
Vol.:(0123456789)1 3

Requirements Engineering (2023) 28:117–144
https://doi.org/10.1007/s00766-022-00379-3

ORIGINAL ARTICLE

An approach for performance requirements verification and test
environments generation

Waleed Abdeen1  · Xingru Chen1  · Michael Unterkalmsteiner1 

Received: 29 October 2020 / Accepted: 22 March 2022 / Published online: 13 April 2022
© The Author(s) 2022

Abstract
Model-based testing (MBT) is a method that supports the design and execution of test cases by models that specify the
intended behaviors of a system under test. While systematic literature reviews on MBT in general exist, the state of the art
on modeling and testing performance requirements has seen much less attention. Therefore, we conducted a systematic map-
ping study on model-based performance testing. Then, we studied natural language software requirements specifications
in order to understand which and how performance requirements are typically specified. Since none of the identified MBT
techniques supported a major benefit of modeling, namely identifying faults in requirements specifications, we developed the
Performance Requirements verificatiOn and Test EnvironmentS generaTion approach (PRO-TEST). Finally, we evaluated
PRO-TEST on 149 requirements specifications. We found and analyzed 57 primary studies from the systematic mapping
study and extracted 50 performance requirements models. However, those models don’t achieve the goals of MBT, which
are validating requirements, ensuring their testability, and generating the minimum required test cases. We analyzed 77 Soft-
ware Requirements Specification (SRS) documents, extracted 149 performance requirements from those SRS, and illustrate
that with PRO-TEST we can model performance requirements, find issues in those requirements and detect missing ones.
We detected three not-quantifiable requirements, 43 not-quantified requirements, and 180 underspecified parameters in the
149 modeled performance requirements. Furthermore, we generated 96 test environments from those models. By modeling
performance requirements with PRO-TEST, we can identify issues in the requirements related to their ambiguity, measur-
ability, and completeness. Additionally, it allows to generate parameters for test environments.

Keywords  Model-based testing · Performance requirements modeling · Performance aspects · Natural language
requirements

1  Introduction

Performance aspects such as time behavior, capacity, or
throughput, are essential non-functional requirements (NFR)
of software products. Performance testing is the process of
measuring the availability, response time, throughput, and
resource utilization of a software product [50]. The impor-
tance of software performance and relation to functional

requirements is acknowledged since the 1990s [65]. A
real-world example is HealthCare.gov, a “health insurance
exchange website” run by the United States government,
where on the launch day 99% of people who wanted to
get insurance failed to register [75]. Further investigations
showed that no adequate performance testing was performed
[68].

Performance-related issues can have a large impact on
cost, especially if those issues are not treated early [15, 16,
66]. Another example of a software performance issue was
Pokemon Go [51], a mobile game that, after the initial roll-
out, became unusable in many countries. The large number
of users caused server failures, leading to a delayed roll-
out of the game to reduce the load [51]. A potential rea-
son for such a failure is the different nature of performance
requirements compared to functional requirements, which
makes it difficult for developers to translate performance

 *	 Waleed Abdeen
	 waleed.abdeen@bth.se

	 Xingru Chen
	 xingru.chen@bth.se

	 Michael Unterkalmsteiner
	 michael.unterkalmsteiner@bth.se

1	 Software Engineering Department, Blekinge Institute
of Technology, Karlskrona, Sweden

http://orcid.org/0000-0001-8142-9631
http://orcid.org/0000-0003-1181-9049
http://orcid.org/0000-0003-4118-0952
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-022-00379-3&domain=pdf

118	 Requirements Engineering (2023) 28:117–144

1 3

requirements into written code [78]. Therefore, perfor-
mance testing is necessary, since it can detect the causes of
performance-related issues and verify whether the software
product meets the requirements or not [78].

Model-based testing (MBT) is a software testing approach
that uses an abstraction of the system (or part thereof) to
generate test cases [69]. According to a software testing
survey conducted in Canada [30], more than 35% of the
respondents use MBT approaches to generate test cases in
their projects. This indicates that MBT is prevalent in the
industry. MBT forces testability into the product design
when creating the model. The model is created from the
requirements and describes the behavior of the system. Suc-
cessfully modeled system requirements indicate that those
requirements are testable, complete, and can be validated
since they were formalized in an unambiguous manner [32].

Many studies explored the state of the art of MBT [18,
19, 25, 35, 69, 70]. Utting et al. [69, 70] created a taxonomy
of existing MBT approaches and tools, and Dias-Neto et al.
[18, 19] systematically reviewed the literature of MBT in
2007 and 2010. These studies agreed that the existing MBT
approaches focus on testing the functional rather than the
non-functional part (i.e., quality aspects) of the system.
Later, Häser et al. [35] reviewed the literature for model-
based integration testing for NFR, and Felderer et al. [25]
model-based security testing. A look at the state of the art
for model-based performance testing is missing.

In this paper, we study the current status of model-based
performance testing and identify approaches that we can
use to model different aspects of performance requirements.
Then, we propose the Performance Requirements verifica-
tiOn and Test EnvironmentS generaTion approach (PRO-
TEST) which supports model-based performance testing by
checking the ambiguity, measurability, and completeness
of performance requirements, and generating test environ-
ments. Finally, we evaluate PRO-TEST on real software
requirements specifications.

The main contributions of this study are:

1.	 A categorization of MBT studies in the context of
performance requirements, based on the performance

aspect, testing level, study type, research method, model
type, application type, and contribution.

2.	 A categorization of the Software Requirements Speci-
fications (SRS) from a public repository [26], based on
the described application type and performance require-
ments.

3.	 PRO-TEST, an approach to model performance require-
ments to verify them, understand what should be tested,
and generate test environments.

4.	 An evaluation of PRO-TEST, illustrating its benefits and
drawbacks.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the concepts of software performance and
model-based testing and reviews related work. Section 3
illustrates the design and methodology used in our research
and the validity threats. In Sect. 4, we present state of the
art and state of practice of model-based performance test-
ing. Section 5 presents PRO-TEST and the obtained benefits
but also the faced challenges when modeling performance
requirements. We discuss PRO-TEST in relation to literature
in Sect. 6. Section 7 answers our research questions. Finally,
we conclude the paper in Sect. 8 with directions for future
work.

2 � Background and related work

In this section, we briefly review aspects of software perfor-
mance, model-based testing, and related work.

2.1 � Software performance

Software performance is considered in many software
quality models [5, 40]. Synthesizing these quality models,
as shown in Table 1, the main aspects of software perfor-
mance are time behavior [17, 31, 37], capacity [37], resource

Table 1   Quality models and
their related performance
aspects

Quality model name Performance aspect

McCall’s Execution efficiency, storage efficiency
Bohem’s Accountability, device efficiency, accessibility
Dromey’s Internal efficiency, descriptive efficiency
FURPS Speed, efficiency, availability, accuracy, throughput,

response time, recovery time, resource usage
ISO9126 Time behavior, resource utilization, efficiency compliance
ISO25010 Time behavior, resource utilization, capacity

119Requirements Engineering (2023) 28:117–144	

1 3

utilization [17, 31, 37], speed/throughput1 [31] and effi-
ciency [10, 17, 20, 49]. Next, we provide a definition of
these software performance aspects.

Time behavior  the time required to perform specific tasks
or complete requests. It usually has multiple instances or
values depending on different anticipated capacities (i.e.,
the number of users). This aspect is included in all three
models (ISO9126, ISO25010, and FURPS) as time behavior
or response time. It is an explicit aspect, that is used by the
users to infer software performance. It could have a direct
effect on the usability of the software.

Resource utilization  the amount or percentage of the
resources used to run the software. The software should
not always utilize all resources when running; instead, it
should be limited to a specific amount so that it has a margin
for peak times and new updates that would require more
resources.

Capacity  the maximum capacity (in terms of requests, ses-
sions, users, data, etc.) that the system can handle without
crashing. This aspect is crucial when planning for the project
in later stages, especially when considering scalability. If not
accounted for, it could result in an overload of the system,
which would affect the business operations and lead to extra
charges. Capacity gives an insight into the anticipated data
size used by the software, which would affect the decision
regarding the required resources for the system to operate.

Speed/ throughput  the number of requests or processes per
time unit that the system can handle while still maintaining
the time behavior requirements.

Efficiency  the relation between the output (i.e., time behav-
ior, speed) and the input (i.e., capacity, resource utilization).
This is a relatively complex aspect since it is affected by all
other mentioned aspects of performance.

2.2 � Model‑based testing

Model-based testing is a software testing technique that
automates the process of test case generation from a model
that represents the system under test (SUT). MBT consists
of three main tasks [61]: designing a functional test model,
determining test generation criteria, and generating the tests.
The model could be an end-to-end model, e.g., a business
process or per function process model. Abstract test cases
are generated from a systems’ model by random genera-
tion, search-based algorithms, model–checking, symbolic

execution, theorem proving, or constraint solving [42, 69].
Then a tool builds the test skeleton to test the software.

Utting et al. [69] present five steps of the MBT process.
We illustrate this process in Fig. 1. In Step 1, a test model is
created from the requirements. The model can be either cre-
ated specifically for testing or reuse some parts of the models
used at the design phase. In the case of the latter, the test
model should be independent of the design model, so issues
in the design phase do not appear in the test model. A model
should be verified with little effort to ensure the efficiency
of the MBT approach. In Step 2, test selection criteria are
defined, which will set the rules for the automatic generation
of test cases. Examples of test selection criteria are system
functionality (requirements-based), the structure of the test
model, or properties of the environment. In Step 3, test case
specifications are written as a more formal representation of
test case selection criteria. In Step 4, the test specification is,
with help of the model, transformed into concrete test cases.
At this stage, algorithms are used to select the minimum set
of test cases that ensure full test coverage. In Step 5, the tests
are run on the SUT in a test environment. First, test inputs
are fed to the function under test (5-1), then the test verdicts
are recorded by comparing the test results with the expected
outcome (5-2).

There are many benefits associated with MBT. It has been
shown to be effective in testing real-time adaptive systems
[4], verifying the system behavior, and identifying possible
performance enhancements. Furthermore, the benefits of
MBT automation are generally more numerous the more
testing the system requires [58]. Another benefit is that MBT

Fig. 1   MBT process diagram from Utting et al. [69]

1  The meaning of the symbol “/” is “or”. We kept both words
because they are both used frequently in performance.

120	 Requirements Engineering (2023) 28:117–144

1 3

finds missing and unclear requirements by modeling the sys-
tems’ requirements [52, 54]. Besides, MBT can make the
requirements more understandable for software engineers
[78]. Since performance requirements are often written at a
high abstraction level, it may be difficult to understand how
they impact software design and code. This could be made
easier by modeling functional and non-functional require-
ments using the same model. A UML activity diagram that
models functional requirements could be annotated with
performance requirements [64]. We could see in the result-
ing model where the performance requirements apply in the
software.

2.3 � Related work

There exist many studies that investigate MBT to test func-
tional requirements, while fewer studies focus on non-func-
tional requirements. Utting et al. created in 2006 [70] and
2012 [69], respectively, a taxonomy for model-based testing
to categorize the existing approaches and tools, as well as to
classify their usefulness. Their study focused on functional
requirements testing. In general, there is no clear distinction
between functional and non-functional requirements when
MBT is applied [34].

Although MBT for non-functional requirements is not
explored extensively, there are still some studies in this
area. A systematic review (78 papers) of MBT approaches
by Dias-Neto et al. [18], published in 2007, was not limited
to functional requirements and explores the non-functional
aspects considered by the models. Some limitations of using
MBT for non-functional requirements were pointed out by
the study. The irregular behavior of software users makes it
hard to create a behavioral model of non-functional require-
ments. Another challenge is the limited support for non-
functional aspects in the existing MBT approaches; NFRs
like usability, reliability, and security were not supported.
Moreover, the majority of MBT approaches proposed by
research are never used in industry [18].

Dias-Neto’s original study was renewed in 2010 [19]
(including 219 papers), with a focus on the techniques used
for modeling, coverage, and the challenges of MBT. This
study introduces selection criteria for MBT approaches
based on their characteristics. The use of MBT techniques
was still difficult, as observed in their previous study in
2007. Apparently, NFRs (usability, reliability, and security)
that were not possible to test with MBT (according to the
2007 review [18]), started to get some attention in research.
The difference between these studies [18, 19] and the sys-
tematic mapping study presented in Sect. 4 is that ours has
a more narrow focus on model-based performance testing.

In 2014, Häser et al. [35] conducted a systematic litera-
ture review of model-based integration testing. They asked
in their research questions about the software paradigms,

assessment type, and which NFR can be tested with MBT
approaches. However, they did not ask whether the MBT
approach tests different aspects of an NFR (i.e., what aspects
of performance were tested using these MBT approaches?),
and they scoped their research to integration testing. Their
findings indicate a lack of research in model-based integra-
tion testing for NFR.

In 2016, Felderer et al. [25] presented a taxonomy and
systematic classification of model-based security testing.
They extended the study of Dias-Neto et al. [19] while focus-
ing on security requirements. Woodside et al. [78] described
the domain of software performance engineering (SPE).
They did a survey of current work on a sample of papers in
SPE and pictured the future of SPE. They collected some
models and methods which are used for performance and
listed many benefits of modeling performance. The focus of
that study is to provide a look at the future of model-based
performance testing. In contrast, our study focuses on iden-
tifying current techniques that can be used in practice.

