Requirements Engineering
https://doi.org/10.1007/s00766-023-00411-0

ORIGINAL ARTICLE q

Check for
updates

Advances in automated support for requirements engineering:
a systematic literature review

Muhammad Aminu Umar'2® . Kevin Lano’

Received: 28 July 2023 / Accepted: 25 November 2023
© Crown 2024

Abstract

Requirements Engineering (RE) has undergone several transitions over the years, from traditional methods to agile approaches
emphasising increased automation. In many software development projects, requirements are expressed in natural language
and embedded within large volumes of text documents. At the same time, RE activities aim to define software systems'
functionalities and constraints. However, manually executing these tasks is time-consuming and prone to errors. Numer-
ous research efforts have proposed tools and technologies for automating RE activities to address this challenge, which are
documented in published works. This review aims to examine empirical evidence on automated RE and analyse its impact
on the RE sub-domain and software development. To achieve our goal, we conducted a Systematic Literature Review (SLR)
following established guidelines for conducting SLRs. We aimed to identify, aggregate, and analyse papers on automated
RE published between 1996 and 2022. We outlined the output of the support tool, the RE phase covered, levels of automa-
tion, development approach, and evaluation approaches. We identified 85 papers that discussed automated RE from various
perspectives and methodologies. The results of this review demonstrate the significance of automated RE for the software
development community, which has the potential to shorten development cycles and reduce associated costs. The support
tools primarily assist in generating UML models (44.7%) and other activities such as omission of steps, consistency check-
ing, and requirement validation. The analysis phase of RE is the most widely automated phase, with 49.53% of automated
tools developed for this purpose. Natural language processing technologies, particularly POS tagging and Parser, are widely
employed in developing these support tools. Controlled experimental methods are the most frequently used (48.2%) for
evaluating automated RE tools, while user studies are the least employed evaluation method (8.2%). This paper contributes
to the existing body of knowledge by providing an updated overview of the research literature, enabling a better understand-
ing of trends and state-of-the-art practices in automated RE for researchers and practitioners. It also paves the way for future
research directions in automated requirements engineering.

Keywords Requirements engineering - Automated RE - Automation - Support - Systematic literature review

1 Introduction

Software Development is a complex process with ever-chang-
ing technologies and requirements, primarily due to busi-
ness process changes. A critical activity in software devel-
opment is Requirements Engineering (RE), which focuses
on software systems' real-world objectives, functions, and

> Muhammad Aminu Umar
aminu.umar @kcl.ac.uk

Department of Informatics, King’s College London, Strand,
London WC2R 2LS, UK

Department of Computer Science, Ahmadu Bello University,
Zaria, Nigeria

Published online: 03 February 2024

constraints [1]. Requirements engineering has high signifi-
cance for the quality of the software product. Owing to its
inherently complex and interdisciplinary nature, RE is a chal-
lenging field in software and systems development; it is cru-
cial for development success [2]. The RE process emphasises
the systematic and recursive techniques that ensure system
requirements' completeness, consistency, and relevance [3].
This implies that the RE process aims to establish a robust
foundation for system development, and the process strives
to minimise errors, enhance stakeholder communication,
and increase the chances of developing a successful system.
Requirements engineering is a crucial process that involves
capturing and analysing stakeholder needs, and natural lan-
guage documents serve as one of the compelling mediums

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-023-00411-0&domain=pdf
http://orcid.org/0000-0001-9433-2409
http://orcid.org/0000-0002-9706-1410

Requirements Engineering

for expressing and documenting those requirements over the
years.

Natural language (NL) plays a significant role in require-
ments engineering as it is the primary means of commu-
nication between stakeholders and the software develop-
ment team. This accounts for 79 per cent of all documents
[4]. Software requirements are primarily written in natural
language [5—7]. Therefore, the role of NL in requirements
analysis and documentation cannot be overemphasised, as
already highlighted in a study by Ryan in 1993 [8]. Although
natural language is inherently object-oriented and descrip-
tive, possessing strong representation power, its syntax and
semantics are not formal enough to serve as a programming
language; thus, requirements documentation written in NL
needs to be reinterpreted into a formal specification language
by software engineers [9]. While natural language require-
ments can present challenges, such as ambiguity or sub-
jectivity, employing systematic approaches and leveraging
natural language processing (NLP), techniques can improve
the effectiveness and efficiency of the RE process in dealing
with natural language artifacts. Natural language process-
ing provides essential techniques for extracting information
from descriptions of textual requirements, such as use cases,
scenarios, user stories, and transcripts of conversations for
requirements elicitation [10]. The applications of NLP
for RE are studied in [11], which identifies six categories
that encompass the possible activities of NLP in require-
ments engineering: classification, prioritisation, ambiguity
removal, requirements elicitation, requirements assessment,
and requirements analysis. To achieve these activities, vari-
ous automated frameworks and tools have been proposed
and developed. Automated requirements engineering aims to
reduce the amount of time and labour expenses of RE while
maintaining precise and thorough requirements.

Automated requirements engineering refers to using
software tools and techniques to support and automate
eliciting, analysing, specifying, validating, and managing
software requirements. These tools can help streamline and
optimise the requirements engineering process, which can
be complex and time-consuming. The concept of computer-
aided requirements engineering can be traced back to
the 1980 s, as early works by Teichroew and Sayani [12]
predicted that requirements engineers would eventually
need to transition from manual methods to computer-
aided approaches, much like how programmers have
replaced manual programming with online programming.
The goal of automation in requirements engineering is
to minimise the time, effort, and cost involved in the RE
process, as well as software development in general, while
simultaneously enhancing the quality and accuracy of
the requirements. This has been demonstrated in several
research works in the literature, encompassing various
aspects of requirements engineering activities. Automated

@ Springer

tools such as DoMoBoT [13], TRAM [14], TestMEReq
[15], ScenarioAmigo [16], SUGAR [17], CM-Builder [18],
aTouCan [19], Requirements-Collector [20] among others,
have been developed and empirically evaluated. However,
it is essential to note that these tools have yet to be widely
adopted on an industrial scale. Despite this, industry experts
and the research community recognise the need for tool
support to automate requirements engineering activities,
particularly in automatically generating Unified Modelling
Language (UML) diagrams [21]. These tools leverage
Artificial Intelligence (AI) capabilities to automate tasks
such as requirements elicitation, analysis, validation, and
management. Integrating automated tools and Al allows
for more efficient and effective handling of complex
requirements, improved accuracy, and the potential for
innovative approaches in software development.

Considering the vast potential of automated requirements
engineering, our objective is to investigate the advancements
achieved thus far in various aspects of these tools, including
the generated output, RE phases, extent of automation, and
tool evaluation methodologies. The motivation for this study
arises from the substantial impact of requirements engineer-
ing on software quality. Specifically, we aim to examine the
influence of automated RE on the requirements engineering
process and determine the added value compared to tradi-
tional RE approaches. Notably, there has been a significant
increase in research dedicated to automated RE recently. Con-
sequently, this paper presents a systematic literature review to
identify, evaluate, and analyse existing research on automated
requirements engineering. Thus, the contribution of this study
is summarised as follows: (i) Comprehensive Investigation:
the systematic review explores various dimensions of auto-
mated RE tools, including their output, the phases of RE they
target, the degree of automation they offer, and the method-
ologies used to evaluate these tools. (ii) Motivated by Soft-
ware Quality: the study is motivated by the substantial impact
that RE has on software quality. It seeks to understand how
automation influences the RE process and assesses its added
value compared to traditional RE methods. (iii) Timely and
Relevant: given the recent surge in research focused on auto-
mated RE, this paper addresses the current state of the field.
It systematically analyses existing research, offering valuable
insights into the advancements and trends in automated RE.
Consequently, it provides updated literature in the field.

The remainder of this paper is organised as follows:
Sect. 2 discusses the theoretical background, focusing on
traditional versus automated RE and the review of related
works. Section 3 describes the methodology employed for
the literature analysis. Section 4 presents the results of the
literature analysis. Section 5 provides a discussion of the
results. Finally, Sect. 6 concludes by explaining the limi-
tations of the study and highlighting prospects for future
research and directions.

Requirements Engineering

2 Background

Software requirements describe the structure of a software
application's development process and the software's pri-
mary goal and objectives for the development team. Thus,
providing information that specifies the outlook of a soft-
ware application. The process of creating, documenting,
and maintaining requirements statements is referred to
as requirements engineering. It is based on a framework
that outlines the key structural components and process
elements. It also offers a solid foundation for the process
fundamentals, guiding concepts and methods, not soft-
ware project- or development methodology-specific. The
framework proposed by [22], which is shown in Fig. 1, is
an example. To build a vision within an existing context,
the framework identifies the key structural components of a
requirements engineering process. The building block that
makes up the framework are System context; The three fun-
damental requirements engineering activities (Elicitation,
documentation, and negotiation); Two cross-sectional activi-
ties (Validation and management); and Requirements arte-
facts (Goals, scenarios, and solution-oriented requirements).
Over the years, there has been significant improvement in
the methodologies of RE processes. These processes range
from sequential (traditional RE) to more iterative and incre-
mental (agile RE). The traditional requirements engineering

— - > > —
iy ‘W ’
’ / y)
I/ ’ ‘
-
’ “ N
= L SystemyContext 7 =
\ i t
\ \ \
\ \ !
\ ‘/ 1
1
Subject ,' Subject N IT System | Development
facets facets 4 \ facets

Core Activities

z Z
= s«
S

2o X
= o |t H'—:“ E
(GFiS Documentation S &
9w e
hs h

8 s 2
S5 Negotiation 5

L2

Requirements Artefacts

m . [sommer | e
"

Solution-oriented
requirements

Fig.1 RE framework [22]

process's primary objective is creating a system require-
ments document for knowledge transfer. In contrast, agile
techniques emphasise direct interaction between customers
and agile teams to achieve a similar goal. Depending on the
application area, the individuals involved, and the organisa-
tion providing the requirements, several requirements engi-
neering procedures are employed [23]. According to Som-
merville, all processes have the following generic activities
(phases) in common:

® Requirements elicitation. The process of determining
and gathering requirements from sources such as
stakeholders. Both functional and non-functional
requirements are included here.

e Requirements analysis and specification. This is the
logical decomposition and structuring of the elicitation's
process. It involves having a thorough understanding
of the requirements and organising both the textual
information and the derived requirements into model
diagrams and written documentation.

e Requirements validation. Ensures that information is
gathered accurately and is organised well to fulfil system
business goals. This is accomplished by verifying the
documents' accuracy, completeness, and correctness and/
or models that describe requirements.

® Requirements management. This keeps track of changes
in requirements and ensures that those changes are made
to meet stakeholder’s requirements.

Traditional requirements engineering has mostly been
based on the idea that requirements exist implicitly in
stakeholders' minds and have focused on models and pro-
cedures to help identify and document such requirements
[24]. However, with the rapid growth and dynamics in the
software market, rapid changes in the business processes
and increases in customer demands, there is a need to adopt
methodologies that will accelerate software development.

2.1 The traditional requirements engineering
process

Requirements engineering in traditional software develop-
ment methodologies, such as the waterfall model, plays a
crucial role in the early stages of the development lifecycle.
It involves systematically gathering, analysing, validating,
and managing software requirements. The waterfall model
process activities are performed in a sequence of separate
steps where preferably each step is finished before the next
one begins [25]. A primary characteristic of this approach
is that the software is detailed up-front. Since each project
stage must be finished before moving on to the next, this
leads to much documentation. The traditional approach
starts with gathering and documenting a "complete” set of

@ Springer

Requirements Engineering

requirements, then moves on to architectural and high-level
design, development, testing and maintenance [23]. Figure 2
depicts the development phases in the waterfall model.
The RE activities typically constitute an earlier part of
the waterfall model before development activities begin, and
it is a reference point for subsequent development stages.
During RE in the waterfall model, requirements are often
gathered through interviews, meetings, and stakeholder
discussions [25]. These requirements are then documented
in a requirements specification document as a baseline
for the entire development process. One of the critical
characteristics of requirements engineering in the waterfall
model is its linear and sequential nature. Once requirements
are finalized and documented, they are expected to stay
the same throughout development. Any modifications
or additions to requirements may require formal change
requests and impact the project timeline and budget.
Requirements engineering is referred to as the first stage
of the development process in early waterfall models of
software development. However, more recent approaches to
software development (such as the Rational Unified Process
and Agile, among others) assume that requirements engi-
neering continues across the system's whole life cycle [26].
The plan-driven process nature of the waterfall model made
it compulsory to schedule and plan all the process activities
before starting work on them. This usually resulted in colos-
sal documentation. The model, however, is appropriate when
the requirements are precise and unlikely to change dramati-
cally during system development. The increasing need to
address the limitations of the traditional requirements engi-
neering process and software development has given birth
to methodologies like agile software development (ASD).
Additionally, customers need help explaining their require-
ments up front clearly. More so, the industry and technology
evolve too quickly, and requirements change at rates that
overwhelm established traditional methodologies [27]. Agile
development is characterized by quick, iterative, and incre-
mental development. Some standard requirements elicitation

Requirements
Definition

4

System and

Software Design
A

Implementation

and Unit Testing
3

Integration and

System Testing l

T Operation and
Maintenance

Fig.2 Waterfall model [23]

@ Springer

techniques in agile development are interviews, user stories
and rapid feedback. Text mining, an automated technique
for generating requirements documents, has gained recent
attention [28]. These methodologies have significantly con-
tributed to automating requirements engineering activities
and software development.

2.2 Automation of software engineering processes

Automated Software Engineering represents a critical
research area within software user requirements, as it cen-
tres on automating software processes to enhance the quality
and productivity of software development [5]. Automation
of software engineering processes involves using tools and
techniques to automate various tasks involved in the software
development process. These tasks include requirements anal-
ysis, software testing, software maintenance, code review,
and code analysis. Automation in software engineering pro-
cesses has become increasingly popular over the years, as it
can help improve the quality of software development pro-
cesses, reduce development time and costs, and increase the
efficiency of software development teams. In recent years,
there have been many research efforts in the automation
of software engineering processes, and several tools and
frameworks have been developed to automate various tasks
involved in software development, especially in require-
ments engineering processes. Most of the tools reported in
the selected primary studies are products of research efforts
in RE. Additionally, other software engineering aspects have
their share of the research outputs. Test data generation [29,
30], code generation [31, 32], code analysis [33], software
testing [34, 35], and software maintenance [36] have all been
areas of significant study. However, this study focuses on
works related to automated requirements engineering.
Automated requirements engineering is a field of software
engineering that leverages automation techniques to enhance
the effectiveness and efficiency of the RE process. Auto-
mated RE encompasses various activities within RE, such
as requirements elicitation, analysis, documentation, valida-
tion, and management, which can be automated using NLP,
machine learning (ML), knowledge-based systems, and
other artificial intelligence techniques. These techniques and
approaches have provided a new paradigm in the RE sub-
domain and software development in general. Even though
the tools that will help analyse requirements automatically
are still evolving through research, especially in using NLP
and other Al techniques to improve the quality, efficiency,
and consistency of the RE process. The existing commercial
graphical CASE tools significantly help document the output
of the Analysis and Design phases of software development
and aid in identifying incompleteness and inconsistencies
within an analysis [18]. Nevertheless, these tools do not con-
tribute to the challenging initial stage of the analysis process,

Requirements Engineering

which involves identifying the object classes, attributes, and
relationships utilised to model the problem domain.
Therefore, the systematic literature review (SLR) pre-
sented in this work aims to analyse and evaluate the available
research on automated RE comprehensively. The findings
of this review provide a valuable resource for researchers
and practitioners seeking to understand better the state of
the art in automated RE and its potential applications in
software development. In this study, we consider studies
that attempt to automate one activity of RE or the other.
Typically, these activities have traditionally been carried
out manually by human experts, and instead by automation
a tool has been employed to do such activities on behalf
of humans—for example, requirements elicitation, classi-
fication, modelling, checking requirements inconsistencies
and duplication, among others. In automated requirements
engineering, support tools are used to facilitate the activi-
ties of various components of the requirements engineering
framework, which constitute the majority of the activities
of RE. Over the years, many research efforts have been
automating RE activities from elicitation to requirements
management. These automation activities cut across various
domains, for example, mobile [37], scientific systems [38],
security [39], crowdsourcing [40], open-source applications
[41], safety—critical systems [42], and train protection [43].
Accordingly, the automated support comprises both core
framework activities and requirements artefacts.

2.3 Application of natural language processing
in RE

The services a software system should provide to satisfy the
needs and preferences of stakeholders are typically described
in software requirements, which are often expressed in nat-
ural language [24]. For a long time, natural language has
played a significant role in requirements engineering and
software development in general. However, natural language
is often a poor choice for representing requirements because
of its innate propensity for ambiguity, inconsistency, redun-
dancy, etc. [44—46]. Despite these shortcomings, natural lan-
guage is best for experimentation and communication. It is a
tool that human minds have evolved over millennia to use for
just that [47]. Natural language processing techniques facili-
tate text processing which aids RE activities. Requirements
elicitation is supported by extracting relevant lexical entries
from the vast textual data generated by elicitation techniques
(stakeholder interviews, group meetings, protocol analysis or
participant observation) [10]. Some NLP technologies and
techniques include rule-based techniques, Part-Of-Speech
(POS) tagging and Lexico-Syntactic Pattern (LSP), and
Speech act-based analysis techniques, among others.

On the other hand, despite the recent intensive efforts to
produce formal specifications and automated toolkits, the

practical significance of requirements documents expressed
in natural language and the demand for user participation
throughout the software development life cycle remain.
Nevertheless, the ambitious objective of automation of
RE activities is promising and has a stake in the future of
requirements engineering. A classic example is the selected
primary studies reported in this systematic review. The cur-
rent state of the art of NLP technology has proven it is pos-
sible to automate requirements analysis and save significant
time analysts spend [48]. Most studies reviewed in this study
have applied one NLP technique or the other to demonstrate
how RE activities can be automated.

