
Vol.:(0123456789)1 3

Requirements Engineering (2023) 28:507–520
https://doi.org/10.1007/s00766-023-00405-y

VIEW POINT

Requirements quality research: a harmonized theory, evaluation,
and roadmap

Julian Frattini1 · Lloyd Montgomery2 · Jannik Fischbach3,4 · Daniel Mendez1,4 · Davide Fucci1 ·
Michael Unterkalmsteiner1

Received: 29 September 2022 / Accepted: 10 July 2023 / Published online: 12 August 2023
© The Author(s) 2023

Abstract
High-quality requirements minimize the risk of propagating defects to later stages of the software development life cycle.
Achieving a sufficient level of quality is a major goal of requirements engineering. This requires a clear definition and under-
standing of requirements quality. Though recent publications make an effort at disentangling the complex concept of quality,
the requirements quality research community lacks identity and clear structure which guides advances and puts new findings
into an holistic perspective. In this research commentary, we contribute (1) a harmonized requirements quality theory organ-
izing its core concepts, (2) an evaluation of the current state of requirements quality research, and (3) a research roadmap
to guide advancements in the field. We show that requirements quality research focuses on normative rules and mostly fails
to connect requirements quality to its impact on subsequent software development activities, impeding the relevance of the
research. Adherence to the proposed requirements quality theory and following the outlined roadmap will be a step toward
amending this gap.

Keywords Requirements quality · Theory · Survey

1 Introduction

The empirical evidence of the impact of requirements
engineering (RE) on the software development life cycle
has shown that the quality of requirements artifacts and
processes influences project success and budget adher-
ence [1–3]. Moreover, the cost of defects introduced during
the RE phase of a project is reported to scale exponentially
the longer they remain undetected [4]. This necessitates
quality assurance techniques capable of detecting RE defects
as soon and as reliably as possible.

Requirements quality research is dedicated to supporting
the software engineering process with the means to evaluate
and improve the quality of requirements, mainly focusing on
requirements artifacts [5]. However, recent systematic inves-
tigations of requirements quality literature revealed a lack of
rigor and relevance of these contributions [6, 7]. Moreover,
the impact of the quality factors proposed in the literature
(i.e., requirements writing rules) remains largely unexplored
in practice [7], hindering its adoption in industry [8–11].

Existing quality theories and frameworks are too abstract
to guide requirements quality research at an operational
level [12, 13]. These theories often only divide quality into

 * Julian Frattini
 Julian.Frattini@bth.se

 Lloyd Montgomery
 lloyd.montgomery@uni-hamburg.de

 Jannik Fischbach
 jannik.fischbach@netlight.com

 Daniel Mendez
 Daniel.Mendez@bth.se

 Davide Fucci
 Davide.Fucci@bth.se

 Michael Unterkalmsteiner
 Michael.Unterkalmsteiner@bth.se

1 Blekinge Institute of Technology Valhallavägen 1,
37140 Karlskrona, Sweden

2 University of Hamburg Mittelweg 177, 20148 Hamburg,
Germany

3 Netlight Consulting GmbH Sternstraße 5, 80538 Munich,
Germany

4 Fortiss GmbH Guerickestrasse 25, 80805 Munich, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-023-00405-y&domain=pdf
http://orcid.org/0000-0003-3995-6125
http://orcid.org/0000-0002-8249-1418
http://orcid.org/0000-0002-4361-6118
http://orcid.org/0000-0003-0619-6027
http://orcid.org/0000-0002-0679-4361
http://orcid.org/0000-0003-4118-0952

508 Requirements Engineering (2023) 28:507–520

1 3

sub-categories without any means of applicability. In this
paper, we argue for the need for a theoretical and opera-
tionalizable foundation of requirements quality research. We
review the closely related software quality research and draw
parallels to requirements quality research to consolidate a
harmonized requirements quality theory. Additionally, we
survey requirements quality literature with respect to the
theory to reveal current shortcomings. Accordingly, we
make the following contributions:

1. A harmonized requirements quality theory serving as a
theoretical foundation for requirements quality research.

2. A survey of requirements quality research revealing if
and how concepts of the theory are reported in the state
of the art, but also emphasizing shortcomings.

3. A consequent research roadmap aimed at mitigating
these shortcomings.

The rest of this manuscript is organized as follows: Sect. 2
illustrates the evolution of software quality research and
draws the parallel to requirements quality research. In
Sect. 3, we derive a harmonized requirements quality theory
from this comparison. This theory is used to evaluate the
state of requirements quality research in Sect. 4 and reveal
current shortcomings. The consequent research roadmap to
mitigate these shortcomings is presented in Sect. 5 before
concluding in Sect. 6.

2 Software quality research

Software quality research follows a similar premise as
requirements quality research. It is necessary to control the
quality of software artifacts (e.g., source code) as it impacts
the overall quality of the development life cycle and the final
product. This premise aligns with the aim of requirements
quality research. To show commonalities and differences
between these two research fields, we review the evolution of
software quality research in Sect. 2.1 and draw a parallel to
requirements quality research in Sect. 2.2. We reach conclu-
sions about the necessary direction the latter needs to take.

2.1 Evolution of software quality research

Software quality research revolves around assessing the qual-
ity of software artifacts [14]. In the following, we describe
the evolution of the field according to Broy et al. [14] and
Deissenboeck et al. [15].

Guidelines and Metrics‑based approaches Guidelines are the
simplest approach for controlling the quality of software
artifacts. For example, the Java coding conventions [16]
prescribe—among other suggestions—how to name and

structure Java files. However, guidelines commonly fail to
significantly impact software quality, likely because they
lack the motivation for their relevance [17]. For example,
the aforementioned suggestions are justified because “[c]ode
conventions improve the readability of the software” [16]
without any empirical evidence of that claim. Furthermore,
guideline conformance is difficult to assess and hence sel-
dom done in practice [15]. The latter shortcoming was
addressed by introducing metrics-based approaches where
metrics were devised to measure relevant attributes of soft-
ware artifacts. Among others, lines of code [18] and cyclo-
matic complexity [19] were used to evaluate software quality
automatically. Nevertheless, most metrics continue to lack
justification of their relevance [14, 20–22].

Quality models To overcome the relevance shortcoming,
quality models aggregated metrics into hierarchical trees of
criteria [23, 24]. The leaf nodes are specific enough to be
operationalized as an evaluation metric, while the aggre-
gation into higher-level quality characteristics provided the
justification for their relevance. For example, low-level con-
cepts such as structuredness and conciseness of code were
justified by their aggregation to understandability and main-
tainability, which were widely accepted as relevant software
quality characteristics [24]. However, hierarchical models
suffered from unclear decomposition rules and constrained
levels of granularity, which were either too abstract to be
operationalized or too detailed, disconnecting the applicable
metrics from their rationale [14, 15].

Quality meta‑models The popularity of quality models
necessitated a structure for the proposed models [25]. Meta-
models like the Goal Question Metric approach by Basili
et al. [26] and the factor-strategy quality meta-model by
Marinescu and Ratiu [27] provide this overarching structure.
Deissenboeck et al. [28] contribute the DAP classification
for quality models, which categorizes the aim of a quality
model to be to define (D), assess (A), or predict (P). The
publication further postulates quality meta-models as the
“model of the constructs and rules needed to build specific
quality models.” [28].

