
Vol.:(0123456789)1 3

Requirements Engineering (2022) 27:1–30
https://doi.org/10.1007/s00766-021-00359-z

ORIGINAL ARTICLE

Formal requirements modeling for cyber‑physical systems
engineering: an integrated solution based on FORM‑L and Modelica

Daniel Bouskela3 · Alberto Falcone1 · Alfredo Garro1 · Audrey Jardin3 · Martin Otter2 · Nguyen Thuy3 ·
Andrea Tundis4

Received: 17 July 2020 / Accepted: 17 July 2021 / Published online: 14 August 2021
© The Author(s) 2021

Abstract
The increasing complexity of cyber-physical systems (CPSs) makes their design, development and operation extremely
challenging. Due to the nature of CPS that involves many heterogeneous components, which are often designed and devel-
oped by organizations belonging to different engineering domains, it is difficult to manage, trace and verify their properties,
requirements and constraints throughout their lifecycle by using classical techniques. In this context, the paper presents an
integrated solution to formally define system requirements and automate their verification through simulation. The solution
is based on the FOrmal Requirements Modeling Language and the Modelica language. The solution is exemplified through
two case studies concerning a Trailing-Edge High-Lift system and a Heating, Ventilation and Air Conditioning system.

Keywords Modeling and simulation · Formal properties modeling · Requirements engineering · Modelica · System
verification

1 Introduction

Cyber-physical systems (CPSs) are constantly increasing
in complexity and sophistication, involving many compo-
nents that are often designed and developed by organiza-
tions belonging to different engineering domains, including
but not limited to mechanical, electrical, and software. Each
component contributes to the functioning of the entire sys-
tem, but in general, the behavior of the whole CPS cannot be
straightforwardly derived from the behavior of its individual

components [1, 2]. This increase in complexity makes the
design, development, and operation of CPS extremely chal-
lenging. Furthermore, in order to have an optimal design, it
is necessary to consider requirements along with operational
constraints from the beginning of the design stage.

Requirement engineering (RE) is a major area of study
in systems engineering with the purpose of discovering,
developing, tracing, qualifying, communicating and manag-
ing requirements that define the system at successive levels
of abstraction [3]. It involves five activities: (i) discovering,

 * Alfredo Garro
 alfredo.garro@dimes.unical.it

 Daniel Bouskela
 daniel.bouskela@edf.fr

 Alberto Falcone
 alberto.falcone@dimes.unical.it

 Audrey Jardin
 audrey.jardin@edf.fr

 Martin Otter
 martin.otter@dlr.de

 Nguyen Thuy
 n.thuy@edf.fr

 Andrea Tundis
 tundis@tk.tu-darmstadt.de

1 Department of Informatics, Modeling, Electronics
and Systems Engineering (DIMES), University of Calabria,
via Ponte P. Bucci 41C, 87036 Rende, Italy

2 Institute of System Dynamics and Control, German
Aerospace Center (DLR), Oberpfaffenhofen Münchener
Str. 20, D-82234 Wessling, Germany

3 R&D Division, Electricité de France (EDF), quai Watier 6,
Chatou Cedex 78401, France

4 Department of Computer Science at Technische Universität
Darmstadt, Hochschulstraße 10, D-64289 Darmstadt,
Germany

http://orcid.org/0000-0003-0351-0869
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00359-z&domain=pdf

2 Requirements Engineering (2022) 27:1–30

1 3

which is devoted to gain knowledge on the project and iden-
tify the user requirements, objectives and other external
constraints; (ii) developing, which focuses on delineating
the functional and non-functional requirements into the
requirements documents. Requirements must be documented
so as to establish a requirements baseline with the stake-
holders, start conceptualizing the system, and manage any
changes; (iii) tracing, traceability of requirements to other
artifacts, including requirements at other levels, provides a
means to validate them against real-world needs, capture
design rationale, and verify design against requirements; (iv)
qualifying: it refers to all types of testing activities, cover-
ing design and solution testing, including unit, component,
integration, system and acceptance tests (e.g., “verification”
and “validation”); and, (v) communicating and managing:
the collected requirements represent the baseline through
which customers, suppliers, developers, users and regulators
can agree on what they want to achieve.

The management of properties, requirements, and con-
straints in the area of utilization of CPS has increased dra-
matically since it involves many systems engineering aspects
(e.g., functional and timing behaviors, performance, and
reliability constraints) that need to be considered to ensure
the proper operation of the CPS and reduce unexpected
behaviors resulting from hazard and threats related to the
interactions between the CPS and the environment in which
it operates [4].