2.4 Summary of related literature reviews

To understand what has been previously researched and
avoid duplication of research efforts in the identification,
evaluation, and analysis of literature through a systematic
literature review, we searched literature reviews and surveys
in this subject area. This process helps us gain insights
into the current state of research and establish the need for
the SLR. Following an extensive search, we discovered
publications that have conducted systematic reviews
or surveys on various aspects of software development
pertaining to requirements engineering. This section presents
examples of literature reviews related to automated RE found
in software engineering research literature. The summary
of these reviews is presented in Table 1. Consequently, we
summarise the distinctions between these previous studies
and the present one in the final paragraph of this section.

In 2011, Yue et al. [49] systematically reviewed
approaches for transforming user requirements into analysis
models. The review focused on studies that converted tex-
tual specifications into models for analysis, especially from
publications from 1996 to 2008. The analyses established
16 techniques from the literature that were employed by
numerous publications reviewed. In analysing the findings,
they found that no existing methodologies were sufficiently
efficient, could automatically or semi-automatically produce
a complete and consistent analysis model, or needed accept-
able user efforts to specify requirements. They also noted
that the majority of methods did not handle traceability. As
a result, they advocated for developing a traceability system
to establish and maintain relationships between requirements
items and analysis model elements. However, the impact
of the transformation approaches on RE phases was not
mentioned.

In 2012, Carrillo de Gea et al., [50] surveyed to assess
the capabilities of requirement engineering tools. The sur-
vey's objectives were to gain insights into the extent to
which requirements engineering tools support the require-
ments engineering process. The findings revealed that most
tools were delivered under proprietary licenses and were

@ Springer

Requirements Engineering

Table 1 An overview of related work

Reference Year Goal

Research questions

Yue et al. [49] 2011 Examine published works that create analysis
models from textual requirements

Carrillo de Gea et al. [50]

Meth, Brhel et al. [51] 2013 Review state of the art research in automated

requirement elicitation

Yang et al. [52]

areas

Abdouli et al. [53]

2012 Depict the state-of-the-art of RE tools

2014 Review modelling techniques, requirements
engineering activities, and domain of application

2016 Review existing approaches and propose other
alternatives for Requirement Engineering

RQI: What various techniques are employed to
transform requirements into analysis models?

RQ2: What are the present constraints on these
methods?

RQ3: What are the unresolved problems that require
more research?

Do current Requirements Engineering tools
adequately support the RE process?

What is the state of the art in research covering tool
support for automated requirements elicitation
from natural language documents?

RQ1: How are publications distributed in terms of
time, place, research group, and geographic region?

RQ2: What modelling techniques and RE activities
are being investigated?

RQ3: Which application domains and requirements
quality attributes are involved?

RQ4: Which techniques are more effectively utilized
and subject to more thorough evaluation?

RQS5: Which RE activities are presented and covered
in greater detail?

RQ6: What topics can we generalize about based on
the content provided the selected studies?

RQ7: How do modelling techniques and topics relate
to one another?

To provide an overview of works on requirement
analysis, as well as a comparison of these studies

Dawood and Sahraoni [54] 2017 Review the status of using NLP to process software To establish the status of the application of NLP in

requirements into UML diagrams

Schon et al. [55] 2017 Describe the current state of agile RE with a focus
on stakeholder and user interaction

Ahmed et al. [56]

Kolahdouz-Rahimi et al. [57] 2023 Examine existing works on requirements
formalisation using natural language processing

and machine learning

2022 Review automatic transformation of Natural
Language to Unified Modeling Language

processing software requirements to generate UML
diagrams

RQI1: What approaches are available that involve
stakeholders in the RE process and are appropriate
for ASD?

RQ2: Which agile approaches are available that can
show stakeholders the viewpoint of the user?

RQ3: What are the typical methods used in ASD for
managing requirements?

RQI1: What are the existing approaches to automate
the UML generation?

RQ2: How effective are the existing approaches?

RQI: What are the most used NLP/ML approaches
for automatic/semi-automatic requirement
formalisation?

RQ2: What are the input and output of RF
approaches?

RQ3: What are the gaps and deficiencies in existing
requirement formalisation work?

typically not free. Furthermore, it was observed that require-
ments elicitation enjoyed more significant support regard-
ing tools, while requirements modelling and management
had the least support. The analysis presented are limited to
proprietary tools.

Meth, Brhel, et al., [51] analysed the state of automated
requirements elicitation through a systematic review. In
the RE sub-domain, the review determined the state of
automated requirements elicitation at the time. The review

@ Springer

covered works on automated requirements elicitation from
1992 to 2012 by identifying and analysing 36 primary
studies. The review conceptualises an analysis framework
for works in automated elicitation and formulating future
research directions. In contrast, we provide analysis of the
development techniques and various RE phases the sup-
port tools address.

Through a systematic review, Yang et al. [52] studied
requirements modelling and analysis for self-adaptive

Requirements Engineering

systems. The review aimed to investigate past research
modelling techniques, RE activities, requirements quality
activities, research topics, and application areas. Accord-
ing to the findings, 16 modelling techniques were used in
11 RE activities, and the most frequently stated applica-
tion domains were online applications and service-based
systems. Additionally, they stated that most of the research
was conducted in American and European countries, mak-
ing them very difficult to apply appropriately in the dis-
course of requirements modelling in developing countries.
Our work is not limited to modelling methods but what
specific models were generated as output from the sup-
port tool.

The purpose of the study by Abdouli et al., 2016 [53]
was to survey works that transform requirements into
UML diagrams from early manual procedures in 1996 to
automated tools in 2015. The research also examined the
methods for transforming requirements into models, using
five trends of classification: inspection, NLP, heuristics,
patterns/graphs, and ontology. Furthermore, the advantages
and disadvantages of the reviewed tools were highlighted.
The authors concluded that the trend of integrating Al into
RE was promising. However, in this report, the analysis of
the tools reported are not systematic.

Dawood and Saraoui [54] conducted a survey study
of requirements engineering to UML using NLP. The
study comprised of a literature review of existing tools
to establish their strength and weaknesses; and a survey
with a questionnaire distributed among research groups,
academia, and practitioners. The results revealed that
most users/organisations still manually generated UML
diagrams from NL. The researchers drew their conclusion
on the understanding that more research in the field of NLP
was necessary to construct UML diagrams automatically
or semi-automatically efficiently. The analysis of strengths
and weaknesses presented in the literature was deduced by
the authors and not conducted systematically.

Schon et al. [55] examined agile RE through a systematic
literature review. The review focused on agile requirements
engineering, which investigated stakeholders’ involvement
in the process in the existing approaches. The methodologies
used to offer user perspective and requirement management
procedures were also investigated. The review covered
empirical works from 1995 to 2015. The findings showed
that ASD has a weak foundation for establishing a shared
understanding of the user perspective. The review also
revealed problems concerning the direct involvement of
users and stakeholders in ASD. As a result, they identified
four approaches incorporated into ASD by the selected
publication to understand user needs better. The approaches
were human-centred design, design thinking, contextual
inquiry, and participatory design. The review is limited to
agile requirements engineering.

Ahmed et al. [56] studied the automatic transformation
of natural language to UML. The study focuses on various
approaches used in the transformation by highlighting
their pros and cons and metrics. The study also proposed a
conceptual framework with further improvement guidelines.
The study identifies 70 primary studies covering from 1994
to 2021. However, the review did not take into account
the impact of these tools on the RE phase and evaluation
approaches for the tools selected in the primary studies.

Through a systematic review, Kolahdouz-Rahimi et al.
[57] examine requirements formalisation using NLP and
ML. The study reviewed 47 relevant studies and reported
that heuristic NLP approaches and deep learning are the
commonly used techniques for requirements formalisation
using NLP and ML respectively. The study also reported
difficulties in comparing the performance of different
formalisation approaches due to the absence of standard
benchmarks cases for requirements formalisation. The
study focused on assessing the evaluation criteria without
discussing the analysis methodologies.

While conducting an extensive systematic literature
review, our study endeavours to compile and analyse existing
evidence concerning automated requirements engineering
and its potential implications for future research. In contrast
to the previously mentioned studies, the present study
delves into the specifics of automated RE activities across
distinct phases of the RE process. Unlike previous literature
reviews, which offered a more generalized perspective, our
study scrutinizes the automation efforts pertaining to key
RE phases, including elicitation, analysis and specification,
validation, and management. Furthermore, we aim to shed
light on the diverse technologies and techniques employed
in the automation process, as well as the resultant outcomes
produced by supporting tools. As a result, our study seeks to
establish connection between automation and the different
activities of RE within the realm of software development.
Our objectives include exploring the extent to which
automation has been integrated into various stages of the
software development lifecycle, its significance, identifying
best practices, evaluation methods, and assessing the value
it has contributed to the RE domain compared to traditional
RE approaches.

3 Methodology

Evidence-Based Software Engineering seeks to enhance
decision-making concerning software development and
maintenance by fusing the most recent research's best
evidence with real-world knowledge and ethical princi-
ples [58]. The systematic literature review, which focuses
on identifying, classifying, and evaluating the extent of
research in a particular study topic, is a crucial technique

@ Springer

Requirements Engineering

for evidence-based software engineering. Accordingly, the
systematic literature review is a common and frequently
used methodology in software engineering [59]. Conse-
quently, this review aims to identify, assess, and interpret
all the available research related to automated requirements
engineering support. Therefore, we adhered to the recom-
mendations made in [60] for technical relevance and reli-
ability. Thus, we needed to outline the three critical phases
of our systematic review: planning, conducting, and docu-
mentation. Figure 3 shows a typical research methodology
for systematic literature review, which aided our review.

3.1 Research questions

This study investigated the empirical evidence of automated
RE support. As a review, it focused more on answering the
following research questions and their respective motivation,
as provided in Table 2. The SLR is limited to the investi-
gated and reported implemented tools to help in require-
ments engineering activities rather than the technicalities
of the approaches used as published in the primary studies.

3.2 Search strategies

Once the research questions were established, a set of
keywords aligned with the research objectives was selected
and used for the search. The search strategy was refined to
ensure the identification of relevant information that would
facilitate an effective and comprehensive investigation of
the research questions. Typically, this process involves four
steps: selecting appropriate digital libraries, identifying
additional search sources, determining relevant search
keywords, and establishing the time frame for published
articles. For this study, a search was performed across four
databases: ACM, Elsevier (Science Direct), IEEE Xplore,
and Springer. The decision to utilise these databases was
based on their accessibility, extensive coverage, and specific
relevance to the topic. These selected databases offer a wide
range of scholarly resources that are highly relevant to the
research topic.

ACM digital library (www.dl.acm.org)
Elsevier (www.sciencedirect.com)
IEEE Xplore (www.ieeexplore.ieee.org)
Springer (www.springerlink.com)

Protocol

Identify Relevant Studies

= Background
= Research Questions
= Selection Criteria

Phase 1: Planning

5
1
Define Research !
: 1
Questions = Search Strategy
o
I
I
1

Fig.3 Research methodology for SLR

Table 2 Research questions

I
1
1
1
1
Select Primary Studies :
1

Result

need for an * Descriptive : Ehaseis Reporting Report
= Quality Assessment Synthesis . . I

! v Checkylist Assess Study Quality » . Q{Jantitative 1| WriteReview » of SLR
1| Develop Review = Data Extraction Synthesis | Report 1
: Protocol = Data Synthesis L 1

No Research question

Motivation

RQ1 What type of output or models are generated by the automated
tools, and what is the added value according to published
empirical studies?

RQ2 Which requirements engineering phase is mostly automated?

RQ3 To what degree is the automation of the requirements engineering

support tool?

RQ4 What are the development techniques/ approaches employed in
developing the automated tools?

RQ5 How are these proposed automated tools evaluated?

Answering this question helped us to identify and establish the vari-
ous outputs produced by these support tools to facilitate require-
ments engineering activities

With this question, we were interested in identifying which of the
phases of requirements engineering researchers were interested in
having an automated support tool

Answering this question helped us to identify the extent of automa-
tion of the RE activity according to the published empirical studies

For this question, we were interested in identifying the development
techniques and technologies used in the proposed tools

Answering this question helped us identify the various evaluation
methods employed to evaluate the proposed tools

@ Springer

http://www.dl.acm.org
http://www.sciencedirect.com
http://www.ieeexplore.ieee.org
http://www.springerlink.com

Requirements Engineering

The major goal of the procedure was to find potential pri-
mary study candidate papers. Applying search parameters,
the title and the entire article text were searched. Inclusion
and exclusion criteria were used to filter the articles pub-
lished between 1996 and 2022, which were the only ones
that were found through the search. Details of the inclusion
and exclusion criteria are provided in Sect. 3.3.

Search terms/keywords were utilised to create
search strings to get the desired result and make the
search process more manageable. A comprehensive
search was completed in December 2022 using the
final combination of search terms interchangeably.
“requirements engineering” OR “requirement elicitation”
OR “requirement gathering” OR “software requirements
engineering” OR “requirements identification” OR
“requirements analysis” OR “requirements specification”
OR “requirements modelling” OR “software modelling”
OR “modelling” OR “requirements documentation” OR
“requirements validation” OR “model extraction” OR
“model generation” OR “requirements verification” OR
“requirements management”, AND (automat* OR Computer
Aided OR Computer Supported Software Engineering OR
computer-assisted).

These search strings were applied manually in each of the
databases, that is, based on the search functionality provided
by the database. Additionally, we treated each database
search as a learning and experimenting process. The first
author conducted the literature search, data extraction, and
analysis, while all authors undertook the review and quality
analysis.

3.3 Inclusion and exclusion criteria

After screening, the eligibility for selecting primary studies
was determined by applying inclusion and exclusion crite-
ria. Only studies that provided empirical data and findings
showcasing the implementation of automated requirements
engineering tool assistance for requirements formalization
were included to address the research questions.

The inclusion criteria: studies between 1996 and 2022.
This date range was defined based on the observation that
early work on automated RE emerged in 1995. Further,
English language studies; studies relevant to the specified

search string; peer-reviewed research, as well as original
studies were the other criteria.

While the exclusion criteria included: the primary
work that was not published as a chapter, or in conference
proceedings or journals; duplicate papers (papers with
conference and journal versions). More so, the subject was
not directly related to automated RE support; editorials,
keynotes, and short papers (less than three pages) were
not included.

3.4 Quality assessment

A quality assessment is carried out during the review
process to evaluate and validate the primary studies that
were previously identified. The fundamental goal of the
authors' quality assessment was to ensure (at least to some
degree) that our findings would be supported by good-
quality empirical research. According to Daun et al. [61]
there is no common standard for quality assessment.
However, the commonly suggested quantitative approach
to quality assessment is by including publications that
have been peer reviewed. Therefore, the quality assessment
criteria used by [62] were adopted. Accordingly, the
quality criteria offer a method for selecting suitable studies
that would add to the significance of this research and
were critically considered. As shown in Table 3, some of
the quality assessment questions related to the primary
studies' minimal quality threshold, rigour, credibility, and
relevance. The degree to which we could be confident
that the results of a particular study could significantly
advance the review was measured by these criteria. A
dichotomous scale ("yes" or "no") was used to grade the
quality assessment criteria, where 1 represents Yes and 0
represents No. As a result, studies with at least one "no"
response to the first three questions were disregarded
because this review needed to meet a minimum quality
threshold. Seven articles were eliminated when the quality
assessment criteria were applied. As a result, 85 research
in all were chosen as primary studies, accounting for
92.4% of all the studies that had their quality evaluated.
Any disagreements were resolved through discussion
among the authors.

Table 3 Quality assessment

. Quality threshold
criteria adopted by [62]

Quality assessment questions

Minimum review quality
requirement

1. The reported study is a research paper
2. The stated aim and objectives were crystal clear

3. The setting in which the research was conducted was adequately described

Rigour

4. The research design was suitable for addressing the research's objectives

5. There was an adequate description of the methods for data analysis

Credibility

Relevance

6. The study offered succinctly expressed findings supported by reliable data

7. They contributed to practice or research

@ Springer

Requirements Engineering

3.5 Primary study

After reviewing the studies, we found 85 primary papers
ranging from 1996 to 2022. These studies were collected
from journal articles, conference proceedings, and book
chapters. In the initial stage, 3853 studies were found by
applying the search string to the publication databases. The
studies were cut down to 425 after title-based selection.
Phase 3 saw the short-listed studies reduced to 268 after read-
ing the abstract and eliminating duplicate studies. Following
thorough text evaluation, 85 studies were determined to be
total. Figure 4 details all four stages of the selection process.
Table 9 lists the identified primary studies (Appendix).

3.6 Data collection/extraction

Data collection is one of the crucial stages in a systematic
review, and it is performed to extract information from
each selected primary study to address our research
questions. Data were collected manually from each of the
primary studies. The authors went through each paper
and manually extracted data into a prepared spreadsheet
template. Afterward, the extracted data were collectively
reviewed, and any conflicts were discussed and resolved.
Subsequently, the data were analysed as a group, and a
summary is presented in the results section. Furthermore,
we have summarised the collected data, which is presented
in Table 9 in Appendix. The data extracted were technically
divided into three:

e Foundational details: (title, authors, publication date and
location).

e Publication data: Journal, conference, chapter, date
(year), publisher, publication title, volumes, issues,
pages, keywords, and abstract.

SPRINGER ELSEVIER IEEE ACM

| 1153 articles | 1054 articles I 915 articles I | 731 articles I

Search string Execution from electronic databases
3853 articles

Phase 1

Selection based on Title of the articles.
425 articles

Phase 2

f Selection based on Abstract and duplicate removal.
268 articles

Phase 3

—— T

‘ Detailed study of 188 articles
[Phasea 4 U

Selected Articles Excluded Articles
85 103

Fig.4 Phases of selection process

@ Springer

e Review data: tool development approaches/techniques,
tool input source, RE phase, model proposed, degree
of automation, type of requirements, tool evaluation
method.

From the preceding, we therefore, present the report and
the findings and statistical analysis of the SLR gathered from
the selected primary studies in the next section.

4 Results

This section answers the research questions posed in
Sect. 3.1 and highlights the review's findings.

4.1 Overview of the studies

As mentioned earlier, a total of 85 studies were identified for
critical evaluation concerning automated RE support. The
data extracted is summarized in Table 9 (Appendix). The
table summarises each study selected, along with the study
ID, author(s), reference, study title, year of publication,
publisher, name, and citation type.

