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Abstract
In many analytical measurements, the analyte concentration in test samples can vary considerably. In such cases, the standard 
deviation (SD) quantifying measurement imprecision should be expressed as a function of the concentration, c: 
s
c
=

√

s
2

0
+ s2

r
c2 , where s0 represents a non-zero SD at zero concentration and sr represents a near-constant relative SD at 

very high concentrations. In the case of SD repeatability, these parameters can be estimated from the differences of duplicated 
results measured on routine test samples. Datasets with a high number of duplicate results can be obtained within internal 
quality control. Most procedures recommended for this estimation are based on statistically demanding weighted 
regression.
This article proposes a statistically less demanding procedure. The s0 and sr parameters are estimated from selected subsets 
of absolute and relative differences of duplicates measured at low to medium concentrations and high to medium concentra-
tions, respectively. The estimates are obtained by iterative calculations from the root mean square of the differences with a 
correction for the influence of the second parameter. This procedure was verified on Monte Carlo simulated datasets. The 
variability of the parameter estimates obtained by this proposed procedure may be similar or slightly worse than that of the 
estimates obtained by the best regression procedure, but better than the variability of the estimates obtained by other tested 
regression procedures. However, a selection of the duplicates from an inappropriate concentration range may cause a sub-
stantial increase in variability of the estimates obtained.

Keywords Duplicated results · Monte Carlo simulation · Root mean square estimation · Variance model · Variation of 
precision with concentration · Weighted regression

List of symbols
a, b  Parameters of a uniform distribution represent-

ing the minimum and maximum values
c  Concentration of the measured analyte
cE  Equivalence concentration, concentration at 

which s
0
= s

r
c

ci1, ci2  Concentrations simulated as a couple of the 
results measured in duplicate on the i-th sample

c
i
  Mean of ci1 and ci2

D  Statistic of the Kolmogorov–Smirnov/Lilliefors 
test for normality [12]

di  Difference between ci1 and ci2
|̃d|  Median of a set of the di absolute values
dri  di Difference expressed relatively to c

i

Gm, GM  Statistic of the Grubbs test for a single outly-
ing value—minimum and maximum of the sets, 
respectively [4]

G2  Statistic of the Grubbs test for a pair of outliers 
at the opposite ends of the sets [4]

i  Subscript indicating the order number of a given 
value in the list of all values

n  Number of the observations or the concentration 
values measured in duplicate

n0  Number of duplicates for calculation of s0 by the 
proposed procedure

nr  Number of duplicates for calculation of sr by the 
proposed procedure

Pcor  Correction proportions from the sum of squared 
differences
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s  Estimate of the SD characterizing measurement 
precision that is not supposed to depend on the 
concentration

sc  Estimate of the SD characterizing measurement 
precision depending on the concentration

sr  Asymptotic relative standard deviation
s0  sc Value at zero concentration
V, VR  Variances of an investigated estimate set and the 

corresponding reference estimate set
VF, VZ  Variances of the final and zeroth parameter 

estimates
εi1, εi2  Random errors of the duplicated result simu-

lated with a constant SD equal to s0 for the i-th 
sample

ηi1, ηi2  Random relative errors of the duplicated result 
simulated with a constant RSD equal to sr for 
the i-th sample

λ  Parameter of an exponential distribution (mean 
and SD equal to 1/λ)

σ  Parameter of a normal (SD) or log-normal 
distribution

μ  Parameter of a normal (mean) or log-normal 
distribution

μi  True concentration of the analyte simulated for 
the i-th sample

Abbreviations
ACP  Average correction proportion in percentages of 

the sum of squared differences
Cu  General unit of the measured analyte 

concentration
IQC  Internal quality control
HW  Half-width of a confidence interval for a mean
LOD  Limit of detection
MAD  Estimation of SD by taking the median of the |di| 

values
OLS  Estimation of the slope s2

r
 and intercept s2

0
 by 

ordinary least squares method
PDF  Probability density function
RME  Relative mean error expressed in percentages of 

the true value
RMS  Estimation of SD by taking the root mean 

squares of the di differences
RMZ  Relative mean of the zeroth estimates expressed 

in percentages of the true value
RSD  Relative SD expressed in percentages of the true 

value
RSDZ  RSD of the zeroth estimates
SD  Standard deviation
WLS  Estimation of the slope s2

r
 and intercept s2

0
 by 

weighted least squares method

Introduction

The concept of uncertainty is now widely accepted in analyt-
ical chemistry. According to the international vocabulary of 
metrology [9], “a measurement result is generally expressed 
as a single measured quantity value and a measurement 
uncertainty”. The measurement uncertainty is reported as an 
estimate generalized for the entire class of specified samples 
analyzed by the relevant validated method. The uncertainty 
values in a given laboratory are estimated on the basis of 
information from internal method development and valida-
tion studies or internal quality control (IQC) results or infor-
mation from other sources [5]. The standard uncertainty is 
expressed as standard deviation (SD). The reliability of the 
SD estimate improves with the number of results, n, from 
which the estimate has been obtained, more precisely with 
the degrees of freedom. For example, in the case of normally 
distributed results, n should be higher than 50 in order for 
the relative SD of the experimental standard deviation to fall 
below 10 %. A high number of results suitable for estimation 
can be relatively easily accumulated within IQC.

Note 1. This relative SD was calculated using the vari-
ance of SD estimate obtained from n values originated from 
a normal population with a standard deviation of σ. The 
variance is approximately �2

2(n−1)
 [15].

One way to perform internal quality control is by dupli-
cate analysis of selected routine test samples. The duplicate 
test portions are randomly placed in the order of the test 
samples in the analytical run. The absolute values of the 
differences of duplicated results are plotted in control charts. 
The time series of differences provides information on the 
dispersion of measurement results under repeatability con-
ditions. Variability caused by the nuances of the matrix of 
tested samples of the specified type is also captured [5, 14, 
23].

The estimation of measurement uncertainty is often com-
plicated by wide variability in the analyte concentration in 
the test samples. There may be a need to process the results 
of duplicate analyses of test samples of a given specification, 
whose analyte concentration varies within several orders of 
magnitude. See, e.g., papers evaluating the differences of 
duplicated results obtained in analyses of environmental 
samples [7, 18, 20], or in analyses in clinical laboratories 
[11], or in analyses of contaminants in food [5]. In such 
cases, it must be taken into account that the uncertainty, 
expressed as SD or its multiples, varies significantly with 
the level of the measurand. For the upper part of the con-
centration range, it usually makes sense to estimate a single 
relative uncertainty [5, 13]. At the same time, it may be 
appropriate to estimate a constant absolute uncertainty for 
the low concentrations [13]. However, for the entire range, 
from the limit of detection (LOD) to the maximum measured 
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concentrations of the analyte, it is advisable to look for an 
algebraic relationship describing how SD or uncertainty var-
ies with concentration. Thompson uses the term "uncertainty 
function" for this dependence [19, 24].

Estimating constant SDs

The difference, di, between a pair of concentrations, ci1, ci2, 
obtained by the duplicate measurement on the i-th sample

is equal to the difference between the random errors of those 
duplicated results. If all measured samples are similar, par-
ticularly in their matrix and analyte concentration, the ran-
dom errors in the measurement can be supposed to have the 
same probability distribution. The SD of this distribution is 
estimated as a measure of measurement imprecision. This 
estimate, s, can be computed from a set of such di differ-
ences. Two procedures of estimation were used in this work.

First, it was the frequently used method with the sum of 
squared differences recommended in a number of publica-
tions, e.g. [2, 3, 8, 25]:

The procedure was also given in articles by Hyslop and 
White [7] and by Thompson and Howarth [21].

Note 2. Equation (2) is the same as pooling the SD esti-
mates obtained from n duplicate results (each estimate cal-
culated from two results of a duplicate using the equation 
for sample standard deviation).

Secondly, the median estimation procedure was applied

where |̃d| is the median of the absolute values of di. This 
function is not valid if the distribution of di values is not 
normal. Since the median is a robust statistic, the estimated 
s value is not unduly affected by outliers.

There are also other procedures suggested to estimate s 
from a set of di values [7, 21].

In this article, Eqs. (2) and (3) were used only in the cal-
culations of estimates obtained by regression procedures. 
These estimates served mainly for comparison with those 
obtained by the proposed procedure. Equation  (3) was 
applied because Thompson and his colleagues mainly used 
the median procedure in their papers [18, 20, 21, 22]. Equa-
tion (2) was applied because the equations for estimating 
by our proposed procedure are based on the sum of squared 
differences, just like Eq. (2). Equation (2) corresponds to 
the definition relation for standard deviation (see e.g. [3 or 
4]), while the calculation according to Eq. (3) is only an 

(1)d
i
= c

i1 − c
i2

(2)s =

�
∑

d
2
i

2n

(3)s = 1.0484|̃d|

alternative estimation procedure. The estimates obtained by 
Eq. (3) have therefore greater variability.

Note 3. Based on SD estimates from duplicate results gen-
erated by Monte Carlo at n = 20 and a number of estimates 
of 10 000, we found that the variance of SD estimates cal-
culated according to Eq. (2) was approximately 0.025 times 
the chosen value of σ2. This correspond to the relationship 
�2∕(2n) for this variance (see [15] p. 133]). The variance 
of SD estimates calculated by Eq. (3) was about 2.5 times 
greater.

Estimating constant RSDs

If the differences di were obtained by duplicate measure-
ments of samples with an identical matrix but with different 
concentrations of the analyte, and if the concentration range 
of the measured samples was sufficiently distant from the 
LOD, the SD can usually be assumed to increase proportion-
ally with the concentration. In this case, the proportionality 
constant represents the RSD characterizing the precision of 
the measurement. Again, its value can be estimated using 
Eqs. (2) and (3), but the differences di in these mathematical 
relationships must be replaced by relative differences, dri. 
These are the differences between the concentration values 
measured in duplicate divided by the concentration means 
[5, 7, 11, 17], c

i
:

Continuous functions expressing the dependence 
of the SD on the concentration

If the relationship between the SD characterizing the meas-
urement precision and the analyte concentration, c, is studied 
over a wide range of concentrations from levels close to 
the LOD to concentrations significantly higher, it should 
be taken into account that the SD value at very low con-
centrations cannot be zero and therefore the RSD cannot be 
constant at the bottom of the concentration range. Based on 
a literature study as well as statistical processing rich sets of 
duplicated analytical results Thompson [18] recommended 
two adequate mathematical models of the SD increasing 
with the analyte concentration, sc:

Both equations had been previously published by Zitter 
and God [27]. They describe the dependence of SD on the 

(4)c
i
=
(
c
i1 + c

i2

)
∕2

(5)d
ri
= d

i
∕c

i

(6)s
c
= s0 + s

r
c

(7)s
2
c
= s

2
0
+ s

2
r
c
2
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concentration by a continuous function with two parameters. 
The parameter s0 represents a non-zero SD at zero concen-
tration and sr represents a near-constant RSD at very high 
concentrations, the so-called asymptotic RSD. Equation (6) 
calculates the total standard deviation sc as the sum of two 
individual standard deviations—the linear model; Eq. (7) 
calculates s2

c
 , i.e., the total variance, as the sum of two indi-

vidual variance components—the variance model. These 
relationships were also recommended by the Eurachem/
CITAC guide [5] and Jiménez-Chacón and Alvarez-Prieto 
[10] to express changes in uncertainty with concentration; 
the authors of paper [10] based their recommendation on the 
processing of many sets of empirical analytical data.