Motivated by this research gap, the lack of systematic
reviews in MBT of performance requirements, the limited
support for NFR in general, and performance in particular
in existing techniques, we focus our research on finding and
studying different performance requirements models, for the
purpose of using them in MBT.

3 � Research methodology

To achieve our research aim defined in Sect. 1, we have
identified the following four objectives.

•	 O1 Identify which aspects of performance are important
and can be modeled.

•	 O2 Identify modeling techniques and methods that suit
performance requirements.

•	 O3 Identify a modeling approach that can validate per-
formance requirements, ensure that those requirements
are testable, and support the generation of test cases, all
three of which are key aspects of MBT.

•	 O4 Evaluate the identified modeling approach on a set of
requirements specifications.

In alignment with those objectives, we define our research
questions in Table 2.

Figure 2 shows the steps of our research in alignment
with the research questions. First, we start with a systematic
mapping study (SMS). The mapping study is an appropri-
ate method for gaining an overview of a particular research
area. We explored which performance aspects were studied
and modeled using MBT (RQ1,1, RQ1.2), and what models
exist to model performance requirements (RQ2.1). Second,

121Requirements Engineering (2023) 28:117–144	

1 3

we conducted a sample study on real-project requirements,
for the purpose of finding out the relevance of performance
aspects in practice (RQ1.3). Based on the results from the
SMS and software requirement mining, we developed PRO-
TEST (RQ2.2). Finally, we conducted a sample study, to
evaluate PRO-TEST (RQ3). We focus our study on the
domain of software-intensive systems.

A Systematic Literature Review (SLR) and an SMS are
research methodologies that systemically survey the litera-
ture but differ in their aim, execution, and outcome [41, 56].
An SLR aims to aggregate data from the literature and has

specific research questions for that purpose, while an SMS
aims to explore trends and identify gaps in research. In terms
of execution, an SLR requires a quality assessment to be
conducted on the extracted papers, while it is not the case for
an SMS. The output of an SLR is a synthesis of the reviewed
studies, while an SMS classifies a set of papers based on
different dimensions.

A sample study is a form of research done on a sample
of the population for generalization [67]. The data could be
collected using interviews, questionnaires, metric reports,
or available for access online, e.g., in a software repository.
One of the research methods associated with sample studies
is software repository mining [67]. Software repository min-
ing research usually uses open-source software repositories.
There is no human to collect data from, i.e., no interviews or
questionnaires are involved.

The purpose of evaluating PRO-TEST is to validate that it
works in practice, i.e., it can model the performance require-
ments and generate test environments. Similar to the soft-
ware requirements mining approach described in Sect. 3.2,
we conduct again a sample study, i.e., we use an openly
accessible resource for software requirements specifications.

3.1 � Systematic mapping study

We developed the SMS protocol based on the SLR conducted
by Dias Neto et. al. [19], following the guidelines by Petersen
et al. [56]. There were two reasons for choosing this study by
Dias-Neto. First, the research group has conducted two SLRs

Table 2   Research questions

Number Research question Purpose Objective

RQ1 Which aspects of performance requirements are used in
MBT?

There are many performance aspects, e.g., time, speed, and
capacity, as explained in Sect. 2.1. Those aspects may have
different ways of modeling and testing

O1

RQ1.1 Which aspects of performance requirements have been
studied?

Explore the studied aspects of performance requirements in
MBT

O1

RQ1.2 Which aspects of performance requirements can be mod-
eled?

Explore the usage of MBT to model different aspects of
performance requirements

O1

RQ1.3 Which aspects of performance requirements are used in real-
life projects?

Explore the performance aspects that are specified and
relevant in real-life projects

O1

RQ2 How to implement MBT on performance requirements
aspects?

Explore the different MBT approaches that support the
modeling of performance requirements to understand the
current state of the art of MBT for performance require-
ments

O2, O3

RQ2.1 What type of models can be used to model performance
requirements aspects?

There are many models used in MBT. However, that does
not mean all of them could be used to model all aspects of
performance requirements

O2

RQ2.2 Which performance requirements models achieve the goals
of MBT?

Find models that achieve MBT goals, which are validating
requirements, ensuring their testability and generating the
minimum required test cases

O3

RQ3 To what extend is the identified approach effective at
modeling performance requirements written for real-life
projects?

Evaluate the modeling approach that we identified in the
previous step, to ensure its applicability on real-life pro-
jects with different aspects of performance requirements

O4

Fig. 2   Research methodologies

122	 Requirements Engineering (2023) 28:117–144

1 3

[18, 19] on MBT using the same protocol. This provides some
evidence for the repeatability of their study. Second, there was
enough information presented about the search keywords and
procedure, making it easier to adapt and extend the proto-
col. The choice of reusing and extending an existing protocol
has, however, also disadvantages. The study of performance
requirements concerns research beyond MBT, such as require-
ments engineering and software testing in general, software
performance engineering and agile software development.
Hence, we emphasize that our review covers the area of per-
formance requirements within the scope of MBT only.

3.1.1 � Study identification

Choosing the search strategy  We used keyword search in digi-
tal databases similar to the search method used by Dias Neto
et al. [19]. They used six databases for their search. Two of
the databases (i.e., Compendex IE and INSPEC) we did not
have access to. Therefore we ran the search on the other four
databases (SCOPUS, ACM, IEEE Xplore, and Web of Sci-
ence). We searched the title, keywords, and abstract of the
paper on SCOPUS, WoS, and ACM, while we searched the
full text of IEEE (due to a limitation of the database).

Developing the search  We took the search string used by
Dias Neto et al. [19] and extended it to fit the purpose of
our research. The keywords we added are related to perfor-
mance. We extracted those keywords from the quality mod-
els for software performance discussed in Sect. 2.1. Table 3
shows the borrowed search string and the extension with
performance-related keywords.

Evaluating the search string  We evaluated the quality of the
search string to mitigate the risk of missing key papers. We
did that in two steps:

•	 We ran Dias Neto et al. [19] search string on the selected
databases and randomly checked whether the returned
research papers were presented by Dias Neto et al. in
their study [19].

•	 To validate the whole search string including the exten-
sion, we reviewed the papers published at the Interna-
tional Conference On Software Testing Verification And
Validation (ICST) over the period 2014–2018. We read
the title and abstract to see if the topic is related to model-
based performance testing. We collected the papers
related to our topic and looked for them in our search
results. We found three papers in the ICST conference
proceedings that were not returned by our search string.
After further analysis of the search string, we removed
a part of Dias Neto et al. search string (approach OR
method OR methodology OR technique) and adjusted our
extension to ensure those papers are included.

3.1.2 � Selection criteria

We developed the following inclusion and exclusion criteria.
Inclusion:

1.	 The publication is available in full text.
2.	 The publication language is English.
3.	 The date of the publication is within the range of August

2009 (the date when Dias Neto et al. [19] conducted
their search) and February 2019 (when we conducted
our search).

4.	 The publication proposes and/or evaluates model-based
performance testing techniques.

Exclusion:

1.	 The publication presents secondary studies, i.e., SMS,
SLR, literature survey.

2.	 The publication is not related to the topic model-based
performance testing.

Table 3   Search strings used in the SMS

Description Keywords

Borrowed search string
from Dias Neto et al.

((“model based test”) OR (“model based
testing”) OR (“model driven test”) OR
(“model driven testing”) OR (“specifica-
tion based test”) OR (“specification based
testing”) OR (“specification driven test”)
OR (“specification driven testing”) OR
(“use case based test”) OR (“use case
based testing”) OR (“use case driven
test”) OR (“use case driven testing”) OR
(“uml based test”) OR (“uml based test-
ing”) OR (“uml driven test”) OR (“uml
driven testing”) OR (“requirement based
test”) OR (“requirement based testing”)
OR (“requirement driven test”) OR
(“requirement driven testing”) OR (“finite
state machine based test”) OR (“finite
state machine based testing”) OR (“finite
state machine driven test”) OR (“finite
state machine driven testing”)) AND
(software)

Extension AND (performance OR efficiency OR
capacity OR load OR speed OR respon-
siveness OR stability OR timing OR
(“time behaviour”) OR (“time behavior”)
OR (“response time”) OR (“response-
time”) OR (“resource utilization”) OR
(“resources utilization”) OR (“resource
consumption”) OR (“resources consump-
tion”) OR thruput OR throughput OR
spike OR stress OR volume OR size OR
scalability OR peak OR (“wait time”)
OR latency OR delay OR workload OR
(“concurrent users”) OR (“concurrent
requests”))

123Requirements Engineering (2023) 28:117–144	

1 3

3.	 Duplicated publications that refer to the same study.
4.	 The publication is about model-based mutation testing
5.	 Proceeding, table of content, book, tutorial, demo, edito-

rial

After careful analysis of the model-based mutation testing
approach, we have decided to exclude it. Although it uses
MBT as a basis, it is concerned with introducing faults dur-
ing the test to find issues in the system rather than the mod-
eling and test case generation.

3.1.3 � Quality assessment

No detailed quality assessment was conducted. Since the
goal of our SMS was to find a method that we can use, there
was no need to evaluate the quality of each paper selected
for our research.

3.1.4 � Data extraction

We extracted the following data from our and Dias-Neto
et al.’s [19] primary studies (after we applied our inclusion/
exclusion criteria).

Performance aspect  We extracted data related to the five per-
formance aspects discussed in Sect. 2.1, i.e., time behavior,
resource utilization, capacity, throughput, and efficiency. We
added a “not specified” category for those papers that do not
mention or focus on a specific aspect of performance. This
classification supports answering RQ1, RQ1.1, and RQ1.2.

Testing level  Testing can be conducted on five different lev-
els [7]: acceptance, system, integration, module, and unit
level. This classification supports answering RQ2 and deter-
mines on which level performance testing is conducted.

Study type  We used Stol et al. [67] to classify study types in
software engineering: field study, field experiment, experi-
mental simulation, laboratory experiment, judgment study,
sample studies, formal theory, and computer simulation.
This classification helps us to understand how mature the
studied MBT techniques are, i.e., whether they are empiri-
cally studied and adopted by industry or initial proposals that
require more empirical evidence. This is an additional cri-
terion for choosing the model and answering RQ2, RQ2.1,
and RQ2.2.

Research method  The research method differs from the study
type. A research method defines the set of rules and practices
to follow, having a specific goal in mind, i.e., answering a set
of research questions. The study type is a grouping of dif-
ferent research methods based on their “metaphor, purpose

and goals” [67]. In software engineering research, many
research methods can be associated to study types [67].
Some of those methods are case study, experiment, survey,
and concept development. Since there is no complete list of
those research methods, we kept this classification dynamic
and extracted the options directly from the research papers.
This classification helps to distinguish between papers that
present a new approach or theory to others that empirically
evaluate existing approaches.

Model type  We classified each paper based on the approach
used to model performance requirements. The classification
is based on the essence of the model, i.e., some models were
novel while others were extensions of previous models. For
example, Maâlej et al. [48] present timed-automata, while
Abbors et al. [1] present a probabilistic extension of timed-
automata. This helps to determine the frequency of the mod-
els used for performance requirements and answer RQ2.1.
We did not have predetermined options for this classifica-
tion, since one of our research objectives was to identify all
possible modeling approaches.

Application type  We classify the type of the application
(e.g., web application, mobile, desktop) to understand where
model-based performance testing is used or studied. This is
also a dynamic classification with no predetermined options.

Contribution  This classification assigns papers into cat-
egories based on their contribution to the field (e.g., tool,
method, evaluation). With this classification, we can under-
stand the maturity of the models.

3.1.5 � Data analysis

We use the frequency of the extracted data, discussed in the
previous section, to analyze the state-of-art in model-based
performance testing.

Also, to identify a model that can achieve the MBT’s
goals, we examined the following aspects of the identified
MBT techniques:

•	 reported benefits of modeling performance requirements
•	 modeled performance aspects
•	 type and strength of evaluation of the proposed method

3.2 � Software requirements mining

The research questions RQ1 and RQ1.3 in Table 2 were
answered by conducting software requirements mining.
Ferrari et al. [26] published a data set [24] that contains a
collection of software requirements specifications gathered
from various industries and applications. There are 77 SRSs

124	 Requirements Engineering (2023) 28:117–144

1 3

in total in the collection from which we constructed a subset
as described next.

3.2.1 � Selection criteria

Inclusion: the SRS and the individual requirements that
are classified and shown in our results have the following
properties.

•	 SRS: have at least one performance requirement.
•	 Requirement: fits in one of the descriptions for perfor-

mance aspects in Sect. 2.1.

Exclusion: the SRS and the individual requirements that we
excluded from our classification and the results have the fol-
lowing properties.

•	 SRS: without any performance requirements or not writ-
ten for a software product.

•	 Requirement: does not fit in any of the performance
aspects descriptions.

3.2.2 � Coding

Since the data in the SRS documents is of qualitative nature,
we used coding to efficiently identify and extract relevant
information. The codes we created are based on having three
dimensions (performance aspect, application type, and quan-
tifiability) that we describe next.

Performance aspect  We extract five performance aspects,
i.e., time behavior, resource utilization, capacity, speed/
throughput, efficiency, and a general option for the per-
formance requirements that did not fit in any of the five
aspects’ descriptions. We apply this classification to each
performance requirement and provide thereby data to answer
RQ1.3.