Activity‑based quality models In addition to the shortcom-
ings that existing quality models continued to suffer, the
elements populating these models were found to be het-
erogeneous [15]—i.e., properties of a system were mixed
with properties of activities in which the system is used. For
example, the maintainability branch in the software quality
characteristics tree by Boehm et al. [29] contains both sys-
tem properties like the structuredness of a software artifact,
but also attributes of activities in which these artifacts are
used, like modifiability. The latter describes the activity of

509Requirements Engineering (2023) 28:507–520

1 3

modifying an artifact rather than a system property, despite
the adjective’s nominalization suggesting otherwise.

So far, no clear rule for distinguishing a system from an
activity property has been proposed. We derived two heu-
ristics from the implicit argumentation of previous pub-
lications [15]. First, if a property involves an additional
agent (e.g., testability involves a test engineer, modifiability
involves a modifier, although not necessarily human), then
it represents how the system is used—i.e., an activity prop-
erty. The second heuristic comes in the form of a syntactical
criterion:

• Nominalized adjectives (e.g., structured-ness, concise-
ness) tend to be system properties

• Nominalized verbs (e.g., modify-ability, access-ability,
augment-ability) tend to be activity properties

Interpreting activity properties as system properties ignores
an underlying impact relationship. For example, interpreting
modifiability as the system property of how receptive it is to
change omits that actual system properties (e.g., whether the
system is digital or analog or who has writing access rights)
impact the ability of a stakeholder to modify the system,
which is an activity property.

To address the issue of heterogeneous properties, Deis-
senboeck et al. introduced activity-based quality models [14,
15], which separate system properties from activity prop-
erties and form two distinct, orthogonal dimensions. The
model expresses quality as the impact of system properties
on activity properties. Figure 1 visualizes a simplified ver-
sion of the quality model [15], showing how code clones
impact the modification sub-activity and expressive identi-
fiers impact the concept-location sub-activity.

The activity-based quality model was successfully
applied to usability [30], security [31], and service-oriented
architecture [32] before Wagner et al. distilled a compre-
hensive activity-based meta-model in the scope of the Qua-
moco project [33, 34]. In parallel, the original use case of the
activity-based quality model, which focused on maintain-
ability, received extensive tool support [35, 36] contributing

evidence to the operationalization of quality models in
practice [37].

Activity-based quality models solve limitations of pre-
vious quality models at the cost of increased complexity,
which manifests in additional challenges to operationalize
and communicate the notion of quality [38]. However, the
complexity of these models is necessary to tackle the faceted
concept of quality [38, 39]. Research continuously tackles
the inability of activity-based quality models to assess arti-
fact quality and distinguish quality levels [40]. For example,
weights empirically derived from historical data replaced
expert-based propositions [41], and Bayesian networks were
utilized to model the impact relationships [42].

2.2 Mapping to requirements quality research

In the following, we draw a parallel of the evolution of qual-
ity research between the areas of software engineering and
requirements engineering.

Metrics and quality models Similar to software quality,
requirements quality research historically originated from
proposing metrics like passive voice of requirements sen-
tences [43] or sentence length [44], which are associated
with bad quality of requirements specifications. An ongo-
ing research endeavor [7] collects these quality factors and
indicats their limitations. Most existing publications either
fail to gauge the impact of these metrics [45] or explicitly
disregard their relationship [46]. Requirements quality mod-
els [47, 48] integrate these factors into larger frameworks but
often remain vague on their notion of impact.

The investigation of impact is often limited to a com-
parison between the quality factor and practitioners’ subjec-
tive, general perception of the quality of the requirements
entities [49]. Wilson et al. contribute a first impact matrix
between quality indicators and quality attributes [50], but the
latter suffers from the same system and activity properties
heterogeneity. Similarly, Yang et al. [51] state that “[a]mbi-
guity is therefore not a property just of a text, but a conjoint
property of the text and of the interpretations held by a group

Fig. 1 Excerpt from the
activity-based quality model for
maintainability

510 Requirements Engineering (2023) 28:507–520

1 3

of readers of that text,” exposing the necessary distinction
between system and activity properties.

Activity‑based requirements quality A large portion of
requirements quality research exhibits the same shortcom-
ings identified and overcome by software quality research,
namely that (1) requirements quality factors lack relevance
due to their unknown impact, which in turn inhibits adoption
in practice, and (2) the terminology of requirements quality
aspects confuses system and activity properties.

Femmer et al. apply the activity-based quality perspective
to requirements engineering by proposing the activity-based
requirements engineering quality model (ABRE-QM) [52].
This model leverages the insights from activity-based soft-
ware quality models [15, 17, 33] and shows that the qual-
ity of requirements depends on the impact they have on
the activities in which they are used. However, despite the
authors’ call for action [53], ABRE-QM saw little adoption
in research as demonstrated in recent systematic investiga-
tions of the requirements quality literature [6, 7].

The ABRE-QM example above raises the concern that
requirements quality researchers do not properly utilize the
activity-based approach successfully employed in software
quality research. In this manuscript, we want to encourage
further research on this approach by presenting a revised
requirements quality theory, a thorough investigation of the
requirements quality literature verifying the hypotheses from
previous studies [6, 7], and a consequent research roadmap.

3 Requirements quality theory

We generated a harmonized requirements quality theory
(RQT) by consolidating the evolution of software qual-
ity models described in Sect. 2.1, their application in

requirements engineering as described in Sect. 2.2, and
alignment to the established Quamoco quality model [34].
In terms of theory types [54], the RQT is both explana-
tory, as it explains the notion of requirements quality, and
prescriptive, as it prescribes how to report contributions to
requirements quality. The building blocks of the theory are
described in Sect. 3.1 and illustrated with an example in
Sect. 3.2.

3.1 Theory

The concepts that constitute this theory are visualized
in Fig. 2, and each concept is described in Table 1. The
model represents an evolution of the original activity-based
requirements engineering quality model (ABRE-QM) pro-
posed by Femmer et al. [52]. Here, we present changes to
the original model.

The artifact-related section of the model (left part of
Fig. 2) is largely equivalent to the original publications [15,
52]. Entities represent requirements artifacts of differ-
ent granularity [5], which can be decomposed into further
entities. For example, a requirements specification can be
decomposed into sections, which in turn consist of para-
graphs and sentences or requirements. We consider an arti-
fact to be a high-level requirements entity and hence do not
explicitly add the artifact to the model, deviating from the
original [52]. Similarly, factors can be decomposed into
sub-factors to accommodate composite factors. For exam-
ple, Antinyan et al. [58] position their proposed quality fac-
tor of conjunctive complexity as a sub-factor of syntactical
complexity.