Thompson stated in paper [18] that both models showed 
similar results, but the sr estimates obtained by the vari-
ance model appeared to be closer to the true value. In par-
ticular, this model was theoretically more correct than the 
linear, since independent uncertainties should be combined 
as variances and not as standard deviations. On the other 
hand, the linear model was more user-friendly. In subsequent 
papers [19, 24], Thompson and his co-worker promoted only 
the variance model. This function was recommended as a 
general expression of the relationship between the standard 
uncertainty and the analyte concentration, which compactly 
specified the behavior of analytical systems, the so-called 
“uncertainty function”.

In the case of the variance model (Fig. 1), it can be seen 
that the plotted curve expressing the function sc = f(c) can 
be divided into three parts [5]: (i) the range of very low 
concentrations where the curve can be approximated by the 
straight line s

c
= s0 , since s2

0
≫ s

2
r
c
2 ; (ii) the range of very 

high concentrations where the curve can be approximated 
by the straight line s

c
= s

r
 c, since s2

0
≪ s

2
r
c
2 ; (iii) the range 

of intermediate concentrations where both variance compo-
nents affect the total variance value because s2

0
≈ s

2
r
c
2.

Estimating s0 and sr from duplicated results

A procedure that processes duplicated results for estimat-
ing the parameters of a mathematical model expressing the 
relationship between SD and concentration for a wide con-
centration range starting at zero was proposed by Thomson 
and Howarth [21, 22]. These authors [6] tested the proce-
dure robustness by processing data that they had simulated 
by Monte Carlo technique. This procedure was applied to 
process large sets of duplicated results obtained by routine 
analyses [18, 20].

The di differences and corresponding c
i
 means of all pro-

cessed duplicates were arranged in increasing order of con-
centration. The sorted data were divided into subgroups with 
some equal number of the duplicated results, n > 10. In each 
subgroup, the SD was estimated using the median method 
(Eq. (3)) and the median or mean of the c

i
 values was also 

calculated. From the SD vs. concentration pairs obtained, the 
s0 and sr parameters of the investigated models of sc = f(c) 
were estimated using regression procedures. As the uncer-
tainty of SD estimates increased with concentration, i.e., 
due to heteroscedasticity of the data, weighted regression 
was necessary. In the case of the variance model, iterative 
nonlinear weighted regression was used [18, 20].

Jiménez-Chacón and Alvarez-Prieto [10] also estimated 
the parameters of the linear and variance models using vari-
ous regression methods, but not from duplicated results. 
They estimated the parameters of the variance model by 
linear regression because they processed SD squares and 
concentration squares. Consequently, the parameters were 
also estimated as squares, i.e., s2

0
 and s2

r
 . They found that the 

weighted least squares method, WLS, or robust regression 
method was appropriate for this task. Linear regression of 
SD squares vs concentration squares was also recommended 
in guide [5] but using the method of ordinary least squares, 
OLS.

It should be admitted that some of the estimation proce-
dures used are quite complex, especially weighted regres-
sion, and may annoy those users who are not well-qualified 
statisticians.

The idea of a newly proposed estimating procedure

If the variance model with the parameters s0 and sr fits a 
large set of duplicated results covering a wide concentra-
tion range starting at zero, essentially each parameter can be 
estimated separately: the value of s0 from a proportion of the 
results measured at very low concentrations, where s

c
≈ s0 , 

and sr from a proportion of the results measured at very high 
concentrations, where RSD ≈ sr. However, it would be advis-
able to use all available results, including those in the range 
of intermediate concentrations (Fig. 1). At such concentra-
tions, the values of the two terms on the right side of Eq. (7) 

Fig. 1  Standard deviation, sc, and relative standard deviation, sc/c, 
as functions of the analyte concentration, c, in the case of variance 
model (see Eq.  (7)) with s0 = 0.15 cu and sr = 0.07; cE = s0/ sr = 2.14 
cu
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are comparable, and therefore none of them can be omitted 
in these estimations. When estimating a given parameter, 
the effect of the interfering term could be eliminated by cor-
rection. However, to quantify it, it is necessary to know an 
estimate of the second parameter. This means that unbiased 
estimates of both parameters could be achieved by succes-
sive approximations—an iterative process.

A similar but much simpler procedure for estimating s0 
and sr from duplicates over a wide concentration range has 
previously been recommended in Nordtest NT TR 537 [13]. 
The parameters s0 and sr are estimated from the duplicates 
for low and high concentrations, respectively, by Eq. (2), 
without any correction, i.e., assuming constant absolute and 
relative uncertainty. However, if the concentration range 
starts at zero and is sufficiently wide, this assumption is 
not satisfied for at least one parameter. This must cause a 
systematic overestimation of the parameter estimate which 
depends on several factors and may be unacceptably high 
and which is not indicated by anything (see below).

Derivation of equations for estimation of s0 and sr 
and their application

Both parameters of the variance model (Eq. (7)) should be 
estimated from a set of n duplicated results that have been 
measured on a large set of samples with a similar matrix 
but with a wide concentration range starting at a level near 
LOD. First, it is necessary to calculate c

i
 mean concentra-

tions (Eq. (4)), their reciprocals, 1∕c
i
 , di differences (Eq. (1)) 

and dri relative differences (Eq. (5)) from the duplicated 
results. The obtained set of values of these four quantities 
shall be arranged in an increasing order of concentration. 
The estimates of s0 and sr should be calculated from the data 
measured at concentrations where s2

0
 and s2

r
c
2 , respectively, 

represent the dominated or at least comparable variance 
component (Eq. (7)) compared to the second component. It 
means that the arranged set must be divided into two subsets, 
one suitable for estimating s0 from the first n0 data belong-
ing to the lower concentrations and the other suitable for 
estimating sr from the last nr data belonging to the higher 
concentrations; both subsets may overlap.

From a given di difference an individual i-th estimate of 
s
2
c
 can be calculated:

and then an individual i-th very unreliably estimate of either 
s
2
0
 or s2

r
 could be obtained if an estimate of the second param-

eter was known:

(8)s
2
i
= d

2
i
∕2

(9)s
2
0i
= s

2
i
− s

2
r
c
2

i
=

d
2
i

2
− s

2
r
c
2

i

The n0 individual estimates of s2
0i

 or, respectively, nr indi-
vidual estimates of s2

ri
 can be pooled to obtain a more reliable 

estimate of s2
0
 or s2

r
:

The final equations to estimate s0 and sr are:

At the beginning of the calculations, no estimate of 
the parameters is known. To calculate an estimate, e.g., sr 
according to Eq. (14), we need some rough estimate of s0. 
Such an estimate can be calculated by Eq. (2). Then the 
estimations of sr and s0 can be repeated alternately according 
to Eqs. (14) and (13) until two consecutive approximations 
are almost the same.

Figure 2, as an instructional example, shows the plots of 
the dependence of |di| and |dri| against concentration for a 
dataset used to estimate s0 and sr. The points used in both 
estimations are highlighted; the data and calculations, see 
Electronic Supplementary Material 2, ESM_2.xlsx, Sheet 
5. From the obtained estimates, dependencies, √2sc and 
√2sc/c (i.e., standard deviations of di and dri) on concen-
tration were calculated, which are shown in the plots. In 
the plots, the so-called equivalence concentration, cE, is 
indicated as an important characteristic. It is the concentra-
tion at which both components of variance are equal, so 
c
E
= s

0
∕s

r
 . Differences from ranges with concentrations 

lower and higher than cE are suitable for estimating s0 and 
sr, respectively.

The objectives of this paper

The main goals are:

a) to verify the trueness of the parameter estimates 
obtained by the proposed procedure from pairs of large 
sets of duplicated results simulated in parallel by Monte 

(10)s
2
ri
=

s
2
ci
− s

2
0

c̄
2
i

=

(
d
i
∕2

)2

c̄
2
i

−
s
2
0

c̄
2
i

=
d
2
ri

2
−

s
2
0

c̄
2
i

(11)s
2
0
=

∑
s
2
0i

n0

=

∑
d
2
i

2n0
− s

2
r
⋅

∑
c
2

i

n0

(12)s
2
r
=

∑
s
2
ri

n
r

=

∑
d
2
ri

2n
r

− s
2
0
⋅

∑�
1∕c̄

i

�2

n
r

(13)s0 =

�
∑n0

1
d
2
i

2n0
− s2

r
⋅

∑n0

1
c
2

i

n0

(14)s
r
=

�
�
�
�

∑n

n+1−n
r

d
2
ri

2n
r

− s
2
0
⋅

∑n

n+1−n
r

�
1∕c̄

i

�2

n
r



284 Accreditation and Quality Assurance (2023) 28:279–298

1 3

Carlo technique with chosen values of s0 and sr, and with 
a wide concentration range and various types of prob-
ability distributions of concentration;

b) to examine the trueness and precision of the parameter 
estimates obtained by the proposed procedure from 
repeatedly simulated sets of duplicates with a number 
accessible within IQC; simultaneously to estimate the 
parameters by regression procedures; to compare the 
estimates obtained by both approaches;

c) on the basis of the results obtained, to specify the pro-
posed procedure in order to reduce the subjectivity of 
decision-making in the choice of the duplicate differ-
ences intended for estimating s0 and sr.

Procedures and methods

Datasets of duplicated results

To verify the proposed procedure for estimating the param-
eters of the variance model, datasets of duplicated results 
were simulated using Monte Carlo method with these cho-
sen parameter values: s0 = 0.15 concentration unit, cu, and 
sr = 0.07.