To address these challenges, new systems engineering
methods and techniques are emerging to benefit from mod-
eling and simulation (M and S). The main objectives are to
support the functional validation of system requirements,
design verification against requirements, testing, and veri-
fication of operational procedures. Moreover, functional
and dysfunctional analyses can be supported in a better way
through the simulation of different operational scenarios.
Indeed, it is necessary not only to verify the nominal behav-
ior of the system (e.g., the expected behavior of the system
according to the offered functionalities) but to analyze how
errors and faults can lead to system failures using suitable
dysfunctional analysis techniques by combining M&S with
traditional methods, such as PHA (preliminary hazard analy-
sis) and FMEA (failure mode and effects analysis) [5–8].

Models provide consistent, complementary, and unam-
biguous representations used to formalize the structure and
dynamics of a CPS and can also be exploited to investigate
the effectiveness and consequences of design alternatives
against requirements as well as to support system operation
[9–11]. Verification is the confirmation process, through the
provision of objective evidence that specified requirements
have been satisfied; its purpose is to ascertain that each level
of the implementation meets its specified requirements. To
pursue these objectives, several research efforts are focusing
their attention on the definition of integrated model-driven

development processes, together with dedicated methodolo-
gies that can guarantee an objective checking of models [12,
13].

In this context, the paper identifies the main issues and
challenges for the formal representation of requirements and
proposes an integrated solution to overcome them. The solu-
tion permits the verification of system requirements through
simulation by augmenting dynamic models defined with the
Modelica language [14] with models that check require-
ments during simulation based on the FOrmal Require-
ments Modeling Language (FORM-L) [15]. The novelty of
this paper is an integrated process of RE resulting from the
integration and extension of the research results achieved
within ITEA3 MODRIO (Model Driven Physical Systems
Operation) (see, e.g., [16–19]), a European project that
aimed at extending state-of-the-art modeling and simulation
environments based on open standards to increase energy
and transportation systems safety, dependability and per-
formance throughout their lifecycle [10]. It is worth noting
that the usefulness and interest in the presented results are
shown by the use of its preliminary versions. As an example,
in [20], a methodology, centered on the proposed property-
based approach and the related Modelica library, previously
released, is introduced and exemplified through a case study.

The rest of the paper is structured as follows. Section 2
provides an introduction to the essential concepts and back-
ground knowledge on the research domain and presents an
overview of the main issues and challenges for properties
modeling. For each identified issue and challenge, the exist-
ing literature contributions are presented in Sect. 3. Sec-
tion 4 presents the proposed solution for simulation-based
verification of requirements through a toolchain based on
the FORM-L language. In Sect. 5, two Modelica libraries
for the simulation of FORM-L requirements are presented.
In Sect. 6, the proposed solution is exemplified by two case
studies: the evaluation of different design variants of a Trail-
ing-Edge High-Lift system, and the FMEA of an HVAC
(Heating, Ventilation and Air Conditioning) system. Finally,
conclusions and future work are delineated in Sect. 7.

2 Requirements modeling
for cyber‑physical systems engineering

2.1 Basic definitions

This section provides a brief overview of the essential defini-
tions used throughout the paper.

In [21], cyber-physical systems (CPSs) are defined as
“smart systems that include engineered interacting networks
of physical and computational components. These highly
interconnected and integrated systems provide new function-
alities to improve quality of life and enable technological

3Requirements Engineering (2022) 27:1–30

1 3

advances in critical areas, such as personalized health
care, emergency response, traffic flow management, smart
manufacturing, defense and homeland security, and energy
supply and use”. Thus, CPS integrates the physical compo-
nents (tangible physical devices) with the cyber subsystems
(computational and communicational capabilities) to pursue
specific objectives. CPSs are characterized by five aspects
[21]: (i) Reactive Computation, unlike the traditional compu-
tational devices that produce an output when supplied with
an input, CPSs are reactive systems where their components
constantly interact with the environment. CPSs react to
events, coming from sensors and actuators, by changing their
behavior according to the events; (ii) Concurrency, CPS’s
components are running concurrently, exchanging data with
one another to achieve a specific goal; (iii) Feedback Con-
trol, CPSs interact in an ongoing way with the environment
in a feedback loop through controllers by gathering external
information (e.g., pressure, temperature, and humidity); (iv)
Real-Time Computation, real-time performance is a criti-
cal aspect since the correctness of CPS behaviors depends
not only on the computational results but also on the physi-
cal time instant at which these results are produced; and
(v) Safety-Critical, the design and implementation of CPS
require a high level of assurance in their nominal behaviors
because possible failures and errors can lead to unacceptable
consequences that may cause injury or death to operators
and damages to the environment. Examples of CPS are an
Air Transportation System, an Attitude Determination and
Control System, an On-Board Communication System [6,
7, 22].