The activity-related section of the model (middle part
of Fig. 2) again adapts the original models [15, 52]. The
concept activity does not represent common requirements
activities, like elicitation, analysis, and validation [59], but
rather every process that takes a requirements entity as input

Fig. 2 Concepts of the requirements quality theory

511Requirements Engineering (2023) 28:507–520

1 3

and produces an output. This includes some requirements
activities (like analysis and validation, which use require-
ments as input) but not others (like elicitation, which often
does not presuppose existing requirements). Hence, we
rather refer to them as requirements-affected activities.
These further include implicit sub-activities (e.g., under-
standing and interpreting an entity), which can be aggre-
gated with other, more explicit sub-activities (e.g., test case
design) to form high-level activities (e.g., validation). The
decomposition relationship of the activity concept accom-
modates this aggregation. To accommodate not only human
actors involved in activities but also any automatism like
requirements processing tools [60] we abstract the concept
of stakeholder to agent.

We generalized the impact concept in this theory. While
previous models assumed that impact is categorical (i.e.,
the occurrence of a fact has either a positive, negative, or no
impact at all, like in Fig. 1 [15] or linear (i.e., the larger the
evaluation of a quality factor, the better/worse is its quality),
we consider the impact to model any kind of relationship
between Entity-facts and Activity-facts. This opens up the
theory to more complex relationships, which can model the
actual impact more accurately and allows to compare the
impact of quality factors with each other.

Two concepts were added to the model. First, the impact
was related to an Activity-fact composed of an activity and
an attribute as proposed by Winter et al. [30]. This way, the
structure of the variables on the two sides of the impact
relationship is mirrored. Furthermore, the necessity to asso-
ciate an impact with a measurable property of an activity
is emphasized. Second, context factors also influence the
impact of an Entity-fact on an Activity-fact. As recognized
by previous publications [55, 56], the impact differs depend-
ing on external factors related to, among others, the organi-
zation and the people involved [61].

The economic section of the model (right part of Fig. 2)
is a novel addition to previous iterations of the activity-based

models [15, 34, 52]. As long as the subsequent economic
impact of an Activity-fact is unknown, the Entity-fact
that produces the Impact on this Activity-fact will remain
neglected [56, 57]. Hence, the software process economics
perspective introduces a Cost for a specific Resource such
as time or money.

3.2 Example

In this section, we illustrate the RQT with a fictitious exam-
ple to demonstrate its application. The example is addition-
ally visualized in Fig. 3.

In this example, a customer’s requirements were elicited
and documented in a requirements specification containing
the entity user story 42. One relevant quality factor used by
the organization responsible for implementing the require-
ments is template conformance, which prescribes that all
user stories must follow the Connextra template [62] “As a
⟨role⟩ I want to ⟨goal⟩ so that ⟨benefit⟩ .” This quality factor
maps the entity to a categorical value, containing—among
others—the values conform, missing role, and missing all
elements. In this example, the role is omitted from the user
story. Hence, the quality factor template conformance is
evaluated to missing role, which constitutes the entity-fact
(yellow box in Fig. 3).

The organization uses this user story in a subsequent,
requirements-affected development activity, where a differ-
ent stakeholder—the developer—is responsible for translat-
ing the entity into code. This activity can be decomposed
into two distinct sub-activities: understanding the entity and
programming the respective implementation.

One desired attribute of the activity understanding is
determinism—i.e., a requirements entity should have only
one unique interpretation. Possible variations of the inter-
pretation and, therefore, the subsequent translation of a
requirement must be avoided. Because the conformance
quality factor is evaluated to missing role on the user story

Table 1 Explanation and origin
of theory concepts

Concept Explanation Origin

Entity A requirements artifact or part thereof [52]
Factor “[A] normative metric which maps a textual requirement of a specific

granularity” [7] to a numerical output
[15, 52]

Entity-fact A composition of one entity and one factor [15]
Agent Any person, group of people, or automatism involved in an activity [52]
Activity An activity in which the entity is used [15]
Attribute A measurable property of an activity [30]
Activity-fact A composition of one activity and one attribute
Impact The impact of a fact on an activity-fact [15, 52]
Context factor A factor describing the context of the impact relationship [55, 56]
Cost The magnitude of cost associated with an activity-fact [56]
Resource The resource affected by the economical impact [56, 57]

512 Requirements Engineering (2023) 28:507–520

1 3

entity, the understanding activity is less deterministic, as
the developer can make a different assumption about the
role implied by the requirement. The understanding activity
has become ambiguous, which constitutes the activity-fact
(orange box in Fig. 3).

The relationship between the entity-fact and the activity-
fact is the impact of the quality factor. Instead of limiting
the impact concept to categorical values (e.g., either has an
impact or has no impact), the RQT enables more complex
impact relationships. In this fictitious example, the quality
factor value missing role is associated with a 64% chance
of making the understanding sub-activity ambiguous. This
relationship can be determined empirically via experimental
research investigating the likelihood of the different values
of the conformance quality factor reducing the determinism
of the understanding sub-activity.

The programming sub-activity may go unaffected by the
entity-fact that the conformance has a value of missing role
(green box in Fig. 3): regardless of the agent’s interpretation
of the requirements entity, the programming sub-activity
will remain unaffected in respect to the relevant attribute
duration under the assumption of a similar user interface for

both roles. Whether the feature is coded for the role recep-
tionist (as the customer intended) or patient (as the developer
assumed) does not significantly change the duration of the
sub-activity if the user interfaces only barely differ.

The significant impact on understanding is influenced by
the organizational model, which is one relevant context fac-
tor. Since the organization is globally distributed and the two
involved agents are unlikely to have informal interactions,
the impact is amplified. In contrast, in a small organization
where all involved agents share an office, the impact can
be alleviated as missing information is recovered through
informal communication. Similarly, the software develop-
ment process model may significantly influence the impact
of the quality factor, and the use of an agile approach may
reduce the impact by encouraging communication between
the customer and developer. The context factors significantly
influence the impact and, therefore, have to be included in
the relationship between entity-facts and activity-facts.

The reduced determinism of the understanding activ-
ity has an economic effect—i.e., the less deterministic the
activity is, the more the implementation needs to be revised,
which costs money and time (red box in Fig. 3). Context

Fig. 3 Exemplary instantiation of the theory

513Requirements Engineering (2023) 28:507–520

1 3

factors influence the extent of this effect as, for example, a
re-implementation can be more costly in larger organizations
due to organizational overhead.

For the sake of brevity, the example omits the following
aspects: (1) the example limits the number of elements popu-
lating the relationship. More quality factors of the entity,
activities, attributes of activities, and context factors are
possibly involved in the relationship. (2) Interaction effects
between quality factors and context factors are plausible but
not reported here.

However, the example demonstrates how adherence to
this activity-based RQT elevates requirements quality fac-
tors from normative rules (i.e., user stories must conform
the template for the sake of it) to empirically backed impact
predictions (i.e., user stories must conform the template to
mitigate ambiguous interpretations and avoid implementa-
tion cost).

4 State of research

Despite the publication of the ABRE-QM [52] and its
authors’ proposition to adapt the quality meta-model for
future requirements quality research [53], recent systematic
reviews raised concerns regarding a perspective on require-
ments quality limited to the artifact-related section of the
model (left part of Fig. 2) [6, 7].