Note 4. The stated values of s0 and sr were not chosen 
fully at random; their choice was based on the estimates 
that had been obtained in processing a set of empirical data. 
This processing and the obtained results were not included 
in this theoretical work.

First, it was necessary to generate sets of true concentra-
tions, μi, of measured samples with selected types of their 
distribution and selected numbers of values, n. The true con-
centrations could not be negative, the lowest values were 
to be located around the LOD, i.e., 3s0 = 0.45 cu, and the 
highest values were to reach about 20 LOD, i.e., ca. 10 cu, 
or a bit higher, see Electronic Supplementary Material 1, 
ESM_1.pdf, Text S2.

The selected distributions were (the distribution param-
eters are given in brackets): uniform (a = 0, b = 10), normal 

(µ = 6, σ = 1.5), log-normal (µ = 0, σ = 0.7) and exponential 
(λ = 1/2.35). Further information on these distributions is 
provided in Table S1 and also in Fig. S1 (see ESM_1.pdf), 
on which their probability density functions, PDF, are plot-
ted. For each type of distribution, two datasets of the true 
concentrations with n = 20 000 were simulated. Further-
more, for the uniform and also exponential distributions, 
10 sets of true concentrations with n = 200 were simulated.

Using these simulated true concentrations sets, corre-
sponding sets of duplicately measured concentrations ci1 and 
ci2 were generated. The duplicated results were obtained by 
adding random errors to the values μi

where εi1, εi2, and ηi1, ηi2 represent the random absolute and 
relative errors, respectively, of the i-th duplicate measure-
ment. These errors were simulated as independent values 
drawn at random from two normal distributions with zero 
means and the chosen variances s2

0
 for the absolute errors and 

s
2
r
 for the relative errors. For each dataset, the means c

i
 and 

the differences di were computed from the pairs of ci1 and 
ci2 (Eqs. (1) and (4)).

In the case of the datasets with n = 20 000, where two 
sets were simulated for each type of the chosen probability 
distributions, it was possible to obtain two pairs of s0 and 
sr estimates for each distribution type. For the first series of 
the simulated sets of the true concentrations μi and means 
c
i
 , some descriptive statistics were computed that character-

ized the individual types of the chosen concentration dis-
tributions; these statistics are summarized in Table S1 (see 
ESM_1.pdf). For the datasets with n = 200, it was possible 
to obtain 10 estimates of s0 or sr with the uniform and expo-
nential concentration distributions.

The simulations of all datasets were performed by Micro-
soft Excel Professional version 2007. Other calculations 
were also made by this program, unless otherwise stated.

(15)c
i1 = �

i
+ �

i1 + �
i1�i

(16)c
i2 = �

i
+ �

i2 + �
i2�i

Fig. 2  Absolute values of differ-
ences, |di|, (a) and relative dif-
ferences, |dri|, (b) of duplicates 
with respect to mean concentra-
tion,c

i
 ; for the data, see Sheet 5 

in ESM_2.xlsx; n0 and nr denote 
the number of points applied in 
estimating s0 and sr, respec-
tively (green +); unused points 
(blue ×). The red curves display 
the concentration dependence 
of √2sc and √2sc/c; sc was 
calculated from the estimated 
sr and s0 values; cE denotes the 
equivalence concentration (▪)
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Estimating s0 and sr by the proposed procedure

Processing all simulated datasets

First, the values of c
i
 (Eq. (4)), 1∕c

i
 , di (Eq. (1)) and dri 

(Eq.  (5)) were calculated from all duplicated results of 
the processed dataset. The obtained values were arranged 
in ascending order of c

i
 . In the case of the datasets with 

n = 200, all negative values of c
i
 that appeared were replaced 

with a positive value much smaller than s0, used 0.001 cu. 
There were only a few negative values individual sets, a 
maximum of 2 and 6 in the uniformly and exponentially 
distributed datasets, respectively.

Note 5. For the itself calculation, this substitution of 
negative values is not necessary. This was done because, 
when studying the data in the graphs, there were problems 
with negative values when using a logarithmic scale on the 
concentration axis.

Then the estimates of s0 and sr could be computed by 
Eqs. (13) and (14), but first it was necessary to choose appro-
priate values of n0 and nr, i.e., to divide each dataset into two 
subsets suitable for the estimations of s0 and sr (see above).

When deciding on this matter, it is recommended to 
approach each dataset individually, after examining the rel-
evant plots of dependence of ||di|| and ||dri|| values on c

i
 (see 

Fig. 2 and calculation examples in Sheets 2 and 4 in ESM_2.
xlsx). When processing the datasets simulated with n = 20 
000, the number of points in the plot was too high, so the 
plots were confusing, incomprehensible, and therefore it was 
impossible to make decisions based on them. So, in almost 
all cases, the first choice was n0 = nr. Subsequently, other 
values of n0 and nr, either higher or lower, were tested to 
increase or decrease, respectively, the number of suitable 
values or the number of values unsuitable for estimation. 
The higher number of variants used indicates the difficulty 
of selecting suitable values of n0 and nr. Also, when process-
ing datasets with n = 200, the individual plot approach was 
not used, since all 10 sets simulated with a given concentra-
tion distribution had to be processed by the same chosen 
variant of the procedure. With an individual approach, sub-
jective decision-making in selecting differences for estima-
tion would have influenced the variability of the estimates 
obtained. The first variants were selected according to the 
results found on the sets with n = 20 000. The variants were 
then adjusted to reduce the proportion of unsuitable differ-
ences included. However, in some case, deliberately higher 
proportions of differences not suitable for estimation were 
used.

The sequential estimations of s0 and sr started by cal-
culating a rough s0 estimate from n0 differences according 
to Eq. (2), irrespective of whether the differences showed 
a concentration trend. For this rough estimation we omit-
ted the correction term from Eq. (13). The estimation could 

also have started by calculating a rough sr estimate. The 
first sr estimate was then calculated according to Eq. (14) 
and the first s0 estimate according to Eq. (13). This was fol-
lowed by a sequence of alternate calculations of the sr and 
s0 estimates (Eqs. (14) and (13)). The estimating process 
was terminated when the difference between two successive 
estimates was practically negligible, i.e., < 0.5 % of the true 
value. In this paper, the estimates thus obtained are called 
final estimates. Due to the position in the estimate sequence, 
the rough, i.e., the uncorrected estimates of parameters are 
referred to as zeroth estimates. Sequential estimates can be 
seen in Table S2 in ESM_1.pdf or Sheets 3 and 5 in ESM_2.
xlsx in the case of the datasets with n = 20 000 or n = 200, 
respectively.

In the case of datasets, with n = 20 000 with the expo-
nential, log-normal, uniform, and normal distribution of 
concentrations, estimates were obtained by 1, 2, 3, and 4, 
respectively, variants of the proposed procedure. These vari-
ants differed in the chosen values of n0 and nr. The chosen 
subsets of the duplicates with n0 and nr values were formed 
by dividing the entire set of n differences without overlap-
ping, so that there was a concentration boundary between 
these subsets The estimates of s0 and sr are summarized in 
Table S4 (see ESM_1.pdf), they are expressed in percent-
ages of the true values of the parameters. The table shows 
the zeroth and final estimates obtained by the used variants 
from pairs of datasets simulated in parallel for each type of 
concentration distribution.

Table S3 in ESM_1.pdf shows for each pair of parallel 
estimates the mean, the difference, both statistics are given 
for the final and zeroth estimates. The table also shows the 
number of iterations needed to obtain the final estimates 
(without the zeroth step), boundary concentration and other 
statistics.

The datasets with n = 200 were also processed by several 
variants of the proposed procedure. The s0 and sr estimates 
obtained from the uniformly and exponentially distributed 
datasets are summarized in Tables S5 and S6 (see ESM_1.
pdf), respectively. Statistics characterizing the sets of the 
estimates obtained by the variants used are given in Tables 1 
and 2. These variants differed in the choice of the n0 and 
nr values. They were denoted by n0/nr or the concentration 
boundary, e.g., c = 2.6, between the non-overlapping subsets. 
The chosen variant was always followed when processing all 
ten datasets with the given distribution. The final estimates 
were usually obtained after three consecutive estimates of 
the pair s0 and sr, in worse cases up to five consecutive esti-
mates were needed.

Objective approach to the processing of datasets

ESM_2.xlsx gives 2 examples of estimating s0 and sr where 
the subjectivity of decision-making was limited in the 
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Table 1  Statistical characteristics of the sets of the final s0 and sr esti-
mates obtained by different variants of the proposed procedure and 
regression procedures from the 10 datasets with 200 duplicates simu-
lated with the uniform concentration distribution; the variants of pro-
posed procedure are denoted by either border concentration c or by 
the ratio of the number of differences used to estimate s0 and sr, Mean 
of the parameter estimates, for s0 expressed in cu; RME and RSD—

relative mean error and relative standard deviation expressed in per-
centages of the true values; P-value—probability value of the t-test 
assessing the significance of the RME; V/VR—ratio of the variance of 
an investigated estimate set, V, and the corresponding reference vari-
ance, VR, i.e., the variance of the estimate set obtained by the RMS 
WLS procedure

Procedure Parameter Statistics

Mean RME RSD P-value V/VR

Proposed
c = 2.6

s0 0.137 − 8.77 % 21.0 % 0.22 1.8
sr 0.0702 0.34 % 5.1 % 0.84 0.94

Proposed
c = 4

s0 0.141 − 5.83 % 11.4 % 0.14 0.51
sr 0.0695 − 0.74 % 8.4 % 0.78 2.6

Proposed
85/150

s0 0.138 − 7.84 % 16.3 % 0.16 1.1
sr 0.0695 − 0.76 % 7.3 % 0.75 1.9

Proposed
100/100

s0 0.143 − 4.66 % 30.4 % 0.64 3.7
sr 0.0687 − 1.88 % 9.0 % 0.53 3.0

RMS WLS s0 0.146 − 2.69 % 15.8 % 0.60 1
sr 0.0693 − 0.94 % 5.2 % 0.58 1

MAD WLS s0 0.151 0.64 % 25.1 % 0.94 2.5
sr 0.0719 2.68 % 13.4 % 0.54 6.5

RMS OLS s0 0.151 0.36 % 43.3 % 0.98 7.5
sr 0.0674 − 3.65 % 13.3 % 0.41 6.5

MAD OLS s0 0.144 − 4.09 % 75.8 % 0.87 22.9
sr 0.0695 − 0.75 % 19.6 % 0.91 14.0

Table 2  Statistical characteristics of the sets of the final s0 and sr esti-
mates obtained by different variants of the proposed procedure and 
regression procedures from the 10 datasets with 200 duplicates simu-
lated with the exponential concentration distribution; the variants of 
proposed procedure are denoted by the ratio of the number of differ-
ences used to estimate s0 and sr, Mean of the parameter estimates, 

for s0 expressed in cu; RME and RSD – relative mean error and rela-
tive standard deviation expressed in percentages of the true values; 
P-value – probability value of the t-test assessing the significance of 
the RME; V/VR—ratio of the variance of an investigated estimate set, 
V, and the corresponding reference variance, VR, i.e., the variance of 
the estimate set obtained by the RMS WLS procedure