CPS can be modeled and simulated as hybrid systems
whose dynamics are regulated through a mix of continuous

and discrete behaviors. Such systems evolve over time and
can jump to an operation mode during which state variables
are atomically updated. Generally, the continuous behavior
is described through ordinary differential equations (ODE)
or differential algebraic equations (DAE), whereas the dis-
crete behavior is defined by a control graph. The state of
CPS is defined by the values of their continuous variables
in a given discrete mode. Continuous flow is allowed as long
as invariants hold, whereas discrete transitions occur when a
jump condition happens. Thus, an invariant is a property that
holds in all reachable states of the system [23].

In this context, according to [12, 15], a system property
can be defined as an expression that specifies a condition that
must hold true at given times and places. System properties
can be regarded as requirements, assumptions, and guards.
Requirements are attributes, conditions, or capabilities that
must be met or possessed by either a system or a compo-
nent to satisfy a contract, standard, specification, or other
formally imposed documents. Assumptions are properties
that are supposed to be satisfied (e.g., simulation scenario
assumes/ensures that are satisfied). Guards are conditions
that must be satisfied for a system to be valid: a violation of
a guard can signal that the physical behavior of the system
(i.e., of the model representing and simulating it) is no more
consistent, e.g., a condition deriving from a physical law is
violated. Listings 1, 2, and 3 provide examples of a require-
ment (required property), an assumption (assumed
property) and a guard (guard property) of a main
power supply (MPS), respectively (as extracted from [15]).
In FORM-L the keywords requirement, assumption,
and guard have been also introduced to compactly indicate
these concepts (see Sect. 4.1).

4 Requirements Engineering (2022) 27:1–30

1 3

System requirements are defined to ensure the proper
operation of complex physical systems (such as power
plants, aircraft, or vehicles), but also to state functionality
that satisfies customer needs. The gathered requirements
have to be validated and verified to guarantee that they meet
the overall objective of the system and stakeholder needs.
Requirements validation and verification involves evalua-
tion, analysis, and testing to guarantee that a system satis-
fies its requirements. Specifically, the ISO/IEC/IEEE 15288
standard states “Verification is the process for determining
whether or not a product fulfills the requirements or specifi-
cations established for it”. “Validation is the assessment of
a planned or delivered system to meet the sponsor’s opera-
tional need in the most realistic environment achievable”
[24].

2.2 Issues and challenges

The definition of suitable methodologies and techniques
to support the realization of physical and computational
components have been central themes in the scientific
community in the last decades. CPS are complex and mul-
tidimensional systems that constantly interact with their
environment and react to events coming from sensors and
actuators, changing their behavior according to the type of
events. The CPS components are running concurrently in
real time which represents a critical aspect since the correct-
ness of the CPS behavior depends not only on the computa-
tional results but also on the physical time instant at which
these results are produced. The design and implementation
of a CPS require a high-level of assurance of their nominal
behavior because possible failures and errors can lead to
unacceptable consequences that may cause injury or death to
operators and damages to the environment [25]. In this con-
text, different research directions and ideas towards require-
ments management have emerged, such as those based on
the advancements of machine learning (ML) techniques
[26]. However, in order to manage the requirements of CPS,
a systematic approach is indeed needed, starting from the
identification and clarification of the fundamental research
challenges. The main issues and research challenges can be
clustered into the following three main groups [17]:

1. Conceptual properties representation, which aims at
focusing on how to express properties through models
and identify the necessary concepts to capture the sys-
tem characteristics in order to provide/create explicit and
formal information, starting from implicit and informal
inputs, which may be imprecise and ambiguous. There-
fore, there is the need to understand how to identify
system properties and what characteristics must be con-
sidered;

2. Binding and automated model composition, which deals
with connecting models and provides mechanisms for
enabling their composition. With reference to properties
modeling, the main problem is how to bind the prop-
erty model of a system (i.e., the definition of the system
properties and their relationships) to its structural and
behavioral models;

3. Tracing and verification, which aims at monitoring spe-
cific properties as well as exploiting simulation tech-
niques for supporting and verifying their fulfillments.
It refers to the ability to: (i) describe and follow the life
of a property, in both forward and backward directions,
through the whole system life cycle; (ii) exploit simu-
lation techniques by benefitting from modern model-
driven simulation tools for automating the verification of
system requirements in an integrated framework. Trac-
ing and verification are two sides of the same coin and
an important part of a system development process.