With respect to the years of publication, the first pub-
lication we reviewed was published in 1998. From other
publications, works from 2016 and 2019 recorded the high-
est number, followed by publications from 2009, 2015 and
2017. The distribution of the reviewed papers spanned 1998
to 2022. The distribution of publications over the given
period is shown in Fig. 5. This shows a generally increasing
trend in the number of publications over time.

The findings in Table 4 indicate that the studies were
published in various venues. Springer accounts for 38.8%
(33) as the highest publishing venue for automated RE
papers. Then, IEEE and Elsevier account for 32.9% (28) and
17.6% (15), respectively. On the other hand, ACM accounts
for 10.6% (9) of the total selected primary studies.

The selected primary studies were mainly journals, con-
ferences, and chapter publications. Of the 85 primary studies
selected, 41 appeared in conferences, 33 in journals and 11
in book chapters, as presented in Fig. 6. On journal-specific
publications, Requirements Engineering Journal has the
highest number of papers associated with automated RE.
The number of selected primary studies in each publication
venue is shown in Table 5.

Accurately capture the geographical location of authors,
we considered each author's location individually, as
some of the papers had co-authors from different loca-
tions. Notably, most authors were from Europe and Asia,
as depicted in Fig. 7. On the other hand, there were rela-
tively few studies on automated requirements engineering
from Africa, Australia, Oceania, and South America. Most
of these publications are interconnected through citation,

Requirements Engineering

Fig. 5 Distribution of publica- 10
tion over the years 9
8
7
6
5
4
3
2
2
1 111
1
ool
0
O N 0 O N M
QOO O O 9O 9O
o O O O O
T = = N N N N
Table4 Number of publications Publication Frequency
in each database
ACM 9
Elsevier 15
IEEE 28
Springer 33
Total 85

11, 13%

33, 39%

mJournal mConference m Chapter

Fig. 6 Distribution of papers by citation type

forming a network of references, as illustrated in Fig. 8.
These connections among the articles through citations
play a crucial role in establishing the research context,
demonstrating scholarly contribution, strengthening valid-
ity and reliability, tracing research evolution, and build-
ing a knowledge network within the systematic literature
review.

2015 S O
2019 e ©

2017 D O

9
5 5 | 5
— o () o0
o o o -
o o o o
I N I I

4.2 What type of output or models are being
generated by the automated tools according
to published empirical studies?

2006 EEE——— W

2007 Teeeeees———

2008 mem—

2009 EEEEE——— O
2010 me—

2012 EEeeee———

2014 T— W

2020 meeee——

2021 eeeessss———

2022 mmm -~

2005 m=m ~—

One of the communication tools between the RE team
and the software development team is the UML models,
as they provide a common language and understanding of
the requirements. UML models are a valuable tool in the
requirements engineering process, as they help to ensure that
the requirements are well-defined and accurately capture the
needs of the stakeholders. In this study, several UML mod-
els were generated as output by the support tools reported
in the primary studies. Figure 9 shows some of the mod-
els produced by these automated tools. As depicted by the
chart, the class diagram (domain model) is the most widely
produced model among the tools, followed by the use case
diagram and the structured requirements document. How-
ever, some studies did not specify any model output, consti-
tuting the highest number of primary studies. This category
of studies mainly focused on several RE activities, which
included improving one RE process or the other. For exam-
ple, recommendation of omitted steps in use case scenario
[16], requirements mining framework [38, 63—65], checking
inconsistency of requirements [66, 67], requirements valida-
tion and review [15, 43, 68, 69], requirements classification
[40, 41, 70-73], audio mining and visualization [74], dupli-
cate requirements [75], automated requirements reuse [76],
systematic analysis of NL [42, 47], enhancing the security
of RE [37, 39]. In total, UML diagrams generated as output
constitute 44.7% (38), while others with no model output
made 55.3% (47) of the primary studies.

An automated RE tool receives various inputs to facili-
tate its process. These inputs are the foundation for the tool
to perform its automated functions effectively. Some com-
mon inputs to an automated RE tool include natural lan-
guage requirements; domain knowledge; existing models or

@ Springer

Requirements Engineering

Table 5 Classification of the selected publications

Name Citation type Publisher Total
Requirements engineering Journal Springer 11 (12.9%)
Automated software engineering Journal Springer 6 (7.1%)
Information and software technology Journal Elsevier 5(5.9%)
The journal of systems and software Journal Elsevier 4 (4.7%)
Software and systems modeling Journal Springer 3(3.5%)
IEEE/ACM international conference on automated software engineering Conference IEEE/ACM 5 (5.9%)
International requirements engineering conference Conference IEEE 4 (4.7%)
India software engineering conference Conference ACM 2 (2.4%)
ACM/IEEE international conference on model driven engineering languages and systems Conference ACM/IEEE 2 (2.4%)
International conference on information technology Conference IEEE 2 (2.4%)
International conference on software reuse Conference Springer 2 (2.4%)
International working conference on requirements engineering: foundation for software quality Chapter Springer 2 (2.4%)
Others Journal, conference & chapter 37 (43.5%)
Total 85
Fig. 7 Distribution of authors B e
geographic locations
3
+
W 16
. AV
P
; = .4
{ .
mb6
n7
|10
ml
msS
m2

artefacts; stakeholder feedback; and metadata. It is important
to note that the specific inputs required by an automated RE
tool may differ based on its capabilities and functionalities.
From our findings, most inputs used by these tools are writ-
ten in natural language, including unstructured [13, 77, 78],
semi-structured text [75, 79, 80]-[82], and structured text [7].
Others are domain knowledge [83], business process mod-
els [28] and feedback through voice [74]. In general, natural

@ Springer

tics, GeoNames, Micresoft, Navinfo, OpenStreetMap, TomTon

language text is the most prominent input for most tools,
accounting for 94% of their usage. The automated require-
ments engineering software tools proposed in the primary
studies are mostly one shot RE tool and a few editor tools.
In conclusion, the value of automated RE generated UML
and other outputs lies in improved visualisation, enhanced
requirement analysis, early mistake identification, system
design and development support, and improved traceability.

Requirements Engineering

Fig.8 Citation map of the
selected primary studies

® Dag 2002

Cybulski 1998

®
Cybulski 2000

Harmain 2003

Ambriola 2006

2]
Lee 2002

&
8
2
I3
8
o

Fig.9 Distribution of generated output

These advantages contribute to a more efficient, accurate, and
collaborative RE process, resulting in better software systems
that meets the needs and expectations of stakeholders.

4.3 Which requirements engineering phase
is mostly automated?

Requirements Engineering is made of phases, also known
as activities. As mentioned earlier and defined by Sommer-
ville [23], the RE phases include requirements elicitation,
analysis and specification, validation and management. The
tools proposed in the primary studies have automated vari-
ous tasks within the requirements engineering (RE) process,
which can be classified into different RE phases. Although
some studies mentioned the specific RE phase their tool sup-
ports, we still carefully examine each study for classification.
Assigning a primary study to a particular RE phase can be
challenging due to the possibility of tool activities spanning
multiple phases. The type of the task and how it relates to the
broader RE process can be used to categorise an automated
RE task into a RE phase. Therefore, we define the following

® o
Ankori2005 @ @

@
Gacitua011
Schneider 2012
Shibaoka 2307 [J
O@oronyia 2010

4
[] Kl'gmayseh 2021

['\
. Ko 2019 @
Veruri 2017 panichella 2020
Miao 2016
o © Wa:g 2019
® Duan 2009 PS .. Yusopzo.;e " 't.2019
oitra
Mggidez 2007 Tgpkor20 @
Alkhader 2006 ' SEIOR Parra 2015 5]
th Reinhartz-Berggr 2020
Deeptimah%\ti 20M

¥ Arora 2021
@Elbendak 2011 Winkler 2016}y Ferrari@01s
Mu 2009

Elallaoui2018
® Sagar 2014k cassen 2016
([Brahim 2010

Y2015 @ paguezors
e ot 00 @ Li2015 Kurtanovic 2017
LetSholo 2013
Casamayor 2010 o
@® Rago 2013
Umber 207D

Nguyen 2012

°
Saini 2022

Rager016 297 Saini 2020

Liicassen
Mgketar 2016

Nguyen 2015

Cleland-Huang 2007

approaches to categorise the primary studies' automated RE
tasks into a RE phase:

e Task Focus: determine the automated task focus to
ascertain whether it is requirements elicitation, analysis,
documentation, validation, or management. This
classification aligns the task to the appropriate phase of
the RE process.

e Input-Output Mapping: examine the automated task's
input and output and relate it to the specific phases of
RE. For example, suppose the automated task receives
unstructured textual requirements and produces
structured use case diagrams. In that case, it can be
classified as an analysis task that transforms requirements
into a more formal representation.

e Relationship to RE Activities: analyse the relationship
between the automated task and the activities typically
carried out during the RE phases. For instance, the
activity can be classified as an elicitation task if it uses
NLP techniques to extract key terms and concepts from
requirements documents. This helps to capture and
comprehend stakeholder requirements.

e Impact on Phase Objectives: consider the general goals
of each RE phase and how the automated task contributes
to accomplishing those goals. If the task's goal is to
maintain requirement consistency and traceability, it may
align with the validation or management phases, which
emphasise quality assurance and requirement tracking.

e Integration with RE Processes: examine how the auto-
mated task fits into the more extensive RE processes or
methodology. Determine whether it is a necessary aspect
of a given phase or if it spans multiple phases. For exam-
ple, if the activity involves automated requirements trace-
ability analysis, it may be related to both the analysis and
validation phases.

@ Springer

Requirements Engineering

Validation [13

I 26

Management

Analysis & Specification MM 53

Elicitation [T 25

0 10 20 30 40 50 60

Fig. 10 Most automated RE phase

The approaches described above give a general outline for
categorising automated tasks within the context of the RE
phases, providing a better understanding of where the task
belongs within the entire RE process. Therefore, the activity
determined the requirements engineering phase for which
each primary work was classified. According to published
empirical studies, requirements analysis was the most widely
automated phase of the RE activities, accounting for 49.53%
(53) of the total selected primary studies. Requirements
elicitation and management accounted for 23.36% (25) and
14.95% (16), respectively. On the other hand, requirements
validation was the least automated RE phase resulting in
12.15% (13) of the total selected primary studies. Figure 10
shows the extent to which each RE phase has been auto-
mated. The analysis phase is critical because it ensures a
complete grasp of stakeholder needs, refines requirements,
fosters collaboration, establishes project scope, identifies
risks, and acts as a basis for later development activities.
Therefore, a well-executed analysis phase contributes con-
siderably to the software project's success by providing a
firm foundation for the development process and facilitating
good communication and alignment among stakeholders.

4.4 To what degree is the automation
of the requirements engineering support tool?

Automation is a complete or partial replacement of a task
that a human operator previously performed, which suggests
that automation can vary along a continuum of levels, from
the lowest level of entirely manual performance to the high-
est level of full automation, rather than being all or nothing
[84]. Thus, an automated RE support tool could be semi-
automated or complete/full automation. However, this study
focused only on automated tools semi or complete. Of the
85 primary studies selected, 50 used semi-automated tools,
and 35 had complete automation, as represented in Fig. 11.
All the literature reported in this review has implemented
their respective proposed tools. The majority, representing
58.8% of the selected studies' artefacts, were semi-auto-
mated. In this case, the possible interaction between the

@ Springer

B Complete M Semi

Fig. 11 Degree of tool automation

human analyst and the tool varied. These variations ranged
from input pre-processing, refining data during processing
to output interpretation and analysis. In contrast, 41.2% of
the primary studies carried out full automation. Despite the
authors proposing full automation, none proposed complete
replacement requirement engineers. However, the output of
automated RE provided the human analyst with an artefact
to be verified, thereby reducing development efforts, and
saving a great deal of time spent on RE activities. Simi-
larly, it was found that giving analysts an initial version of
the requirements model based on informal textual descrip-
tions could significantly speed up the development process
because domain and modelling experts could begin modi-
fying the requirements model much earlier [85]. In the pri-
mary studies, there is no specific mention of the extent of
automation. This suggests that the primary studies needed
to provide explicit information about the level or degree of
automation achieved in their research.

In addition to classifying support tools reported as either
semi-automation or full automation, we have explored the
use of the ten levels of automation of decision and action
selection and the four-stage model of human information
processing proposed in [84]. Based on the system descrip-
tion provided in the primary studies, we have subjected each
paper to evaluation to determine the extent of the automa-
tion based on the levels of automation design and action
selection provided in Table 6. This was done against the
four types/stages of automation of information processing,
i.e., (i) Information acquisition (ii) Information analysis
(iii) Decision selection, and (iv) Action implementation.
Figure 12 shows the results of the levels of automation of
various support tools reported in the primary studies. From
the results, information analysis has a higher degree of auto-
mation than the other three stages. In summary, informa-
tion analysis is a critical stage in information processing,
and automation technologies like machine learning and

Requirements Engineering

Table 6 Levels of automation

design [84] High ;0
8
7
6
5
4
3
2
Low 1

The computer decides everything, act autonomously, ignoring the human
Informs the human only if it, the computer decides to

Informs the human only if asked, or

Executes automatically, then necessarily informs the human, and

Allows the human a restricted time to veto before automatic execution, or
Executes that suggestion if the human approves, or

Suggest one alternative

Narrows the selection down to a few, or

The computer offers a complete set of decision/action alternatives, or

The computer offers no assistance: human must take all decisions and actions

—o— Information Acquisation
-® - Information Analysis
—e- Decision Selection

--@- Action Implementation

IO O

OIS0 DO OO DO

DN
NNCIN I X (IDEIT ~Tf <t
D

Fig. 12 Level of automation of Degree of tool automation

other Al technologies have advanced significantly in recent
years, making it feasible to automate complex analytical
tasks. This trend has led to more automation of informa-
tion analysis than the other stages, enabling the extraction of
valuable insights from data efficiently and making informed
decisions.

4.5 What are the development techniques/
approach employed in the development
of the support tools?

In Fig. 13, the results are classified by development tech-
niques or approaches employed by authors. Natural Lan-
guage Processing techniques are the most widely used,

R AR RS BB B RAS BRR B ARAR BB AR AR AR

Text mining w4
CASDL m 1
Test Driven Development/... m 2
Information Retrieval wm 3
Data mining jmm 3
Courteous Logic = 1
Tropos Methodology = 1
NLP and Ontology mwmmm 5
Ontology mmmm 5
NLP and ML mummm 5
Machine learning w12
NLP 43

Fig. 13 Distribution of development technique/approach

@ Springer

Requirements Engineering

accounting for 50.6% (43) of the selected primary studies. In
the context of automated RE tools, NLP techniques are used
to process and interpret natural language requirements, ena-
bling automated understanding, extraction, and analysis of
textual information. Machine Learning techniques recorded
14.1% (12) as a development approach, which involves the
development of algorithms and models that can learn from
data and make predictions or take actions without explicit
programming for tasks relating to requirements classifica-
tion, clustering, or prediction. On the other hand, domain
ontology techniques accounted for 5.9% of the selected stud-
ies employed to capture and model requirements knowledge.
These ontologies capture domain-specific concepts, relation-
ships, and constraints, providing a shared understanding and
common vocabulary for representing requirements within a
particular domain. Studies that used text mining techniques
are four which represent 4.7% of the studies. Some studies
combined more than one technique, for example, a combi-
nation of NLP and ML; NLP and Ontology had five studies
each, accounting for 5.9% each. Other techniques applied
were Information retrieval, Data mining, courteous logic,

Table 7 Technologies employed in the development of tools support

Tropos methodology, and Casco Accurate Description Lan-
guage (CASDL). These categories supported different levels
of abstraction (in terms of techniques, methodology, and
logic). In addition, Table 7 shows the specific technologies
used to develop the proposed tools. Accordingly, POS tag-
ging, Parsers are the most widely used NLP technologies
in tool development. While Naive Bayes, support vector
machines and neural networks are the most frequently used
machine learning techniques for classifying and clustering.

4.6 How are these tools evaluated?

This question aimed to identify the evaluation approach(s)
employed in evaluating the automated RE tools. Table 8
shows the results categorized by evaluating method and RE
phase.

Automated RE tools play a crucial role in analysing and
managing requirements. Thus, evaluating these tools is essen-
tial to ensure their effectiveness, suitability, and value for the
intended purpose. Automated RE tool evaluation involves
assessing various aspects of the tool with several factors

Techniques/technologies Studies

Natural language processing (NLP)

POS Tagging [S71, [S12], [S14], [S19], [S24], [S25], [S27], [S28], [S38], [S44], [S53],[S56], [S59], [S63],
[S71], [S73], [S75], [S77], [S82], [S85], [S2], [S8], [S54], [S16], [S79], [S84], [S47], [S51],
[S52], [S50], [S21], [S26], [S61], [S10]

Tokenization [S56], [S59], [S63], [S71], [S77], [S82], [S85], [S54], [S16], [S79], [S84], [S51], [S52], [S39]

Lemmatization [S78], [S19], [S25], [S56], [S57], [S59], [S16], [S8], [S71]

Stemming [S78], [S59], [S82], [S16], [S14]

Segmentation [S56], [S16]

NLP parser/stanford parser

[S7], [S11], [S14], [S15], [S60], [S64], [ST70], [S73], [S74], [S75], [S76], [S82], [S85], [S2],

[S54], [S21], [S26], [S53], [S59], [S65], [S82]

Parse tree
Sentence splitting
Morphological analysis [S71], [S77], [S54]
Machine learning (ML)
Classification
Naive bayes (NB)
Nearest neighbor (KNN)

Support vector machine (SVM)

[S13], [S36], [S66]

Clustering
Neural networks
Regression
Decision tree [S35], [S66]
Data mining
Data mining [S78], [S37], [S55]
Text mining
Information retrieval (IR) [S20], [S34], [S32]
Ontology

Ontology (Graph)

[S12], [S19], [S38], [S68], [S74], [S2]
[S63], [S71, [S77], [S16]

[S1], [S13], [S36], [S62], [S66], [S69], [S29]

[S58], [S13], [S66], [S69]

[S48], [S54], [S79], [S84]

[S391], [S10], [S22], [S2]

[S21], [S401, [S49], [S67], [S42], [S26], [S61], [S51], [S52], [S50], [S23]

@ Springer

Requirements Engineering

Table 8 Evaluation methods

Type Controlled Experiment Case study Prototype/proof User study Total

of concept
Elicitation 16 3 1 2 22 (25.9%)
Analysis 18 15 9 3 45 (52.9%)
Validation 2 3 1 2 8 (9.4%)
Management 5 4 1 0 10 (11.8%)
Total 41 (48.2%) 25 (29.4%) 12 (14.1%) 7 (8.2%) 85

considered, including functionality, usability, scalability, perfor-
mance, integration capabilities, support for industry standards,
and compatibility with existing tools and processes. To achieve
this, several evaluation methods are employed, as reported by
the primary studies. The primary studies employ the experi-
mental method, case study evaluation, prototyping/proof of
concept and user study. The choice of evaluation method is
aligned with the specific objectives of the evaluation. It pro-
vides valuable insights into the tool's performance, usability,
availability of resources and overall suitability for the intended
use.