Procedure Parameter Statistics

Mean RME RSD P-value V/VR

Proposed
110/90

s0 0.148 − 1.34 % 8.6 % 0.64 0.77
sr 0.0726 3.77 % 10.6 % 0.29 3.1

Proposed
100/100

s0 0.150 − 0.02 % 8.2 % 0.99 0.70
sr 0.0711 1.53 % 11.0 % 0.67 3.3

Proposed
100/120

s0 0.151 0.42 % 8.2 % 0.87 0.70
sr 0.0696 − 0.55 % 12.2 % 0.89 4.0

Proposed
100/140

s0 0.151 0.71 % 8.0 % 0.79 0.67
sr 0.0688 − 1.69 % 17.0 % 0.76 7.8

RMS WLS s0 0.152 1.43 % 9.8 % 0.66 1
sr 0.0703 0.38 % 6.1 % 0.85 1

MAD WLS s0 0.157 4.98 % 15.9 % 0.35 2.6
sr 0.0733 4.70 % 10.7 % 0.20 3.1

RMS OLS s0 0.148 − 1.23 % 27.4 % 0.89 7.8
sr 0.0697 − 0.43 % 14.1 % 0.93 5.4

MAD OLS s0 0.151 0.41 % 28.3 % 0.96 8.3
sr 0.0743 6.14 % 15.2 % 0.23 6.3
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selection of subsets for estimating both parameters. This pro-
cedure using objective decision criteria, equivalence concen-
tration and correction proportion, was applied for processing 
datasets 3 and 9, n = 200 with uniform and exponential dis-
tribution, respectively. These sets were chosen because when 
processed by the 100/100 and 100/140 variants, extremely 
underestimated estimates of s0 and sr, respectively, were 
obtained (see Tables S5 and S6 in ESM_1.pdf).

The estimation process starts by examining the plots 
of the dependence of ||di|| and ||dri|| values on c

i
 for the pro-

cessed dataset. Arranging the points in these plots can show 
whether the variation model is appropriate for a given data-
set at all, and it can also reveal potential outliers. At the 
beginning of the process, only these plots allow us to define 
those concentration ranges with differences suitable for esti-
mating s0 and sr, i.e., choosing n0 and nr. Somewhere in the 
bend of the dependence of ||di|| or ||dri|| on concentration the 
equivalence concentration lies (see Fig. 2, cE = 2.14 cu). The 
upper and lower concentration limits of the subsets of those 
differences suitable for estimating s0 and sr, respectively, 
should be above and below the equivalence concentration 
so that the two subsets overlap. Due to the large random 
dispersion of values plotted on the y-axis, it can be difficult 
to distinguish the beginning of the bend from random fluc-
tuations. In addition, on the plots with ||di||, the bend is not 
very pronounced.

If we want to avoid looking for both concentration limits 
using plots alone, it is possible to find preliminary s0 and sr 
estimates in advance and calculate a preliminary estimate of 
cE from them. For this estimation of s0 and sr, only those di 
and dri differences that are from concentration ranges where 
|
|di

|
| and ||dri|| values appear to be trendless should be used. 

When processing a large dataset, it should be possible to 
select at least 10 to 20 differences from both the concentra-
tion range around LOD and the high concentration range. 
The preliminary estimates of s0 and sr shall be calculated 
by Eq. (2), i.e., without the correction term. From these, a 
preliminary estimate of cE can be obtained. Slightly above 
and below cE, it is then possible to choose the upper limit 
and lower limit of the concentration ranges with di and dri 
differences useable for estimating s0 and sr, respectively (see 
Sheets S3 and S5 in ESM_2.xlsx).

It should be emphasized that both these preliminary esti-
mates and the zeroth estimates shall be calculated according 
to Eq. (2). In the former case, the use of this equation is fully 
justified, so the estimates obtained will be essentially unbi-
ased. However, they could be estimated with a large random 
error, since a small number of differences have been used. In 
the latter case, the estimates calculated without correction 
will be greatly overestimated. Their variability may be low, 
since a higher number of differences have been used. The 
preliminary estimates can be advantageously used instead of 
the zeroth estimates at the beginning of sequential estimation 

of s0 and sr. Of course. when calculating the correction pro-
portions, see below and Text S5 in ESM_1.pdf, only zeroth 
estimates must be used, not preliminary ones.

After selecting the n0 and nr values, a first attempt can be 
made to estimate s0 and sr using Eqs. (13) and (14) accord-
ing to the proposed iterative procedure. If the estimates 
obtained are real numbers, i.e., the resulting values under 
the square root are not negative, it is possible to continue 
with subsequent checks. It is necessary to check that (i) the 
correction proportions are not too high—less than 50 % is 
recommended, (ii) the upper and lower concentration limits 
are, respectively, above and below the newly found cE value.

A high correction proportion or even a negative value 
under the square root points out the inclusion of a large 
proportion of the differences unsuitable for estimating the 
parameter. For subsequent estimation, it is necessary to 
reduce the n0 or nr value. On the other hand, if the upper 
concentration limit for differences di or the lower concen-
tration limit for differences the dri is not above or below the 
newly determined cE, respectively, this means that not all 
suitable differences have been used in estimating the param-
eter. A low value of the correction proportion, e.g., less than 
10%, also points to the same issue. The number of differ-
ences included in the calculation of the parameter should 
then be increased. It would also be advisable to increase the 
number of included differences if their number is signifi-
cantly less than half of the total number of differences and 
the correction proportion is sufficiently below 50 %. Adjust-
ing the number of differences included may be followed by 
another iterative estimation of s0 and sr with further review 
of the newly obtained estimates.

Estimating s0 and sr by the regression procedures

The datasets with n = 200 were also processed by regres-
sion methods. The sets of c

i
 and |di| paired values, arranged 

in increasing order of concentration, were divided into 10 
segments with 20 pairs. For each segment with 20 values of 
c
i
 and |di|, the mean concentration and SD were calculated. 

The SD values were calculated by two procedures: using the 
root mean squares of the differences (Eq. (2)), referred to as 
the RMS procedure, and using the median of |di| (Eq. (3)), 
referred to as the MAD procedure. In this way, for each 
simulated dataset, two tables with 10 pairs of concentration 
means and SDs were derived. From the squares of these two 
variables, the values of s2

0
 and s2

r
 of the variance model were 

estimated. Since a linear relationship was assumed between 
the squares of the mean concentrations and SDs, the linear 
regression could be used [10]. The estimations of the param-
eters were calculated by two regression procedures, firstly by 
OLS and secondly by WLS with weights 1/s4

c
.

Note 6. The weight is inversely proportional to the vari-
ance of the dependent variable [16], i.e., to the variance of 
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s
2
c
, and directly proportional to the number of the differences 

used to the SD estimation, ni. In the case of a variable nor-
mally distributed with standard deviation σ, the variance of 
the estimate σ2 is equal to 2σ4/(n-1) or 2σ4(n-1)/n2, see [1]. 
Consequently, the weighs are inversely proportional to s4

c
. 

The ni values are the same for all segments, ni = 20; this con-
stant value does not influence the estimate values. In the OLS 
regression the ni values are ignored. If they are also ignored 
in the WLS regression, a comparison of the precision of the 
two kinds of estimates will show the advantage of the WLS 
regression only with respect to the heteroscedasticity.

The s4
c
 values were calculated from the concentration 

means for each segment according to Eq. (7) with the val-
ues of s2

0
 and s2

r
 that had just been estimated. The first input 

values were the estimates of s2
0
 and s2

r
 calculated using 

OLS. The weighted regression, was calculated iteratively 
until the estimates expressed to 6 decimal places stopped 
changing. Using the regression procedures, four differ-
ent parameter estimates were obtained for each simulated 
dataset with n = 200. The results obtained from the data-
sets distributed uniformly and exponentially are summa-
rized in Tables S5 and S6 (see ESM_1.pdf), respectively; 
the statistics characterizing the sets of these estimates 
are given in Tables 1 and 2. The procedures and results 
obtained are labeled according to the combination of the 
SD calculation used and the regression method: RMS 
OLS, MAD OLS, RMS WLS and MAD WLS.

Statistical treatment of the estimates

Assessing the estimate trueness and precision

The quality of the s0 and sr estimates obtained by the 
above-mentioned procedures was assessed for their preci-
sion and trueness, the estimates computed from the tens of 
datasets with n = 200 and from the couples of datasets with 
n = 20 000 were investigated separately. The trueness was 
evaluated on the basis of the relative mean error, RME, 
as a measure of bias. The estimate of RME was computed 
as the deviation of the arithmetic mean of the set of esti-
mates from the true parameter value; it was expressed 
in percentages of the true parameter value. At the same 
time, the statistical significance of the RME estimates was 
monitored. In the case of the estimates from the datasets 
with n = 20.000, the RME values were compared with the 
half-widths of the 95 % confidence intervals calculated by 
multiplying the differences between the two parallel esti-
mates by a coefficient of 6.4 [3] (see Table S3 in ESM_1.
pdf). In the case of the estimates from the datasets with 
n = 200, the t-test was applied. The results are given as the 
p-values of that test (see Tables 1 and 2).

The precision of the estimates was evaluated according 
to two measures of variability: RSD values and relative dif-
ferences between two parallel estimates were used as these 
measures for the estimates obtained from the datasets with 
n = 200 and n = 20 000, respectively. Both quantities were 
expressed relatively to the true values of the parameters. 
The variances, V, of the sets of the estimates obtained from 
the datasets with n = 200 by the individual procedures or 
their variants were compared with the variances of the cor-
responding sets of the estimates obtained by the RMS WLS 
procedure, VR. The variances of the RMS WLS procedure 
were taken as reference values because this procedure 
proved to be the best estimation procedure. The V/VR ratio 
was used as a quantitative indicator (see Tables 1 and 2); it 
was not understood as an F-test; some of the stated sets were 
not distributed normally.