Application type  Similar to the SMS, we extract the type
of application specified in the SRS, e.g., web application,
mobile application, embedded system, etc. This allows us
to evaluate whether the SRS data set is a good presentation
of the population (i.e., software products).

Requirements quantifiability  Testability is one of the major
criteria in requirements verification and validation [10]. The
requirement “must be specific, unambiguous, and quanti-
tative wherever possible” such that a developer can write
software code that satisfies the requirements. The perfor-
mance requirement should be quantitative and quantified to
be testable. We evaluated each requirement by looking for
numerical values.

3.3 � Evaluating PRO‑TEST

We evaluated PRO-TEST on a set of realistic software
requirements specifications (SRS) containing performance
requirements. The evaluation was done by modeling the per-
formance requirements and assessing the quantifiability and
degree of quantification of the specified requirements, and
identifying the possible missing requirements.

3.4 � Threats to validity

In the SMS, there were threats related to the data extraction
methods. (1) We may have missed some papers because two
databases used by Dias Neto et al. [19] we did not have
access to. To keep this to a minimum we made sure that we
use the SCOPUS database, which includes publications from
different technical publishers. (2) We may have excluded
papers by our search string. We extended the search string
from Dias Neto et al. [19] study with words related to per-
formance. This could lead to fewer results if some keywords
are missing from the search string. We tried to include as
many keywords as possible and used performance checklists
to make sure this threat is kept to a minimum. (3) Another
type of threat is related to the human factor; we could have
interpreted the data in the wrong way or placed a paper in
the wrong classification. We addressed this threat by hav-
ing the selection and classification done by two researchers
independently and the results were then compared. When
conflicts were discovered the corresponding paper was dis-
cussed by both researchers and if still no consensus could be
achieved, a third researcher was consulted.

In software requirements mining, the human factor also
introduces threats to validity. First, we could have coded
some requirements wrongly or missed out on some perfor-
mance requirements from the SRS documents. We mitigated
this threat by having two researchers involved in coding. The
researchers coded a sample of seven SRS documents inde-
pendently and compared the results. When conflicts were
discovered, the corresponding requirement was discussed by
both researchers. Then we divided the work equally between
the two researchers. When no consensus could be achieved
by the two researchers a third researcher was consulted. Sec-
ond, the sample size may not be enough for generalization
since the SRS collection had 77 documents that might not
cover all application types or represent the population, i.e.,
software products.

Finally, in the implementation of PRO-TEST, the small
sample size is not enough to generalize the competence of
the approach. Only 34 SRS documents of the SRS collection
had performance requirements, which might lead to threes
issues: (1) The sample we chose might be small to repre-
sent the population, i.e., software products. (2) The SRS
collection from Ferrari et al.’s study [26] might not be a

125Requirements Engineering (2023) 28:117–144	

1 3

good representation for the population as well. (3) The most
recent SRS document goes back to 2010, which could be
considered old. A validation of the model on more recent
SRS documents is required.

4 � Model‑based performance testing

This section reports on the results from the SMS on model-
based performance testing (Sect. 4.1) and on the prevalence
of performance requirements in a publicly available reposi-
tory of software requirements specifications (Sect. 4.2). We
discuss our findings in Sect. 4.3.

4.1 � State of the art

We identified 57 primary studies through our database search
and extracted 20 from Dias-Neto’s study (see “Appendix”.2)
A paper could be mapped to more than one value in each
classification, which depends on the content of the paper.
The choice of these maps was driven by our research ques-
tions. We show in Figs. 3 and 5 the relation of the perfor-
mance aspect with all other research area classifications.
Moreover, a typical SMS should classify papers in both 1)

the research area and 2) the research type [55], hence our
choice of Fig. 4.

In Fig. 3, the y-axis represents the performance aspects,
while the x-axis in Fig. 3a represents the testing level and in
Fig. 3b the model types. The “Not mentioned” option in the
performance aspects, represents the papers that did not men-
tion or focus on any aspect. We categorized the extracted
models based on the essence of the model.

In Fig. 4, the y-axis represents the research method, while
the x-axis in Fig. 4a represents the study type and in Fig. 4b
the contribution of the paper. The study type is based on the
classification in Sect. 3.1.4.

In Fig. 5, the y-axis represents the performance aspect,
while the x-axis represents the application type (grouped).
We grouped the applications based on the category, purpose,
and platform, e.g., web application, mobile, and embedded
system.

Figure 6 represents the number of publications related
to the topic model-based performance testing. Figures 3,
4, 5 and 6 are based on the results of Dias Neto et al. [19]
(for the period 1990–2009) and our research (for the period
2009–2019). We combined the results from the two men-
tioned studies and present the combined results in these
figures.

4.2 � Performance requirements in SRS documents

The SRS collection contained 77 SRS documents; 34 docu-
ments contained at least one performance requirement, and
43 documents specified no performance requirements.

Figure 7 shows the mapping of the extracted performance
requirements from the SRS collection. The mapping has two

(a) (b)

Fig. 3   Papers mapping between a performance aspect and testing level, b performance aspect and model

2  Additional materials including the list of primary studies, the
mapping of papers to each classification, grouping of the models,
data from Dias Neto’s study [19], the SRS collection, extracted per-
formance requirements, the modeling of those requirements using
PRO-TEST and the excluded performance requirements are available
online [3].

126	 Requirements Engineering (2023) 28:117–144

1 3

dimensions, representing the performance aspect that the
requirement belongs to and the application type specified in
the SRS document.

To extract the performance requirements, we applied the
coding described in Sect. 3.2.2. The total number of quan-
tifiable performance requirements was 149. However, only
106 requirements were actually quantified and thus could be
modeled and tested. Figure 8 shows the number of extracted

performance requirements per performance aspect and the
quantified requirements per aspect.

4.3 � Discussion

Research on model-based performance testing has gained
momentum over the past 30 years (Fig. 6).

Performance aspects were studied to a different extent.
By far the most prevalent performance aspect in studies in

(a) (b)

Fig. 4   Papers mapping between a research method and study type, b research method and contribution

Fig. 5   Papers mapping between performance aspect and application type

127Requirements Engineering (2023) 28:117–144	

1 3

the context of MBT is time behavior with 66 instances3 in
terms of both testing level and model used (Fig. 3). Resource

utilization, capacity, and speed/throughput were in close
range with a median value of 10 instances in terms of both
testing level and model used. Efficiency was the least studied
performance aspect in the context of MBT, where it only
appeared in one instance in terms of testing level and one in
terms of the model used.

Fig. 6   Number of publications between 1990 and 2019-03

Fig. 7   Mapping of extracted requirements between performance aspect and application type

3  We mean by instance how many times it appeared per category
rather than per paper.

128	 Requirements Engineering (2023) 28:117–144

1 3

We observe a similar trend analyzing the requirements
specifications. Time-behavior was the most common perfor-
mance aspect (Fig. 7). Out of the 149 extracted performance
requirements, time behavior was specified in (71) require-
ments (e.g., The system shall be able to search for a speci-
fied product in less than 1 second.,4) followed by capacity
(38) (e.g., The system must handle at least 100 concurrent
users and their operations,5) speed/throughput (18) (e.g.,
The system shall be able to retrieve 200 products per sec-
ond.,6) efficiency (13) (e.g., Management—all management
software functions shall take optimal advantage of all lan-
guage, compiler and system features and resources to reduce
overheads to the minimum practical level.7) and resource
utilization (9) (e.g., The FTSS software and the VxWorks
operating system, together shall [SRS193] utilize no more
than 3 megabytes of ROM.8).

We can see from Fig. 7 that most of the SRS docu-
ments with performance requirements were written for web

applications, followed by real-time and embedded systems.
There was a diversity in terms of performance aspects in
the specified requirements for web applications, whereas
for real-time systems and embedded systems the specified
requirements were mostly related to time behavior. A similar
observation can be made by looking at Fig. 5 where web
application and embedded system appeared in 22 instances
each and real-time systems in 19 instances. The importance
of performance in web application, embedded systems and
real-time system is not surprising. In a web application a
large number of application users are distributed and use
different communication media to access the application.
Embedded and real-time systems are crucial to perform
optimally, since a safety hazard could arise if performance
is not addressed. For instance, in self-driving cars the time
behavior for reading the value of a sensor is crucial and
needs to be specified explicitly, allowing the product to be
tested against that specification.

In both the identified primary studies and the reviewed
SRSs, time behavior was the most common performance
aspect. Nonetheless, the other performance aspects are also
relevant, since they appeared in a median of 10 instances
each (except efficiency) and specified in 78 requirements
combined. That said, we should consider all the performance
aspects when modeling performance requirements. Effi-
ciency was the least studied (found in one paper [39]), and
the least quantified in (3) requirements (Fig. 8). However,
efficiency was specified in (13) requirements, from which
we conclude that efficiency is difficult to document and
quantify. We found few examples of quantified efficiency
requirements: (1) The external server data store containing
RLCS status for use by external systems shall be updated
once per minute,9 and (2) The system must accomplish 90%
for transactions in less than 1 second.10 The examples show
that it is possible to quantify efficiency. In the first require-
ment “only once every minute” and in the second “90%...
less than 1 second”. Both combine two performance aspects,
i.e., capacity and time behavior.

Looking at testing levels, performance testing research
seems to focus on system level testing (Fig. 3). This observa-
tion coincides with the notion that software performance is
not associated with a single function, but rather associated
with the overall system and influenced by its structure. This
is also shown in the performance requirements models used
in MBT. The purpose of those models is to verify the over-
all system behavior, e.g., timed-automata [46, 48, 62] and
behavior models [4, 6].

Fig. 8   The frequency of total and quantified performance require-
ments per performance aspect

7  2002-evla back.
8  2000-nasa.

9  2004-rlcs.
10  2008-viper.

4  0000-gamma (the id of the SRS).
5  2008-fiber.
6  0000-gamma.

129Requirements Engineering (2023) 28:117–144	

1 3

We extracted 50 performance requirements models and
categorized them into 11 main categories (Fig. 3).11 All
11 categories had models which were used to model time
behavior requirements. The purpose of those models is to
verify if the written requirements are met. This is accom-
plished by comparing the testing results with the corre-
sponding performance requirements.

The most studied models were timed-automata and UML-
related diagrams. Timed-automata were used to model and
analyze the time behavior by measuring time differences
between different states, which can model and verify time
behavior aspects of software performance. However, timed-
automata models have two main drawbacks. First, the mod-
els do not make the factors influencing performance explicit,
which is needed to generate better test cases for performance
requirements. Second, timed-automata can only model time
behavior and are unable to cover other performance aspects
[29], and are therefore only adequate when time behavior
is the only performance aspect that needs to be tested. As
we can see from our analysis of SRSs, time behavior is sel-
dom the only performance requirement. UML-based mod-
els use an annotation approach to make the performance
requirements more intuitive and the system behavior more
understandable [4]. UML-based models solely document
performance requirements, and are not used for test case
generation of performance requirements. In many cases
where UML is used, the performance requirements (e.g.,
time behavior, or capacity) is set on the model as annotation,
which is later used during the test generation to add an extra
assert to check this requirement. This model annotation is
beneficial to verify the performance constraints of a func-
tional requirement in a test-environment (machine resources
and test data).

The models and frameworks that we extracted during the
SMS were mostly newly developed with little to no valida-
tion [27, 28, 45, 76] as seen in Fig. 4a. Although 31 case
studies exist that validate those models (e.g., timed-autom-
ata), researchers still develop new performance requirements
models and testing frameworks (Fig. 4b). The reasons for
developing those models and frameworks are various:

1.	 Model-based performance testing in a specific field has
not been done before, e.g., robotics [4], self-adaptive
systems [74] and cloud API [73], has not been studied
for a specific performance aspect, e.g., resource utiliza-
tion [6, 38, 76] or time behavior [44], or has not been
proposed in a particular development stage, e.g., early
before a prototype is created [43], or late during run-
time [60].

2.	 Issues associated with human factors where it is difficult
to understand the model [9, 14], it takes extra effort to
create the model [1, 63], or the current approaches are
prone to human error [59].

3.	 The lack of automation in the current MBT approaches
[23, 47, 71, 72]

4.	 Others reasons, e.g., using petri nets to model time
behavior aspects [13].

A majority of the analyzed papers (46) suggest a new con-
cept or framework for MBT, using formal theory research
(Fig. 4). This set is followed by 41 papers conducting field
studies and field experiments that aim at validating the new
model presented in the same paper. This focus on theoreti-
cal work and studies in a relative controlled environment is
another indication that the models are not validated under
realistic conditions, as also observed by Prenninger et al. in
their review of eight case studies on MBT [57]. A similar
observation can be made by looking at the contribution of
theses papers in Fig. 4b where most papers introduced new
ideas and methods rather than evaluating pre-existing mod-
els. It would be crucial to evaluate those models, as the lack
of evaluation of MBT techniques poses a risk factor of using
those techniques in industry practice. This factor influences
the techniques’ reliability, and evaluated techniques would
positively affect their adoption in future software projects
[19].