To validate these concerns, we formulate the following
research question. How are the concepts of the require-
ments quality theory reported in requirements qual-
ity literature? Answering this research question requires
extracting information from a population of publications;
accordingly, we employ survey research as our approach to
gain insight into the current state of research. We follow the
survey guidelines by Molléri et al. [63] and report our survey
in the following subsections. All supplementary material for
replicating this study is available in our replication package.1

4.1 Survey objects

The target population of our survey is the requirements qual-
ity literature dealing with quality factors in requirements
artifacts. In a previous research endeavor [7], we conducted
a systematic study on requirements quality factors, including
a sample of 57 primary studies. To our knowledge, this is the
only sample that fulfills our aforementioned requirements.
This classifies the sampling as non-probabilistic, more spe-
cifically convenience sampling [63].

4.2 Study design

We follow the recommended practices for the survey
research process and report our steps accordingly [63].
However, we disregarded steps that only apply to surveys
with human subjects, such as participant recruitment and
response management.

We derived the definition of the research objectives in
the form of the research question directly from previous
research [6, 7, 53]. We established a study plan, rigorously
documenting all research progress and justifications for any
deviations during the process. We identified and character-
ized the population of our survey and executed our sampling
plan as described in Sect. 4.1.

For our instrument design, we maintained two artifacts.
We created an extraction guideline based on the RQT con-
cepts. Each concept of the RQT was associated with one or
more categorical variables, each containing a set of codes
that represented if and how the concept was reported. The
codes were created ad hoc in the first iteration of extraction
and refined based on discussions and theoretical background
in the second iteration.

The extent of the codes varied. The codes that repre-
sent how the concept entity is reported are, for example,
explicit and implicit. An entity is either reported explicitly
if its scope and form are clear. It is reported implicitly if the
authors just report that the factor applies to a “requirement”
without defining whether this is a single or multiple natural
language sentence, whether the language is constrained or
not, or whether it assumes a full sentence at all.

The codes of other concepts were more complex and
grouped into distinct categories. For example, the codes of
the concept Factor were split into two groups, representing
both the explicitness when reporting a factor (i.e., whether
the factor is explicitly reported or referenced from another
publication) and the form in which the factor is reported
(i.e., if the factor is represented with a textual description or
defined using a logical or mathematical formula).

The first author extracted the appropriate code for each
concept in the requirements quality theory from each pub-
lication. The extractions for each publication in the sam-
ple were recorded in a spreadsheet. For instrument valida-
tion, the second author of this manuscript independently
performed the extraction task using the guideline on six
(≈ 10%) publications randomly sampled from the survey
objects. The second author performed the extraction on two
of these six publications as training, and the remaining four
were used to calculate the inter-rater reliability between the
first and second author.

The task overlap achieved an percentage agreement [64]
of 83.3% , whereas Cohen’s Kappa yields a moderate

1 Available at https:// doi. org/ 10. 5281/ zenodo. 81675 98.

https://doi.org/10.5281/zenodo.8167598

514 Requirements Engineering (2023) 28:507–520

1 3

agreement of 54.2% . As Cohen’s Kappa is unreliable for
uneven marginal distributions [65], we calculated the more
robust S-Score [66]—yielding a good agreement of 76.8%
—which we deem sufficient for assessing the inter-rater
reliability.

We used the codes in the data analysis phase to generate
descriptive statistics on which we based our interpretation
of the state of requirements quality. These form a quantified
foundation for interpreting the state of requirements qual-
ity literature with respect to the research question. For final
reporting, we adapted established reporting guidelines [63]
and disclosed all material in a reusable replication package.

4.3 Study results

Figure 4 visualizes the distribution of the relevant codes
among all concepts included in the requirements quality
theory. Each concept is overlaid with a bar representing how
many of the 57 publications contained the concept. The row
below each concept represents its dimensions derived from
the appropriate codes.

Though both entities and factors are explicitly reported
in all 57 publications of the sample, a large portion
(24∕57 = 42.1%) of entities is reported implicitly—i.e.,
the entity’s scope is not clear. This occurs mostly because
authors attach the reported quality factor to the entity
requirement without specifying the scope or form of the
entity. Montgomery et al. [6] have already noted this short-
coming in the requirements quality literature and it repre-
sents a terminological ambiguity in the research domain.

Seventeen out of 57 publications (29.8%) do not report
any impact on activities (code N/A) and hence neglect the
practical relevance of the proposed quality factors. Agents
are only reported in 14 (24.6%) of all publications. Activi-
ties are—when reported—predominantly elicited ad hoc
(37∕40 = 92%) and rarely systematically—i.e., when

activities impacted by a quality factor are discussed, the
identification of activities has no systematic approach.
Attributes are also only rarely reported (8∕57 = 14%).

We grouped the codes classifying how impact is reported
into four distinct dimensions, two of which are reported
here. The evidence for the impact—when at all reported—is
dominantly hypothesized (19∕40 = 47.5%) and rarely either
inductive (11∕40 = 27.5%) or referenced (10∕40 = 25%),
i.e., draws the evidence from another publication. Previous
studies [6, 7] have also noted this dominance of anecdotal,
non-empirical evidence. The modality of impact relation-
ships is balanced between necessary and possible—i.e., the
impact of quality factors is reported almost equally often to
be certain or potential. The remaining two dimensions of
impact (generality and frame of reference) yielded no addi-
tional insight into the surveyed objects and are hence not
reported here but contained in the replication package.

Context factors are almost completely neglected and only
reported to a degree varying between zero (no publication
reports the influence of any tools) and 24.6% (14 out of 57
publications reporting product-related factors, e.g., the sys-
tem’s size or type).

Both cost and resources are reported only rarely
(9∕57 = 15.8% and 5∕57 = 8.8% , respectively) and, if so,
only hypothesized or referenced, never determined empiri-
cally. Money and time are mentioned as the resources
affected by activity impact, and the cost is only estimated
in terms of expected change (e.g., “reduction of the time
spent” [46]) or general magnitude (e.g., “significant amounts
of money” [67]).

4.4 Interpretation

In this section, we interpret the results presented in Sect. 4.3
and answer the research question.

Fig. 4 Survey results depicting
the distribution of codes

515Requirements Engineering (2023) 28:507–520

1 3

Publications in the requirements quality literature adhere
to the RQT to a varying degree. While all publications in
the sample mentioned both an entity and a quality factor,
activity-related concepts, context factors, and the economic
impact are often neglected. Failing to consider the context
factors severely threatens the external validity of the pro-
posed quality factors [55, 56] and neglecting the economic
impact risks undermines their acceptance [56, 57].

Context factors and economic impact are arguably more
challenging to investigate [68]; however, we emphasize that
the lack of activity perspective when proposing quality fac-
tors is critical for several reasons. The complete negligence
of a quality factor’s impact limits the factor to a normative,
unmotivated prescription and challenges its practical rel-
evance [52], which in turn promotes skepticism regarding
requirements quality factors in industry [8–11].