In order for the variants of the proposed procedure to be 
assessed, it was appropriate to considered not only the final 
s0 and sr estimates, but also the zeroth estimates – calculated 
without the correction. The values of the zeroth estimates 
obtained from the datasets with n = 20 000 are summarized 
in Table S4 (see ESM_1.pdf); the means and differences 
of all pairs of the parallel zeroth estimates are shown in 
Table S3 (see ESM_1.pdf). Table 3 summarizes statistics 
calculated from the two sets of the10 zeroth estimates of s0 
and sr obtained from the datasets with n = 200 and with the 
uniform and exponential distribution. These are the relative 
means,  RMZ, and relative standard deviations,  RSDZ, of the 
sets of estimates, both quantities are expressed in percent-
ages of the true parameter values; the ratios of the variances 
of the final and zeroth estimates, VF/VZ, are also given. The 
 RMZ value provides information about the overestimation 
of the zeroth estimate, i.e., information about the size of the 
correction needed. The VF/VZ ratio informs how the impreci-
sion of the estimate increased due to the correction (it was 
again not understood as an F-test).

Correction proportion from the sum of squared differences: 
its purpose and calculation

In Eqs. (13) and (14) for estimating s0 and sr there are two 
subtracted terms under the square root. The relative vari-
ability of the parameter estimated by first or second equation 
depends on the variability of these two terms, and also on the 
value of the difference between the two terms, actually on 
the ratio of their values. If the value of the correction term 
is small with respect to the value of the first term, i.e., the 
term with the sum of squared differences, the value of this 
difference will be significantly larger than if both terms have 
practically the same value. It means, in the second case, even 
if the two terms had little relative variability, the resulting 
estimate would have high relative variability. It follows that 
the inclusion of too large proportion of di or dri differences 
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unsuitable for estimating a given parameter causes a higher 
level of variability in the final estimates of the parameters. 
This was documented by the estimates obtained from simu-
lated datasets, see Text S5 in ESM_1.pdf. After obtaining 
an estimate of, e.g., s0 from a given set of differences, it 
would therefore be appropriate to compare the values of both 
terms under the square root in Eq. (13) and assess whether it 
would not be appropriate to reduce the number of included 
differences from the range of higher concentrations and thus 
reduce the value of the correction term. This would reduce 
the relative variability of the estimate obtained, i.e., the 
probability of a large error in the estimate.

From Eqs. (11) and (12) it is possible to derive indica-
tors comparing the values of the two terms, which are here 
called correction proportions, Pcor, from the sum of squares 
of the differences. These indicators can be calculated from 
the differences and mean concentrations of duplicates, as 
well as possibly from the final and zeroth estimates of the 
parameters, s0 and sr symbols are denoted by subscripts F 
and Z, respectively:

In text S5 in ESM_1.pdf, the correction proportions for 
estimates obtained from the simulated datasets are presented 
and discussed. The individual Pcor values for all estimates 
obtained from the datasets with n = 20 000 and the average 
correction proportions for the pairs of the parallel estimates 
are given in Tables S4 and S3 (see ESM_1.pdf), respectively. 
For the estimates from the 10 datasets with n = 200 and with 

(17)In calculating s0Pcor =
2s2

r

∑
c
2

i

∑
d
2
i

= 1 −
s
2
0F

s
2
0Z

(18)In calculating s
r
Pcor =

2s2
0

∑
1∕c

2

i

∑
d
2
ri

= 1 −
s
2
rF

s
2
rZ

the uniform and exponential distributions, the individual Pcor 
values are given in Tables S10 and S11 (see ESM_1.pdf) 
and the average correction proportions for the sets of 10 
estimates obtained by a particular variant of the procedure 
are given in Table 3.

Other statistical procedures used

In one exponentially distributed dataset with n = 200, there 
was an extremely outlying di difference identified (dataset 
no. 2. plotted in Fig. 4c, d; its parameter estimates see Tab. 
S6 in ESM_1.pdf). The consequences of excluding this 
outlier were studied. Table 4 summarizes the differences 
between the estimates obtained by all the procedures inves-
tigated, with and without the outlier.

Table 3  Statistics of the sets of the zeroth estimates that were 
obtained by the used variants of the proposed procedure from the 
datasets simulated with n = 200; the variants are denoted by either 
border concentration c or by the ratio of the number of differences 
used to estimate s0 and sr,  RMZ and  RSDZ – relative mean and rela-

tive standard deviation of the zeroth estimates expressed in percent-
ages of the true parameter values; ACP – average correction propor-
tion in percentages of the sum of d2

i
 or d2

ri
 ; VF/VZ – ratio between the 

variances of the final and zeroth parameter estimates (the statistics for 
the final estimates see Tables 1 and 2)

* indication of the values higher than 3.18 (the critical value for the one-tailed F-test at α = 0.05 [4])

Estimates from uniformly distributed datasets Estimates from exponentially distributed datasets

Variant Par RMZ ACP RSDZ VF/VZ Variant Par RMZ ACP RSDZ VF/VZ

c = 2.6 s0 114.3 % 37.3 % 17.2 % 1.48 110/90 s0 110.0 % 19.6 % 8.5 % 1.02
sr 107.8 % 13.2 % 5.2 % 0.94 sr 124.2 % 30.3 % 7.0 % 2.28

c = 4 s0 143.6 % 56.5 % 7.8 % 2.10 100/100 s0 108.5 % 15.1 % 8.3 % 0.97
sr 104.5 % 9.8 % 7.4 % 1.28 sr 127.0 % 35.9 % 6.7 % 2.69

85/150 s0 145.8 % 58.8 % 8.7 % 3.48 * 100/120 s0 108.5 % 14.4 % 8.3 % 0.97
sr 107.8 % 15.2 % 5.4 % 1.85 sr 136.7 % 47.0 % 9.1 % 1.79

100/100 s0 164.1 % 63.2 % 13.9 % 4.79 * 100/140 s0 108.5 % 13.8 % 8.3 % 0.93
sr 102.9 % 9.3 % 7.6 % 1.41 sr 152.9 % 58.3 % 10.2 % 2.80

Table 4  Differences between the pairs of the s0 and sr estimates 
obtained by the investigated procedures from the dataset displayed in 
Fig.  4c, d when the estimates were calculated with and without the 
highlighted outlier; the differences are expressed in percentages of the 
true parameter values; a positive difference represents decreasing in 
the parameter estimate after excluding the outlier (the estimates with 
outlier included—see the results from dataset no. 2 in Table  S6 in 
ESM_1.pdf)

Estimation
procedure

Differences

s0 sr

Proposed 110/90 − 0.58 % 2.5 %
Proposed 100/100 − 0.40 % 2.4 %
Proposed 100/120 − 0.30 % 2.3 %
Proposed 100/140 − 0.32 % 1.9 %
RMS WLS − 2.6 % 10.5 %
MAD WLS 0.20 % − 1.1 %
RMS OLS − 58.5 % 31.2 %
MAD OLS 9.6 % − 4.0 %
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Furthermore, the sets with tens of s0 or sr estimates, 
which were obtained using the different procedures from 
the datasets with n = 200, were checked on their homogene-
ity and normality. The relationships between some random 
variables were investigated using Spearman′s rank correla-
tion coefficient. Information on these procedures is provided 
in Text S1.1 in ESM_1.pdf.

Results and their discussion

The estimates of s0 and sr obtained 
from the datasets with n = 20 000

The text dealing with the full processing of results and their 
discussion has been included in ESM_1.pdf, see Text S3. 
The text is too extensive and most of the issues addressed in 
it, including the resulting conclusions, reappear when pro-
cessing the results obtained on datasets with n = 200, see the 
next subchapter.

This subchapter summarizes the conclusions obtained 
from processing datasets simulated with the four types 
concentration distribution by variants of the proposed 
procedure.

The means calculated from the pairs of parameter esti-
mates did not deviate significantly from the true values 
within the variability evaluated on the bases of the differ-
ences between these estimate pairs. The variability of esti-
mates obtained in the cases of uniform, exponential, and 
log-normal distributions was acceptable, a few percent or 
tenths of percent of the true value. The variability of esti-
mates in the case of processing sets with normal distribution 
was too high, about 10 % or even tens of percent. The high 
variability was related to the inclusion of a large number of 
differences less suitable or even unsuitable for estimating 
the parameter. In these cases, the zeroth, i.e., uncorrected, 
estimates were considerably higher than the final estimates 
obtained with the correction. An indicator that draws atten-
tion to the high variability of a given estimate, i.e., the high 
probability of a large random error of the estimate, may be 
the correction proportion see above and Text S5 in ESM_1.
pdf. Of course, higher variability may also be due to the fact 
that a small number of differences, albeit suitable, were used 
in the estimation. This is the case where only hundreds of 
differences instead of thousands were used to estimate them. 
The high variability was then reflected not only in the final 
estimate, but also in the zeroth estimate.

Pairs of random errors of s0 and sr estimates obtained 
when processing all the simulated sets by different variants 
of the proposed procedure showed a negative correlation. 
In these iterative calculations, where the previous estimate 
of one parameter is used to correct in the estimation of the 
other parameter, a higher positive estimation error of one 

parameter causes a higher negative estimation error for the 
other parameter, and vice versa.

When processing a given dataset of duplicates, the pos-
sibility of including a sufficiently large proportion of differ-
ences suitable for estimating s0 or sr is determined by the 
concentration distribution of that set. So, for example, the 
datasets simulated with the chosen normal distribution had 
only 0,5 % of the differences suitable for estimating s0. They 
did not provide an opportunity to obtain an estimate of this 
parameter with low variability. The datasets with the chosen 
log-normal distribution had a relatively low proportion of 
differences suitable for sr estimation, 14 %. Datasets with 
these concentration distributions were not included in the 
subsequent study of datasets with n = 200.

The estimates of s0 and sr obtained 
from the datasets with n = 200

This subchapter deals with the s0 and sr estimates obtained 
from the datasets of 200 duplicated results simulated 10 
times with the uniform and exponential distribution of con-
centrations. Such large duplicate datasets can be considered 
achievable within IQC. The estimates were obtained by the 
chosen variants of the proposed procedure being verified 
as well as by four variants of the regression procedure, for 
comparison. The procedures used were compared mainly on 
the basis of the variability of the estimates obtained.