Most of the primary studies (41) applied a controlled
experimental method. This indicates that these studies con-
ducted experiments to evaluate and demonstrate the effec-
tiveness of their approaches. The extent of the experiments
varied across studies. Some authors had a single experiment
with independent examples or data to explain their proposed
method (e.g., studies referenced as [64, 66, 86]). Other stud-
ies used numerous in-depth examples based on data from
industrial practice, providing a more comprehensive evalua-
tion (e.g., studies referenced as [28, 75, 76]). The case study
evaluation method was employed by 25 studies, represent-
ing 29.4% of the selected primary studies. Case studies
are often conducted on practical live projects or industry
applications to assess the proposed approaches' feasibility,
effectiveness, and real-world applicability. These studies
typically involve in-depth investigations of specific cases or
scenarios to provide a more contextualised understanding
of the benefits and limitations of the developed tools. An
example of industry evaluation using case study evaluation
is the study by Arora et al. [7], which conducted an evalua-
tion using four industry requirements documents combined
with expert evaluations to extract domain models from tex-
tual requirements. The results from the evaluation show that
the potential of automated tools in modelling is enormous
because their tool achieved approximately 90% accuracy in
generating domain model classes. Prototyping, specifically
for proof-of-concept purposes, was used in 12 studies. Pro-
totyping involves building a preliminary version or prototype
of the proposed system or tool to showcase its functional-
ity, feasibility, and potential applications. These prototypes
demonstrate how the methods can be applied in practice. The
last evaluation method, user study, was employed by seven

studies representing 8.2%. User studies involve gathering
feedback and insights directly from end-users to evaluate
the proposed tools' applicability, usability, and user experi-
ence. Most of the authors evaluated the performance of their
artefacts with that of a human expert and compared them
against defined/specified functionalities.

5 Discussion

As stated previously, the purpose of this study was to
investigate automated RE support and bring to light more
discussion supported by extant literature. Eighty-five papers
relating to automated RE support were selected for this study.
This objective was accomplished through the formulation
and answer to research questions. The implications of the
findings from Sect. 4 are therefore discussed in this section.

On a general note, it was observed that publications
related to automated RE date to 1995, and the state of
research has, over the years, improved significantly. The
observed improvement in publications on automated RE
can be attributed to several factors. Technological advance-
ments in artificial intelligence and machine learning have
provided new tools and techniques for automated RE. The
increased recognition of the importance of RE in software
development has led to more research and development
efforts in the field, with a focus on automation. The limi-
tations of traditional manual RE methods have driven the
exploration of automated solutions for improved efficiency,
accuracy, and scalability. On the other hand, we found that
most of the publications focused on functional requirements.
This type of requirement is concerned with the functional
operations of the system, defining system functionalities and
constraints. It is important to note that agile teams in the
requirements engineering process are primarily concerned
with this type of requirement. Another important aspect of
our findings is the geographical location of the authors of
our selected studies, as most of the papers were authored by
Europeans and Asians. Most of the European contributions
came from authors from the United Kingdom, the Neth-
erlands, Germany, Sweden, Norway, Italy, Luxembourg,
Spain, Austria, Ireland, Serbia, Switzerland, and Portu-
gal. Asian countries took second place in the contribution,

@ Springer

Requirements Engineering

involving authors from China, Malaysia, India, Palestine,
South Korea, Pakistan, Jordan, Singapore, Japan, Israel,
Turkey, and UAE. North American countries came third,
involving only US, Canada, and Mexico authors. Finally,
the remaining continents, Africa, Australia, Oceania, and
South America, have contributions from one country,
involving Morocco, Australia, New Zealand, and Argentina,
respectively. The empirical data from the selected 85 stud-
ies could not be generalized due to the uneven distribution
of authors across geographic regions. Therefore, there is a
need for location-based studies like that of [87] to empiri-
cally establish state-of-the-art research in most continents
regarding automated RE and software engineering generally.
Geographical, psychological, and sociological factors may
influence how anything is interpreted and understood when
described in natural language [88].

Concerning RQ1, we observed that the class diagram
was the most widely generated model. This could result
from the class diagram representing high-level models that
are useful during the requirements analysis and the initial
stages of the system design. Class diagrams are also the
most-used UML model in software development in general.
This model type structurally captures the domain problem
by representing them as classes, attributes, relationships,
and association cardinalities. Overall, a class diagram was
also used for stakeholder discussions, providing bases for
discussion among the development team and providing
agile team members with a basic understanding of the
system's overall structure. Thus, a class diagram is easy
to understand but consumes significant time to construct.
Nevertheless, automated tools will go a long way in reducing
the time spent generating class diagrams. In addition to
class diagrams, use case models, structured requirements
documents, and entity-relationship diagrams have also been
generated as output from various tools. Automated tool
support for automatically constructing an analysis model
is critical to model-driven development (MDD) because it
enables the MDD lifecycle to move quickly from the coding
phase to the specification phase when using precise formal
languages [14]. Hence, using automated RE tools to generate
class diagrams and other UML diagrams has a promising
future in the software RE domain and software development
in general. Furthermore, the relationship between the
Automated RE-generated UML output and the input is one
of translation, interpretation, and representation. The UML
output reflects the information and structure present in the
input data but in a more organised, standardised, and visual
form that facilitates analysis, communication, and further
development activities. Therefore, input representation and
standardisation, integration and interoperability, ambiguity
handling, and support for various input sources are issues
related to tool input that might contribute to developing
more effective input for automated RE tools. Overall, the

@ Springer

research implications surrounding the additional values of
Automated RE-generated outputs, especially UML outputs,
focus on automated RE technique evaluation, integration
with development processes, automation of UML model
evolution, context-specific adaptations, human aspects,
and performance scalability. Addressing these research
implications will allow the area of automated RE to progress,
providing more robust and effective methods for automating
the production of UML models in the RE process.

The primary RE task is requirements analysis and
validation, which includes understanding user requirements,
classifying them, and modelling static and dynamic
perspectives of software requirements [89]. We have
identified the most automated RE phase in response to RQ2:
requirement analysis. According to empirical evidence,
requirements analysis is the most widely automated RE
phase. This could be because the phase allows for analysing
the requirements outlined. Alternatively, it also allows
for stakeholder deliberations. One of the most essential
activities in the RE process is requirement analysis. This
activity assists developers and other relevant stakeholders
in understanding requirements, their overlaps, and conflicts,
as well as in managing conflict and creating a unified set
of requirements. Usually, the "Requirement analysis"
phase of any software development process is often the
most important because it serves as the foundation for all
subsequent development work [48]. It is also important to
note that, at this stage, various UML models are conceived,
and the entire system functionalities are defined and
analysed. Thus, this calls for more practical research into
the automation of this stage to minimise human intervention
to the barest minimum. One of the most significant research
issues nowadays is automated software engineering,
particularly when analysing requirements and modelling [5].
Thus, extracting requirements artefacts in the analysis stage
requires a great deal of skill, and this has been the motivating
factor for some of the primary studies to automate the
analysis phase. For example, in [48], it was found that
before modelling a system, a developer must analyse the
use case descriptions to identify actors and functionalities
to understand the system's dynamics. Similarly, extracting
actions and actors from a linguistic viewpoint requires skill
and time and is challenging to master [78]. More specifically,
the motivation for the automation of the analysis phase is:
saving time and reducing development costs [5, 13, 48, 90],
leveraging the powers of NLP tools and technologies [14,
18, 19, 80, 91], avoiding or minimising human mistake in
reading and analysing volumes of text written in NL [79,
89, 92] and iterative nature of the analysis phase [48].
Therefore, we propose that future research consider an
automated analysis framework that will fit with agile
development. Furthermore, the automated analysis that will
allow for traceability between the textual requirements and

Requirements Engineering

the formalised models be developed. This way, developers
and customers can easily see which original statements from
which some formalised requirements are derived. Thus,
investigating the research implications of the automated
analysis phase in automated RE can help develop the field
by providing insights into the effectiveness, accuracy, and
consistency of automated RE tools and their adoption,
impact, and improvement. It can direct future research and
bridge the gap between academic research and practical
application in industry.

Accordingly, we have identified the extent of automation
of the RE support tools in response to RQ3. As mentioned
earlier, most of the tools had semi-automation, which should
allow a reasonable part of the activities of a human analyst
to be done automatically. Ironically, this does not in any way
replace human expertise. Whether complete or semi-com-
plete automation, there is a need for human expert validation
since it is the human that will use the output for the remain-
ing phases of development. The automation has proved to
be effective in reducing the workload on the human analyst
to manually carried out the RE activities such as model
generation [77, 80, 81], inconsistencies in requirement [66,
67], checking duplicate requirements [75] and omissions
in requirement [16]. Remarkably, there is still the need for
researchers in the field to provide more explicit and specific
descriptions of the level of automation that will significantly
reduce human efforts and development time. This could
include information on the automated tasks, processes, or
functionalities covered and the extent to which human inter-
vention or manual effort is required. Another important
aspect of automation is the human-in-the-loop considera-
tions. At the same time, semi-automation implies a level of
human involvement in the RE process, while full automa-
tion suggests minimal or no human intervention. Therefore,
research can delve into the role of humans in the loop and
investigate their contribution, decision-making authority, and
interaction with automated tools. This can provide insights
into the optimal balance between automation and human
expertise, ensuring that automated RE tools effectively lev-
erage human intelligence while reducing manual effort.

We identified Natural Language Processing techniques
as the most used in developing various RE automated tools
in response to RQ4. As mentioned earlier, NLP plays a sig-
nificant role in RE activities because most requirements are
written in Natural languages. Some natural language tech-
niques employed by the primary studies include linguistic
analysis [93, 94], clustering algorithm [16, 95], pattern
matching [38], core NLP [78, 94], NL Pasrser [9, 28, 47,
68,76, 79, 88, 90, 95], text chunking [24, 94], Part of Speech
(POS) Tagger [24, 80, 94] to mention but a few. These tech-
niques have been applied in various RE phases, elicitation,
analysis, specification, management, and validation. The
NLP helps in the text analysis and context meaning to allow

for understanding text for onward requirements analysis.
Generally, requirements engineering is considered a critical
success factor in software development, and most require-
ments are written in NL, which is challenging to analyse
computationally. It has been noted that the need for adequate
techniques and tools for computer-assisted processing of
early software requirements is one of the major problems
in software development [86]. To address these challenges,
NLP techniques have been employed. The NLP techniques
allow text written in NL to be analysed through major com-
ponents; lexical analysis (pre-processing, tokenisation,
morphology rules, lexicon), syntactic analysis (parsing and
mapping), and semantic analysis (drawing, checking, includ-
ing) [78]. Therefore, pre-processing, classification, and post-
processing (mapping relationships) are common processes
used in generating most of the analysis models in the litera-
ture. In addition to the NLP techniques, machine learning
techniques and their application in automated requirements
engineering are evolving with many potentials. The prolif-
eration of digitisation has resulted in vast data that allows
machine processing. Machine Learning has been employed
in some of the primary studies of tasks related to classifica-
tion [39, 40, 48, 96] and clustering [78, 97]. The combi-
nation of NLP and ML techniques has also proven more
effective in automated RE support. Since both technologies
perform different tasks, while NLP is used mostly for text
pre-processing (lexical analysis), machine learning is used
for classification and clustering. For example, the outputs
of tools like RegAligner [75], which assists analysts in
identifying duplicate functionality in textual use cases, and
DoMoBOT[13], an automated tool for interactive domain
modelling, have aided the development of many automated
tools. Like other tools reported in the primary studies, these
have proven the effective use of NLP and ML techniques in
automated RE support. However, the increasing use of NLP
and ML approaches in developing automated RE tools has
various research implications, including algorithm selection,
performance evaluation, data requirements, transfer learn-
ing, privacy, human-Al collaboration, and bias considera-
tions. As a result of addressing these implications, research-
ers can advance the field of automated RE and enhance the
capabilities, reliability, and ethical soundness of automated
requirements engineering processes.

With respect to RQS5 on how these tools are evaluated,
we identified the controlled experimental evaluation method
to be the most widely used by authors. The experiment is
one of the most widely used evaluation methods in research.
In tool development, an experiment has proven effective in
evaluating tools, especially at the early stage before industrial
case study evaluation. It helps reveal lags and uncovers errors
and shortcomings of a tool before subjecting it to an indus-
trial case study. During the evaluation, most of the proposed
artefacts are evaluated against the expected functionalities

@ Springer

Requirements Engineering

or the manually generated analysis models. For instance,
[13] evaluated the automatically generated class diagram
against models manually generated from various problem
specifications commonly used in universities. Experiments
are also cost-effective, and since most authors are academics,
their colleagues and students usually constitute part of the
experiment in testing or evaluating such tools with minimal
budgets. The fact that experimental evaluation is the most
widely used approach highlights its significance in assessing
the effectiveness and performance of automated requirements
engineering tools. Researchers and practitioners should con-
tinue to prioritize rigorous experimental evaluations to pro-
vide empirical evidence and quantitative data supporting the
claims and benefits of these tools. While case studies and pro-
totypes represent a smaller percentage of evaluation methods,
their usage indicates their value in providing deeper insights
into the practical application and real-world effectiveness
of automated requirements engineering tools. This finding
suggests that further exploring case studies and prototypes
can contribute to a more comprehensive understanding of
tool performance in specific contexts or scenarios. The lower
usage of user studies as an evaluation method suggests a need
for more attention to the user's perspective. User studies can
provide valuable insights into user experiences, satisfaction,
and usability aspects of automated requirements engineering
tools. The distribution of evaluation methods indicates the
importance of adopting a balanced approach that includes a
mix of evaluation methods. Combining experimental evalu-
ations, case studies, prototypes, and user studies can provide
a more holistic understanding of automated requirements
engineering tools' strengths, limitations, and practical impli-
cations. In terms of comparative evaluation of different tools
against each other, this has not been done, partly because
there are no existing established requirements cases on which
such comparisons could be performed.

6 Conclusion and future work
6.1 Limitation of the review

The limitations of any systematic review are multifaceted,
encompassing potential subjective selection of studies for
inclusion. This can arise if the selection process needs more
transparency or if personal biases influence the decision-
making. Limiting the search to specific databases can also
be a limitation, as it may result in incomplete coverage of
the literature. A flawed protocol can impact the reliability
and validity of the review and introduce bias to the findings.
To mitigate these limitations, the guidelines provided in
[60] were employed to minimize biases in study selection.
However, it is worth noting that during the search process,
there is always a chance of overlooking relevant studies, as

@ Springer

highlighted by [62]. Moreover, the influence of language on
search strings in software engineering further complicates
the search for studies. To enhance data gathering accuracy
and minimize internal validity threats, an iterative selection
process was employed. This approach aligns with the rigour
and thoroughness principles underpinning the systematic
literature review methodology. By employing this iterative
process, we can provide a comprehensive and reliable
synthesis of the existing evidence on the chosen topic,
making the review a valuable resource for decision-making
and further research. By establishing specific inclusion and
exclusion criteria, search strategy, data extraction methods,
and quality assessment criteria, the selection preference was
minimized (at least to some extent), focusing on obtaining
the most relevant studies. This approach aimed to produce
more generalizable results for the systematic literature
review, alleviating potential external validity threats.

6.2 Conclusion and future work

This paper presents a systematic literature review on auto-
mated requirements engineering. The review was conducted
by searching for and classifying all available studies on
automated requirements engineering, following established
guidelines for conducting a systematic literature review.
Eighty-five papers were selected, reviewed, and systemati-
cally analysed based on five specified research questions.
These questions aimed to explore the state-of-the-art research
in automated requirements engineering, focusing on tool out-
put, automation of requirements engineering phases, level/
degree of automation, development approaches/techniques,
and tool evaluation methods. As a result, the following
responses to the research questions were obtained:

e Researchers increasingly focus on automated require-
ments engineering, resulting in many publications and
various outputs. The most significant output supported
by automated tools is UML models (44.7%), while other
outputs are primarily related to activities/tasks, such as
omission of steps, consistency checking, and requirement
validation.

e Most automated tools (49.53) are developed to automate
activities in the analysis phase of requirements
engineering, making it the most widely automated phase.

e Results indicate that 59% of the tools are semi-auto-
mated, requiring some human intervention to perform
specified tasks.

e Natural language processing technologies are widely
employed in developing automated requirements engi-
neering tools, accounting for 50.6% of the total studies,
with POS tagging and Parsers being the most used NLP
technologies.

Requirements Engineering

e Controlled experimental methods are most frequently
used (48.2%) to evaluate automated requirements engi-
neering tools, while user studies are the least employed
evaluation method (8.2%).