The survey emphasized two additional shortcomings in
the field of requirements quality research. First, the tendency
to elicit activities ad hoc when discussing the impact of
requirements quality factors bears the risk of missing other
important impacts. Most publications discuss a hypothesized
impact of a quality factor on a non-systematically selected
activity or set of activities. This selection is usually justified
by anecdotal or folkloric circumstances, like “[a]mbiguous
requirements may bring about misinterpretations among
stakeholders, and prompt a few issues” [69].

While these impact relationships are neither empiri-
cally proven nor falsified, the non-systematic selection of
activities can disregard other impact relationships. Fem-
mer et al. [52] demonstrated that a systematic elicitation of
activities could reveal both positive and negative impacts by
the same quality factor. For example, the factor free of UI
design details, which states that an “artifact should describe
the problem domain instead of the solution domain” [52],
will positively affect maintainability, as UI details are vola-
tile in the beginning and require a lot of change management
if specified in a requirement. Conversely, the same factor
negatively impacts understandability, as the presence of UI
design makes requirements more comprehensible.

Second, while activities are not reported consistently,
attributes of activities are reported even less. Attributes rep-
resent measurable characteristics of activities; for example,
the activity understanding can be quantified by its attrib-
ute level of agreement [58, 70] or a readability index [71].
Neglecting the quantifiable attributes of activities impedes
an empirical evaluation of a quality factor impact because it
omits the measurement instrument for the dependent vari-
able (i.e., the activity-fact) in the impact relationship [30].

We conclude that the requirements quality theory is
implicitly embedded in the requirements quality literature.
However, insufficient adherence to it results in several limi-
tations when reporting new requirements quality factors.
While the artifact-centric theory concepts are commonly

covered, activity-centric concepts, context factors, and eco-
nomic concepts receive less attention, which decreases these
publications’ practical relevance. With this study, we empiri-
cally confirm the concerns voiced in previous investigations
of the requirements quality literature [6, 7].

4.5 Threats to validity of this research

We discuss the threats to validity proposed by Wohlin
et al. [72] and extended by Molléri et al. [63].

Internal validity We acknowledge a threat to internal valid-
ity due to sampling of publications. The method of object
selection [6, 7] is deemed sufficiently rigorous to derive an
initial theory.

Construct validity The constructs in this study—i.e., the
elements of the theory—are established strictly following
mature quality theories from the field of software quality.
This ensures the alignment between the underlying theory
and measurement constructs.

The lack of a theory to which the surveyed publica-
tions could have adhered when reporting quality factors
resulted in the concepts of requirements quality often being
embedded implicitly, complicating the extraction task. We
minimized the resulting threat to internal validity through
independent labeling and calculating appropriate inter-rater
reliability metrics [65].

External validity The selected sample of publications [7] is
constrained to empirical contributions to requirements qual-
ity research [6]. This limits the conclusion validity of the
type of evidence for the impact concept, as non-empirical
work could contribute theoretical evidence for impact rela-
tionships. For example, the impact of quality factors like
nominalization [73] can be derived deductively by referring
to valency reduction caused by nominalization [74]. While
publications utilizing linguistic theory are unknown to the
authors, a valid conclusion regarding this type of evidence
requires a more thorough extension of the sampling strategy.

5 Research roadmap

Femmer et al. proposed an initial research roadmap detail-
ing how to advance the field of requirements quality
research [53]. Based on concerns of previous studies [6, 7]
and the survey of the state of research reported in this study,
we assess and update the three suggested steps by Femmer
et al. [53]:

516 Requirements Engineering (2023) 28:507–520

1 3

1. Creation of “a reference artifact and a usage model” elic-
iting typical entities, activities, and agents.

2. Creation of “a taxonomy of quality factors” as a central,
accessible repository of quality factors.

3. Creation of “a taxonomy of impacts” as a catalog of
impacts from quality factors onto activities.

We reflect on these proposed research streams in Sects. 5.1
to 5.3 and add three further proposals in Sects. 5.4 to 5.6.
Because these research streams are grounded in the experi-
ences from the software quality research, we expect contri-
butions to them to promote requirements quality research
that is relevant to practice.

5.1 Artifact and usage model

Mendez et al. have contributed a reference artifact model
for requirements engineering [5, 75] based on their fun-
damental positioning on artifact orientation [76, 77]. The
AMDiRE approach constitutes a domain-agnostic reference
for artifact types and serves the purpose requested by Fem-
mer et al. [53] in that it can be tailored toward any industry
context to model an artifact structure.

While the elicitation of human [78] and non-human, auto-
matic agents [79] has been addressed, a reference model for
activities requires explicit attention in the literature. More
importantly, with the update of the requirements quality
theory over the initial ABRE-QM [52], we argue that a ref-
erence model for requirements-affected activities needs to
provide attributes to quantify each activity. Such attributes
enable an empirical assessment of the impact of quality
factors.

Additionally, a majority of publications reporting an
impacted activity mention some variation of understand-
ing or interpreting (32∕40 = 80%). We assume that every
requirements-affected activity comprises an initial interpre-
tation sub-activity. However, such composition is obscured
by the lack of a proper reference model for requirements-
affected activities accounting for their aggregated nature.

It is conceivable that the interpretation sub-activity is
most prone to defects, which explains the research commu-
nity’s focus on ambiguity [6], as ambiguity represents the
non-determinism of an interpretation. We argue that a proper
reference model for requirements-affected activities account-
ing for their aggregated nature can steer research toward
identifying critical sub-activities—i.e., the ones most prone
to impacting subsequent activities.

5.2 Taxonomy of quality factors

Requirements quality factors [7, 53] are the cornerstone of
artifact-centric quality assurance. The requirements quality
factor ontology [7] furthered this research stream. Although

the ontology is in an early stage and requires additional itera-
tions, quality factors and related objects—such as data sets
and automation approaches—are now collected in a central
repository.

5.3 Taxonomy of impacts

The taxonomy of impacts that Femmer et al. [53] deem the
necessary final step of the roadmap has to be extended. Pre-
vious quality models—including the ABRE-QM [52]—con-
sider only categorical or, at most, linear impact relationships.
Therefore, a taxonomy seemed sufficient to record “a list of
well-examined effects of quality factors on activities” [53].
We argue that the impact relationship can be more complex
and requires a more general representation—i.e., rather than
aiming for a taxonomy of impacts, we argue for developing
an impact framework.

Given the evaluation of quality factors on requirements
entities on one side and the evaluation of activity attributes
on the other side, the impact relationship between these vari-
ables can be formulated as a regression problem. Instead
of relying on experts to hypothesize the (categorical) type
or (linear) extent of an impact, more complex relationships
can be determined using, for example, Bayesian data analy-
sis [80]. Consequently, this research stream aims to develop
an impact framework capable of determining these impact
relationships based on statistical instruments given sufficient
data.

5.4 Context factors

Context factors must be considered in the impact relation-
ship to operationalize the requirements quality theory [55].
Large-scale endeavors acknowledge the importance of con-
text factors in regard to requirements quality [1], yet no uni-
fied collection of context factors relevant to requirements
engineering exists. Established sets of software engineer-
ing context factors [61, 81] can be used as a starting point
but require a dedicated investigation from the requirements
engineering perspective.