Checking homogeneity and normality of the estimate sets

First, the sets of the s0 and sr estimates were investigated 
for their skewness, kurtosis and normality, and the pres-
ence of outliers. A complete evaluation is given in ESM_1.
pdf (see Text S4, Fig. S2 and Tables S7 and S8). The inner 
and outer fences in the box plots identified outliers only 
in the s0 estimate sets, especially when the estimates were 
obtained by the RMS OLS procedure. Among the estimate 
sets obtained by the proposed procedure, outliers were found 
only in the set obtained by the variant 100/100 from uni-
formly distributed datasets: minimum—extreme outlier and 
2nd minimum—mild outlier. No outlier was identified in the 
sr estimates sets. The Grubbs tests identified outliers essen-
tially in accordance with the fences. In the case of the s0 
estimate sets obtained by the variant 100/100 from the uni-
formly distributed datasets and by the RMS OLS procedure 
from the uniformly as well as the exponentially distributed 
datasets, significant coefficients of skewness and kurtosis 
were identified. Among all the estimate sets investigated; the 
normality test identified only two sets violating the normal-
ity assumptions. Both sets were obtained by the proposed 
procedure: the s0 estimate sets obtained by variants c = 2.6 
and 100/100 from the uniformly distributed datasets. Only in 
the second case of estimates, the departures from normality 
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were also identified by the previous tests. The study showed 
that it can be assumed that most of the monitored sets of 
estimates obtained by the proposed procedure and proce-
dures RMS WLS and MAD WLS are distributed normally 
or very similarly.

It should be noted that a prerequisite for using the F-test 
is the normality of the tested sets. When using the t-test, due 
to the central limit theorem, this test can be used even for 
the average of values with a non-normal distribution if their 
number is high enough.

The estimates obtained by the proposed procedure

From the datasets distributed uniformly, the parameter esti-
mates were obtained by four variants of the proposed proce-
dure. These variants differed in the chosen n0 and nr values. 
First, the datasets were divided into two non-overlapping 
subsets according to concentration boundaries in two ways. 
These following two boundaries were selected: c

i
 equal to 

2.6 cu and 4 cu. The average n0 and nr values were 53 and 
147, respectively, in the former case and 83 and 117 in the 
latter case. Table 1 shows that at 2.6 cu and 4 cu, the RSD 
values for the s0 estimates were 21 % and 11 %, respec-
tively, and for the sr estimates 5.1 % and 8.4 %. In the third 
variant, two overlapping subsets were selected with n0 = 85 
and nr = 150. It was assumed that these higher numbers of 
processed di differences could provide lower variability in 
estimates of both parameters at the same time. However, the 
RSD values obtained were somewhat worse than expected: 
16 % for s0 and 7.3 % for sr. As a matter of interest, the 
variant with n0 = nr = 100 was tried. As expected, the RSD 
value of the s0 estimates achieved in this case was exces-
sively high: 30 %.

Only 21 % of all di differences in the datasets processed 
were from the concentration range where s0

2 > s2
r
c
2 . For the 

variants marked c = 2.6, c = 4, 85/150 and 100/100, the s0 
estimates were computed from di differences in concentra-
tion ranges where the s2

r
c
2 component was up to 1.5, 3.5, 

4 and 5.5 times higher than s0
2 and the average correction 

proportions represented 37.3 %, 56.5 %, 58.8 % a 63.2 %, 
respectively (see Table 3). In the first case, this meant 
that all the differences applied were suitable for estimating 
s0. This corresponds to a low overestimation of the mean 
of the zeroth estimates, the  RMZ amounts to only 114 % 
(see Table 3). Despite this, the RSD value of the final 
estimates was relatively high, 21 %. However, this must 
have been mainly due to the higher variability of the sum 
of d2

i
 , not due to a high correction, since the RSD value 

for the zeroth estimates was already high, 17 %. It is true 
that the number of differences processed was the lowest, 
the average of n0 was equal to 53. However, this does not 
seem to justify such a high variability of the zeroth esti-
mates. In the other three cases, a certain proportion of 

differences less suitable or even inappropriate was always 
used. The estimates obtained by the 100/100 variant, i.e., 
the variant with the highest proportion of inappropriate 
differences, had the highest mean of the zeroth estimates, 
164 %, and the highest correction proportion. This correc-
tion was associated with a high increase in variability (see 
the highest VF/VZ ratio, 4.8, Table 3) and the set of the final 
estimates had the highest RSD value (Tables 1). This high 
variability in the estimates was due to the two outlying 
minima, one of which was an extreme outlier (see above); 
the s0 estimates were 21.8 % and 70.8 % of the true value 
(see Fig. S2 and Table S5 in ESM_1.pdf). The distribution 
of this set was identified as non-normal by all tests used. 
When the extreme minimum was excluded from the set, 
the RSD value dropped to 17.5 %, a value comparable to 
the values for the sets obtained by the other variants.

When estimating the sr values, all dri differences used 
were from concentration ranges where s2

r
c
2 > s0

2; the RSD 
values for the sets of these estimates did not exceed 9% (see 
Table 1). The means of the zeroth estimates of sr were only 
moderately overestimated, < 8 %, the average correction pro-
portions were low, maximum 15.2 %, and the VF/VZ ratios 
were low, < 2 % (see Table 3).

The RME values, as indicators of the estimate bias, were 
more favorable for the sr estimates, the absolute values of 
RME < 1.9 %, than for the s0 estimates, the RME values 
from -4.7 % to -9 %; no value was significant (see the p-val-
ues in Table 1).

In the case of the datasets distributed exponentially, the 
results were also obtained by four variants of the proposed 
procedure. Values of n0 and nr equal to 100 were chosen 
as the first variant, because this division was successfully 
used when processing the large sets distributed exponen-
tially (see Text S3.2 and Table S3 in ESM_1.pdf). The RSD 
value obtained for the s0 estimates was 8.2 %, which was 
better than the RSD values for the estimates from the uni-
formly distributed datasets. However, the variability in the 
sr estimates, RSD = 11.0 %, was worse than the variability of 
the estimates from the uniformly distributed sets (compare 
Tables 1 and 2). The nr value was therefore increased to 
120, but the variability of the sr estimates did not improve, 
RSD = 12.2 %. Further changes of the n0 and nr values were 
made, the increase in the nr value caused a deterioration 
in the sr variability: with n0 = 110, nr = 90 and n0 = 100, 
nr = 140 the RSD values were 10.6 % and 17.0 %, respec-
tively. The RSD values for the s0 estimates remained almost 
the same: 8.6 %; and 8.0 %. In this context, it should be 
emphasized that three of the four variants used differed in 
the nr values but not in n0, n0 = 100. This meant that these 
three variants repeatedly computed the s0 estimates from 
exactly the same subsets of di differences and c

i
 values; the 

calculations of these estimates differed only in the values of 
the sr estimate in Eq. (14).
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In the datasets simulated with the exponential distribu-
tion, 60 % of di differences were from the concentration 
range where s0

2 > s2
r
c
2 . This meant that when n0 was chosen 

equal to 100 or 110, only suitable differences were used to 
estimate s0. The overestimation of the means of zeroth esti-
mates was low, ≤ 10 %, so the average correction proportions 
were small, < 20 %, and the correction practically did not 
change the variability of the estimates, the VF/VZ ratios were 
approximately 1 (see Table 3). On the other hand, with the 
chosen nr values equal to 100, 120 and 140, a certain pro-
portion of the differences used in the sr estimations always 
came from the concentration range where s0

2 > s2
r
c
2 and 

the s0
2 component was up to 1.7 times, 3.2 times and 6.5 

times larger, respectively. In the second and third cases, the 
average correction proportions were 47.0 % and 58.3 %, 
respectively, (see Table 3), i.e., differences less suitable or 
even unsuitable for estimating sr accounted for a substantial 
part of all dri differences included in the calculation. The 
estimate set obtained by the 100/140 variant, i.e., with the 
highest correction proportion, had the highest variability of 
the final estimates (see Table 2, RSD = 17 %, or the box 
plot in Fig. S2d in ESM_1.pdf). This set contains the most 
outlying value, the minimum, of all sr estimate sets and this 
set is also the most skewed; both these phenomena are not 
significant (see Table S8 in ESM_1.pdf). This set also has 
the highest VF/VZ ratio, 2.8 (see Table 3).

For the parameter estimate sets obtained by the proposed 
procedure, the RME values were low. The highest abso-
lute RME values were below 1.4 % and 3.8 % for s0 and 
sr, respectively; the p-values of the t-tests did not indicate 
statistical significance of the RME values (see Table 2).

The evaluation of the s0 and sr estimates obtained by the 
different variants of the proposed procedure from the data-
sets with uniform and exponential distribution confirmed 
that the higher included proportion of differences that are 
less suitable and unsuitable for estimating the parameter 
leads to a higher variability in the estimates obtained. A 
positive correlation was proved between the correction 
proportion and the RSD of estimates. Furthermore, it was 
proved that due to the large variability of the individual val-
ues of the correction proportion, its high overestimation or, 
on the contrary, underestimation will result in a large nega-
tive or positive error in the parameter estimation, respec-
tively. These issues are documented in detail and discussed 
in ESM_1.pdf (see Text S5 and Tables S9, S10 and S11). 
Thus, when estimating parameters, a high value of the cor-
rection proportion indicates the inclusion of a large propor-
tion of differences unsuitable for estimation as well as the 
risk of a large negative estimate error.

The estimates obtained by the regression procedure

The sets of s0 and sr estimates from the datasets with the uni-
form and exponential distribution were also obtained by the 
four variants of the regression procedure. These estimates 
were mainly used for a comparison with those obtained by 
the proposed procedure.

No RME value of these estimate sets differed statisti-
cally significantly from zero (see the p-values of the t-test 
in Tables 1 and 2). However, as in the previous assessments 
(se subchapter 3.2.2), the variability of the estimates was a 
more important assessing factor than their bias. The results 
presented unequivocally show that of the four regression 
procedures used, the RMS WLS procedure provided the 
best estimates. The s0 and sr estimate sets obtained by this 
procedure from both types of datasets had acceptable RME 
values. A worse RME value, -2.7 %, was found for the s0 
estimate set from the uniformly distributed datasets. The 
RSD values show that the RMS WLS procedure estimated 
the parameters with lower variability than the other regres-
sion procedures (see Tables 1 and 2 and Fig. S2 in ESM_1.
pdf). The highest RSD value of the sets obtained by this 
procedure, 15.8 %, was again found for the s0 estimates from 
the uniformly distributed datasets.