4.4 � Implications of the SMS on performance
requirements in MBT

We gained useful insights into performance requirements
modeling in the context of MBT by conducting the SMS.
First, performance requirements that were not studied
before, (e.g., resources and speed/throughput), gained inter-
est in recent years, as seen in Fig. 6. This is an indication
that more research is required in these aspects. Second, some
performance attributes (e.g., time behavior) were used as test
verdicts [59], while others (e.g., capacity) were used as a
foundation to the test environments [36]. Third, performance
requirements could be modeled separately from functional
requirements, and test environments could be generated from
the model [2].

However, we argue that the performance requirements
models found by our SMS (Fig. 3), do not satisfy all goals of
MBT simultaneously, i.e., support requirements validation,
ensure requirements testability, and support test case genera-
tion. Therefore, we developed PRO-TEST to aid the model-
based performance testing process, which we introduce next.

11  The clustering of those 50 models into 11 clusters is available
online [3].

130	 Requirements Engineering (2023) 28:117–144

1 3

5 � PRO‑TEST

In this section, we introduce and evaluate the Performance
Requirements VerificatiOn and Test EnvironentS genera-
Tion approach (PRO-TEST). PRO-TEST aims at checking
the completeness and correctness of performance require-
ments and at generating the parameters of test environments.

Figure 9 illustrates the MBT process in the context of per-
formance testing. The figure is a modified version of Utting
et al.’s [69] MBT process diagram that we introduced in
Sect. 2.2. The modified process steps are shown with dotted
arrows, and the modified/added artifacts are filled in grey
color. We made three modifications to the diagram. First,
we split the step of requirements modeling into two sub-
steps: functional modeling (1-1) where a model is created
from the functional requirements, and performance require-
ments modeling (1-2) where performance requirements are
modeled. Second, we added an iterative process between
the requirements and the created models (functional and
performance). This change underlines how MBT supports
requirements validation (an MBT goal). The modeling stage
should detect requirements issues and changes should be
made to the requirements to fix these issues. Third, we added
a new Step 5, in which test environments are generated from
the performance requirements model. The software perfor-
mance is thereby directly related to the test environment.
Setting up a test environment requires specifying setup
parameters (e.g., capacity of users) and metrics parameters
(e.g., response time). These parameters are derived from the
performance requirements models.

In summary, PRO-TEST consists of (1) performance
requirements modeling and (2) test environment genera-
tion. These activities correspond, respectively, to step 1–2
and step 5 in Fig. 9. The approach is not meant to be used as
standalone but rather accompanied by any MBT approach
that generates functional test cases, which results in func-
tional test cases mapped to test environments that test the
performance of the SUT.

We illustrate PRO-TEST’s core concepts in Sect. 5.1 and
explain the steps and guidelines for creating the performance
requirements model in Sect. 5.2. Additionally, we explain
the steps of generating test environments in Sect. 5.3, illus-
trate its application on an example in Sect. 5.4, and apply
PRO-TEST on a set of 149 performance requirements in
Sect. 5.5, discussing the strengths and weaknesses of the
approach.

5.1 � PRO‑TEST approach development
and description

We intend to propose a modeling approach that addresses
the limitations of current model-based performance testing.
Specifically, the modeling of the five performance aspects
in Sect. 2.1 to verify the requirements while generating test
environments. Looking at the existing approaches that we
identified in our SMS, we found that performance require-
ments affect test environments. Therefore, instead of creating
an approach that models both performance and functional
requirements, we chose to develop an approach that focuses
on modeling performance requirements and generating test
environments. This approach can be accompanied by exist-
ing well-established MBT approaches that already handle
functional modeling and testing. By focusing on perfor-
mance requirements, we increase the chance of our approach
being used by practitioners who are already using existing

Fig. 9   MBT process in the context of performance testing

Fig. 10   Performance parameters taxonomy

131Requirements Engineering (2023) 28:117–144	

1 3

MBT for functional testing, without the need to replace their
existing tools but add to what they already use.

The development of PRO-TEST was inspired by two
related principles. First, the experiment principle that illus-
trates the relationship between dependent and independent
variables [77]. Second, cause–effect graphs (CEGs) [22] that
can be used to model the relationships between causes and
effects.

We analyzed the different performance aspects while hav-
ing the cause–effect concept in mind. The main insight we
had is that one set of performance requirements (capacity,
resource constraints) can influence another set (time behav-
ior, throughput, efficiency). This concept is shown in a tax-
onomy tree (Fig. 10) that classifies the aspects in independ-
ent and dependent performance parameters. The independent
parameters consist of capacity (e.g., the maximum number
of users), and resource constraint (e.g., storage size), which
represent constraints on the software. The dependent param-
eters consist of time behavior (e.g., response time), through-
put/speed (e.g., requests per time unit), and efficiency (e.g.,
response time in regards to memory size), and are measure-
ments of the software performance. The manipulation of
the independent parameters causes changes in the dependent
parameters. For example, if we require the system to use
fewer resources (all other things being equal), it will lead
to a higher response time, lower throughput, or efficiency.
The purpose of this taxonomy tree is to identify which
performance requirements are the influencing factors and
which ones are impacted, as this is important to distinguish
when modeling testable system requirements. The taxonomy
tree is by no means exhaustive, but rather a classification
of the most common (studied and specified) performance
requirements.

In the previous paragraph, we used the term resource
“constraints” instead of “utilization” in order to empha-
size the interpretation of the parameters as an independent
parameter. Looking at our results from the SRS analysis, we
found that the specified resource utilization requirements
could be both a dependent variable that we measure when
we run the tests or an independent variable that affects the
dependent variables when constructing and running the
tests. For example, if we take the requirement “The FTSS
software and the VxWorks operating system, together shall
[SRS193] utilize no more than 3 megabytes of ROM.”,12

there are two methods to test it. Firstly, we run the tests,
measure the utilized ROM, and make sure the software does
not utilize more than 3 megabytes. Alternatively, we set up a
test environment with 3 megabytes of ROM as a constraint,
run the tests, and if the tests run completely, then the soft-
ware satisfies this requirement. We chose to apply the second
method (hence the use of terminology resource constraints)
since it works better when the specified requirement affects
our decision when setting up the test environment. For
instance, to test the requirement “GParted is not a resource
hog and will run on almost every computer”,13 we can’t run
the tests and measure the utilized resources (even if this
requirement is to be quantified). Instead we need to define
a set of representative computers and run the tests on them.

Figure 11 presents the main components of a performance
requirements model. The model consists of three main parts:

1.	 The object element referring to the SUT or part of it,
i.e., a function that has the performance requirements
associated with it.

2.	 The independent parameters which act as inputs. They
affect the test environment where the test runs and affect
the test data.

3.	 The dependent parameters which act as outputs. They
are the metrics or results of running the tests, used to
compare the test results with the written performance
requirements.

Performance requirements are modeled with PRO-TEST
using the taxonomy tree that acts as a guide when extracting,
categorizing, and finding missing performance requirements.

5.2 � Performance requirements model

There are three steps that should be followed when modeling
the performance requirements of the software.

•	 Step 1: Define the objects. Look up the object that the
performance requirements on hand applies to. The
objects could be the system, specific functions, or a col-
lection of functions.

•	 Step 2: Define the independent and dependent param-
eters. Extract the performance parameters from the
requirements, and code them with the appropriate per-
formance aspect using the taxonomy tree. Then add those
parameters to the corresponding model.

•	 Step 3: Compare the model with the taxonomy tree. Take
the created performance requirements model and com-
pare it with the taxonomy tree. Look for any possible
missing parameters. If some parameters are missing,

Fig. 11   Performance requirements model

12  2000-nasa. 13  2010-gparted.

132	 Requirements Engineering (2023) 28:117–144

1 3

look for the possibility of merging models with the same
object. If there are still some missing parameters, then
there is a problem with the requirements. Check with
requirements engineers or customers to negotiate the
requirements. Otherwise, the model is complete and the
specified requirements are quantified and can be tested.
When the modeling is done, the next step is to design the
test suite.

When using PRO-TEST with performance requirements,
one should take into consideration the following guidelines
which help to model the requirements.

•	 Guideline 1: Verify the completeness of the requirements.
Check the relation between different requirements. There
should be a correspondent independent input for each
dependent output. Having one without the other would
result in ambiguous requirements, which would reflect
an incomplete performance requirements model.

•	 Guideline 2: Verify feasibility. The requirement should
fit with one of the performance aspects’ definitions in
Sect. 2.1.

•	 Guideline 3: Verify quantifiability. Each requirement
should have a quantity that describes the target level of
performance, and an object that specifies where the target
level applies (system, a specific function, or a collection
of functions).

•	 Guideline 4: Specific condition. Check if the require-
ments apply in specific circumstances or scenarios. The
performance requirements might have the same objects
but under different conditions, i.e., peak time. In this
case, one should make a different model for each of
those conditions, because each condition has different
parameters that apply to the test environment and differ-
ent measurement levels.

•	 Guideline 5: Mandatory performance aspects. To gener-
ate meaningful test environments, each model requires
the following performance aspects to be specified: (1)
capacity and resource constraints to help set up the test
environment, and (2) time behavior or throughput which
acts as the metric to measure when running a test.

While these suggestions stem from our experience of mod-
eling nearly 150 performance requirements from 34 SRS
documents, they are not exhaustive and should not be con-
sidered as rules.

5.3 � Generating test environments

One of the goals of PRO-TEST is to generate test environ-
ments, which aids the verification of performance require-
ments in the SUT. As seen in Fig. 9, the generated test

environments are required to run performance test and affect
the outcome of performance tests.

Using the created performance requirements models, we
generate parameters for the test environments. These param-
eters are divided into two groups: constraints and metrics.
The constraints parameters are required to set up the test
environments and stem from the independent parameters in
the taxonomy in Fig. 10. The metrics parameters are indica-
tors for the success or failure of the test cases run in the test
environment, and stem from the dependent parameters in the
taxonomy in Fig. 10.

1 Create constraintsList
2 Create metricsList
3 Add resource constraints to constraintsList
4 Add capacity to constraintsList
5 Add time behavior to metricsList
6 Add speed/throughput to metricsList
7 Add efficiency to metricsList
8

9 Create environmentsList
10 CALL testEnvGenerator with constraintsList

and metricsList
11 Add the generated environment to the

environmentsList
12 FOR each constraint in constraintsList
13 CALL testEnvGenerator with constraint

and metricsList
14 Add the generated environment to

environmentsList
15 END FOR
16

17 CALL mapTestCasesToEnvironments with
environmentsList

Listing 1 Test Environment Generation Algorithm

We show in Listing 1 the algorithm to generate the test
environments that will be used to run the test cases. The
algorithm consists of three main steps. (1) Create two lists
of parameters, constraintsList and metricsList, and add the
parameters from the created performance requirements mod-
els to the corresponding list based on the classification in
the taxonomy tree. (2) Create an environmentsList, one for
each parameter in the constraintsList with all parameters in
the metricsList, and an environment where all parameters
in constraintsList and metricsList are included. (3) Map the
test cases to the created environments in environmentsList.
The test cases mapped to the test environments are those that
verify the object (e.g., function) to which the performance
requirements refer.

To automatically generate test environments from the
created performance requirements model, we implemented
a Python script.14 The script takes as input the list of perfor-
mance requirements models (in CSV format) created by the

14  The test generation script is available online [3].

133Requirements Engineering (2023) 28:117–144	

1 3

tester. The output of the script is a list of test environments
(in JSON format). Each test environment consists of a list
of constraints to construct the test environment and object-
metric pairs that indicate what functions should be tested
and measured in this environment. We chose JSON as output
format since it is a widely used in practice. Generating test
environments in this format makes it fairly easy to adapt to
different testing tools.

5.4 � Example of PRO‑TEST

To illustrate PRO-TEST, we present an example, following
the three steps described in Sect. 5.2 for creating the perfor-
mance requirements model. Then, we generate parameters
for test environments following the test environment gen-
eration presented in Sect. 5.3. We extracted performance
requirements for a telescope control software shown in
Table 4.

5.4.1 � Performance requirements model

Step 1: Define the objects. We defined five objects from the
requirements: command response, status display update,
request for status info, user interface and software. Then we
created five models, one for each object as shown in Fig. 12.