Over the past two decades, significant research progress
has been made in the academic space regarding automated
requirements engineering. However, there is limited
application and evaluation of results in the industry, which
would provide valuable real-world feedback. This is mainly
due to the experimental stage of automated requirements
engineering applications. Another notable finding is the
need for comparative evaluation analysis among these
tools, which may be attributed to the absence of a common
dataset. In conclusion, this systematic review endeavours
to aggregate empirical findings from publications on
automated requirements engineering, shedding light on
current practices. These practices are expected to guide
researchers and practitioners in applying and evaluating
support tools designed to assist requirements engineering
processes/activities. Furthermore, this review introduces
a new paradigm in requirements engineering, leveraging
artificial intelligence and related techniques to facilitate
data-driven requirements engineering.

Our future study will determine the extent of traceability
among the produced artefacts. There is a need to create a
traceability mechanism to maintain links between require-
ments elements and the created artefacts. Additionally, we
will conduct an interview-based study to explore automated
requirements engineering practices by industry practition-
ers to complement the findings of the systematic literature
review. On the other hand, there is an increasing potential for
using NLP technologies for automated requirements analysis
due to the recent advances in artificial intelligence, which
enable robust context-sensitive analysis of natural language
texts. Therefore, it is also essential to empirically investigate
deeper to facilitate a more comprehensive understanding of
an optimal process for automated requirements analysis, for
example, identifying the data concepts (classes) and fea-
tures/attributes in the first stage and as a basis for further
detailed analysis of functionality. Finally, there is equally
the potential for studies on a comparative evaluation of dif-
ferent approaches on the exact requirements of case studies.

Appendix

See Table9

@ Springer

Requirements Engineering

sjuowaInbar [enyxa)

[euanop QIeM)JOS PUE SWISAS JO [ewInof aY], IQIASS[H L]0T JO SMITADI PIJBWOINE JOJ POYIOUW Y :XIPUIY [69] uoIel§ pue uekunuy LIS
suorjoe onuewas Jutudie Aq sased

[eurnor SurfopoIN swalsAS 29 aremyjos Jo3uridg 91Oz 9sn [emxa) ur Ajifeuonouny 9jedrdnp Surkynuopy [sL] e 10 o3ey 91S
uonemns3yuod

[ewInof SuropoIN swaIsAS 29 aremyos 1oSunds 610T pue asnal syuawInbar pajewoine Surjqeuq o] [e 39 onx pue I GIS
syuowdambal reuonouny

[euanop QIeM)JOS PUB SWISAS JO [ewInof aY], IQIASS[H +]0T oSenSuey rexmeu jo Surepow emdeouo)) (L] Twenqy pue reSeg eApIp 1S
Surreaurdus syuowaIrnbar JUTOINOSPMOId

[eurnor QIBM}JOS PUEB SWQISAS JO [BUINO[Y], JOIASS[810T ur sysanbar 1osn FurkjIsse[o A[eonewoiny [ot] [30 Sueny pue ‘I €IS
sonbruyoag,
(LNV) se13o[ouydq], pue JI0MIoN ‘SWASAS Jd7IN Sursn sweiSerq aseD) 2s() TIA[Ol

QOUAIJUOD) JUSIQUIY UO 90UAISJUO)) [RUOTRUINU] g OU], JOTASS[H 810T SOTI0}S 19S() JO UOTJRULIOJSUBI], OIIeWIoINY [08] [e 30 moererg IS
uoneoyroadg ase)) as)

Q0UAIJUOD) “$1.0dSI WDV +107 woij weiderq 2oudnbag Jo uonersuan onewony [6L] eydno pue ey, I1S
UOnBZI[ENSIA PIseq
-I2)SN[d pue JuIuIw oIpne BIA sjudwaInbax

[euInof uoneISo)U] UONRULIOJU] [RIISNPU] JO [BUINOf IJIASS[H 0T Qwmn-ur-isnf [eqioa axmdeos o3 310ddns pajewroiny [#L] [e 30 LIBAIPPY 01S
sonbruyo9) Jurures] suryoewr Jursn syuowarnbax

[euInof A3o[ouyoa], 91eM)JOS PUB UONBULIOJU] JAIAJS[H G0z JO Afenb jo uoneoyisse[d ay) Joj ASo[opoyowt y [oL] [RERARCE 6S
(SDDI) douag oIem)jos

90UAIJUOD) [euoneindwo)) Uo 2JUAIAJUOY) [BUONBUIAN] IAIAS[H GO OUYNUAIOS I0J UONJRNXH SJUSWAINbay pajewoiny [8¢] [e 10 UBWIZND) 8S
SurresurSuyg a1em)jos parewiony sjuawaInbay a5enSue T [eIneN woiy

QOUQIJUOD) U0 9JUQIRJUOD) [eUOBUINU] NDV/JHHI A9l 600T SIPPOIN "TIN(SuneIauan Ioj [00], peyewioiny Uy [88] Ieqeq pue nueyewndooq LS
sjuawraINbay
Jo uonepIfeA Joneg 1oy [00], Surresursug

90UAIRJUOD) 91.dSV WDV 910C sjuowaInbay] 9ANEIOQR[0)) parewioNny Uy [89] ICREREE [9S
sfopowr ssa001d ssaursng uo
Ppaseq sjuawnoop syuswaImbar oFen3ue] [einjeu

[ewInof A3o[ouyoa], 9rem)jos pue uopRULIONU] JAIAS[H 10T Sunerouad Joj yoeordde peyewone-nuas y [8z] [® 10 ZeW[OSAY GS
1o1ddns swoysAs-qns xordwoo

QOUAIJUOD) (41D ©1Pa201]) 20UIJu0) USISOQ YD JOIAdS[H 8107 j10ddns 0} yromowre1j Sururw JuowIMbar v [€9] Te 10 9mburg $S
SureourSuyg a1em1joS pajewoIny sjuowaIINbay] Jo Aouo)sIsuoouy oY)

QOUAIJUOD) U0 90UQJJUO0D) [euoneuIa] NDV/JdHdI 94l 6007 SunpeyD 1o 1oddng [00], 9remijos pajewoyny [99] urpniewey| IS
uoneoyroads osed asn

[ewInof SurreouiSuyg syuowaninbay 103unds 6107 ur sdo)s panIWo 0} UOHBPUIWIOIAT ONBWOINY [o1] e 10 03] 7S
(3DADD) Sureoursuyg 1ndwo)) pue SjuaWNIO(] Juawaimbay Jos() [emxa],

QOUAIJUOD) [e91109] UO 90URIJUO)) UeIpeue)) YIOE JIHI A9dl L107 WOIJ UONEBIdUSL) WeISel(] 9se)) 9S() pajewroiny [8%] Te 30 LINWOA 1S

ad£y voneir) oweN JIoysiqng Jeax ONIL, SOOULIJNY stoyny (I Apmis

sorpmys Arewtad pajod[as 6 d|qel

pringer

AQs

Requirements Engineering

sonbruyo9) aInseaw
Kyrerruars Sursn woysAs 3unzoddns sisATeur

[euInop ASo[ouyoa) a1em)JOS pue UONBWIOJU] JAIAJS[H 000T -sjuaWIMbar JusToyJe ue Jo uonejuowa[duy [goT] Ie 30 yreq €S
JuowdoraAap 3onpoId USALIP-1ONIBW UT SOOINOS
ordnnw woiy syuswarmbar Jo uoreprjosuod

[eurnor Surreaurduy aremyjos [eotndwy 1e8unids 900g J0J 110ddns (003 onsISur uo juswLIadxe uy [¢6] B 12 Ur[oy [, pue Seq Yoo NeN €¢S
juowrdoeaa UALI(]
-JOSIRA] UI SISATeUY SjuawaIinbay a8enSue|

[eurnor Sueauiuyg syuowarboy 1e3unds Zo0z [eInjeN paewony jo Apms AJNIqIsed] v [zo1] [® 19 Se Yoo NeN €S
SJULWINOO(] SIUAWAIINDY drem)jos [euLiojuy

90UAIRJUOD) Q0UQIOJUO)) SULINQUISUY 9IeM)JOS OYIOE] BISY A9Al 8661 JO JUSWouydy pue SIsAfeuy posissy-rendwo)) [98] Paay 2 BIS[NgAD 1€S
(v¥ds) suoneorddy [00], (@VHY) ONSOUSRI(] AUEISISSY
pue JuowaSeURIA ‘YOIBISOY SULIAUISUF Surreaurduy sjuaweImbay oY) Yim syuow

Q0UAIJUOD) QIeM)JOS UO 9OULIJUO)) [BUONBUIAIU] Y19 A9dl 8007 -oXnbay 195 Jo sisAeuy [enjdoouo) snewony [68] [€ 19 1ysaIeg 0€S
Surures| [euoneziue3io

[euinof Sunoouidug sjuowarmbay 103unids 710z Aq SureourSuo syuswaanbar A)unods Suroueyuyg [6€] [® 19 Ioprauyds 62S
yoeoxddy JIN Surs) syuowarmbayy

9oURIAUOD 9002 ‘VIOI H94dl 900¢ orem)jos SuNoeNXH Im Sunuawiradxy [+9] [39 Iope [V 8¢S
Surreaurdus syuawaImbar ur uonolep

[ewInof Sureauruyg aremijos pajewoiny 1a3unds 6107 Aym3iquie urewop-ssoi1d 10y yoeoidde JIN uy [101] I[NSH PUB LIBLIO LTS
uone)dI[g syuawaimbay Surpmn

@dey) ‘OSITY ‘9ouaIojuo)) SUTYIOA Teuoneurou] 191 IoSuridS (10T 10 ss2001d Surppmg ASoojuQ urewo(q v [00T1] [® 12 v1kuoIowIQ 9ZS
uonenyesd pue onbruyos)

[euInof Sureauiduyg syuowarmboy 1e3unds 1107 :UOTIBOYNUPT UOTIORIISqR PISBQ-IOUBA[Y [66] [19 enjIoRD) GzS
111 duowdoreaaq Sureaurduyg syuewarmboy pajusriQ

10ydey) AIeMIJOS PAUALIN-10adsy uo suonoesuel], 1a3unds £00T -100dsy Ul UOHEWOINY SPIEMO], :JOUIN-VH [86] [10 oredweg S
Qouarradxa
sodo1], 9In09g Y, :UOTBIIONS SJUaAINbax

[euwInof Surreaur3uy arem)jos parewony Iofunids 800¢ 110ddns 0) uonjeIoUas [opow sjuawAINbay [s8] Quouury pue eARYSHARATY] €TS
soLrepunog urewo(y

90UAIRJUOD) 9-¥SDI ‘@ouarejuo)) [euoneurau] yl9 1Sunidg 000z SuIssoI) :osnoy pue uoneosyIsse[) sjuswarnnbay L] Paoy pue Bs[ngiD TS
s309(014 Juawdo[oad(g aremijos 201os-uadQ
SQOUQIOS Ur UOTJEOYISSE[) pue KI9A00SI(J SIUAWRIMbay]

QOUQIRJUOD) WRISAS UO 9OULIJUO) [RUONRUIANU] ITeMEH U 94l 110C Joj anbruyoag, oSen3ue [emjeN pased-o[ny V [1+] uosuIqoy pue sejA 1S
syuowraInbax

[euinof Sunoourdug sjuowarmbay 103unds 00T [BUOTIOUNJ-UOU JO UOHBOYISSE[O POy [1L] [19 Sueny-pue[o[D 0ZS
AOUID Y syuswarinbay

[euwinof SurreaurSuy aremyjos parewony 1ofuridS 9oz 9SenSueT [einjeN JO SISA[eUY ONRWASAS 9yl UQ [L¥] ISEAIOD) pUE R[OLIQUIY 61S

(91.d17%94S)

901)0RId [BINSNPU] PUB [oIeasdy SulIdauIduyg uonepIfeA syuswarnboy

Q0UQIAJUOD) a1eM1JOS U0 dOYSYIOAN [BUOTIRUIAU] PIE 94l 910C 10J 83597, J0ensqy Sunerouan) :boygnsaL [s1] [® 30 Ie)OIN 8IS

ad£y woneir) oweN Joysiyqng Jeax LI SIOUIYNY stoyny (I Apmis

(ponunuoo) 6 3jqey

pringer

As

Requirements Engineering

J0JelIeN [ensIA [Pim

[eunor SureouiSuyg syuswarmbay 108unds L1027 $110S J9sn woly sppour [enydaouod Sunoenxg [6011 [® 10 uasseon | 1SS
sonbruya) (7IN)
juowdoeAd(] pue YyoI1easoy Surssoood aFen3ue] [ernyeN Suisn syuouwrInbar

Q0OURIAJUOD) 19)ndwo)) uo 90UAIUOD) [BUOTIBUIIU] PUOIDS 9491 0102 [eNn)Xa) WOIJ UONORIX WeISeIp Sse[D) [06] pewyy 29 wryeiqq 0SS
uoneIuagd

[ewnor SurreourSuy sjuowarnbay 10Sunids 610C 9se0 159} pue sisA[eue sjuswraImbar Sunewoiny [z+] I® 32 enIoN 6+S
Qouarayuo)) SurraurSug SYIOMION] [BINAN [BUOTIN[OAUO)) UO

QOURIRJUOD) syuowaIINbay [euonewINU Yy A1 94l 9107 poseq siudwalmbay jo uoneosyisser) onewony [eL] Sues[oSoA pue JoPUIA 8¥S
9snay] syudwaIbay eI syuswarnboy

1dey) 6102 YSDI *¢3unds 10T aanear) axmde) 03 1roddng pajewoiny [¥2] e urr LS
sddy 9[1qoJN 103 sjuswarbay Amoog

1dey) 9107 STV *3urdsg 9107 arepIfeA pue axmde)) 03 10ddng pajewoiny [L€] e 32 dosnx 9%S
Sunsay, pue MaIAdY UONEOYIOAdS BIA 9I18M)JOS

Tardey) 9107 INHADI 1eSuuds 910¢ d.LV I0j UONEPI[EA siuswannbay pajewoiny [ev] [& 10 OeIN SrS
Q0UIJUO)) FuLIAUISUH d7IN ®BIA SOLIO)S 19S[) WOIJ

J0ULISJUOD) sjuawaInbay TeuonRUINU] Y7 FIHT 991 9102 S[SPOAl Temdoou0)) JO UOTIORIIXF pPajewoINy [18] [19 139q0y S
SIUSUWIAIINDIY 9IBM]JOS UT SITOU)SISUOIU]

1dey) ‘C10C ASYNA 18unds €107 Surpuey spremo) yoeoiddy pojewojne-mueg v [£9] SeMSIg pue BULIRYS 7S
JX9JUO0D WIA)SAS QIIAIIS
-jonpouid JIews ay) Ul YI0MIWEL] UOHEIIOI

[euInor SOTRWIOJU] SULISQUISUF PAdUBAPY ISIASST 6T0T juowaxinbal paseq-ydeis USALIP-BIEp [SAOU [8011 I 19 Suepy WS
sodoi], 21n0ag uo
poseq ‘syuawaIboy A)1noag jo SIsA[euy pue

Tdey) 1107 wniod gS1vD 103utd§ 7[og Sul[opoy pajewony 1oddng 0) [00L HSVD V [Lo1] [39 sIpljAed 1¥S
SID0D9S ‘WIDIY ‘SI00 POYIRIA UONEIIOIY Syuswarmbey

deyd ‘MSINO “TINN-dd ‘VSTIAD sdoysyiom 00z ¥ 1e3undS /002 uaaLig A30[03uQ pue pAUSLIO-[20D :HYOOOD [901] [12 ejoeqys oS
Sururur 10adse A[Ies 1A suoneoyroads

[eunof Sureouiduy syjuowarnboy 1o3uridS ¢z 9SBO 9sn UI SUIOU0D Anqriie-Aenb Surroaodoun [sor1] [e 10 o3ey 6€S
Jewweln) [0A9]
-omJ, pue 3urssa001q 25en3ue | [eIeN Suls()

11dey) 2007 JASSTY ‘doysyiop Teuoneuwrou] yig Iesunds $00g juawrdoeaa(q WISAS 9IeM1IJOS JO UOBWOINY [6] jueklg pue 99| 8¢S
$100[014 91eM1JOS 9[IS-95IeT Ul UOIIRIIOIY

QOURIAJUOD) 60.0VS WDV 600C SjuQWIAIINbaY 10J WIAISAS IOpUAWIIOdINY Y %011 [e 10 BIOLIOH-01ISB)) L€S
yoeoidde Jurureoy
pasiazedns-ruos y :suoneoyroads [enyxe) ur

[euinor K3o70uyoa) 2I18M)JOS pUER UOIRWLIOJU] JAIASS[H 600T sjuswaImbal [pUONOUNJ-UOU JO UOTBOYNUSP] [96] [® 10 JoAeurese)) ¢S

(S0.4LSMS)

Surreaurduyg 29 A30[ouyo], ‘QoudIog $9559001d

J0UISJU0)) —3IeM)JOS UO OUIIJUO)) [RUOTIRUINU] THHI 991 S00Z 9ISV ur uonelIoIy sjuawarnmbay] onewony [s9] LIoYUy G¢es

adKy uonein) QwieN JIoysIqng JIeax NI, S9OURIAJIY sioyny ([Apms

(ponunuoo) 6 3jqey

pringer

AQs

Requirements Engineering

(610T LIASVID 6102 Apmg [eorndwyg
ASorouyoa], so110qoy pue SurIRaUISUY ‘90UdOS uy :SUruIed QUIYORA PUEB UONOBNXF SINJBd,]
Q0UQIRJUOD) Ul SOOUBAPY UO 9OULIJUO)) [BUOTJEUISIU] IS T 99l 6107 UM UONEOYISSE[) SIUSWaInboy [euonounj-uoN [s¥] Ie 30 oanbey 99S

[00], SuIssad01g
a3en3ueT [eImeN © 3urs)) sjuswaarnbay]

(LID1) ASor0ouyday, I98() JIqeIy wWoly sweidel([oouanbog

Q0UQIOJUO)) UOTJBULIOJU] UO 9JUQIOJUOD) [EUOTIBUINU] YI§ 10T 941 L10T Sunerouan) 10§ yoeoiddy peryewoyne—tweg v [s11] [e 10 e[y S9S

(FI1V) Suteaursug

SjuaWAIINbay] 10§ 20U I[AU] [BIOYNIY UO sweldel(sse[)