A clear set of relevant context factors can support devel-
oping reporting guidelines for empirical studies on require-
ments quality and enable context-driven research [82].
While empirical software and requirements engineering
publications typically strive for generalizability [81], scop-
ing an empirical study according to the given context factors
allows the data collected in that study to be integrated into
the impact framework as outlined in Sect. 5.3. Conversely,
reporting the limited scope of a study enables a general
requirements quality theory that can be assembled from
multiple studies in well-defined contexts.

517Requirements Engineering (2023) 28:507–520

1 3

5.5 Economic impact

With the addition of economic concepts in the requirements
quality theory, a research stream should be dedicated to the
economic impact of activity facts. The impact relationship
between quality factors and activities already benefits the
acceptance of those factors for quality assurance in prac-
tice [53]. Adding an economic perspective—i.e., what
amount of which resource a change of a certain activity-fact
entails—can further bridge the gap between the normative,
artifact-centric quality factors on one side and an economic
decision-making process on the other side [57]. Since the
purpose of quality factors is to support quality assurance in
industry, understanding this economic perspective is of high
priority despite the complexity of the topic.

5.6 Tool support

We aim to make the RQT applicable to the industrial context
through the development of tool support. The components
necessary to realize this tool support are visualized in Fig. 5.
The goal of the tool is to estimate the impact of requirements
entities and their context on the attributes of requirements-
affected activities.

To this end, the tool needs an interface to the require-
ments entities, context information about the involved
agents, and context information about the organization. The
former two are often available in a requirements tracking
system like Jira, while the latter a company likely has to
generate and provide manually [83].2

Once provided with the necessary information, the tool
characterizes both entities and context, i.e., quantifies the
natural language requirements entities and the elusive factors
determining the context. The quantified entities and context
serve as input to the impact prediction model as described
in Sect. 5.3, estimating the impact on the attributes of the

requirements-affected activities, which in turn enables quan-
tifying the economic impact as described in Sect. 5.5.

The realization of this tool depends on the previously
described streams of research to identify valid quality factors
(Sect. 5.2), context factors (Sect. 5.4), and activity attributes
(Sect. 5.1). For the tool to provide an automated impact pre-
diction the following automation modules must be realized:

1. Automatic entity characterization: a shared architecture
to automatically evaluate the requirements quality fac-
tors collected in the quality factor ontology [7]

2. Automatic impact prediction: an accessible statistical
model estimating the impact of quantified entities and
context on affected activities, trained on historical data.

Developing this tool while adhering to open science princi-
ples will allow scholars to propose new quality and context
factors, customize relevant activity attributes, and contribute
historical data to improve the impact estimation of the pre-
diction model. We invite contributions to the implementa-
tion and maintenance of the tool via its dedicated repository
on Github.3

6 Conclusion

In this manuscript, we investigated the software quality lit-
erature and the application of the activity-based quality per-
spective to the requirements engineering domain. We extend
the work of Femmer et al. [52] by proposing an evolved
and harmonized requirements quality theory and assess the
adherence of the requirements quality literature to this the-
ory. Our survey confirms the bias toward artifact-centric and
the negligence of activity-centric concepts, which was noted
in previous secondary studies [6, 7]. Finally, we update the
requirements quality research roadmap initiated by Femmer

Fig. 5 Architectural overview of
the proposed tool-support

2 https:// www. atlas sian. com/ softw are/ jira.
3 Available at https:// github. com/ Julia nFrat tini/ rqt- tool. An archived
version is accessible at https:// doi. org/ 10. 5281/ zenodo. 81675 41.

https://www.atlassian.com/software/jira
https://github.com/JulianFrattini/rqt-tool
https://doi.org/10.5281/zenodo.8167541

518 Requirements Engineering (2023) 28:507–520

1 3

et al. [53] to guide future contributions in the requirements
quality research domain.

We are confident that the harmonized requirements qual-
ity theory provides the necessary guidance to propel require-
ments quality research and establish a common understand-
ing of quality that is operationalizable in practice. We
invite fellow researchers to contribute to the theory and the
requirements quality research field in adherence to it.

Acknowledgements This work was supported by the KKS foundation
through the S.E.R.T. Research Profile project at Blekinge Institute of
Technology. We further thank our colleagues and the reviewers for their
constructive feedback which strengthened this article.

Funding Open access funding provided by Blekinge Institute of
Technology.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Méndez Fernández D, Wagner S, Kalinowski M, Felderer M,
Mafra P, Vetrò A, Conte T, Christiansson M-T, Greer D, Lass-
enius C et al (2017) Naming the pain in requirements engineering:
contemporary problems, causes, and effects in practice. Empir
Softw Eng 22(5):2298–2338

 2. Wagner S, Méndez Fernández D, Felderer M, Vetrò A, Kalinow-
ski M, Wieringa R, Pfahl D, Conte T, Christiansson M-T, Greer
D et al (2019) Status quo in requirements engineering: a theory
and a global family of surveys. ACM Trans Softw Eng Methodol
(TOSEM) 28(2):1–48

 3. Damian D, Chisan J (2006) An empirical study of the complex
relationships between requirements engineering processes and
other processes that lead to payoffs in productivity, quality, and
risk management. IEEE Trans Softw Eng 32(7):433–453

 4. Boehm BW, Papaccio PN (1988) Understanding and controlling
software costs. IEEE Trans Softw Eng 14(10):1462–1477

 5. Méndez Fernández D, Böhm W, Vogelsang A, Mund J, Broy M,
Kuhrmann M, Weyer T (2019) Artefacts in software engineering:
a fundamental positioning. Softw Syst Model 18(5):2777–2786

 6. Montgomery L, Fucci D, Bouraffa A, Scholz L, Maalej W (2021)
Empirical research on requirements quality: a systematic mapping
study. Requir Eng 27:183–209

 7. Frattini J, Montgomery L, Fischbach J, Unterkalmsteiner M, Men-
dez D, Fucci D (2022) A live extensible ontology of quality fac-
tors for textual requirements. arXiv preprint arXiv: 2206. 05959

 8. Franch X, Mendez D, Vogelsang A, Heldal R, Knauss E, Oriol
M, Travassos G, Carver JC, Zimmermann T (2020) How do
practitioners perceive the relevance of requirements engineering
research? IEEE Trans Softw Eng48(6):1947–1964

 9. Berry D, Gacitua R, Sawyer P, Tjong SF (2012) The case for
dumb requirements engineering tools. In: International working
conference on requirements engineering: foundation for software
quality. Springer, pp 211–217

 10. Femmer H (2018) Requirements quality defect detection with the
Qualicen requirements scout. In: REFSQ workshops

 11. Phalp KT, Vincent J, Cox K (2007) Assessing the quality of use
case descriptions. Softw Qual J 15(1):69–97

 12. Lindland OI, Sindre G, Solvberg A (1994) Understanding quality
in conceptual modeling. IEEE Softw 11(2):42–49

 13. Pohl K (1993) The three dimensions of requirements engineering.
In: International Conference on advanced information systems
engineering. Springer, Berlin, pp 275–292