Step 2: Define the independent and dependent param-
eters. We extracted the performance parameters (10 active
nodes, large number of stations, simultaneous users, 6 active
control nodes and 2 monitoring nodes, ≤ 2 s, ≤ 4 s, ≤
5 s and network) from the requirements, and coded them
with the related performance aspects as per the taxonomy
tree. We present the associated performance aspect in the
last column of Table 4. Then we added those parameters

Table 4   Example performance requirements for PRO-TEST approach demonstration

The requirements in this table were extracted from the SRS document 1995-gemini
Italic indicates object, Bold indicates the independent and dependent parameter

No. Performance requirements Performance aspect

PR1 The Gemini software should have no hard restrictions on the number of simultaneous users, but should allow for
policy decisions that do restrict the amount of simultaneous access

Capacity

PR2 Every command must be accepted/rejected within 2 sec and before the corresponding action occurs (this is differ-
ent than the ACK/NAK response of the communications protocol—here, the target system must have examined
the command and verified its validity)

Time behavior

PR3 Status display update must be within 4 s at the local stations (certain functions, such as telescope position, may
have tighter constraints). Remote station update response is given in the Requirements for Remote Operations
section

Time behavior

PR4 Requests of subsystems for status information must be answered within 5 s and be possible in maintenance level
operation

Time behavior

PR5 Requirements for response times within the user interfaces are given in the User Interface requirements section Time behavior
PR6 The user interface should rather be seen as a package to be callable from a large number of stations, depending

on where a user is
Capacity

PR7 The user interface should also be network transparent so that it does not matter where it is being run Resource constraints
PR8 As a conclusion, the Gemini 8m Telescopes control software shall allow simultaneous operation of up to six active

control nodes and up to two more monitoring nodes (one local and one remote) without appreciable degrada-
tion of performance

Capacity

PR9 In practice the operation and facilities foreseen so far for the Gemini 8m Telescopes will limit this number to a
maximum in the order of three active nodes, but the Gemini 8m Telescopes computers and software shall be
capable of coping with the load of 10 active nodes, should the case arise

Capacity

PR10 All software bugs should be logged and then fixed as soon as possible after detection. The goal is to have restart
conditions occur only on hardware failure. Fault recovery, exception handling, fail-safe checks, etc. should be
used to improve reliability

Availability

Fig. 12   PRO-TEST Example—Step 1

134	 Requirements Engineering (2023) 28:117–144

1 3

as independent and dependent parameters in the model as
shown in Fig. 13. At this stage we identified four issues in
the requirements:

1.	 PR10 is an availability requirement, which is not to
be found in our taxonomy tree (guideline 2), hence we
exclude PR10. (2) PR5 indicates that there should be a
time behavior requirement for the user interface. How-
ever, we examined the SRS document and we did not
find any time behavior requirements for the user inter-
face. Hence, PR5 can not be modeled and it indicates a
missing requirement.

2.	 PR1 (simultaneous users), PR6 (large number of sta-
tions), and PR7 (network) are not quantified (guideline
3).

3.	 PR6 is ambiguous as “without appreciable degradation
of performance” is not unclear.

4.	 PR8 and PR9 are conflicting requirements. PR8 speci-
fies a capacity of 8 nodes (6 active plus 2 monitoring),
however, PR9 specifies a capacity of 10 active nodes.

Step 3: Compare the model with the taxonomy tree. We
compared the created model with the taxonomy tree to iden-
tify any possible missing parameters. We put the possible
missing requirements on each corresponding model as seen
in Fig. 14. Resource constraints parameters are missing from
the models and the specified requirements for the software

since there were no requirements indicating resource con-
straints. Another issue is that the requirement PR5 (large
number of stations) applies to other parts of the system as
well (missing requirement). Moreover, there are no perfor-
mance requirements from the dependent parameters (time
behavior, speed/throughput, or efficiency) that apply to the
software or the user interface.

At this point of the analysis, the identified issues should
be discussed with the requirements engineers or custom-
ers to negotiate the requirements and fix the issues: asking
for (1) the missing requirements, (2) quantify PR1, PR6,
and PR7, (3) clarify or reformulate the existing requirement
PR8 into two requirements, one that specifies the capacity
for the software, and the other that specifies the dependent
parameter e.g., time behavior, and (4) resolve the conflict in
the requirements PR8 and PR9.

5.4.2 � Test environments generation

We generate test environments parameters following the test
environment generation algorithm presented in Listing 1.

Fig. 13   PRO-TEST Example—Step 2

Fig. 14   PRO-TEST Example—Step 3

135Requirements Engineering (2023) 28:117–144	

1 3

We feed each model in Fig. 14 (constraints and metrics) to
the algorithm as input, and as output we get a set of envi-
ronments (one per constraint and one with all constraints).
This makes debugging easier, as the tester can identify the
troublesome performance constraint(s) just by looking at
the constraint(s) used to construct the test environments in
which the failed test was run.

We used our test environment generations script to
automatically generate test environments from the created
models. In Fig. 15, we show the structure of the generated
file. The root node of the file contains an array of gener-
ated test environments. Each test environment consists of a
list of constraints and a list of object-metric pairs. A con-
straint presented using a description and an att class (the
performance aspect). An object-metric pair consists of the
object to be tested (e.g., a function), and the metric to be
measured. A metric is presented using a description and att
class. Errors in the modeled performance requirements will
be shown in errors.

The results of generating test environments can be found
in Table 5. The rows 1-4 can be used to construct test envi-
ronments. This is not possible for the remaining rows (5-8),
as they are missing constraints and/or metrics. For instance,
the question mark in row 5 for the constraint simultaneous
users is an indication of a missing quantity of simultaneous
users. As we mentioned earlier in this section the require-
ments should be negotiated with the customer, so we can fill
the gaps in our tests.

5.5 � Sample study—model evaluation

We applied PRO-TEST on 34 SRS documents from the SRS
collection. We extracted in total 149 performance require-
ments from the SRS documents, i.e., requirements that fit the
definition of performance aspects in Sect. 2.1.

We extracted the performance requirements from the
SRS collection and applied PRO-TEST by modeling the
requirements as explained in Sect. 5.2. We did not generate
test environments from the created performance relational Fig. 15   Test environment JSON file structure

Table 5   PRO-TEST Example—test environments summary

Id Constraints Object (measure)

1 10 nodes Command response (≤ 2 s), status display update (≤ 4 s), request for status info (≤ 5 s), software
2 100 simultaneous users Command response (≤ 2 s), status display update (≤ 4 s), request for status info (≤ 5 s), software
3 10 nodes, 100 simultaneous users Command response (≤ 2 s), status display update (≤ 4 s), request for status info (≤ 5 s), software
4 10 nodes User interface
5 ? simultaneous users User interface
6 ? network User interface
7 ? number of stations User interface
8 10 nodes, ? simultaneous users, ?

network, ? number of stations
User interface

136	 Requirements Engineering (2023) 28:117–144

1 3

models, since test environments generation would be more
meaningful if used with another MBT approach to generate
test cases from functional requirements. This is outside the
scope of this paper.

In Table 6, we present two types of defects found by PRO-
TEST. The first defect is related to quantifiability. We found
that 106 out of 149 requirements were quantified, while the
remaining 43 were quantifiable but were not actually quanti-
fied (e.g., “The product will reside on the Internet so more
than one user can access the product and download its con-
tent for use on their computer.”15).

The second type of defect is related to under-specified
or missing requirements. We found a total of 180 missing
parameters in the analyzed requirements. The majority of
them (100) were related to resource constraints, followed
by capacity (39), time behavior (22), and throughput/speed
(19). No missing parameters for efficiency requirements
were detected. As defined in Sect. 2.1, efficiency is a com-
bination of more than one parameter. Hence, to some extent,
the existence of those parameters (e.g., time behavior and
resources constraints) eliminates the need for efficiency
requirements.

In the included SRS documents, there were 204 perfor-
mance requirements, categorized by the original author of
the SRS; we identified and categorized 132 of those require-
ments, while we could not fit 67 requirements to any of the
performance aspects definitions in Sect. 2.1. For example,
“Assuming submitted statistics for jobs are accurate, the
Libra scheduler will ensure that all jobs are completed with
a 10% error allowance.”16 Other requirements were hard to
understand how they fit in performance requirements, e.g.,
“The database retrieval and update response time shall not
impact any other performance requirements such as the
GUI response time or monitoring and control responses.”17
This requirement mentions response time, but it does not
clearly state where does it apply or what the target level of

performance is. There were some requirements that were
more difficult to identify, e.g., “The HATS-GUI shall allow
a user to request transformations while HATS-SML is per-
forming transformations or parsing.”18 It could be argued
that this requirement is an efficiency requirement. But read-
ing it carefully we concluded that this is not a performance
requirement, but rather a usability requirement that demands
parallel processing or multitasking. According to Ho et al.
[33], a performance requirement can be categorized into four
levels (0 to 3). These levels show the maturity, suitability,
and validation of performance requirements. Based on their
definition, this requirement is classified as level 0 (lowest),
which is descriptive and can only be evaluated qualitatively.
The requirements in this paragraph were extracted from
2001-libra, an SRS for economy-driven cluster scheduler
for high-performance clusters, 2004-rlcs, an SRS for an
interstate reversible lane control system, and 2001-hats, a
high assurance transformation system. Relying solely on a
qualitative evaluation of performance in these systems leads
potentially to unsatisfied customers.

Out of the 149 requirements, 43 were not quantified.
Those requirements fall into two categories. (1) Require-
ments with minor issues, i.e., just missing the numerical
value. For example “The tools shall be able to scale to pro-
cess large collections using distributed processing and data
transport.”19 This is a capacity requirement, that applies to
the whole tool (object). However, the size of the collection
is not defined; it could be 100 or 100,000. Since the require-
ment does not specify a range, we do not know how to test it.
(2) Requirements with major issues. For example “Loading
speed: The data system shall load as quickly as comparable
productivity tools on whatever environment it is running
in.20 This requirement refers to efficiency in an ambiguous
manner: “as quick as possible” and “on whatever environ-
ment”. No test could be written to verify if the system satis-
fies this requirement.

Performance aspects were not considered equally by the
requirements engineers when writing the SRS documents,
which shows the lack of knowledge in the inter-dependency
relation between different aspects as shown by PRO-TEST.
100 out of 109 created models had missing requirements in
resource constraints. It could be argued that resource con-
straints are not a part of performance requirements. How-
ever, it does affect software performance, and there were
some SRS documents that specified resource constraints
properly, e.g., “The Framework Shell SHOULD NOT utilize
more than 40 megabytes of RAM.”21

Table 6   PRO-TEST evaluation results

Defect Quantity

Not-quantified requirements 43
Under-specified parameters 180
Under-specified resource constraints 100
Under-specified capacity 39
Under-specified time-behavior 22
Under-specified throughput 19
Under-specified efficiency 0

19  2009-warc III.
20  2006-stewards.
21  2005-znix.

15  2001-space fraction.
16  2001-libra.
17  2004-rlcs.

18  2001-hats.

137Requirements Engineering (2023) 28:117–144	

1 3

We generated 96 test environments from the performance
requirements models that we created from the SRS collec-
tion. All of the generated test environments had missing or
unquantified requirements.

Bondi [11] suggested that a performance requirement
should have nine characteristics: unambiguous, measur-
able, verifiable, complete, correct, mathematically consist-
ent, testable, traceable, and can be linked to business and
engineering needs. Our study corroborates that PRO-TEST
supports a subset of these characteristics: it helps engineers
in verifying performance characteristics as it makes lack of
information explicit (completeness and quantifiability), it
detects unclear information (ambiguity), and associates per-
formance requirements to test environments.

6 � Discussion

In this section, we discuss the different aspects of PRO-
TEST. We compare the performance taxonomy and the per-
formance aspect inter-dependency relation with those from
the literature, list the limitations of the approach, discuss
how the approach differs from other MBT approaches, show
our observations regarding performance requirements, and
finally we discuss PRO-TEST with performance prediction.

6.1 � Previous performance aspect classifications

As we saw from our SMS and SRS analysis results, five per-
formance aspects were studied and used in practice. Thus,
testers should consider these aspects when testing software
performance. Eckhardt et al. [21] specify a template to write
performance requirements. They considered three aspects of
performance requirements, namely time behavior, through-
put and capacity. In addition, they specified performance
context (e.g., platform, measurement location and load) as
part of each requirement. However, they do not consider
resource constraints, but rather the platform (hardware)
under which the requirement applies. It is seldom the case
that specifying hardware requirements is enough to test
system performance and ensure the desired time behavior,
throughput and efficiency. For instance, smartphone applica-
tions, vehicles software, cloud services, and desktop applica-
tions, all share resources with other applications running on
the same platform. In this case, performance testing verdicts
are more reliable when we specify the available resources
for the system rather than the platform it runs on. Nixon
et al. [53] categorized performance requirements into time
(response time, throughput and management time) and space
(main memory, secondary storage). They did not account for
capacity which we consider in our taxonomy tree.

6.2 � Performance aspects inter‑dependency

The dependency relation between the five performance
aspects as far as we know was not observed before. Cai
et al. [12] considered two aspects of performance, time and
space, and called the relation between these aspects side-
effects. They did not define clearly the nature of the effect,
nor considered the other performance aspects. Eckhardt et al.
[21] proposed that each specified performance requirement
should have platform and load in the same requirement, since
these aspects affect all other performance aspects. They do
not consider the case when platform and load requirements
are specified in separate requirements, which can be the case
as we saw in our SRS analysis results.

6.3 � PRO‑TEST benefits

Using PRO-TEST to model performance requirements and
generate test environments has the following benefits:

1.	 It helps software engineers to understand the require-
ments better. When the performance requirements are
visualized and by using the taxonomy tree, it becomes
easier to find the relation between the requirements and
how they relate to functional requirements

2.	 It acts as a validation tool for the requirements. By mod-
eling the performance requirements, we can find out (1)
if there are issues with some requirements, which can
not be modeled, and (2) if other requirements are miss-
ing.

3.	 It informs software testers in what environments the tests
should be run. This saves time and resources as it allows
testers design efficient test suites.