Q0UQIRJUOD) doyssyrop TeuonRUINU] PUOSAS AL STOT 991 S10C TINN 03 siuaweInbay oSenSue [erjeN WoL] (12l Ie 30 eULIRYS $9S
(91, STAAQOW) Swaisks uonenjeAy [ernsnpuy
pue so3engue| SuLIeauISuy USALI(] [OPOIN pue yoeoiddy :syuswarnboy o3en3ue]

90UAIRJUOD) Uo 20UdIRJU0)) [euOnRWINU] 6] FIAL/INDY WDV 910T -[eInjeN WOIJ S[OPOJA Urewo(] Sunoenxg [[e 10 BIOIY €9S
sjuswaImbal pAuaLIo-10adse [enyxa) Jo 198 A3re|

[euInof SureourSuyg a1em)jos pajewoiny A99l €10T Ul UOTORJAP JOIJU0d Sunewone :19zA[euy-ya [#11] [e 30 eYUIpIES 798
(vasy) suoneorjddy pue uiso(SwoIsAg SjuaWRIINbay [eUOT}OUN,] WOIJ UOT)BISUILD)

Q0UAIJUOD) JUAFI[[AIU] UO JUAIJUO) [euUOnRUINU] YIZ] 10T 991 2102 weIdei(] sse[D paseq A3o0[0juQ urewro [9] [onwieS pue Tuysye[IyloAr 19S
(SIVODM) SWoISAS uoneuLIoju] pue yoeoiddy pajewioIny-1wog € ul syuswainboy]

oouareyuo) suonedrddy 1andwo) uo ssa13uo) prIom +10¢ A94dl 107 19S() dIqeIy WOl S[OPOJAl 9S8 9s[) Sunonnsuo)) [e11] UeWIY pue urreqqef 09S
1001, Sutssadc01d
(SDIDI) SWAISAS uoneIIuNWWwo)) pue a3en3ueT [ermeN Suisn syuowaImbay 198

Q0UQIDJUO)) UONBWLIOJU] UO 99UISJUOD) [BUOTIBUINU] Y19 G1(T 941 S10T o1qely wolj sweideld ANANOY unonnsuo)) [s] yosAewreyy] pue JesseN 6SS
Surured] QuIyoRI
QouaIeuo)) SurrouIsuyg pasiatedng Suis() sjuowannbay [euonoung

QOUAIUOD) syuawaInbay reuonewIdu] YISz 941 L10T 9491 L10Z -UON pue [euonoun, Suikjisse[) A[[eonewoiny [z11] [oreeA pue S1AOUBLINY] 8GS
o3en3ue|

[eINJEN UBIQIOS © UI USNILIAN SIuSwaInboy]
o) woiy Surdde], onoejuksoydIopy

sonjewLIoju] pue 2oua3dIf[eiu] reuoneinduwo) uo paseq weidelq diysuone[oy

QOURIAJUOD) uo wnisodwAg [euoneuIAU] Yig[IUIof gL 941l 610C -K)nug JO UoneIauas pojewoINe-1wuas v (1111 e 39 Ny 1SS
(4SDI) Surreourduyg 21emijos uo sjuowaanbay ur Aym3iquy jo Jurpuey

QOURIQJUO)) 9OUAIJUOD) [RUOTIRWINU] PICH INDV/IIHI 120T 941 1202 pasroaduy 10 vi0d1o)) oyroads-urewo(y Sursn [¥+1] e 10 izzyg 9GS
93ewn pue

[euInof Sureauiduyg syuowarnboy 1e3unids g00T uoneznuond sjuswarmbar pajewoine spremog, [o11] [® 39 uen(q GSS
JuAWNOOP
sjudwaInbar woij s103oe pue suonoe SunoeIXd

[euinor ASo[ouyoa], 2I1em)joS pue UONRWLIOJU] ISIASS[H 8T10T 10J SYIOMIQU [BINSU [RIOYTIIE JO SN QY[[8L1 I® 19 QOOIH-TY +SS
[001 pue YIomawelj K101§

[eunof Sueauiduyg syjuowarnboy 103unids 910z 19sn Anend) 9y, :syuswarmbar ofide Juraoiduy [¥6] [19 zeid[e pue uasseon| €SS
sour|

[euwinor SuneaurSuyg syuswarnboy 198unidg gz 1onpoid aremijos 10§ syuswaInbar o100 Junoenxyg [S6] uewoWSY pue IoS10g-Z1IRyuUISy 78S

adK uonein) SQwieN JIoysIqng JIeax NI, S9OURIAJIY sioyiny ([Apms

(ponunuoo) 6 3jqey

pringer

As

Requirements Engineering

(LIDD A3o1ouyos,

S[00T, "IN SuIsn sjuawaIinbay [euonoun,j
-UON pue [euoroun, ojur syuowenboy

Q0UAIRJUOD) UOTJEWLIOJUT UO 90UISJUOD) [EUOIIBUINU] [Z0T 991 120C I9S() JIqeIY JO UONBOYISSE[D) Pojewiojny-Tuwes [zer] [e 10 yoapeyays 78S
Joeqpa9,] I9s() pue SUOISSIS
(4¥) 20ua19juo)) JurreuIug uone)Ifg woij uoneoyoads sjuowairnbay]

90UAIRJUOD) sjuowaabay [euoneuraiuy Y7 Gl 00T 941 020T Supewony :10399[[0)-sjudwaInbay [oz] ZIny pue B[[AYdIUR] 18S
sjuowaImbal Jo uonepifea pue juswFeURW

[euInof Surreaurduy arem)jos parewony 1eSunds /10T Koua)stsuod 10§ 310ddns [00) :DIyeWRIBIA [121] [® 32 urpnijewey| 08S

(0T.STHAOW)

SwAISAS pue sofen3ue] SurrouIsuyg SuI[[opoIA urewoq

90UAIRJUOD) UQALI(] [9POJA UO 2JUIJUOD) [BUONBUIIU] DV 0T0T °ANOSRIAU] pPUe pajewoiny Ioj jog V :LOFIOINOd [e1] [e 10 ureS 6LS
(yoswio)) sardojouyday, yoeoiddy Sururjy

Q0UQIRJUOD) UONEITUNWIIOY) U0 9JUIAJUO)) [EUOTBUISIU] 941 120C ere(e Surs) syuowanmbay s1esn Surmde) [oz1] Ie 30 IysaIn) 8.S
SISA[euy pojuarI)-13[qQ 10J [00],

[ewInof SurreourSug aremyjos pajewoiny 1SundS €00z ASVD poseg-oSenSue] [einjeN V op[ing-ND [81] seysnezren) pue ureuwLreH LLS
SOTUBYOIA dATIOWOINY oSenSueT [exnyeN Sursn uonduosa(ase)) 9sn

Q0UAIJUOD) pUE $O110qOY ‘SOTUOIOIH JO SSAISUOD) YMNOo A9l L007 WOIJ WSS JojeIouan) weiSer 20uanbag AN l611] Ie 12 opun3ag 9/S
S[OPOIA SISATeUY OJUT sjuawaInbay

QouaIjuon €10C dSV H94dl €10¢ [emx9, SuruiIojsuel], 10§ [00], V AV IL (1] [& 39 O[oys1e] SLS
syuowaInbay a3en3ue| [eimeN

QOUIAUOT) [T, D98I OV €S10¢ WOl S[SPOIAl "TIN(] JO UoneIsuag snewone-fuag [z6] [eAueg pue nueyewndooq LS
1X9], woly

9ouaIJuUO) S1.HS4/0d84 DV S10T S[SPOJA 2sED) 9S[)-[e0D) JO UONIBNXH pased-a[ny [8r11] [e 30 Apuniy pue uoAnsN €LS
UOTEIoUAS [OPOW SSE[O PIJUILIO

[euInof QIeM)JOS PUE SWISAS JO [ewInof 9Y], JOIASS[H []0T -399[qo 10J Siseq e se suondriosop 9sed asn pasied [L11] Ie 30 epuaqg LS
uoneoyradg pue uoneyoIyg

1odey) 1102 DDV 108unds 1107 SjusWAINbay 21EM1JOS pajewIoINy Pased-TN [o¥] [® 30 Joquin) 1LS
ASojouyda], eIpawn[nA pue SJUDWINJO(] IXA], 921 WOIJ

QOUAIJUOD) UOTRULIOJU] UO 90USIJUO)) [EUONBUISIU] 600T 99T 600C syuowaInboy] TeuonoUn aremijos Sunoenxg [16] e 30 N\ 0LS
sjuowaAoIdwW] MITASY IOf ZUog
-SOPSIAIA Je suoneoyroads a3en3ue T [eIneN

1dey) €107 OSAAY IeSundS €10z 931eT Jo uonezuoge)) judwaInboy onewony [o171] 10 69S
KSojopoylo]N S[OPOJA 9SBD) 3S() WOIJ S[OPOJA SISA[RUY TINN

[eumof pue SurIeoUISUH Iem)JOS UO SUOT)OBSURI], INDV WDV S10T QATIO(0) YIOMOWET] PAjewioNy UY :UBdNOJ e [61] e 30 onx 89S

Jurroaurduy a1eM)jos

PojEWIOINY UO QOUIIJUO)) [BUOTIRUIIU] Sureauiduy syuowaIinbay peseqg

9oUaIJUOD) INOV/HEHI WLT 94! JO SSUIpaasold 710T H94dl ¢10¢ -08pa[MOU] 0] JIOMIUWEL] / 10)0)UITY [es] [2 30 uaAngsN L9S

ad£y woneir) oweN Joysiyqng Jedx LI SIOULINY soyny (I Apmis

(ponunuoo) 6 3jqey

pringer

AQs

Requirements Engineering

Acknowledgements Muhammad Aminu Umar acknowledges the fund-
ing support of the Petroleum Technology Development Fund (PTDF),
the Federal Government of Nigeria.

Citation type
Conference

Journal

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

International Conference on Computational
Science and Information management
Model Driven Engineering (AMDE 2020)

(ICSECS-ICOCSIM)

Engineering & Computer Systems and 4th
Software and Systems Modeling
International Workshops on the Advancements in Conference

2021 International Conference on Software

1. Zava P (1995) Classification of research efforts in requirements
engineering. In: Proceedings of 1995 IEEE International Sym-
posium on Requirements Engineering (RE’95)

2. Nuseibeh B, Easterbrook S (2000) Requirements engineering:
a roadmap. In: Proceedings of the conference on the future of
software engineering (ICSE ’00), pp 35-46. [Online]. https://
doi.org/10.1145/336512.336523

3. Geogy M, Dharani A (2016) A scrutiny of the software require-
ment engineering process. Procedia Technol 25:405-410. https://
doi.org/10.1016/j.protcy.2016.08.125

4. Mich L, Franch M, Novi IP (2004) Market research for require-
ments analysis using linguistic tools. Requirements Eng 9:40-56

5. Nassar IN, Khamayseh FT (2015) Constructing activity diagrams
from Arabic user requirements using Natural Language Process-
ing tool. In: 2015 6th International conference on information
and communication systems (ICICS), Amman, Jordan: IEEE,
pp 50-54. https://doi.org/10.1109/IACS.2015.7103200

6. Jyothilakshmi MS, Samuel P (2012) Domain ontology based
class diagram generation from functional requirements. In: 2012
12th International conference on intelligent systems design and
applications (ISDA), Kochi, India: IEEE, pp 380-385. https://
doi.org/10.1109/ISDA.2012.6416568

7. Arora C, Sabetzadeh M, Briand L, Zimmer F (2016) Extracting

domain models from natural-language requirements: approach
and industrial evaluation. In: Proceedings of the ACM/IEEE 19th
International conference on model driven engineering languages
and systems, Saint-malo France: ACM, pp 250-260. https://doi.
0rg/10.1145/2976767.2976769

. Ryan K (1993) The role of natural language in requirements

engineering. In: IEEE International symposium on requirements
engineering, IEEE, pp 240-242. https://doi.org/10.1109/ISRE.
1993.324852
9. Lee BS, Bryant BR (2022) Automation of Software System
Development Using Natural Language Processing and Two-
Level Grammar. In: Radical Innovations of Software and Sys-
tems Engineering in the Future. RISSEF 2002, Springer, Berlin,
Heidelberg, pp 219-233
10. Flores JJG (2004) Linguistic processing of natural language require-
ments: the contextual exploration approach. In: Proceedings of the
10th international workshop on requirements engineering: foundation
for software quality (REFSQ’04), pp 99-112
11. Nazir F, Butt WH, Anwar MW, Khattak MAK (2017) The
applications of natural language processing (NLP) for software
requirement engineering: a systematic literature review. In:

Year Publisher Name

2021 IEEE
2022 Springer
2020 Elsevier

Specification (SRS) Document Generator: The
modelling empowered by artificial intelligence

Guide to Novice Analyst

Towards a Generation of Class Diagram from
User Stories in Agile Methods

Semi-Automated Software Requirements
Automated, interactive, and traceable domain

References Title

[123]

[124]

[82]
oo

Mustaffa et al
Saini et al
Nasiri et al

Table 9 (continued)
Study ID Authors

S83
S84
S85

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/336512.336523
https://doi.org/10.1145/336512.336523
https://doi.org/10.1016/j.protcy.2016.08.125
https://doi.org/10.1016/j.protcy.2016.08.125
https://doi.org/10.1109/IACS.2015.7103200
https://doi.org/10.1109/ISDA.2012.6416568
https://doi.org/10.1109/ISDA.2012.6416568
https://doi.org/10.1145/2976767.2976769
https://doi.org/10.1145/2976767.2976769
https://doi.org/10.1109/ISRE.1993.324852
https://doi.org/10.1109/ISRE.1993.324852

Requirements Engineering

14.

15.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

International conference on information science and applications,
pp 485-493

Teichroew D, Sayani H (1980) Computer-Aided Requirements
Engineering. In: ACM National Conference Proceedings (ACM
’80), ACM, pp 369-381

. Saini R, Mussbacher G, Guo JLC, Kienzle J (2020) DoMoBOT: a

bot for automated and interactive domain modelling. In: Proceed-
ings of the 23rd ACM/IEEE international conference on model
driven engineering languages and systems: companion proceed-
ings, Virtual Event Canada: ACM, pp 1-10. https://doi.org/10.
1145/3417990.3421385

Letsholo KJ, Zhao L, Chioasca EV (2013) TRAM: A tool for
transforming textual requirements into analysis models. In: 2013
28th IEEE/ACM International conference on automated software
engineering (ASE), Silicon Valley, CA, USA: IEEE, pp 738-741.
https://doi.org/10.1109/ASE.2013.6693146

Moketar NA, Kamalrudin M, Sidek S, Robinson M, Grundy J
(2016) TestMEReq: generating abstract tests for requirements
validation. In: Proceedings of the 3rd international workshop on
software engineering research and industrial practice - SER&IP
’16, Austin, Texas: ACM Press, pp 39-45. https://doi.org/10.
1145/2897022.2897031

Ko D, Kim S, Park S (2019) Automatic recommendation to omit-
ted steps in use case specification. Requirements Eng 24(4):431-
458. https://doi.org/10.1007/s00766-018-0288-z

Kumar DD, Sanyal R (2008) Static UML Model Generator from
Analysis of Requirements (SUGAR). In: 2008 Advanced Soft-
ware Engineering and Its Applications, Hainan, China: IEEE, pp
77-84. https://doi.org/10.1109/ASEA.2008.25

Harmain HM, Gaizauskas R (2003) CM-builder: a natural
language-based CASE tool for object-oriented analysis. Autom
Softw Eng 10:157-181. https://doi.org/10.1023/A:10229160289
Yue T, Briand LC, Labiche Y (2015) aToucan: an automated
framework to derive UML analysis models from use case models.
ACM Trans Softw Eng Methodol 24(3):1-52. https://doi.org/10.
1145/2699697

Panichella S Ruiz M (2020) Requirements-Collector: Automat-
ing Requirements Specification from Elicitation Sessions and
User Feedback. In: 2020 IEEE 28th International requirements
engineering conference (RE), Zurich, Switzerland: IEEE, pp
404-407. https://doi.org/10.1109/RE48521.2020.00057
Sharma R, Srivastava PK, Biswas KK (2015) From natural lan-
guage requirements to UML class diagrams. In: 2015 IEEE Sec-
ond international workshop on artificial intelligence for require-
ments engineering (AIRE), Ottawa, ON: IEEE, pp 1-8. https://
doi.org/10.1109/AIRE.2015.7337625

Pohl K (2010) Requirements engineering: fundamentals, princi-
ples, and techniques, 1st edn. Springer, Berlin

Sommerville I (2011) Software Engineering, 9th ed. Person Edu-
cation, Inc.

