he proceeds. The 
logical leap seems to be either (a) to knowingly use mis-
leading language or (b) to replace the classical concept of 
probability (where the mean of the relevant distribution is 
the unknown parameter � ) by the fiducial concept of prob-
ability (where the experimenter feels entitled to reposi-
tion and reorientate the distribution around the estimate x̄ , 
making � the subject). Whichever was the case, why was 
that step thought acceptable? The fact that it was thought 
appropriate is much more paradoxical than the contradic-
tion in my paper. Just where is the evidence that a prob-
ability statement about a constant makes scientific sense?

One relevant factor is ambiguity with the symbol x̄ . In 
the first sentence of the quoted text the symbol x̄ describes 
something that varies, while in the second sentence it 
seems to indicate a particular number, which is what the 
reader would expect. This is an example of where the care-
ful use of notation to distinguish a random variable from 
a realization of that random variable would have helped. 
Thus, it is now common for statisticians to use the upper-
case symbol X̄ to indicate the random variable, i.e., the 
entity with the property of randomness, and to use the 
corresponding lower-case symbol x̄ to indicate the actual 
number that resulted. So there is another explanation for 
the misleading text: perhaps the new author intended the 
symbol x̄ in the second sentence to mean the random quan-
tity. However, the subject of the probability statement, i.e., 
the entity in possession of the probability, should then 
have been the random interval [X̄ − s𝜇, X̄ + s𝜇] , not the con-
stant � , and (in the original notation) the phrase would 
have been better written as ‘there is approximately 68% 
probability that the range (x̄ − s𝜇) < 𝜇 < (x̄ + s𝜇) covers the 
true value of the mean �’.

What is information?

Our context is the (mis)use of probability distributions 
to describe information about fixed quantities. But what 
is ‘information’? Envisage having information about an 
unknown constant number X. Any actual piece of informa-
tion about X, i.e., any fact about X, involves one or more of 
the relationships = , > and <, because the only attributes of 
X are magnitude and sign. So any statement of information 
about X is a statement of the form “ 0 ≤ X ≤ 4 ”, say. The 
contrasting claim that “X is more likely” to be in one interval 
than in another is not informative because X does not pos-
sess the attribute of ‘being likely’. Rather, that is a claim 
of personal belief. (If that claim imparts information at all 
then it is information about the speaker’s belief about X, not 
information about X.) From this, we can conclude that there 
is no actual information about X found in a general pdf for X. 
It is true that if we knew that X ≮ 0 ( X ≥ 0 ) and thought it 
appropriate to attribute X a pdf then we would choose a pdf 
with zero density at negative values of the dummy variable 
x. But the knowledge gained from the statement “ X ≮ 0 ” 
gives us no right to choose any form for that pdf in the fea-
sible positive region. We see that information and pdfs do 
not go together. A pdf for a constant describes degree of 
subjective belief, not objective information.

So the two pdfs featuring in the contradiction do not 
represent genuine information about the measurand Y. 
Huang chooses between these pdfs by appealing to the idea 
of entropy found in ‘information theory’, which is a field 
that grew out of the work of Shannon [9] in communication 
theory. As explained briefly in my book [10, Section 13.2], 
Shannon was concerned with maximizing the rate of trans-
mission of letters of a discrete alphabet. So the original con-
text of information entropy related to information rate in the 
realization of many discrete random variables. Yet, by some 
unclear argument, others later claimed that this could also 
apply with information content in the realization of a sin-
gle continuous random variable, which is Huang’s context. 
Like the misuse of the term ‘probability’, this was a misuse 
of another common word ‘information’. The ‘information’ 
of information theory and the meaningful information that 
metrologists have about their measurement techniques are 
not the same thing: ‘information’ is a qualitative colloquial 
word.

So Dr Huang’s proposal appeals to a dubious principle 
in an attempt to find a non-existent solution. Like a set of 
epicycles in a Ptolemaic model of the solar system, his sug-
gestion acts as paper over a very big crack—a crack that is 
getting wider and wider. There is no solution to be found 
without a new starting point, the new but old starting point 
of classical statistics.
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