6.4 � PRO‑TEST limitations

There are some limitation of using this modeling approach
to model performance requirements. First, the taxonomy tree
is rather abstract. By using the taxonomy, we can identify
that capacity requirements are missing, however, currently
it provides no support or details about what is missing, e.g.,
data, users, requests. These could be specified in more detail
in further nodes of the taxonomy. Second, the approach is
prone to human error. Since the extraction and coding of the
parameters is done manually, the process depends on the
engineers’ interpretation of the requirements. This could be
avoided by automating the process using natural language
processing. Fourth, a lack of inspection of the require-
ments’ quality. As argued by Bondi [11] a good performance
requirement should specify to what degree a requirement
should be met, i.e., we should specify if the requirement
applies all the time or a specific amount of the time (99%

138	 Requirements Engineering (2023) 28:117–144

1 3

of the time). Using the PRO-TEST, we do not detect those
quality aspects of the requirements.

The main limitation of our approach of test environments
generation, is that it can be difficult for a tester to debug
the failed performance test. PRO-TEST generates one test
environment per constraint, in addition to a test environment
that aggregates all constraints. If performance tests fail in the
test environment that aggregates all the constraints, then it is
difficult to identify which interaction of the test constrains is
the cause of the failure.

6.5 � Observations on dependent and independent
parameters

The dependent parameters (time behavior, throughput, effi-
ciency) were more often specified than independent param-
eters (capacity, resource constraints) in performance require-
ments. This is clear from the results, where out of the 180
under-specified requirements 139 missing requirements were
under the category of independent parameters (i.e., capacity
and resource constraints). There could be many reasons for
this outcome. First, it is possible that some requirements
engineers or customers have a misconception when it comes
to some performance aspects. Resource constraints could
be thought of as part of hardware specifications. Second,
it may be more difficult to specify those parameters during
the initial stage of a software development cycle. If no prior
experience exists, it is difficult to asses how much resources
are utilized or capacity required, i.e., no clear estimation
existed about capacity. This increases the risk of scalability
issues appearing later. Similar to what happened at the Poke-
monGo launch [51], as the developers did not expect the big
surge in the number of users. Third, resource constraints was
left out intentionally. Today hardware virtualization is used
extensively in deployed applications, and it is very flexible
and affordable to invest in higher specs hardware than more
efficient software.

6.6 � Performance prediction

Performance prediction is an approach to ensure the per-
formance of the system by simulating the system behavior.
Similar to MBT, performance prediction can use models to
illustrate the system behavior [8, 78]. Performance predic-
tion is used to validate the system performance early before
building the system (e.g., in a simulated environment) [8].
In contrast, PRO-TEST verifies performance requirements
through modeling and generates test environments for per-
formance testing.

Performance prediction is useful in systems with hard-
ware components, where we want to understand the effect
of the components used on the system performance. At the
same time, the PRO-TEST and model-based performance

testing approaches are appropriate to generate means of test-
ing the software before deployment.

7 � Answering the research questions

We answer now our four main research questions.
RQ1 Which aspects of performance requirements are

used in MBT?
All performance aspects presented in Sect. 2.1 were used

in MBT but to different extents. Time behavior was the most
studied by researchers and specified by practitioners in the
SRSs. Capacity, throughput, and resource constraints were
studied and specified but to a lesser extent compared to time
behavior. Efficiency was the least studied aspect with one
paper and was only quantified in about 3 out of the 13 writ-
ten efficiency requirements. We found many models that can
be used to model those aspects. We can see in Fig. 3, many
of the models were used to model more than one perfor-
mance aspect.

RQ2 How to implement MBT on performance require-
ments aspects?

We found 50 models in the literature to model software
performance requirements, and grouped them into 11 clus-
ters (Fig. 3). The purpose of those models is to document
and visualize performance requirements. Those models do
not satisfy the goals of MBT, which are (1) validate the spec-
ified requirements, (2) better understand those requirements,
and (3) generate a suitable test suite. Hence, we developed
PRO-TEST that consists of a model and a taxonomy tree for
performance aspects, which verifies performance require-
ments and generate test environments. The performance
requirements model with the taxonomy tree is not just a
modeling approach for performance requirements. It is also
a concept that identifies the relationship between different
performance aspects.

RQ3 To what extend is the identified approach effective
at modeling performance requirements written for real-life
projects?

The results from PRO-TEST evaluation indicate that the
developed approach can be used to model requirements
from real-life projects. We applied PRO-TEST to perfor-
mance requirements from 34 SRS documents. The approach
could detect issues related to ambiguity, quantifiability and
completeness of performance requirements. We could also
understand the interrelation between those requirements.
However, there are some limitations to PRO-TEST. (1)
The taxonomy tree is not detailed enough, e.g., we do not
know which type of capacity is missing (users, data size).
(2) Manually modeling the requirements is prone to human
errors. Those limitations should be addressed to achieve the
maximum benefits of MBT.

139Requirements Engineering (2023) 28:117–144	

1 3

8 � Conclusions and future work

In this study, we illustrated how PRO-TEST can improve
the understanding of performance requirements and support
the identification of requirement defects. We conducted a
systematic mapping study in the context of model-based per-
formance testing and studied a repository of publicly avail-
able software requirements. We found from our SMS that
researchers studied and modeled all performance aspects.
However, there was a need to develop an approach to verify
performance requirements that takes into consideration the
goals of MBT. We developed PRO-TEST and showed by our
evaluative study that it can be used to verify performance
requirements and generate test environments. The benefits of
PRO-TEST adds value to MBT. It helps software engineers
to understand the requirements better, validate them, and
generate test environments semi-automatically. In addition
to the performance relational model, we developed the tax-
onomy tree, which shows the cause–effect relation between
different performance aspects.

Future work concerns more in-depth validation of PRO-
TEST, finding solutions for the limitations of the approach,
extending PRO-TEST to existing diagrams, and other non-
functional requirements. We have identified the following

possible directions for future work, which would be of ben-
efit to researchers who are interested in this area.

1.	 Apply the proposed modeling technique on a larger set
of well-built SRS with relatively completed performance
requirements and to enhance PRO-TEST further.

2.	 Investigate the possibility of implementing the relational
modeling concept in other non-functional requirements,
e.g., security.

3.	 Integrate PRO-TEST with MBT approaches that gener-
ate functional test cases, and evaluate the effectiveness
of test environment generation.

4.	 Extend the taxonomy tree by finding the possible sub-
categories for the performance aspects.

5.	 Automate the process of creating the model from natural
language requirements to avoid human errors.

Finally, we hope that this list of future work inspires
researchers to do more research in the area of model-based
performance testing and performance requirements veri.

Appendix: Included papers in the SMS

See Tables 7 and 8.

Table 7   Included papers in the SMS

No. Title Author Year

S1 Model-based performance testing in the cloud using the mbpet tool Abbors et al. 2013
S2 Approaching performance testing from a model-based testing perspective Abbors et al. 2010
S3 Model-based testing of a real-time adaptive motion planning system Abdelgawad et al. 2017
S4 GeTeX: A Tool for Testing Real-Time Embedded Systems Using CAN Applications AbouTrab et al. 2011
S5 Test generation for performance evaluation of mobile multimedia streaming applications Al-tekreeti et al. 2018
S6 Dtron: a tool for distributed model-based testing of time critical applications Anier et al. 2017
S7 Canopus: A Domain-Specific Language for Modeling Performance Testing Bernardino et al. 2016
S8 Online model-based testing under uncertaint Camilli et al. 2018
S9 Event-based runtime verification of temporal properties using time basic Petri nets Camilli et al. 2017
S10 Abstracting timing information in UML state charts via temporal ordering and LOTOS Chimisliu et al. 2011
S11 Generation of scripts for performance testing based on UML models Da Silveira et al. 2011
S12 Timed testing under partial observability David et al. 2009
S13 Model-Based Test Suite Generation for Function Block Diagrams Using the UPPAAL Model Checker Enoiu et al. 2013
S14 Iterative test suites refinement for elastic computing systems Gambi et al. 2013
S15 Fast model-based test case classification for performance analysis of multimedia mpsoc platforms Gangadharan et al. 2009
S16 Fault-driven stress testing of distributed real-time software based on uml models Garousi 2011
S17 Automated Steering of Model-Based Test Oracles to Admit Real Program Behaviors Gay et al. 2011
S18 Model-driven testing approach for embedded systems specifics verification based on UML model transforma-

tion
Grigorjevs 2011

S19 Usage profile and platform independent automated validation of service behavior specifications Groenda 2010
S20 A model-based testing technique for component-based real-time embedded systems Guan et al. 2015
S21 Validating Timed Component Contracts Guilly et al. 2015
S22 Towards effective and scalable testing for complex high-speed railway signal software Hu et al. 2017

140	 Requirements Engineering (2023) 28:117–144

1 3

Table 7   (continued)

No. Title Author Year

S23 Experiences of Applying UML/MARTE on Three Industrial Projects Iqbal et al. 2012
S24 Environment modeling and simulation for automated testing of soft real-time embedded software Iqbal et al. 2015
S25 Applicability of an integrated model-based testing approach for rtes Iyenghar et al. 2011
S26 Model-Driven Method for Performance Testing Javed et al. 2018
S27 Experience Report: Evaluating fault detection effectiveness and resource efficiency of the architecture quality

assurance framework and tool
Johnsen et al. 2017

S28 Interaction-based runtime verification for systems of systems integration Krüger et al. 2010
S29 Quality Assurance for Component-based Systems in Embedded Environments Li et al. 2018
S30 Timed moore automata: test data generation and model checking Löding et al. 2010
S31 Minimum/maximum delay testing of product lines with unbounded parametric real-time constraints. Luthmann et al. 2019
S32 Modeling and testing product lines with unbounded parametric real-time constraints Luthmann et al. 2017
S33 Automated significant load testing for ws-bpel compositions Maâlej et al. 2013
S34 Conformance testing for quality assurance of clustering architectures Maâlej et al. 2013
S35 Model-based conformance testing of ws-bpel compositions Maâlej et al. 2012
S36 Towards an industrial strength process for timed testing Mitsching et al. 2009
S37 Comparative analysis for software testing: Mobile applications versus web applications Muhamad et al. 2016
S38 Test Selection for Data-Flow Reactive Systems Based on Observations Nguena-Timo et al. 2011
S39 PLeTsPerf - A Model-Based Performance Testing Tool Rodrigues et al. 2015
S40 Evaluating capture and replay and model-based performance testing tools: an empirical comparison Rodrigues et al. 2014
S41 Extending UML testing profile towards non-functional test modeling Rodrigues et al. 2014
S42 An experience report on an industrial case-study about timed model-based testing with UPPAAL-TRON Rütz et al. 2011
S43 Testing of timing properties in real-time systems: Verifying clock constraints Saadatmand et al. 2013
S44 On Combining Model-Based Analysis and Testing Saadatmand et al. 2013
S45 Functionality, performance, and compatibility testing: A model based approach Saqib et al. 2018
S46 Checking response-time properties of web-service applications under stochastic user profiles Schumi et al. 2017
S47 Analyzing a wind turbine system: From simulation to formal verification Seceleanu et al. 2017
S48 Introduction of time and timing variability in usage model based testing Siegl et al. 2010
S49 Partitioning the requirements of embedded systems by input/output dependency analysis for compositional

creation of parallel test models
Siegl et al. 2015

S50 Multi-fragment Markov model guided online test generation for MPSoC Vain et al. 2017
S51 Provably Correct Test Development for Timed Systems Vain et al. 2014
S52 System Testing of Timing Requirements Based on Use Cases and Timed Automata Wang et al. 2017
S53 A model-based framework for cloud api testing Wang et al. 2017
S54 Towards an integrated approach for validating qualities of self-adaptive systems Weyns 2012
S55 Vision paper: Towards model-based energy testing Wilke et al. 2011
S56 System Modules Interaction Based Stress Testing Model Yang et al. 2010
S57 A methodology of model-based testing for aadl flow latency in cps Zhu et al. 2011

141Requirements Engineering (2023) 28:117–144	

1 3

Funding  Open access funding provided by Blekinge Institute of
Technology.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Abbors F, Ahmad T, Truscan D, Porres I (2013) Model-based
performance testing in the cloud using the mbpet tool. In: Pro-
ceedings of the 4th ACM/SPEC International Conference on
Performance Engineering, ICPE ’13. Association for Computing
Machinery, pp 423–424. https://​doi.​org/​10.​1145/​24798​71.​24799​
37

	 2.	 Abbors F, Truşcan D (2010) Approaching performance testing
from a model-based testing perspective. In: 2010 second inter-
national conference on advances in system testing and validation
lifecycle, pp 125–128. https://​doi.​org/​10.​1109/​VALID.​2010.​22

	 3.	 Abdeen W, Chen X, Unterkalmsteiner M (2021) Model-based test-
ing for performance requirements dataset. https://​doi.​org/​10.​5281/​
zenodo.​57155​09

	 4.	 Abdelgawad M, McLeod S, Andrews A, Xiao J (2017) Model-
based testing of a real-time adaptive motion planning system. Adv
Robot 31(22):1159–1176. https://​doi.​org/​10.​1080/​01691​864.​2017.​
13969​21

	 5.	 Al-Qutaish RE (2010) Quality models in software engineer-
ing literature: an analytical and comparative study. J Am Sci
63:166–175

	 6.	 Al-tekreeti M, Naik K, Abdrabou A, Zaman M, Srivastava P
(2018) Test generation for performance evaluation of mobile mul-
timedia streaming applications. In: Proceedings of the 6th inter-
national conference on model-driven engineering and software
development. SCITEPRESS - Science and Technology Publica-
tions, pp 225–236. https://​doi.​org/​10.​5220/​00066​09302​250236