Do QA, Chekuri SR, Bhowmik T (2019) Automated Support
to Capture Creative Requirements via Requirements Reuse. In:
Reuse in the Big Data Era, Peng X, Ampatzoglou A, Bhowmik
T, Eds., in Lecture Notes in Computer Science, Springer, Cham,
pp 47-63. https://doi.org/10.1007/978-3-030-22888-0_4
Curcio K, Navarro T, Malucelli A, Reinehr S (2018) Require-
ments engineering: a systematic mapping study in agile software
development. J Syst Softw 139:32-50

Jin Z (2018) Requirements and requirements engineering. Envi-
ron Model-Based Requir Eng Softw Intensive Syst. https://doi.
org/10.1016/B978-0-12-801954-2.00001-7

De Lucia A, Qusef A (2010) Requirements engineering in agile
software development. J Emerg Techn Web Intell 2(3):212-220
Aysolmaz B, Leopold H, Reijers HA, Demirors O (2018) A semi-
automated approach for generating natural language requirements

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

documents based on business process models. Inf Softw Technol
93:14-29. https://doi.org/10.1016/j.infsof.2017.08.009
Mehmood MA, Khan MNA, Afzal W (2018) Automating Test
Data Generation for Testing Context-Aware Applications. In:
2018 IEEE 9th International conference on software engineer-
ing and service science (ICSESS), Beijing, China: IEEE, pp
104-108. https://doi.org/10.1109/ICSESS.2018.8663920
Turner DA, Park M, Kim J, Chae J (2008) An Automated Test
Code Generation Method for Web Applications using Activity
Oriented Approach. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, L’Aquila, Italy:
IEEE, pp 411-414. https://doi.org/10.1109/ASE.2008.61

Anil Kumar S (2020) Enhancing the Scope for Automated Code
Generation and Parallelism by Optimizing Loops through Loop
Unrolling. In: 2020 Fourth International Conference on Inven-
tive Systems and Control (ICISC), Coimbatore, India: IEEE, pp
790-795. https://doi.org/10.1109/ICISC47916.2020.9171081
Nakatoh T, Uchida S, Ishita E, Oga T (2016) Automated Gen-
eration of Coding Rules: Text-Mining Approach to ISO 26000.
In: 2016 5th ITAI International Congress on Advanced Applied
Informatics (IIAI-AAI), Kumamoto, Japan: IEEE, pp 154-158.
https://doi.org/10.1109/IIAI-AAL.2016.210

Xie S, Yang J, Lu S (2021) Automated Code Refactoring upon
Database-Schema Changes in Web Applications. In: 2021 36th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Melbourne, Australia: IEEE, pp 1262-1265.
https://doi.org/10.1109/ASE51524.2021.9678934

Musthafa FN, Mansur S, Wibawanto A (2020) Automated Soft-
ware Testing on Mobile Applications: A Review with Special
Focus on Android Platform. In: 2020 20th International Con-
ference on Advances in ICT for Emerging Regions (ICTer),
Colombo, Sri Lanka: IEEE, pp 292-293. https://doi.org/10.1109/
ICTer51097.2020.9325445

Aguirre N (2017) Efficient SAT-Based Software Analysis: From
Automated Testing to Automated Verification and Repair. In:
2017 IEEE/ACM 5th International FME Workshop on Formal
Methods in Software Engineering (FormaliSE), Buenos Aires,
Argentina: IEEE, pp 2-2. https://doi.org/10.1109/FormaliSE.
2017.21

Wirotyakun A, Netisopakul P (2012) Improving software main-
tenance size metrics A case study: Automated report generation
system for particle monitoring in Hard Disk Drive Industry. In:
2012 Ninth International Conference on Computer Science and
Software Engineering (JCSSE), Bangkok, Thailand: IEEE, pp
334-339. https://doi.org/10.1109/JCSSE.2012.6261975

Yusop N, Kamalrudin M, Sidek S, Grundy J (2016) Auto-
mated Support to Capture and Validate Security Requirements
for Mobile Apps. In: Requirements Engineering Toward Sus-
tainable World, vol. 671, S.-W. Lee and T. Nakatani, Eds., in
Communications in Computer and Information Science, Singa-
pore: Springer Singapore, pp 97-112. https://doi.org/10.1007/
978-981-10-3256-1_7

Li Y, Guzman E, Tsiamoura K, Schneider F, Bruegge B (2015)
Automated requirements extraction for scientific software. Pro-
cedia Comput Sci 51:582-591. https://doi.org/10.1016/j.procs.
2015.05.326

Schneider K, Knauss E, Houmb S, Islam S, Jiirjens J (2012)
Enhancing security requirements engineering by organizational
learning. Requirements Eng 17(1):35-56. https://doi.org/10.
1007/s00766-011-0141-0

LiC, Huang L, Ge J, Luo B, Ng V (2018) Automatically classify-
ing user requests in crowdsourcing requirements engineering. J
Syst Softw 138:108—-123. https://doi.org/10.1016/].jss.2017.12.
028

Vlas R, Robinson WN (2011) A Rule-Based Natural Language
Technique for Requirements Discovery and Classification in

https://doi.org/10.1145/3417990.3421385
https://doi.org/10.1145/3417990.3421385
https://doi.org/10.1109/ASE.2013.6693146
https://doi.org/10.1145/2897022.2897031
https://doi.org/10.1145/2897022.2897031
https://doi.org/10.1007/s00766-018-0288-z
https://doi.org/10.1109/ASEA.2008.25
https://doi.org/10.1023/A:10229160289
https://doi.org/10.1145/2699697
https://doi.org/10.1145/2699697
https://doi.org/10.1109/RE48521.2020.00057
https://doi.org/10.1109/AIRE.2015.7337625
https://doi.org/10.1109/AIRE.2015.7337625
https://doi.org/10.1007/978-3-030-22888-0_4
https://doi.org/10.1016/B978-0-12-801954-2.00001-7
https://doi.org/10.1016/B978-0-12-801954-2.00001-7
https://doi.org/10.1016/j.infsof.2017.08.009
https://doi.org/10.1109/ICSESS.2018.8663920
https://doi.org/10.1109/ASE.2008.61
https://doi.org/10.1109/ICISC47916.2020.9171081
https://doi.org/10.1109/IIAI-AAI.2016.210
https://doi.org/10.1109/ASE51524.2021.9678934
https://doi.org/10.1109/ICTer51097.2020.9325445
https://doi.org/10.1109/ICTer51097.2020.9325445
https://doi.org/10.1109/FormaliSE.2017.21
https://doi.org/10.1109/FormaliSE.2017.21
https://doi.org/10.1109/JCSSE.2012.6261975
https://doi.org/10.1007/978-981-10-3256-1_7
https://doi.org/10.1007/978-981-10-3256-1_7
https://doi.org/10.1016/j.procs.2015.05.326
https://doi.org/10.1016/j.procs.2015.05.326
https://doi.org/10.1007/s00766-011-0141-0
https://doi.org/10.1007/s00766-011-0141-0
https://doi.org/10.1016/j.jss.2017.12.028
https://doi.org/10.1016/j.jss.2017.12.028

Requirements Engineering

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Open-Source Software Development Projects. In: 2011 44th
Hawaii International Conference on System Sciences, Kauai,
HI: IEEE, pp 1-10. https://doi.org/10.1109/HICSS.2011.28
Moitra A et al (2019) Automating requirements analysis and test
case generation. Requirements Eng 24(3):341-364. https://doi.
org/10.1007/s00766-019-00316-x

Miao W et al. (2016) Automated Requirements Validation for
ATP Software via Specification Review and Testing. In: For-
mal Methods and Software Engineering, K. Ogata, M. Lawford,
and S. Liu, Eds., in Lecture Notes in Computer Science, Cham:
Springer International Publishing, pp 26—40. https://doi.org/10.
1007/978-3-319-47846-3_3

Ezzini S, Abualhaija S, Arora C, Sabetzadeh M, Briand LC
(2021) Using Domain-Specific Corpora for Improved Handling
of Ambiguity in Requirements. In: 2021 IEEE/ACM 43rd Inter-
national Conference on Software Engineering (ICSE), Madrid,
ES: IEEE, pp 1485-1497. https://doi.org/10.1109/ICSE43902.
2021.00133

Md Haque A, Abdur Rahman Md, Siddik MS (2019) Non-
Functional Requirements Classification with Feature Extrac-
tion and Machine Learning: An Empirical Study. In: 2019 1st
International Conference on Advances in Science, Engineer-
ing and Robotics Technology (ICASERT), Dhaka, Bangladesh:
IEEE, pp 1-5. https://doi.org/10.1109/ICASERT.2019.89344
99

Umber A, Bajwa IS, Asif Naeem M (2011) NL-Based Auto-
mated Software Requirements Elicitation and Specification. In:
Advances in Computing and Communications, A. Abraham, J.
Lloret Mauri, J. F. Buford, J. Suzuki, and S. M. Thampi, Eds., in
Communications in Computer and Information Science, Berlin,
Heidelberg: Springer Berlin Heidelberg, pp 30-39. https://doi.
org/10.1007/978-3-642-22714-1_4

Ambriola V, Gervasi V (2006) On the systematic analysis of
natural language requirements with CIRCE. Autom Software Eng
13(1):107-167. https://doi.org/10.1007/s10515-006-5468-2
Vemuri S, Chala S, Fathi M (2017) Automated use case diagram
generation from textual user requirement documents. In: 2017
IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE), Windsor, ON: IEEE, pp 1-4. https://doi.
org/10.1109/CCECE.2017.7946792

Yue T, Briand LC, Labiche Y (2011) A systematic review of
transformation approaches between user requirements and analy-
sis models. Requirements Eng 16(2):75-99. https://doi.org/10.
1007/s00766-010-0111-y

de Carrillo Gea JM, Nicolés J, Fernandez Aleman JL, Toval
A, Ebert C, Vizcaino A (2012) Requirements engineering
tools: capabilities, survey and assessment. Inf Softw Technol
54(10):1142-1157. https://doi.org/10.1016/j.infsof.2012.04.005
Meth H, Brhel M, Maedche A (2013) The state of the art in auto-
mated requirements elicitation. Inf Softw Technol 55(10):1695—
1709. https://doi.org/10.1016/j.infsof.2013.03.008

Yang Z, Li Z, Jin Z, Chen Y (2014) A Systematic Literature
Review of Requirements Modeling and Analysis for Self-adap-
tive Systems. In: Requirements Engineering: Foundation for
Software Quality, vol. 8396, C. Salinesi and I. van de Weerd,
Eds., in Lecture Notes in Computer Science, vol. 8396. , Cham:
Springer International Publishing, pp 55-71. https://doi.org/10.
1007/978-3-319-05843-6_5

Abdouli M, Karaa WBA, Ghezala HB (2016) Survey of works
that transform requirements into UML diagrams. In: 2016
IEEE 14th International Conference on Software Engineering
Research, Management and Applications (SERA), Towson, MD,
USA: IEEE, pp 117-123. https://doi.org/10.1109/SERA.2016.
7516136

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Dawood OS, Sahraoui A-E-K (2017) From requirements engi-
neering to uml using natural language processing—survey study.
EJERS 2(1):44. https://doi.org/10.24018/ejers.2017.2.1.236
Schon E-M, Thomaschewski J, Escalona MJ (2017) Agile
requirements engineering: a systematic literature review. Comput
Stand Interfaces 49:79-91. https://doi.org/10.1016/j.csi.2016.08.
011

Ahmed S, Ahmed A, Eisty NU (2022) Automatic Transforma-
tion of Natural to Unified Modeling Language: A Systematic
Review. In: 2022 IEEE/ACIS 20th International Conference on
Software Engineering Research, Management and Applications
(SERA), Las Vegas, NV, USA: IEEE, pp 112-119. https://doi.
org/10.1109/SERA54885.2022.9806783

Kolahdouz-Rahimi S, Lano K, Lin C (2023) Requirement For-
malisation using Natural Language Processing and Machine
Learning: A Systematic Review. In: presented at the 11th Inter-
national Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2023), Lisbon, Portugal

Dyba T, Kitchenham B, Jgrgensen M (2005) Evidence-based
Software engineering for practitioners. IEEE Softw 22(1):58-65
Kitchenham B (2004) Procedures for performing systematic
reviews. Keele University, Keele

Kitchenham B, Charters S (2007) Guidelines for performing
systematic literature reviews in software engineering. Keele
University and Durham University, Keele

Daun M, Grubb AM, Stenkova V, Tenbergen B (2023) A sys-
tematic literature review of requirements engineering educa-
tion. Requirements Eng 28(2):145-175. https://doi.org/10.
1007/s00766-022-00381-9

Dyba T, Dingsgyr T (2008) Empirical studies of agile soft-
ware development: a systematic review. Inf Softw Technol
50(9-10):833-859

Pinquié R, Véron P, Segonds F, Croué N (2018) A requirement
mining framework to support complex sub-systems suppliers.
Procedia CIRP 70:410-415. https://doi.org/10.1016/j.procir.
2018.03.228

Alkhader Y, Hudaib A, Hammo B (2006) Experimenting With
Extracting Software Requirements Using NLP Approach. In:
2006 International Conference on Information and Automa-
tion, Colombo, Sri Lanka: IEEE, pp 349-354. https://doi.org/
10.1109/ICINFA.2006.374136

Ankori R (2005) Automatic requirements elicitation in agile
processes. In: IEEE International Conference on Software -
Science, Technology & Engineering (SWSTE’05), Herzlia,
Israel: IEEE, pp 101-109. https://doi.org/10.1109/SWSTE.
2005.8

Kamalrudin M (2009) Automated Software Tool Support for
Checking the Inconsistency of Requirements. In: 2009 IEEE/
ACM International Conference on Automated Software Engi-
neering, Auckland, New Zealand: IEEE, pp 693-697. https://
doi.org/10.1109/ASE.2009.38

Sharma R, Biswas KK (2013) A Semi-automated Approach
towards Handling Inconsistencies in Software Requirements.
In: Evaluation of Novel Approaches to Software Engineering,
vol. 410, L. A. Maciaszek and J. Filipe, Eds., in Communica-
tions in Computer and Information Science, vol. 410. , Berlin,
Heidelberg: Springer Berlin Heidelberg, pp 142—156. https://doi.
0rg/10.1007/978-3-642-45422-6_10

Moketar NA, Kamalrudin M, Sidek S, Robinson M, Grundy J
(2016) An automated collaborative requirements engineering
tool for better validation of requirements. In: Proceedings of
the 31st IEEE/ACM International Conference on Automated
Software Engineering - ASE 2016, Singapore, Singapore: ACM
Press, pp 864—869. https://doi.org/10.1145/2970276.2970295

@ Springer

https://doi.org/10.1109/HICSS.2011.28
https://doi.org/10.1007/s00766-019-00316-x
https://doi.org/10.1007/s00766-019-00316-x
https://doi.org/10.1007/978-3-319-47846-3_3
https://doi.org/10.1007/978-3-319-47846-3_3
https://doi.org/10.1109/ICSE43902.2021.00133
https://doi.org/10.1109/ICSE43902.2021.00133
https://doi.org/10.1109/ICASERT.2019.8934499
https://doi.org/10.1109/ICASERT.2019.8934499
https://doi.org/10.1007/978-3-642-22714-1_4
https://doi.org/10.1007/978-3-642-22714-1_4
https://doi.org/10.1007/s10515-006-5468-2
https://doi.org/10.1109/CCECE.2017.7946792
https://doi.org/10.1109/CCECE.2017.7946792
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1007/s00766-010-0111-y
https://doi.org/10.1016/j.infsof.2012.04.005
https://doi.org/10.1016/j.infsof.2013.03.008
https://doi.org/10.1007/978-3-319-05843-6_5
https://doi.org/10.1007/978-3-319-05843-6_5
https://doi.org/10.1109/SERA.2016.7516136
https://doi.org/10.1109/SERA.2016.7516136
https://doi.org/10.24018/ejers.2017.2.1.236
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1016/j.csi.2016.08.011
https://doi.org/10.1109/SERA54885.2022.9806783
https://doi.org/10.1109/SERA54885.2022.9806783
https://doi.org/10.1007/s00766-022-00381-9
https://doi.org/10.1007/s00766-022-00381-9
https://doi.org/10.1016/j.procir.2018.03.228
https://doi.org/10.1016/j.procir.2018.03.228
https://doi.org/10.1109/ICINFA.2006.374136
https://doi.org/10.1109/ICINFA.2006.374136
https://doi.org/10.1109/SWSTE.2005.8
https://doi.org/10.1109/SWSTE.2005.8
https://doi.org/10.1109/ASE.2009.38
https://doi.org/10.1109/ASE.2009.38
https://doi.org/10.1007/978-3-642-45422-6_10
https://doi.org/10.1007/978-3-642-45422-6_10
https://doi.org/10.1145/2970276.2970295

Requirements Engineering

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Antinyan V, Staron M (2017) Rendex: a method for automated
reviews of textual requirements. J Syst Softw 131:63-77. https://
doi.org/10.1016/j.jss.2017.05.079

Parra E, Dimou C, Llorens J, Moreno V, Fraga A (2015) A meth-
odology for the classification of quality of requirements using
machine learning techniques. Inf Softw Technol 67:180-195.
https://doi.org/10.1016/j.infsof.2015.07.006

Cleland-Huang J, Settimi R, Zou X, Solc P (2007) Automated
classification of non-functional requirements. Requirements Eng
12(2):103-120. https://doi.org/10.1007/s00766-007-0045-1
Cybulski JL, Reed K (2000) Requirements Classification and
Reuse: Crossing Domain Boundaries. In: International Confer-
ence on Software Reuse (ICSR 2000), pp 190-210

Winkler J, Vogelsang A (2016) Automatic Classification of
Requirements Based on Convolutional Neural Networks. In:
2016 IEEE 24th International Requirements Engineering Confer-
ence Workshops (REW), Beijing, China: IEEE, pp 39-45. https://
doi.org/10.1109/REW.2016.021

Reddivari S, Bhowmik T, Hollis C (2019) Automated support to
capture verbal just-in-time requirements via audio mining and
cluster-based visualization. J Ind Inf Integr 14:41-49. https://
doi.org/10.1016/}.jii.2018.06.001

Rago A, Marcos C, Diaz-Pace JA (2016) Identifying duplicate
functionality in textual use cases by aligning semantic actions.
Softw Syst Model 15(2):579-603. https://doi.org/10.1007/
$10270-014-0431-3

LiY, Yue T, Ali S, Zhang L (2019) Enabling automated require-
ments reuse and configuration. Softw Syst Model 18(3):2177-
2211. https://doi.org/10.1007/s10270-017-0641-6

Vidya Sagar VBR, Abirami S (2014) Conceptual modeling of
natural language functional requirements. J Syst Softw 88:25-41.
https://doi.org/10.1016/j.jss.2013.08.036

Al-Hroob A, Imam AT, Al-Heisa R (2018) The use of artificial
neural networks for extracting actions and actors from require-
ments document. Inf Softw Technol 101:1-15. https://doi.org/
10.1016/j.infsof.2018.04.010

Thakur JS, Gupta A (2014) Automatic generation of sequence diagram
from use case specification. In: Proceedings of the 7th India Soft-
ware Engineering Conference on - ISEC 14, Chennai, India: ACM
Press, pp 1-6. doi: https://doi.org/10.1145/2590748.2590768
Elallaoui M, Nafil K, Touahni R (2018) Automatic transfor-
mation of user stories into UML use case diagrams using NLP
techniques. Procedia Comput Sci 130:42—49. https://doi.org/10.
1016/j.procs.2018.04.010