Furthermore, the need for a full-fledged mechanism to sup-
port the system development process from the early design
up to its operation allowing continuous integration in an
automatic way (due to the high number of involved system
components), is still an unsolved problem as highlighted in
[27]. Here, the high-level idea of using a graph-based meta-
data approach by storing the data in a database, in order to
support the automatic generation of execution orders and
how to deploy participants and connect them together, is
briefly introduced; the authors well highlight the need of
having innovative tools to support it.

5Requirements Engineering (2022) 27:1–30

1 3

3 Related work

This section reports and discusses previous works and avail-
able solutions related to the research challenges identified
in Subsection 2.2.

Addressing the issues introduced in Subsection 2.2 is not
a trivial task to accomplish; indeed, it requires considerable
research efforts as well as the employment and the coopera-
tion of human resources with deep and wide knowledge and
skills both in academic and industrial contexts, in different
engineering fields and application domains. In the following,
for each of the identified challenges (conceptual properties
representation, binding and automated model composition,
tracing and verification) the main available solutions are
described.

3.1 Conceptual properties representation

As discussed in the previous section, conceptual proper-
ties representation refers to the first aspect that needs to be
faced in the RE management field. In fact, requirements
engineering means to provide a formal representation of
requirements, which allows their computation, i.e., machine
readable and automatically processable, and their evaluation
without ambiguity, i.e., without misinterpretation. Basically,
it refers to the definition of models based on the identifi-
cation of specific features that can be used to characterize
particular requirements. In this subsection, previous research
contributions have been identified, which address the mode-
ling and formal representation of requirements, with particu-
lar attention to modeling languages and approaches, as well
as available software libraries that allow the requirements
integration and evaluation via software, by highlighting for
each of them pros, cons and their limitations.

In [28], a method for requirements modeling driven by
pattern analysis is proposed. It is a conceptual process that
aims to support data analysts by reusing previous experi-
ences for the elicitation, modeling and analysis of require-
ments. The paper describes a high-level approach for sup-
porting the modeling process which in turn relies on a strong
human intervention, based on the feedback from analysts to
adjust the modeled system behavior.

Another research effort regarding properties representa-
tion was conducted in the context of medical devices [29].
In particular, the authors discussed the need of having auto-
mated management of requirements by focusing on a system,
called total knee arthroplasty (TKA). As first effort, they
identified 43 properties, and among them 15 that should be
fulfilled by their traces, were selected as representative. The
paper lists these 15 properties and performs their classifica-
tion. Furthermore, it identifies several stages in the prod-
uct lifecycle where these properties should be evaluated.

However, a formal definition of such properties is not pro-
vided in the paper.

In [30], a dataset, called PURE, of natural language
requirements documents collected from the Web is pre-
sented, by defining a restricted vocabulary of domain-spe-
cific acronyms, words and sentences, and by highlighting
some peculiarities in requirements terminology. However, as
stated by the authors other important tasks such as require-
ments categorization, requirements traceability, ambiguity
detection and equivalent requirements identification require
a deeper investigation.

In [31], a system of systems (SoS) requirement develop-
ment process model is proposed along with a toolkit which
supports the modeling and analysis of SoSs requirement
development. However, the proposal does not provide any
information about how to model requirements in a formal
way in terms of features and relationships between them.
Moreover, the adoption of model-based approaches is very
common, and typically two main kinds of trend to deal with
conceptual properties representation exist in the literature:
one based on the definition of user libraries, and the other on
the exploitation of specific modeling languages.

In [19], a library-based approach is employed to deal with
the properties representation. Its main benefit relies on being
reusable and not affecting the tool-architecture; however, it
is limited in terms of functions, as it is possible to model
only pre-defined properties. An example of this approach is
described in [12], where a set of predefined specific-domain
properties centered on a threshold mechanism are presented.
As a consequence, the modeling of new aspects and their
related properties implies to extend the library.