 14. Broy M, Deißenböck F, Pizka M (2005) A holistic approach to
software quality at work. In: Proceedings of the 3rd world con-
gress for software quality (3WCSQ)

 15. Deissenboeck F, Wagner S, Pizka M, Teuchert S, Girard J-F
(2007) An activity-based quality model for maintainability. In:
2007 IEEE international conference on software maintenance.
IEEE, pp. 184–193

 16. King P, Naughton P, DeMoney M, Kanerva J, Walrath K, Hommel
S (2021) Code conventions for the Java programming language.
Technical report, Sun Microsystems, Inc., Mountain View, CA,
USA 1999

 17. Broy M, Deissenboeck F, Pizka M (2006) Demystifying maintain-
ability. In: Proceedings of the 2006 international workshop on
software quality, pp 21–26

 18. Albrecht AJ, Gaffney JE (1983) Software function, source lines
of code, and development effort prediction: a software science
validation. IEEE Trans Softw Eng 6:639–648

 19. McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng
4:308–320

 20. Rosenberg J (1997) Some misconceptions about lines of code. In:
Proceedings Fourth international software metrics symposium, pp.
137–142. IEEE

 21. Khoshgoftaar TM, Munson JC (1990) The lines of code metric as
a predictor of program faults: a critical analysis. In: Proceedings
fourteenth annual international computer software and applica-
tions conference. IEEE Computer Society, pp 408–409

 22. Shepperd M (1988) A critique of cyclomatic complexity as a soft-
ware metric. Softw Eng J 3(2):30–36

 23. McCall JA (1977) Factors in software quality. US Rome Air devel-
opment center reports

 24. Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation
of software quality. In: proceedings of the 2nd international con-
ference on software engineering, pp 592–605

 25. Kitchenham B, Linkman S, Pasquini A, Nanni V (1997) The squid
approach to defining a quality model. Softw Qual J 6(3):211–233

 26. Basili VR, Caldiera G, Rombach HD (1994) The goal question
metric approach. Encyclopedia Softw Eng 1:528–532

 27. Marinescu R, Ratiu D (2004) Quantifying the quality of object-
oriented design: the factor-strategy model. In: 11th working con-
ference on reverse engineering. IEEE, pp 192–201

 28. Deissenboeck F, Juergens E, Lochmann K, Wagner S (2009) Soft-
ware quality models: Purposes, usage scenarios and requirements.
In: 2009 ICSE workshop on software quality. IEEE, pp 9–14

 29. Boehm BW, Brown JR, Kaspar H, Lipow M, MacLeod G (1978)
Merritt: characteristics of software quality. North Holland,
Amsterdam

 30. Winter S, Wagner S, Deissenboeck F (2007) A comprehensive
model of usability. In: IFIP international conference on engineer-
ing for human–computer interaction. Springer, Berlin, pp 106–122

 31. Wagner S, Fernandez DM, Islam S, Lochmann K (2009) A secu-
rity requirements approach for web systems. In: Workshop quality
assessment in web (QAW 2009)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2206.05959

519Requirements Engineering (2023) 28:507–520

1 3

 32. Goeb A, Lochmann K (2011) A software quality model for SOA.
In: Proceedings of the 8th international workshop on software
quality, pp 18–25

 33. Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A,
Plösch R, Seidi A, Goeb A, Streit J (2012) The Quamoco product
quality modelling and assessment approach. In: 2012 34th inter-
national conference on software engineering (ICSE). IEEE, pp
1133–1142

 34. Wagner S, Lochmann K, Winter S, Deissenboeck F, Juergens E,
Herrmannsdoerfer M, Heinemann L, Kläs M, Trendowicz A, Hei-
drich J et al (2012) The quamoco quality meta-model

 35. Deissenboeck F, Juergens E, Hummel B, Wagner S, y Parareda
BM, Pizka M (2008) Tool support for continuous quality control.
IEEE Softw 25(5):60–67

 36. Deissenboeck F, Heinemann L, Herrmannsdoerfer M, Lochmann
K, Wagner S (2011) The quamoco tool chain for quality modeling
and assessment. In: 2011 33rd international conference on soft-
ware engineering (ICSE). IEEE, pp 1007–1009

 37. Steidl D, Deissenboeck F, Poehlmann M, Heinke R, Uhink-
Mergenthaler B (2014) Continuous software quality control in
practice. In: 2014 IEEE international conference on software
maintenance and evolution. IEEE, pp 561–564

 38. Lochmann K, Ramadani J, Wagner S (2013) Are comprehensive
quality models necessary for evaluating software quality? In: Pro-
ceedings of the 9th international conference on predictive models
in software engineering, pp 1–9

 39. Garvin DA (1984) What does product quality really mean. Sloan
Manag Rev 25:25–43

 40. Kläs M, Lochmann K, Heinemann L (2011) Evaluating a quality
model for software product assessments-a case study. In: Proceed-
ings of SQMB 11

 41. Wagner S, Goeb A, Heinemann L, Kläs M, Lampasona C, Loch-
mann K, Mayr A, Plösch R, Seidl A, Streit J et al (2015) Opera-
tionalised product quality models and assessment: the Quamoco
approach. Inf Softw Technol 62:101–123

 42. Wagner S (2010) A Bayesian network approach to assess and
predict software quality using activity-based quality models. Inf
Softw Technol 52(11):1230–1241

 43. Femmer H, Kučera J, Vetrò A (2014) On the impact of passive
voice requirements on domain modelling. In: Proceedings of the
8th ACM/IEEE international symposium on empirical software
engineering and measurement, pp 1–4

 44. Ferrari A, Gori G, Rosadini B, Trotta I, Bacherini S, Fantechi A,
Gnesi S (2018) Detecting requirements defects with NLP patterns:
an industrial experience in the railway domain. Empir Softw Eng
23(6):3684–3733

 45. Habib MK, Wagner S, Graziotin D (2021) Detecting requirements
smells with deep learning: Experiences, challenges and future
work. In: 2021 IEEE 29th international requirements engineering
conference workshops (REW). IEEE, pp 153–156

 46. Femmer H, Fernández DM, Wagner S, Eder S (2017) Rapid qual-
ity assurance with requirements smells. J Syst Softw 123:190–213

 47. Berry DM, Bucchiarone A, Gnesi S, Lami G, Trentanni G (2006)
A new quality model for natural language requirements specifica-
tions. In: Proceedings of the international workshop on require-
ments engineering: foundation of software quality (REFSQ)

 48. Lucassen G, Dalpiaz F, van der Werf JME, Brinkkemper S (2017)
Improving user story practice with the Grimm method: a multi-
ple case study in the software industry. In: International working
conference on requirements engineering: foundation for software
quality. Springer, Berlin, pp 235–252

 49. Parra E, Dimou C, Llorens J, Moreno V, Fraga A (2015) A meth-
odology for the classification of quality of requirements using
machine learning techniques. Inf Softw Technol 67:180–195

 50. Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated analysis
of requirement specifications. In: Proceedings of the 19th interna-
tional conference on software engineering, pp 161–171