Robeer M, Lucassen G, van der Werf JIMEM, Dalpiaz F, Brink-
kemper S (2016) Automated Extraction of Conceptual Models
from User Stories via NLP. In: 2016 IEEE 24th International
Requirements Engineering Conference (RE), Beijing: IEEE, pp
196-205. https://doi.org/10.1109/RE.2016.40

Nasiri S, Rhazali Y, Lahmer M, Chenfour N (2020) Towards a
generation of class diagram from user stories in agile methods.
Procedia Comput Sci 170:831-837. https://doi.org/10.1016/j.
procs.2020.03.148

Nguyen TH, Vo BQ, Lumpe M, Grundy J (2012) REInDetector:
a framework for knowledge-based requirements engineering. In:
Proceedings of the 27th IEEE/ACM International Conference on
Automated Software Engineering - ASE 2012, Essen, Germany:
ACM Press, p 386. https://doi.org/10.1145/2351676.2351754
Parasuraman R, Sheridan TB, Wickens CD (2000) A model for
types and levels of human interaction with automation. IEEE
Trans Syst Man Cybern A 30(3):286-297. https://doi.org/10.
1109/3468.844354

Kiyavitskaya N, Zannone N (2008) Requirements model gen-
eration to support requirements elicitation: the Secure Tropos
experience. Autom Softw Eng 15(2):149-173. https://doi.org/
10.1007/s10515-008-0028-6

@ Springer

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

Cybulski JL, Reed K (1998) Computer-assisted analysis and
refinement of informal software requirements documents. In:
Proceedings 1998 Asia Pacific Software Engineering Confer-
ence (Cat. No.98EX240), Taipei, Taiwan: IEEE Comput. Soc,
pp 128-135. https://doi.org/10.1109/APSEC.1998.733606
Méndez Ferndndez D, Wagner S (2015) Naming the pain in
requirements engineering: a design for a global family of surveys
and first results from Germany. Inf Softw Technol 57:616-643.
https://doi.org/10.1016/j.infsof.2014.05.008

Deeptimahanti DK, Babar MA (2009) An Automated Tool for
Generating UML Models from Natural Language Requirements.
In: 2009 IEEE/ACM International Conference on Automated
Software Engineering, Auckland, New Zealand: IEEE, pp 680—
682. https://doi.org/10.1109/ASE.2009.48

Seresht SM, Ormandjieva O, Sabra S (2008) Automatic Conceptual
Analysis of User Requirements with the Requirements Engineering
Assistance Diagnostic (READ) Tool. In: 2008 Sixth International
Conference on Software Engineering Research, Management and
Applications, Prague, Czech Republic: IEEE, pp 133-142. https://
doi.org/10.1109/SERA.2008.34

Ibrahim M, Ahmad R (2010) Class Diagram Extraction from Textual
Requirements Using Natural Language Processing (NLP) Tech-
niques. In: 2010 Second International Conference on Computer
Research and Development, Kuala Lumpur, Malaysia: IEEE, pp
200-204. https://doi.org/10.1109/ICCRD.2010.71

Mu Y, Wang Y, Guo J (2009) Extracting Software Functional
Requirements from Free Text Documents. In: 2009 International
Conference on Information and Multimedia Technology, Jeju
Island, Korea (South): IEEE, pp 194-198. https://doi.org/10.
1109/ICIMT.2009.47

Deeptimahanti DK, Sanyal R (2011) Semi-automatic genera-
tion of UML models from natural language requirements. In:
Proceedings of the 4th India Software Engineering Conference
on - ISEC ’11, Thiruvananthapuram, Kerala, India: ACM Press,
pp 165-174. https://doi.org/10.1145/1953355.1953378

Nattoch Dag J, Thelin T, Regnell B (2006) An experiment on lin-
guistic tool support for consolidation of requirements from multi-
ple sources in market-driven product development. Empir Softw
Eng 11(2):303-329. https://doi.org/10.1007/s10664-006-6405-5
Lucassen G, Dalpiaz F, van der Werf JMEM, Brinkkemper S
(2016) Improving agile requirements: the quality user story
framework and tool. Requirements Eng 21(3):383-403. https://
doi.org/10.1007/s00766-016-0250-x

Reinhartz-Berger I, Kemelman M (2020) Extracting core require-
ments for software product lines. Requirements Eng 25(1):47-65.
https://doi.org/10.1007/s00766-018-0307-0

Casamayor A, Godoy D, Campo M (2010) Identification of
non-functional requirements in textual specifications: a semi-
supervised learning approach. Inf Softw Technol 52(4):436-445.
https://doi.org/10.1016/j.infsof.2009.10.010

Burgueno L, Cabot J, Gerard S (2019) An LSTM-Based Neu-
ral Network Architecture for Model Transformations. In: 2019
ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS), Munich,
Germany: IEEE, pp 294-299. https://doi.org/10.1109/MODELS.
2019.00013

Sampaio A, Rashid A, Chitchyan R, Rayson P (2007) EA-miner:
towards automation in aspect-oriented requirements engineering.
In: Transactions on Aspect-Oriented Software Development 111,
Springer, Berlin, Heidelberg, pp 4-39

Gacitua R, Sawyer P, Gervasi V (2011) Relevance-based abstrac-
tion identification: technique and evaluation. Requirements Eng
16(3):251-265. https://doi.org/10.1007/s00766-011-0122-3
Omoronyia I, Sindre G, Stélhane T, Biffl S, Moser T, Sunindyo W
(2010) A domain ontology building process for guiding requirements

https://doi.org/10.1016/j.jss.2017.05.079
https://doi.org/10.1016/j.jss.2017.05.079
https://doi.org/10.1016/j.infsof.2015.07.006
https://doi.org/10.1007/s00766-007-0045-1
https://doi.org/10.1109/REW.2016.021
https://doi.org/10.1109/REW.2016.021
https://doi.org/10.1016/j.jii.2018.06.001
https://doi.org/10.1016/j.jii.2018.06.001
https://doi.org/10.1007/s10270-014-0431-3
https://doi.org/10.1007/s10270-014-0431-3
https://doi.org/10.1007/s10270-017-0641-6
https://doi.org/10.1016/j.jss.2013.08.036
https://doi.org/10.1016/j.infsof.2018.04.010
https://doi.org/10.1016/j.infsof.2018.04.010
https://doi.org/10.1145/2590748.2590768
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1016/j.procs.2018.04.010
https://doi.org/10.1109/RE.2016.40
https://doi.org/10.1016/j.procs.2020.03.148
https://doi.org/10.1016/j.procs.2020.03.148
https://doi.org/10.1145/2351676.2351754
https://doi.org/10.1109/3468.844354
https://doi.org/10.1109/3468.844354
https://doi.org/10.1007/s10515-008-0028-6
https://doi.org/10.1007/s10515-008-0028-6
https://doi.org/10.1109/APSEC.1998.733606
https://doi.org/10.1016/j.infsof.2014.05.008
https://doi.org/10.1109/ASE.2009.48
https://doi.org/10.1109/SERA.2008.34
https://doi.org/10.1109/SERA.2008.34
https://doi.org/10.1109/ICCRD.2010.71
https://doi.org/10.1109/ICIMT.2009.47
https://doi.org/10.1109/ICIMT.2009.47
https://doi.org/10.1145/1953355.1953378
https://doi.org/10.1007/s10664-006-6405-5
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-016-0250-x
https://doi.org/10.1007/s00766-018-0307-0
https://doi.org/10.1016/j.infsof.2009.10.010
https://doi.org/10.1109/MODELS.2019.00013
https://doi.org/10.1109/MODELS.2019.00013
https://doi.org/10.1007/s00766-011-0122-3

Requirements Engineering

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

elicitation. In: Requirements Engineering: Foundation for Software
Quality. REFSQ 2010., Springer, Berlin, Heidelberg, pp 188-202
Ferrari A, Esuli A (2019) An NLP approach for cross-domain
ambiguity detection in requirements engineering. Autom Softw
Eng 26(3):559-598. https://doi.org/10.1007/s10515-019-00261-7
Nattoch Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson
J (2002) A feasibility study of automated natural language require-
ments analysis in market-driven development. Requirements Eng
7(1):20-33. https://doi.org/10.1007/s007660200002

Park S, Kim H, Ko Y, Seo J (2000) Implementation of an effi-
cient requirements-analysis supporting system using similarity
measure techniques. Inf Softw Technol 42(6):429—438. https:/
doi.org/10.1016/S0950-5849(99)00102-0

Castro-Herrera C, Duan C, Cleland-Huang J, Mobasher B (2009)
A recommender system for requirements elicitation in large-scale
software projects. In: Proceedings of the 2009 ACM symposium
on Applied Computing - SAC ’09, Honolulu, Hawaii: ACM
Press, p 1419. https://doi.org/10.1145/1529282.1529601

Rago A, Marcos C, Diaz-Pace JA (2013) Uncovering quality-
attribute concerns in use case specifications via early aspect
mining. Requirements Eng 18(1):67-84. https://doi.org/10.1007/
s00766-011-0142-z

Shibaoka M, Kaiya H, Saeki M (2007) GOORE: Goal-Oriented
and Ontology Driven Requirements Elicitation Method. In:
Advances in Conceptual Modeling — Foundations and Applica-
tions. ER 2007, Springer, Berlin, Heidelberg, pp 225-234
Pavlidis M, Islam S, Mouratidis H (2012) A CASE Tool to Sup-
port Automated Modelling and Analysis of Security Require-
ments, Based on Secure Tropos. In: Progress in Pattern Rec-
ognition, Image Analysis, Computer Vision, and Applications,
vol. 8827, Bayro-Corrochano E, Hancock E, Eds., in Lecture
Notes in Computer Science, vol. 8827. , Cham: Springer
International Publishing, pp 95-109. https://doi.org/10.1007/
978-3-642-29749-6_7

Wang Z, Chen C-H, Zheng P, Li X, Khoo LP (2019) A novel
data-driven graph-based requirement elicitation framework
in the smart product-service system context. Adv Eng Inform
42:100983. https://doi.org/10.1016/j.ae1.2019.100983
Lucassen G, Robeer M, Dalpiaz F, van der Werf JMEM, Brink-
kemper S (2017) Extracting conceptual models from user stories
with Visual Narrator. Requirements Eng 22(3):339-358. https://
doi.org/10.1007/s00766-017-0270-1

Duan C, Laurent P, Cleland-Huang J, Kwiatkowski C (2009)
Towards automated requirements prioritization and triage.
Requirements Eng 14(2):73-89. https://doi.org/10.1007/
s00766-009-0079-7

Kuk K, Angeleski M, Popovic B (2019) A Semi-automated gen-
eration of Entity-Relationship Diagram based on Morphosyntac-
tic Tagging from the Requirements Written in a Serbian Natural
Language. In: 2019 IEEE 19th International Symposium on
Computational Intelligence and Informatics and 7th IEEE Inter-
national Conference on Recent Achievements in Mechatronics,
Automation, Computer Sciences and Robotics (CINTI-MACRo),
Szeged, Hungary: IEEE, pp 000085-000092. https://doi.org/10.
1109/CINTI-MACR049179.2019.9105162

Kurtanovic Z, Maalej W (2017) Automatically Classifying
Functional and Non-functional Requirements Using Supervised
Machine Learning. In: 2017 IEEE 25th International Require-
ments Engineering Conference (RE), Lisbon, Portugal: IEEE,
pp 490-495. https://doi.org/10.1109/RE.2017.82

Jabbarin S, Arman N (2014) Constructing use case models from
Arabic user requirements in a semi-automated approach. In: 2014
World Congress on Computer Applications and Information

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Systems (WCCAIS), Hammamet, Tunisia: IEEE, pp 1-4. https://
doi.org/10.1109/WCCAIS.2014.6916558

Sardinha A, Chitchyan R, Weston N, Greenwood P, Rashid A
(2013) EA-Analyzer: automating conflict detection in a large
set of textual aspect-oriented requirements. Autom Softw Eng
20(1):111-135. https://doi.org/10.1007/s10515-012-0106-7
Alami N, Arman N, Khamyseh F (2017) A semi-automated
approach for generating sequence diagrams from Arabic user
requirements using a natural language processing tool. In: 2017
8th International Conference on Information Technology (ICIT),
Amman, Jordan: IEEE, pp 309-314. https://doi.org/10.1109/
ICITECH.2017.8080018

Ott D (2013) Automatic Requirement Categorization of Large
Natural Language Specifications at Mercedes-Benz for Review
Improvements. In: Requirements Engineering: Foundation for
Software Quality, vol. 7830, J. Doerr and A. L. Opdahl, Eds., in
Lecture Notes in Computer Science, vol. 7830. , Berlin, Heidel-
berg: Springer Berlin Heidelberg, pp 50-64. https://doi.org/10.
1007/978-3-642-37422-7_4

Elbendak M, Vickers P, Rossiter N (2011) Parsed use case
descriptions as a basis for object-oriented class model genera-
tion. J Syst Softw 84(7):1209-1223. https://doi.org/10.1016/] jss.
2011.02.025

Nguyen TH, Grundy J, Almorsy M (2015) Rule-based extraction
of goal-use case models from text. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, Bergamo
Italy: ACM, pp 591-601. https://doi.org/10.1145/2786805.2786876
Segundo LM, Herrera RR, Herrera KYP (2007) UML Sequence
Diagram Generator System from Use Case Description Using
Natural Language. In: Electronics, Robotics and Automotive
Mechanics Conference (CERMA 2007), Morelos: IEEE, pp
360-363. https://doi.org/10.1109/CERMA.2007.4367713
Qureshi MZ, Azhar A, Abubakar Q, Rana TA, Maqgbool A (2021)
Capturing Users Requirements Using a Data Mining Approach.
In: 2021 International Conference on Communication Technolo-
gies (ComTech), Rawalpindi, Pakistan: IEEE, pp 49-54. https://
doi.org/10.1109/ComTech52583.2021.9616939

Kamalrudin M, Hosking J, Grundy J (2017) MaramaAIC: tool
support for consistency management and validation of require-
ments. Autom Softw Eng 24(1):1-45. https://doi.org/10.1007/
$10515-016-0192-z

Shehadeh K, Arman N, Khamayseh F (2021) Semi-Automated
Classification of Arabic User Requirements into Functional and
Non-Functional Requirements using NLP Tools. In: 2021 Inter-
national Conference on Information Technology (ICIT), Amman,
Jordan: IEEE, pp 527-532. https://doi.org/10.1109/ICIT52682.
2021.9491698

Binti Mustaffa NFN, Bin Sallim J, Binti Mohamed R (2021)
Semi — Automated Software Requirement Specification (SRS)
Document Generator: The Guideline to Novice System Analyst.
In: 2021 International Conference on Software Engineering &
Computer Systems and 4th International Conference on Compu-
tational Science and Information Management (ICSECS-ICOC-
SIM), Pekan, Malaysia: IEEE, pp 80-85. https://doi.org/10.1109/
ICSECS52883.2021.00022

Saini R, Mussbacher G, Guo JLC, Kienzle J (2022) Automated,
interactive, and traceable domain modelling empowered by arti-
ficial intelligence. Softw Syst Model 21(3):1015-1045. https://
doi.org/10.1007/s10270-021-00942-6

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1007/s10515-019-00261-7
https://doi.org/10.1007/s007660200002
https://doi.org/10.1016/S0950-5849(99)00102-0
https://doi.org/10.1016/S0950-5849(99)00102-0
https://doi.org/10.1145/1529282.1529601
https://doi.org/10.1007/s00766-011-0142-z
https://doi.org/10.1007/s00766-011-0142-z
https://doi.org/10.1007/978-3-642-29749-6_7
https://doi.org/10.1007/978-3-642-29749-6_7
https://doi.org/10.1016/j.aei.2019.100983
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1007/s00766-017-0270-1
https://doi.org/10.1007/s00766-009-0079-7
https://doi.org/10.1007/s00766-009-0079-7
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105162
https://doi.org/10.1109/CINTI-MACRo49179.2019.9105162
https://doi.org/10.1109/RE.2017.82
https://doi.org/10.1109/WCCAIS.2014.6916558
https://doi.org/10.1109/WCCAIS.2014.6916558
https://doi.org/10.1007/s10515-012-0106-7
https://doi.org/10.1109/ICITECH.2017.8080018
https://doi.org/10.1109/ICITECH.2017.8080018
https://doi.org/10.1007/978-3-642-37422-7_4
https://doi.org/10.1007/978-3-642-37422-7_4
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1016/j.jss.2011.02.025
https://doi.org/10.1145/2786805.2786876
https://doi.org/10.1109/CERMA.2007.4367713
https://doi.org/10.1109/ComTech52583.2021.9616939
https://doi.org/10.1109/ComTech52583.2021.9616939
https://doi.org/10.1007/s10515-016-0192-z
https://doi.org/10.1007/s10515-016-0192-z
https://doi.org/10.1109/ICIT52682.2021.9491698
https://doi.org/10.1109/ICIT52682.2021.9491698
https://doi.org/10.1109/ICSECS52883.2021.00022
https://doi.org/10.1109/ICSECS52883.2021.00022
https://doi.org/10.1007/s10270-021-00942-6
https://doi.org/10.1007/s10270-021-00942-6

	Advances in automated support for requirements engineering: a systematic literature review
	Abstract
	1 Introduction
	2 Background
	2.1 The traditional requirements engineering process
	2.2 Automation of software engineering processes
	2.3 Application of natural language processing in RE
	2.4 Summary of related literature reviews

	3 Methodology
	3.1 Research questions
	3.2 Search strategies
	3.3 Inclusion and exclusion criteria
	3.4 Quality assessment
	3.5 Primary study
	3.6 Data collectionextraction

	4 Results
	4.1 Overview of the studies
	4.2 What type of output or models are being generated by the automated tools according to published empirical studies?
	4.3 Which requirements engineering phase is mostly automated?
	4.4 To what degree is the automation of the requirements engineering support tool?
	4.5 What are the development techniquesapproach employed in the development of the support tools?
	4.6 How are these tools evaluated?

	5 Discussion
	6 Conclusion and future work
	6.1 Limitation of the review
	6.2 Conclusion and future work

	Appendix
	Acknowledgements
	References