	 7.	 Ammann P, Offutt J (2016) Introduction to software testing. Cam-
bridge University Press. Google-Books-ID: bQtQDQAAQBAJ

	 8.	 Balsamo S, Di Marco A, Inverardi P, Simeoni M (2004) Model-
based performance prediction in software development: a survey.
IEEE Trans Softw Eng 30(5):295–310. https://​doi.​org/​10.​1109/​
TSE.​2004.9

	 9.	 Bernardino M, Zorzo AF, Rodrigues EM (2016) Canopus: a
domain-specific language for modeling performance testing. In:
2016 IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST), pp 157–167. https://​doi.​org/​10.​
1109/​ICST.​2016.​13

	10.	 Boehm B (1984) Verifying and validating software requirements
and design specifications. IEEE Softw 1(1):75–88. https://​doi.​org/​
10.​1109/​MS.​1984.​233702

	11.	 Bondi AB (2012) Best practices for writing and managing perfor-
mance requirements: a tutorial. In: Proceedings of the 3rd ACM/
SPEC International Conference on Performance Engineering,
ICPE ’12. Association for Computing Machinery, pp 1–8. https://​
doi.​org/​10.​1145/​21882​86.​21882​88

Table 8   Extracted papers from Dias-Neto 2010

No. Title Author Year

S58 Specification-based testing for real-time reactive systems Alagar et al. 2000
S59 Designing fault injection experiments using state-based model to test a space software Ambrosio et al. 2007
S60 Generating test suites for software load testing Avritzer et al. 1994
S61 Specification-based testing for real-time avionic systems Biberstein et al. 1999
S62 On the correctness of upper layers of automotive systems Botaschanjan et al. 2008
S63 Distributed software testing with specification Chang et al. 1990
S64 Traffic-aware stress testing of distributed systems based on UML models Garousi et al. 2006
S65 Testing from a stochastic timed system with a fault model Hierons et al. 2009
S66 Automatic timed test case generation for Web services composition Lallali et al. 2008
S67 Regression testing of classes based on TCOZ specification Liang 2005
S68 Generating test cases for real-time systems from logic specifications Mandrioli et al. 1995
S69 Derivation of tests from timed specifications according to different coverage criteria Merayo et al. 2008
S70 T-UPPAAL: online model-based testing of real-time systems Mikucionis et al. 2004
S71 Generating functional test cases in-the-large for time-critical systems from logic-based specifications Morasca et al. 1996
S72 Mutation-based Testing Criteria for Timeliness Nilson et al. 2004
S73 Model-based testing in evolutionary software development Pretschner et al. 2001
S74 Specification-based test oracles for reactive systems Richardson et al. 1992
S75 Model-based testing of object-oriented systems Rumpe 2003
S76 Aiding modular design and verification of safety-critical time-triggered systems by use of executable

formal specifications
Sakurai et al. 2008

S77 An evaluation of a model-based testing method for information systems Santos-Neto et al. 2008

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2479871.2479937
https://doi.org/10.1145/2479871.2479937
https://doi.org/10.1109/VALID.2010.22
https://doi.org/10.5281/zenodo.5715509
https://doi.org/10.5281/zenodo.5715509
https://doi.org/10.1080/01691864.2017.1396921
https://doi.org/10.1080/01691864.2017.1396921
https://doi.org/10.5220/0006609302250236
https://doi.org/10.1109/TSE.2004.9
https://doi.org/10.1109/TSE.2004.9
https://doi.org/10.1109/ICST.2016.13
https://doi.org/10.1109/ICST.2016.13
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1109/MS.1984.233702
https://doi.org/10.1145/2188286.2188288
https://doi.org/10.1145/2188286.2188288

142	 Requirements Engineering (2023) 28:117–144

1 3

	12.	 Cai Z, Yu E (2002) Addressing performance requirements using a
goal and scenario-oriented approach. In: Pidduck AB, Ozsu MT,
Mylopoulos J, Woo CC (eds) Advanced information systems engi-
neering. Lecture notes in computer science. Springer, Berlin, pp
706–710. https://​doi.​org/​10.​1007/3-​540-​47961-9_​50

	13.	 Camilli M, Gargantini A, Scandurra P, Bellettini C (2017) Event-
based runtime verification of temporal properties using time basic
petri nets. In: Barrett C, Davies M, Kahsai T (eds) NASA formal
methods. Lecture notes in computer science. Springer, Berlin, pp
115–130. https://​doi.​org/​10.​1007/​978-3-​319-​57288-8_8

	14.	 Chimisliu V, Wotawa F (2011) Abstracting timing information in
UML state charts via temporal ordering and LOTOS. In: Proceed-
ings of the 6th international workshop on Automation of Software
Test, AST ’11. Association for Computing Machinery, pp 8–14.
https://​doi.​org/​10.​1145/​19825​95.​19825​98

	15.	 Chung L, Nixon BA, Yu E, Mylopoulos J (2012) Non-functional
requirements in software engineering. Springer. Google-Books-
ID: MNrcBwAAQBAJ

	16.	 Clements P (1997) Coming attractions in software architecture.
In: Proceedings of 5th international workshop on parallel and dis-
tributed real-time systems and 3rd workshop on object-oriented
real-time systems, pp 2–9. https://​doi.​org/​10.​1109/​WPDRTS.​
1997.​637857

	17.	 Coallier F (2001) Software engineering—product quality—part
1: quality model. International Organization for Standardization,
Geneva

	18.	 Dias Neto AC, Subramanyan R, Vieira M, Travassos GH (2007)
A survey on model-based testing approaches: a systematic review.
In: Proceedings of the 1st ACM international workshop on empiri-
cal assessment of software engineering languages and technolo-
gies: held in conjunction with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2007,
WEASELTech ’07. Association for Computing Machinery, pp
31–36. https://​doi.​org/​10.​1145/​13536​73.​13536​81

	19.	 Dias-Neto AC, Travassos GH (2010) A picture from the model-
based testing area: concepts, techniques, and challenges. In:
Zelkowitz MV (ed) Advances in computers, vol 80. Elsevier,
Amsterdam, pp 45–120. https://​doi.​org/​10.​1016/​S0065-​2458(10)​
80002-6

	20.	 Dromey R (1995) A model for software product quality. IEEE
Trans Softw Eng 21(2):146–162. https://​doi.​org/​10.​1109/​32.​
345830

	21.	 Eckhardt J, Vogelsang A, Femmer H, Mager P (2016) Challeng-
ing incompleteness of performance requirements by sentence pat-
terns. In: 2016 IEEE 24th International Requirements Engineering
Conference (RE), pp 46–55 . https://​doi.​org/​10.​1109/​RE.​2016.​24.
ISSN: 2332-6441

	22.	 Elmendorf WR (1973) Cause-effect graphs in functional testing.
IBM Poughkeepsie Laboratory

	23.	 Enoiu EP, Sundmark D, Pettersson P (2013) Model-based test
suite generation for function block diagrams using the UPPAAL
model checker. In: 2013 IEEE sixth international conference on
software testing, verification and validation workshops, pp 158–
167. https://​doi.​org/​10.​1109/​ICSTW.​2013.​27

	24.	 Faedo A. Natural language requirements dataset. Institute of Infor-
mation Science and Technologies. http://​fmt.​isti.​cnr.​it/​nlreq​datas​
et/. Accessed 8 Feb 2019

	25.	 Felderer M, Zech P, Breu R, Büchler M, Pretschner A (2016)
Model-based security testing: a taxonomy and systematic clas-
sification. Softw Test Verif Reliab 26(2):119–148. https://​doi.​org/​
10.​1002/​stvr.​1580

	26.	 Ferrari A, Spagnolo GO, Gnesi S (2017) Towards a dataset for
natural language requirements processing. In: 23rd international
workshop on Requirements Engineering Foundation for Software
Quality Workshops (REFSQ), p 6

	27.	 Gambi A, Filieri A, Dustdar S (2013) Iterative test suites refine-
ment for elastic computing systems. In: Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013. Association for Computing Machinery, pp
635–638. https://​doi.​org/​10.​1145/​24914​11.​24945​79

	28.	 Gangadharan D, Chakraborty S, Zimmermann R (2009) Fast
model-based test case classification for performance analysis of
multimedia MPSoC platforms. In: Proceedings of the 7th IEEE/
ACM international conference on Hardware/software codesign
and system synthesis, CODES+ISSS ’09. Association for Com-
puting Machinery, pp 413–422. https://​doi.​org/​10.​1145/​16294​35.​
16294​92

	29.	 Garousi V (2011) Fault-driven stress testing of distributed real-
time software based on UML models. Softw Test Verif Reliab
21(2):101–124. https://​doi.​org/​10.​1002/​stvr.​418

	30.	 Garousi V, Zhi J (2013) A survey of software testing practices in
Canada. J Syst Softw 86(5):1354–1376. https://​doi.​org/​10.​1016/j.​
jss.​2012.​12.​051

	31.	 Grady RB, Caswell DL (1987) Software metrics: establishing a
company-wide program. Prentice-Hall, Englewood Cliffs

	32.	 Hasling B, Goetz H, Beetz K (2008) Model based testing of sys-
tem requirements using UML use case models. In: And validation
2008 1st international conference on software testing, verifica-
tion, pp 367–376. https://​doi.​org/​10.​1109/​ICST.​2008.9. ISSN:
2159-4848

	33.	 Ho CW, Johnson M, Williams L, Maximilien E (2006) On agile
performance requirements specification and testing. In: AGILE
2006 (AGILE’06), pp 6–52. https://​doi.​org/​10.​1109/​AGILE.​2006.​
41

	34.	 Hooda RV (2013) A future approach for model-based testing:
issues and guidelines. Int J Latest Res Sci Technol 2(1):541–543

	35.	 Häser F, Felderer M, Breu R (2014) Software paradigms, assess-
ment types and non-functional requirements in model-based inte-
gration testing: a systematic literature review. In: Proceedings of
the 18th international conference on Evaluation and Assessment
in Software Engineering—EASE ’14. ACM Press, pp 1–10.
https://​doi.​org/​10.​1145/​26012​48.​26012​57

	36.	 Iqbal MZ, Arcuri A, Briand L (2015) Environment modeling and
simulation for automated testing of soft real-time embedded soft-
ware. Softw Syst Model 14(1):483–524. https://​doi.​org/​10.​1007/​
s10270-​013-​0328-6

	37.	 ISO: Software product quality model—iso25010. https://​iso25​000.​
com/​index.​php/​en/​iso-​25000-​stand​ards/​iso-​25010. Accessed 12
Sept 2019

	38.	 Iyenghar P, Spieker M, Tecker P, Wuebbelmann J, Westerkamp C,
van der Heiden W, Willert A (2011) Applicability of an integrated
model-based testing approach for rtes. In: 2011 9th IEEE Interna-
tional Conference on Industrial Informatics. IEEE, pp 871–876

	39.	 Johnsen A, Lundqvist K, Hänninen K, Pettersson P, Torelm M
(2017) Experience report: evaluating fault detection effective-
ness and resource efficiency of the architecture quality assurance
framework and tool. In: 2017 IEEE 28th International Symposium
on Software Reliability Engineering (ISSRE), pp 271–281. https://​
doi.​org/​10.​1109/​ISSRE.​2017.​31. ISSN: 2332-6549

	40.	 Khosravi K, Guéhéneuc YG (2004) A quality model for design
patterns. German Industry Standard

	41.	 Kitchenham BA, Budgen D, Brereton OP (2010) The value of
mapping studies—a participant-observer case study. In: 14th
International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE) (EASE). BCS Learning & Develop-
ment. https://​doi.​org/​10.​14236/​ewic/​EASE2​010.4

	42.	 Li W, Le Gall F, Spaseski N (2018) A survey on model-based
testing tools for test case generation. In: Itsykson V, Scedrov A,
Zakharov V (eds) Tools and methods of program analysis, com-
munications in computer and information science. Springer, Ber-
lin, pp 77–89. https://​doi.​org/​10.​1007/​978-3-​319-​71734-0_7

https://doi.org/10.1007/3-540-47961-9_50
https://doi.org/10.1007/978-3-319-57288-8_8
https://doi.org/10.1145/1982595.1982598
https://doi.org/10.1109/WPDRTS.1997.637857
https://doi.org/10.1109/WPDRTS.1997.637857
https://doi.org/10.1145/1353673.1353681
https://doi.org/10.1016/S0065-2458(10)80002-6
https://doi.org/10.1016/S0065-2458(10)80002-6
https://doi.org/10.1109/32.345830
https://doi.org/10.1109/32.345830
https://doi.org/10.1109/RE.2016.24
https://doi.org/10.1109/ICSTW.2013.27
http://fmt.isti.cnr.it/nlreqdataset/
http://fmt.isti.cnr.it/nlreqdataset/
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1145/2491411.2494579
https://doi.org/10.1145/1629435.1629492
https://doi.org/10.1145/1629435.1629492
https://doi.org/10.1002/stvr.418
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1016/j.jss.2012.12.051
https://doi.org/10.1109/ICST.2008.9
https://doi.org/10.1109/AGILE.2006.41
https://doi.org/10.1109/AGILE.2006.41
https://doi.org/10.1145/2601248.2601257
https://doi.org/10.1007/s10270-013-0328-6
https://doi.org/10.1007/s10270-013-0328-6
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://doi.org/10.1109/ISSRE.2017.31
https://doi.org/10.1109/ISSRE.2017.31
https://doi.org/10.14236/ewic/EASE2010.4
https://doi.org/10.1007/978-3-319-71734-0_7