 51. Yang H, De Roeck A, Gervasi V, Willis A, Nuseibeh B (2011)
Analysing anaphoric ambiguity in natural language requirements.
Requir Eng 16(3):163–189

 52. Femmer H, Mund J, Fernández DM (2015) It’s the activities, stu-
pid! A new perspective on re quality. In: 2015 IEEE/ACM 2nd
international workshop on requirements engineering and testing.
IEEE, pp 13–19

 53. Femmer H, Vogelsang A (2018) Requirements quality is quality
in use. IEEE Softw 36(3):83–91

 54. Gregor S (2006) The nature of theory in information systems. MIS
Q 30:611–642

 55. Mund J, Fernandez DM, Femmer H, Eckhardt J (2015) Does qual-
ity of requirements specifications matter? Combined results of two
empirical studies. In: 2015 ACM/IEEE international symposium
on empirical software engineering and measurement (ESEM), pp.
1–10. IEEE

 56. Juergens E, Deissenboeck F (2010) How much is a clone. In:
Proceedings of the 4th international workshop on software quality
and maintainability, pp 79–88

 57. Deissenboeck F, Pizka M (2007) The economic impact of soft-
ware process variations. In: International conference on software
process. Springer, Berlin, pp 259–271

 58. Antinyan V, Staron M, Sandberg A, Hansson J (2016) A complex-
ity measure for textual requirements. In: 2016 joint conference
of the international workshop on software measurement and the
international conference on software process and product meas-
urement (IWSM-MENSURA). IEEE, pp 148–158

 59. Sommerville I (2005) Integrated requirements engineering: a tuto-
rial. IEEE Softw 22(1):16–23

 60. Fischbach J, Frattini J, Vogelsang A, Mendez D, Unterkalmsteiner
M, Wehrle A, Henao PR, Yousefi P, Juricic T, Radduenz J et al
(2023) Automatic creation of acceptance tests by extracting con-
ditionals from requirements: NLP approach and case study. J Syst
Softw 197:111549

 61. Petersen K, Wohlin C (2009) Context in industrial software engi-
neering research. In: 2009 3rd international symposium on empiri-
cal software engineering and measurement. IEEE, pp 401–404

 62. Cohn M (2004) User stories applied: for agile software develop-
ment. Addison-Wesley Professional, Boston

 63. Molléri JS, Petersen K, Mendes E (2020) An empirically evalu-
ated checklist for surveys in software engineering. Inf Softw Tech-
nol 119:106240

 64. Holsti OR (1969) Content analysis for the social sciences and
humanities. (Content analysis). Addison-Wesley, Reading, MA

 65. Feng GC (2015) Mistakes and how to avoid mistakes in using
intercoder reliability indices. Methodol: Eur J Res Methods Behav
Soc Sci 11(1):13

 66. Bennett EM, Alpert R, Goldstein A (1954) Communica-
tions through limited-response questioning. Public Opin Q
18(3):303–308

 67. Femmer H, Unterkalmsteiner M, Gorschek T (2017) Which
requirements artifact quality defects are automatically detectable?
A case study. In: 2017 IEEE 25th international requirements engi-
neering conference workshops (REW). IEEE, pp 400–406

 68. Kamata MI, Tamai T (2007) How does requirements quality relate
to project success or failure? In: 15th IEEE international require-
ments engineering conference (RE 2007). IEEE, pp 69–78

 69. Sinpang JS, Sulaiman S, Idris N (2017) Detecting ambiguity in
requirements analysis using Mamdani fuzzy inference. J Telecom-
mun Electron Comput Eng (JTEC) 9(3–4):157–162

 70. Chantree F, Nuseibeh B, De Roeck A, Willis A (2006) Identifying
nocuous ambiguities in natural language requirements. In: 14th

520 Requirements Engineering (2023) 28:507–520

1 3

IEEE international requirements engineering conference (RE’06).
IEEE, pp 59–68

 71. Din CY, Rine D (2008) Requirements content goodness and
complexity measurement based on NP chunks. VDM Publishing,
Saarbrücken

 72. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wess-
lén A (2012) Experimentation in software engineering. Springer,
Berlin

 73. Landhaußer M, Korner SJ, Tichy WF, Keim J, Krisch J (2015)
Denom: a tool to find problematic nominalizations using NLP.
In: 2015 IEEE second international workshop on artificial intel-
ligence for requirements engineering (AIRE), pp 1–8. IEEE

 74. Mackenzie JL (1985) Nominalization and valency reduction. Pred-
icates and terms in Functional Grammar. Dordrecht/Cinnaminson,
Foris, pp 31–51

 75. Méndez Fernández D, Penzenstadler B, Kuhrmann M, Broy M
(2010) A meta model for artefact-orientation: fundamentals and
lessons learned in requirements engineering. In: International
conference on model driven engineering languages and systems.
Springer, Berlin, pp 183–197

 76. Méndez Fernández D, Penzenstadler B (2015) Artefact-based
requirements engineering: the Amdire approach. Requir Eng
20(4):405–434

 77. Méndez Fernández D, Wieringa R (2013) Improving requirements
engineering by artefact orientation. In: International conference
on product focused software process improvement. Springer, Ber-
lin, pp 108–122

 78. Sharp H, Finkelstein A, Galal G (1999) Stakeholder identification
in the requirements engineering process. In: Proceedings. Tenth
international workshop on database and expert systems applica-
tions. DEXA 99. IEEE, pp 387–391

 79. Zhao L, Alhoshan W, Ferrari A, Letsholo KJ, Ajagbe MA, Chio-
asca E-V, Batista-Navarro RT (2021) Natural language processing
for requirements engineering: a systematic mapping study. ACM
Comput Surv (CSUR) 54(3):1–41

 80. McElreath R (2020) Statistical rethinking: a Bayesian course with
examples in R and Stan. Chapman & Hall/CRC, Boca Raton

 81. Dybå T, Sjøberg DI, Cruzes DS (2012) What works for whom,
where, when, and why? On the role of context in empirical soft-
ware engineering. In: Proceedings of the ACM-IEEE international
symposium on empirical software engineering and measurement,
pp 19–28

 82. Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017)
The case for context-driven software engineering research: gen-
eralizability is overrated. IEEE Softw 34(5):72–75

 83. Montgomery L, Lüders C, Maalej W (2022) An alternative issue
tracking dataset of public jira repositories. In: Proceedings of the
19th International Conference on Mining Software Repositories,
pp. 73–77

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	Requirements quality research: a harmonized theory, evaluation, and roadmap
	Abstract
	1 Introduction
	2 Software quality research
	2.1 Evolution of software quality research
	2.2 Mapping to requirements quality research

	3 Requirements quality theory
	3.1 Theory
	3.2 Example

	4 State of research
	4.1 Survey objects
	4.2 Study design
	4.3 Study results
	4.4 Interpretation
	4.5 Threats to validity of this research

	5 Research roadmap
	5.1 Artifact and usage model
	5.2 Taxonomy of quality factors
	5.3 Taxonomy of impacts
	5.4 Context factors
	5.5 Economic impact
	5.6 Tool support

	6 Conclusion
	Acknowledgements
	References