When the s0 and sr estimates were calculated using the 
MAD WLS procedure, the indicators evaluating their quality 
turned out to be substantially worse. This was rather surpris-
ing because the random measurement errors were simulated 
with a normal distribution (see above) and the MAD estima-
tion of SD was proposed just for this type of distribution. 
The RSD values were worse in all four cases and the RME 
values were worse in three cases, except for the above-men-
tioned case of the s0 estimates obtained from the uniformly 
distributed datasets.

Using the OLS method, the quality of the estimates 
obtained was even worse. For example, the RSD values for 
the s0 estimates increased to several tens of percentage, espe-
cially in the case of the uniformly distributed datasets. The 
parameter estimates obtained by the MAD OLS procedure 
from this type of datasets had the highest RSD values, 76 % 
and 20 % for s0 and sr, respectively.

Based on the RSD values of the estimate sets obtained by 
the regression methods tested, the best estimates were pro-
vided by the RMS WLS procedure, then the MAD WLS, and 
finally the RMS OLS and MAD OLS procedures. A similar 
assessment of the regression procedures was obtained on 
the basis of the results of the t-tests evaluating the statisti-
cal significance of the s0

2 and s2
r
 estimates (see Text S6 and 

Table S12 in ESM_1.pdf).
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The plots of ||di|| or ||dri|| against ci

Figure 3 shows several examples of these plots for the 
datasets with the uniformly distributed concentrations. 
Figure 3a, b depict the plots with the ||di|| and ||dri|| values for 
a representative dataset. Based on the s0 and sr estimates 
in Table S5 (ESM_1.pdf), dataset no. 5 was unequivocally 
selected as representative. The curves were calculated 
from the estimates obtained by the RMS WLS procedure 
and the proposed procedure (variant c = 4). Both curves are 
nearly identical to the curve calculated from the true val-
ues. The following plot (see Fig. 3c) displays the values for 
a dataset where, in the range with concentrations less than 
3 cu, the ||di|| values have lower variability than the values 
in the reference plot in Fig. 3a. This absence of higher ||di|| 
values could explain why the s0 estimates obtained by the 
variants of the proposed procedure as well as by the RMS 
WLS procedure are underestimated (see the estimates from 
dataset no. 6 in Table S5 in ESM_1.pdf). Similarly, the 
plot in Fig. 3d shows an absence of high ||dri|| values at con-
centrations above 7 cu in comparison with the reference 
plot in Fig. 3b. All sr estimates obtained from this dataset 
are underestimated (see the estimates from dataset no. 10 
in Table S5 in ESM_1.pdf). These two examples show that 
deviations of the estimates from the true parameter values 

can also be caused by random changes in the variability of 
the simulated duplicate concentrations.

Figure 4a, b depict the plots for a representative exam-
ple selected from the datasets exponentially distributed, see 
the estimates obtained from dataset no. 8 in Table S6 in 
ESM_1.pdf. The proposed estimates were calculated using 
the 100/100 variant. A comparison of the plots in Figs. 3a 
and 4a reveals differences between the point arrangements in 
the case of the datasets distributed uniformly and exponen-
tially. The points for the exponentially distributed datasets 
are mainly cumulated in the range with lower concentra-
tion values (ca. c < 4 cu). Thus, the number of di differences 
suitable for estimating s0 is higher than in the case of the 
uniformly distributed datasets, while the number of dri dif-
ferences suitable for estimating of sr is lower. This might 
explain the lower variability of the s0 estimates obtained 
from the exponentially distributed datasets than from the 
datasets distributed uniformly, which applies to the estimates 
calculated by all procedures, and also the higher variability 
of the sr estimates from the exponentially distributed data-
sets, this only applies to the estimates calculated by the vari-
ants of the proposed procedure (see Tables 1 and 2).

Figure 4c depicts a plot for a dataset with the exponential 
distribution, where there is a point that appears to be an 
outlier—the point with the highest concentration and the 
highest ||di|| value. However, the plot in Fig. 4d shows that 

Fig. 3  Plots of the absolute 
differences, |di|, and absolute 
relative differences, |dri|, of the 
duplicates against the mean 
concentration,c

i
 , (blue ×) for the 

uniformly distributed datasets 
a and b no. 5; c no. 6; and d 
no. 10 (the s0 and sr estimates 
obtained from these datasets 
see Table S5 in ESM_1.pdf). 
The three curves depicted in the 
plots express the dependences 
between the standard deviations 
of the di and dri values and the 
concentration; these standard 
differences equal √2sc and 
√2sc/c, respectively; sc was 
calculated by Eq. (7) substitut-
ing for s0 and sr: (black □) true 
values; (green ○) estimates 
obtained by the RMS WLS 
procedure; (red ∆) estimates 
obtained by proposed proce-
dure—variant c = 4
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the corresponding ||dri|| value does not look extremely high 
compared to the other ||dri|| values from the concentration 
range with nearly constant RSD. These plots depicts dataset 
no. 2. The estimates obtained from it are given in Table S6 
in ESM_1.pdf. It is interesting to compare the parameter 
estimates calculated by the investigated procedures from this 
dataset with and without this critical point (see Table 4).

When a regression procedure based on the RMS estima-
tion was used the above-mentioned di difference caused 
an overestimation of the sc estimate for the segment with 
the highest concentrations. Thus, the resulting sr estimate 
was also overestimated, especially in the case of the OLS 
regression. After excluding the critical point, the sr esti-
mates obtained by the procedures RMS OLS and RMS 
WLS improved considerably; they decreased from 125 % 
to 93 % and 109 % to 98 % of the true value, respectively. 
Moreover, in the case of the RMS OLS procedure, the sub-
stantial reduction in the sr estimate was associated with an 
enormous improvement in the s0 estimate, from 33 % to 
92 %. The new s0 estimate was significant as opposed to 
the original (see Table S12 in ESM_1.pdf). Since the MAD 
method provides robust estimates, after that exclusion, the 
sr estimates obtained by the MAD OLS and MAD WLS 
procedures changed only slightly, they increased by 4 % and 
1 %, respectively. The sr estimates obtained by the four vari-
ants of the proposed procedure were acceptable both before 
and after the exclusion. After the exclusion, the estimates 

decreased by less than 2.5 % of the true value. This suggests 
that the proposed procedure was robust against such a type 
of di outliers since the dri values were processed, while the 
RMS WLS procedure proved to be less robust in this case, 
even though it generally gave better parameter estimates.

Comparing the estimates obtained by the newly proposed 
and regression procedures

The s0 or sr estimate sets obtained by the proposed and 
regression procedures from the datasets simulated with the 
uniform and exponential concentration distributions were 
compared according to variability. Tables 1 and 2 show 
that the RSD values of the s0 and sr estimates obtained by 
the RMS WLS procedure, the best regression procedure, 
are either as good as or better than the RSD values of the 
estimates obtained by the variants of the proposed proce-
dure (see also the box plots on Fig. S2 in ESM_1.pdf). At 
the same time, the RMS WLS procedure has been shown 
to provide such estimates reliably, while in the case of the 
proposed procedure there is a risk of unsuitable choice of 
n0 or nr values, which will cause an unnecessary increase 
in the estimate variability. Only in the case of sr estimates 
from the exponentially distributed datasets, the estimates 
obtained by all variants of the proposed procedure had 
substantially higher variability than those obtained by the 
RMS WLS procedure. The lowest RSD value of the sr 

Fig. 4  Plots of the absolute 
differences, |di|, and absolute 
relative differences, |dri|, of the 
duplicates against the mean 
concentration,c

i
 , (blue ×) for 

the exponentially distributed 
datasets a and b no. 8; c and d 
no. 2 (the s0 and sr estimates 
obtained from these datasets see 
Table S6 in ESM_1.pdf); (blue 
●) outlier. The three curves 
depicted in the plots express 
the dependences between the 
standard deviations of the di and 
dri values and the concentration; 
these standard differences equal 
√2sc and √2sc/c, respectively; 
sc, was calculated by Eq. (7) 
substituting for s0 and sr: 
(black □) true values; (green 
○) estimates obtained by the 
RMS WLS procedure; (red ∆) 
estimates obtained by proposed 
procedure—variant 100/100
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estimates achieved by the variants of the proposed pro-
cedure was about 11 %, the variants 100/90 and 100/100, 
while in the case of the RMS WLS procedure, the RSD 
value was only about 6 %.

In some cases, the variances of sets of the s0 and sr esti-
mates obtained by variants of the proposed procedure were 
much greater than the variances of the estimates obtained 
by the RMS WLS procedure, e.g., more than three times 
(see Tables 1 and 2). However, a value of the V/VR ratio 
greater than 4.03, which is the critical value for a two-sided 
F-test at α = 0.05, was found only once, for the sr estimate 
set obtained by the variant 100/140 from the exponentially 
distributed datasets. Its value was 7.8 (see Table 2). In this 
calculation, the average correction proportion was 58.3 % 
(see Table 3). At the limit of significance was the V/VR ratio 
for the sr estimates obtained by the variant 100/120, its value 
was 4.0. For s0 estimates, the highest V/VR ratio, 3.7, was 
found for the set obtained by the variant 100/100 from the 
uniformly distributed datasets (see Table 1). In this calcu-
lation, the average correction proportion was the largest, 
63.2 % (see Table3). This set of estimates was non-normally 
distributed and had two outlying minima (see Fig. S2a and 
Table S7 in ESM_1.pdf).

The parameter estimates obtained by regression proce-
dures other than the RMS WLS procedure had generally 
higher variability than those obtained by the variants of 
the proposed procedure (see Tables 1 and 2 and Fig. S2 in 
ESM_1.pdf). Only in the case of sr estimates obtained from 
the exponentially distributed datasets, the RSD values of the 
estimates obtained by both procedures were mostly compa-
rable. However, the estimate sets obtained by the variants, 
where extremely high proportions of differences unsuitable 
for estimation were intentionally included, had higher RSD 
values than those obtained using the MAD WLS procedure. 
These were the two sets of estimates calculated with the 
maximum average correction proportions mentioned above, 
i.e., the estimates of sr and s0 from the exponential and uni-
form concentration distribution by the 100/140 and 100/100 
variants, respectively.