143Requirements Engineering (2023) 28:117–144	

1 3

	43.	 Li W, Le Gall F, Vlacheas P, Cheptsov A (2018) Quality assur-
ance for component-based systems in embedded environments. In:
2018 International Conference on Internet of Things, Embedded
Systems and Communications (IINTEC), pp 171–176. https://​doi.​
org/​10.​1109/​IINTEC.​2018.​86952​99

	44.	 Luthmann L, Stephan A, Bürdek J, Lochau M (2017) Modeling
and testing product lines with unbounded parametric real-time
constraints. In: Proceedings of the 21st International Systems and
Software Product Line Conference—volume A, SPLC ’17. Asso-
ciation for Computing Machinery, pp 104–113. https://​doi.​org/​10.​
1145/​31061​95.​31062​04

	45.	 Löding H, Peleska J (2010) Timed moore automata: test data gen-
eration and model checking. In: Verification and validation 2010
third international conference on software testing, pp 449–458.
https://​doi.​org/​10.​1109/​ICST.​2010.​60. ISSN: 2159-4848

	46.	 Maâlej AJ, Hamza M, Krichen M, Jmaïel M (2013) Automated
significant load testing for WS-BPEL compositions. In: 2013
IEEE sixth international conference on software testing, verifica-
tion and validation workshops, pp 144–153. https://​doi.​org/​10.​
1109/​ICSTW.​2013.​25

	47.	 Maâlej AJ, Krichen M, Jmaïel M (2012) Conformance testing of
WS-BPEL compositions under various load conditions. In: 2012
IEEE 36th annual computer software and applications confer-
ence, p 371. https://​doi.​org/​10.​1109/​COMPS​AC.​2012.​100. ISSN:
0730-3157

	48.	 Maâlej AJ, Krichen M, Jmaïel M (2012) Model-based conform-
ance testing of WS-BPEL compositions. In: 2012 IEEE 36th
annual computer software and applications conference workshops,
pp 452–457. https://​doi.​org/​10.​1109/​COMPS​ACW.​2012.​86

	49.	 McCall JA, Richards PK, Walters GF (1997) Factors in software
quality, volumes I, II, and III. US Rome Air Development Center
Reports, US Department of Commerce, USA

	50.	 Molyneaux I. The art of application performance testing: from
strategy to tools. O’Reilly Media, Inc. (2014-12-15). Google-
Books-ID: 187UBQAAQBAJ

	51.	 Moyer E. For Pokemon go, it’s stop—at least temporarily. https://​
www.​cnet.​com/​news/​for-​pokem​on-​go-​its-​stop-​at-​least-​tempo​rar-
ily/. Accessed 10 Oct 2019

	52.	 Myers GJ (2004) The art of software testing, 2nd edn. Wiley,
Hoboken

	53.	 Nixon B (2000) Management of performance requirements for
information systems. IEEE Trans Softw Eng 26(12):1122–1146.
https://​doi.​org/​10.​1109/​32.​888627

	54.	 Paradkar A, Tai K, Vouk M (1997) Specification-based testing
using cause-effect graphs. Ann Softw Eng 4(1):133–157. https://​
doi.​org/​10.​1023/A:​10189​79130​614

	55.	 Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic
mapping studies in software engineering. In: 12th international
conference on Evaluation and Assessment in Software Engineer-
ing (EASE). BCS Learning & Development. https://​doi.​org/​10.​
14236/​ewic/​EASE2​008.8

	56.	 Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for
conducting systematic mapping studies in software engineering:
an upyear. Inf Softw Technol 64:1–18. https://​doi.​org/​10.​1016/j.​
infsof.​2015.​03.​007

	57.	 Prenninger W, El-Ramly M, Horstmann M (2005) 15 case stud-
ies. In: Broy M, Jonsson B, Katoen JP, Leucker M, Pretschner A
(eds) Model-based testing of reactive systems. Lecture notes in
computer science, vol 3472. Springer, Berlin, pp 439–461. https://​
doi.​org/​10.​1007/​11498​490_​19

	58.	 Pretschner A, Prenninger W, Wagner S, Kühnel C, Baumgartner
M, Sostawa B, Zölch R, Stauner T (2005) One evaluation of
model-based testing and its automation. In: Proceedings of
the 27th international conference on software engineering, pp
392–401

	59.	 Rodrigues E, Bernardino M, Costa L, Zorzo A, Oliveira F (2015)
PLeTsPerf—a model-based performance testing tool. In: 2015
IEEE 8th International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp 1–8. https://​doi.​org/​10.​1109/​ICST.​
2015.​71026​28. ISSN: 2159-4848

	60.	 Saadatmand M, Sjödin M (2013) Testing of timing properties
in real-time systems: verifying clock constraints. In: 2013 20th
Asia-Pacific Software Engineering Conference (APSEC), vol 2,
pp 152–158. https://​doi.​org/​10.​1109/​APSEC.​2013.​131. ISSN:
1530-1362

	61.	 Schieferdecker I (2012) Model-based testing. IEEE Softw
29(1):14–18. https://​doi.​org/​10.​1109/​MS.​2012.​13

	62.	 Schumi R, Lang P, Aichernig BK, Krenn W, Schlick R (2017)
Checking response-time properties of web-service applications
under stochastic user profiles. In: IFIP International Conference
on Testing Software and Systems. Springer, pp 293–310

	63.	 Siegl S, Russer M, Hielscher KS (2015) Partitioning the require-
ments of embedded systems by input/output dependency analysis
for compositional creation of parallel test models. In: 2015 Annual
IEEE Systems Conference (SysCon) Proceedings, pp 96–102.
https://​doi.​org/​10.​1109/​SYSCON.​2015.​71167​35

	64.	 da Silveira MB, Rodrigues EdM, Zorzo AF, Costa LT, Vieira HV,
de Oliveira FM (2011) Generation of scripts for performance test-
ing based on UML models. In: The 23rd International Conference
on Software Engineering and Knowledge Engineering (SEKE),
pp 258–263

	65.	 Smith C, Williams L (1993) Software performance engineering: a
case study including performance comparison with design alterna-
tives. IEEE Trans Softw Eng 19(7):720–741. https://​doi.​org/​10.​
1109/​32.​238572

	66.	 Smith CU, Williams LG (2001) Performance solutions: a practical
guide to creating responsive, scalable software. Addison-Wesley.
Google-Books-ID: X5VlQgAACAAJ

	67.	 Stol KJ, Fitzgerald B (2018) The ABC of software engineering
research. ACM Trans Softw Eng Methodol 27(3):1–51. https://​
doi.​org/​10.​1145/​32417​43

	68.	 Technologies, C.: Classic cases where performance testing failures
plagued large organizations. https://​www.​cigni​ti.​com/​blog/2-​class​
ic-​cases-​where-​perfo​rmance-​testi​ng-​failu​res-​plague-​large-​organ​
isati​ons/. Accessed 15 Mar 2020

	69.	 Utting M, Pretschner A, Legeard B (2012) A taxonomy of model-
based testing approaches. Softw Test Verif Reliab 22(5):297–312.
https://​doi.​org/​10.​1002/​stvr.​456

	70.	 Utting M, Pretschner A, Legeard B, Utting CM, Pretschner E,
Legeard B, Uttinga M, Pretschnerb E, Legeardc B (2006) Legeard
b., a taxonomy of model-based testing. Department of Computer
Science, The University of Waikato, Hamilton, New Zealand

	71.	 Vain J, Tsiopoulos L, Kharchenko V, Kaur A, Jenihhin M, Raik J
(2017) Multi-fragment Markov model guided online test genera-
tion for MPSoC. In: ICTERI 2017 proceedings, p 14

	72.	 Wang C, Pastore F, Briand L (2017) System testing of timing
requirements based on use cases and timed automata. In: 2017
IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp 299–309. https://​doi.​org/​10.​1109/​ICST.​
2017.​34

	73.	 Wang J, Bai X, Li L, Ji Z, Ma H (2017) A model-based framework
for cloud API testing. In: 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC), vol 2, pp 60–65.
https://​doi.​org/​10.​1109/​COMPS​AC.​2017.​24. ISSN: 0730-3157

	74.	 Weyns D (2012) Towards an integrated approach for validating
qualities of self-adaptive systems. In: Proceedings of the ninth
international Workshop on Dynamic Analysis, WODA 2012.
Association for Computing Machinery, pp 24–29. https://​doi.​org/​
10.​1145/​23389​66.​23368​03

	75.	 Wikipedia: Healthcare.gov. https://​en.​wikip​edia.​org/​wiki/​Healt​
hCare.​gov. Accessed 15 Mar 2020

https://doi.org/10.1109/IINTEC.2018.8695299
https://doi.org/10.1109/IINTEC.2018.8695299
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1145/3106195.3106204
https://doi.org/10.1109/ICST.2010.60
https://doi.org/10.1109/ICSTW.2013.25
https://doi.org/10.1109/ICSTW.2013.25
https://doi.org/10.1109/COMPSAC.2012.100
https://doi.org/10.1109/COMPSACW.2012.86
https://www.cnet.com/news/for-pokemon-go-its-stop-at-least-temporarily/
https://www.cnet.com/news/for-pokemon-go-its-stop-at-least-temporarily/
https://www.cnet.com/news/for-pokemon-go-its-stop-at-least-temporarily/
https://doi.org/10.1109/32.888627
https://doi.org/10.1023/A:1018979130614
https://doi.org/10.1023/A:1018979130614
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.14236/ewic/EASE2008.8
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/11498490_19
https://doi.org/10.1007/11498490_19
https://doi.org/10.1109/ICST.2015.7102628
https://doi.org/10.1109/ICST.2015.7102628
https://doi.org/10.1109/APSEC.2013.131
https://doi.org/10.1109/MS.2012.13
https://doi.org/10.1109/SYSCON.2015.7116735
https://doi.org/10.1109/32.238572
https://doi.org/10.1109/32.238572
https://doi.org/10.1145/3241743
https://doi.org/10.1145/3241743
https://www.cigniti.com/blog/2-classic-cases-where-performance-testing-failures-plague-large-organisations/
https://www.cigniti.com/blog/2-classic-cases-where-performance-testing-failures-plague-large-organisations/
https://www.cigniti.com/blog/2-classic-cases-where-performance-testing-failures-plague-large-organisations/
https://doi.org/10.1002/stvr.456
https://doi.org/10.1109/ICST.2017.34
https://doi.org/10.1109/ICST.2017.34
https://doi.org/10.1109/COMPSAC.2017.24
https://doi.org/10.1145/2338966.2336803
https://doi.org/10.1145/2338966.2336803
https://en.wikipedia.org/wiki/HealthCare.gov
https://en.wikipedia.org/wiki/HealthCare.gov

144	 Requirements Engineering (2023) 28:117–144

1 3

	76.	 Wilke C, Götz S, Reimann J, Aßmann U (2011) Vision paper:
towards model-based energy testing. In: Whittle J, Clark T, Kühne
T (eds) Model driven engineering languages and systems. Lecture
notes in computer science. Springer, Berlin, pp 480–489. https://​
doi.​org/​10.​1007/​978-3-​642-​24485-8_​35

	77.	 Wohlin C, Runeson, P., Höst M, Ohlsson MC, Regnell B, Wess-
lén A (2012) Experimentation in software engineering. Springer.
Google-Books-ID: QPVsM1_U8nkC

	78.	 Woodside M, Franks G, Petriu DC (2007) The future of software
performance engineering. In: Future of Software Engineering
(FOSE ’07), pp 171–187. https://​doi.​org/​10.​1109/​FOSE.​2007.​32

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-642-24485-8_35
https://doi.org/10.1007/978-3-642-24485-8_35
https://doi.org/10.1109/FOSE.2007.32

	An approach for performance requirements verification and test environments generation
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Software performance
	2.2 Model-based testing
	2.3 Related work

	3 Research methodology
	3.1 Systematic mapping study
	3.1.1 Study identification
	3.1.2 Selection criteria
	3.1.3 Quality assessment
	3.1.4 Data extraction
	3.1.5 Data analysis

	3.2 Software requirements mining
	3.2.1 Selection criteria
	3.2.2 Coding

	3.3 Evaluating PRO-TEST
	3.4 Threats to validity

	4 Model-based performance testing
	4.1 State of the art
	4.2 Performance requirements in SRS documents
	4.3 Discussion
	4.4 Implications of the SMS on performance requirements in MBT

	5 PRO-TEST
	5.1 PRO-TEST approach development and description
	5.2 Performance requirements model
	5.3 Generating test environments
	5.4 Example of PRO-TEST
	5.4.1 Performance requirements model
	5.4.2 Test environments generation

	5.5 Sample study—model evaluation

	6 Discussion
	6.1 Previous performance aspect classifications
	6.2 Performance aspects inter-dependency
	6.3 PRO-TEST benefits
	6.4 PRO-TEST limitations
	6.5 Observations on dependent and independent parameters
	6.6 Performance prediction

	7 Answering the research questions
	8 Conclusions and future work
	References