The parameter estimate sets obtained by the different 
variants of estimating procedures were also compared by 
Spearman′s correlation coefficients (see Tables S14 and S15 
in ESM_1.pdf). Cases were found where two series of the 
s0 or sr estimates obtained from a given set of simulated 
datasets by two compared procedures correlated significantly 
positively, the critical value was 0.65 [26]. Of course, such a 
correlation coefficient may occur if two compared series of 
estimates were obtained by similar procedures, e.g., by two 
variants of the proposed procedure or by the RMS WLS and 
RMS OLS procedures. As the main objective of this paper 
was to evaluate the proposed procedure, particular atten-
tion was paid to significant correlation coefficients related to 
the pairs of estimates obtained by a variant of the proposed 

procedure and the RMS WLS procedure, as the best of the 
tested procedures.

When studying the uniformly distributed datasets, signifi-
cant correlations were found between the estimates obtained 
by the RMS WLS procedure and the proposed procedure for 
the following estimate sets: the sr estimates computed by 
all four variants of the proposed procedure, the correlation 
coefficients were from 0.71 to 0.88, and also the s0 esti-
mates computed by the variant c = 2.6, the coefficient was 
0.84. These estimates were calculated only from differences 
suitable for estimating the parameter in question. Table 3 
shows that the values of the average correction proportions 
for these estimate sets were low: for the sr estimate sets the 
maximum value was 15.2 % and for the set of s0 estimates 
the value was 37.3 %. The remaining sets of s0 estimates 
with insignificant correlation coefficients, their values from 
− 0.02 to − 0.31, were calculated from differences with a 
high proportion of values less suitable or unsuitable for esti-
mating—the average correction proportions for the estima-
tions were from 56.5 % to 63.2 %.

In the case of the exponentially distributed datasets, all 
sets of s0 estimates obtained by the proposed and the RMS 
WLS procedure were significantly correlated, with coef-
ficients ranging from 0.71 to 0.79. Again, these estimates 
were calculated only from suitable differences, the average 
correction proportions for these sets of estimates being less 
than 20 %. The sr estimate sets obtained by the proposed 
procedure variants did not correlate with those obtained by 
the RMS WLS procedure—the coefficient values ranged 
from 0.19 to 0.45. The variability of these sr estimates was 
higher than that obtained by the RMS WLS procedure, the 
V/VR ratio was greater than 3. For the 100/120 and 100/140 
variants, V/VR was 4 and 7.8, respectively, and the average 
correction proportion was also high, at 47.0 % and in par-
ticular 58.3 %. However, the average correction proportion 
values for the 110/90 and 100/100 variants were acceptable, 
30.3 % and 35.9 %, respectively.

Significant correlations between the sets of estimates 
obtained by the RMS WLS procedure and the proposed 
procedure were only found when the average correction pro-
portions were low. However, this condition may not be suf-
ficient. In cases where the proposed procedure and the RMS 
WLS procedure provided the sets of correlated estimates 
which additionally had comparable variances and insignifi-
cant biases, it can be stated that both procedures provided 
very similar estimates.

The results found showed that the proposed procedure 
can provide as good estimates as the RMS WLS procedure. 
However, the RMS WLS procedure provides parameter esti-
mates with a low level of variability reliably, whereas in 
the case of the proposed procedure, a particularly improper 
choice of n0 or nr may result in unnecessarily high variability 
in the estimates obtained. Moreover, the results indicated 
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that an appropriate selection of differences does not in itself 
guarantee the achievement of the variability of estimates 
ensured by the RMS WLS procedure. The results showed, 
at least for the estimation of sr, that with a low proportion 
of differences suitable for estimating, the estimates obtained 
by the proposed procedure may not have as low variability 
as those obtained by the RMS WLS procedure. The RMS 
WLS procedure and regression procedures generally provide 
the single best estimate of the pair s0 and sr achievable by 
the chosen procedure from the processed dataset, while the 
proposed procedure allows the user to obtain one of the pos-
sible pairs of s0 and sr estimates that match well the dataset. 
To estimate a given parameter, they use all differences in 
the processed dataset, not just a certain part of them. On 
the other hand, the RMS WLS calculation is statistically 
more complex than the calculation of the proposed proce-
dure, especially the iterative calculation of WLS regression, 
and places great demands on the user's knowledge. In the 
range with very high concentrations, the proposed procedure 
proved to be more robust against outlying di differences than 
the RMS WLS procedure.

Comparison of the simple Nordtest procedure [13] 
and the proposed procedure

As mentioned above (see Introduction), the simple pro-
cedure proposed in Nordest NT TR 537 [13] has a major 
defect. If the duplicate differences are distributed from zero 
over a wide range of concentrations, the variance of absolute 
or relative differences, or both, is not constant, although the 
estimation according to Eq. (2) requires a constant variance 
of the differences processed. This leads to an overestima-
tion of estimate of the corresponding parameter. It can be 
documented, e.g., by the so-called zero estimates, which 
were calculated from the sets with n = 20 000 (see Text 
S3.2 and Table S3 in ESM_1.pdf). These were estimated in 

the same way as prescribed by the simple procedure—from 
two non-overlapping parts of the entire set of differences. 
Table 5 shows these estimates for different concentration 
distributions of differences and for differently chosen bound-
ary concentrations between the subsets of differences at the 
calculation of s0 and sr. No results for the normal distribu-
tion are included in the table, since all differences in this set 
can legitimately be used to estimate sr according to Eq. (2), 
except for a few outliers. It can be seen that one of the s0 
and sr estimates tends to be somewhat more overestimated, 
the values for the higher estimates from the pairs are in the 
range of 125 % to 167 % of the true values. The minimum 
was an estimate of s0 from the uniformly distributed set, 
the maximum was an estimate of sr from the exponentially 
distributed set, in both cases the sets were divided in the 
same way, n0 = nr = 10 000. It is obvious that the overestima-
tion is influenced by the distribution of the concentration of 
the measured duplicates—exceptionally unfavorably if the 
duplicates are accumulated mainly in the middle part of the 
concentration range. The overestimation also depends on the 
choice of subsets, which is given by a somewhat subjective 
decision of the solver. Thus, it may be the case that the rela-
tive errors of both parameters will be comparable. Such an 
overestimation will be smaller than when the overestimation 
is mainly reflected in the estimation of one parameter. Thus, 
with a favorable concentration distribution of differences and 
at the same time with a random selection of suitable subsets 
of differences, the estimation errors could be relatively small 
and possibly acceptable in terms of the use of estimated 
parameters. Otherwise, the error of the estimate may well 
be unacceptably high. However, the simple procedure does 
not address the question of the magnitude of the estimation 
error caused by the unjustified use of Eq. (2).

The proposed procedure starts in the same way as the 
simple procedure above. However, the selected subsets of 
differences should overlap in order to make the most of the 

Table 5  Zeroth s0 and sr estimates obtained by different variants of 
the proposed procedure from pairs of datasets with 20 000 simulated 
duplicate differences (di—absolute, dri—relative) with selected con-
centration distributions; Estimation—the mean of two estimates cal-

culated by s
0
=
�

∑
d
2

i
∕2n

0
 and s

r
=
�

∑
d
2

ri
∕2n

r
 , expressed in per-

centages of the true parameter values; n0 and nr—numbers of 
duplicates for calculation of s0 and sr; c – concentration at the bound-
ary between the subsets of the n0 and nr duplicate differences

Distribution Uniform Uniform Uniform

n0/nr 10 000/10 000 8 500/11 500 6 000/14 000
c 5 4.25 3
Parameter s0 sr s0 sr s0 sr

Estimation 167.1 % 104.3 % 151.6 % 105.1 % 127.6 % 107.3 %
Distribution Log-normal Log-normal Exponential
n0/nr 11 000/9 000 15 000/5 000 10 000/10 000
c 1.09 1.60 1.63
Parameter s0 sr s0 sr s0 sr

Estimation 105.0 % 163.6 % 108.4 % 137.6 % 107.3 % 124.6 %
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information provided by the dataset. Equation (2) is used 
only for the preliminary estimate and for the zeroth estimate 
of one parameter at the beginning of the iterative calcula-
tion. Iterative calculations with correction achieve steady 
values of unbiased estimates. In addition, the procedure is 
complicated by the selection of subsets of differences, as 
appropriate as possible for estimating the parameters, in 
order to obtain estimates with low variability. The price of 
non-biased estimates is the complexity of the procedure.

Conclusions

Equation (7) may form the basis for expressing the measure-
ment uncertainty of an analyte in a specific type of samples 
by a given method over the entire measurement range by a 
single uncertainty function. A new procedure has been pro-
posed to estimate the parameters of this equation for repeat-
ability SD from duplicated results measured on routine sam-
ples of a specific matrix and with a wide concentration range 
starting around LOD. The proposed procedure does not use 
regression, so it could serve as an alternative to previously 
proposed regression procedures, which, due to the heterosce-
dasticity of the processed data, require the use of statistically 
demanding weighted regression. The s0 and sr parameters 
are estimated from selected subsets of differences from the 
lower and respectively upper parts of the concentration range 
of the entire processed data set. Equations (13) and (14) 
derived for estimating individual parameters are based on 
the root mean square of the absolute and relative differences 
with a subtracted correction term eliminating the influence 
of the second parameter. By using sequential iterative steps, 
unbiased estimates are achieved. Comparison of estimates 
obtained by different procedures from Monte Carlo simu-
lated datasets showed that the proposed procedure can pro-
vide estimates with variability comparable to those obtained 
by the best tested regression procedure. However, this is 
conditioned by (i) an appropriate choice of the difference 
subsets, which is dependent on the user's decision, but also 
(ii) by a sufficiently large proportion of differences suitable 
for estimation of each parameter in the processed data set, 
which is given by the concentration distribution of the pro-
cessed data set. The appropriateness of the choice of these 
subsets can be assessed according to the correction propor-
tion and equivalence concentration, but these can only be 
determined from parameter estimates. Therefore, after the 
first attempt at estimation of the parameters, it may turn out 
that it is necessary to repeat the estimation with a better 
choice. From this point of view, the proposed procedure is 
complicated, it requires a heuristic approach of the user.

The proposed procedure was tested only on Monte Carlo 
simulated datasets. Its real possibilities will become appar-
ent if it is applied to empirical datasets. The procedure 

should therefore be further tested by processing empirical 
datasets with duplicated results. The estimates thus obtained 
should be compared with those obtained by the RMS WLS 
procedure.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00769- 023- 01556-9.
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