The modeling of properties related to responsibilities is
instead presented in [32]. The authors distinguished among
them two different responsibilities’ concepts: “safety” and
“liveness”. On the basis of such concepts, specific proper-
ties have been defined as rules and conceived as invariants.

Another way of approaching properties modeling is
presented in [33, 34], which consists in extending the pro-
gramming and/or the modeling language by introducing new
keywords natively related to properties modeling concepts.

An example of such an approach is presented in [34],
where native extensions of the Modelica language [35, 36]
have been investigated, which have been integrated in it by
updating the related Modelica compiler, in order to support
the compilation of the new constructs, i.e., new “keywords”
introduced at the language level. The main advantage of this
approach relies on being very flexible and allows defining
new properties, by using the new language extensions, i.e.,
the new embedded constructs, regardless of the specific
application context. However, the disadvantage lies on the
re-implementation of the Modelica compiler together with
possible backward compatibility problems.

6 Requirements Engineering (2022) 27:1–30

1 3

Another previous important research contribution for
expressing and verifying requirements based on a tempo-
ral logic is SALT (Smart Assertion Language for Temporal
Logic) [37], a specification language which follows a soft-
ware engineering approach based on assertions. The use of
approaches based on assertions was initially investigated and
evaluated by some of the authors of this paper, whose results
are presented in [34]. They conclude that this proposal is not
useful due to the following problems : (i) highly invasive,
since adding assertions means modifying/updating the code
in existing software components (which is unthinkable), thus
going against the principle of decoupling the system model
from the requirements model, (ii) need for strong integration
and dependencies, since introducing an external language
in the Modelica language requires modifying the Modelica
specification and introducing external dependencies.

A further approach is centered on the graphical represen-
tation of both systems and properties by using symbols for
representing the concepts and diagrams (e.g., flow charts) to
model its behavior at different representation levels. SysML
is a specific profile of UML for modeling systems [38]. This
means that SysML is an extended subset of UML, that is,
some UML concepts are inherited and used in SysML as
they are, others are customized, others are excluded and oth-
ers are introduced from scratch. It provides a set of concepts
for expressing constraints as well as requirement allocation,
requirement satisfaction, requirement decomposition, and
requirement derivation.

It is worth noting that existing languages such as UML/
SysML or AADL (Architecture Analysis & Design Language)
are general purpose. If, on the one hand, the use of such
tools is widely applied at the system modeling level; on the
other hand, the passage from the conceptual model to the
realization model requires in-depth knowledge on both sides.
Other research efforts in the literature tried to combine these
languages such as in [39, 40], so as to obtain an integrated
modeling tool. However, the main problem remains how to
move from such model-based representations to executable
versions. This is complicated when the logic behind mod-
eling languages, such as GORE [41] which is goal oriented,
is different from the one on which the Modelica implemen-
tation language is based, which is basically declarative and
equation based.

KAOS is another example of a Goal-oriented language
[42]. Although it provides linear temporal logic (LTL) fea-
tures, unfortunately they are not “acausal” (e.g., the defini-
tion of models is done in a declarative style and the distinc-
tion between inputs and outputs do not affect the model and
is only considered at run-time), but the use of the KAOS
language requires specifying in advance what are the inputs
and outputs.

That is why a specific solution to concretely reduce this
gap among design and implementation is needed.

3.2 Binding and automated model composition

Binding and automated model composition are quite strictly
interconnected issues, and many approaches have been pro-
posed in the systems engineering field. In this subsection,
research works centered on approaches for enabling auto-
matic model compositions have been investigated, by mainly
focusing on mechanisms which enables the binding among
a property model to its structural and behavioral models.

For example, in [43], a tool called IoT Composer is
presented, which supports the development of Internet-of-
Things (IoT) applications by providing a behavioral model
for objects and their binding and composition. In particular,
the user can manually select some objects, and can graphi-
cally define a set of bindings between their interfaces to gen-
erate a composition (e.g., selected objects plus bindings).

In [44], a Petri net program generator is described which
is used for the automated composition of cellular grid mod-
els. It is centered on some basic parameters such as the cel-
lular grid size, the buffer capacity of the communication
device, the number of packets in each device buffer for the
automatic creation of hexagonal structures, which can be
used in a wide range of Petri nets applications, including
telecommunications.

In [45], the concept of multi-functionality and develop-
ment of a holistic service composition model, centered on
modeling and composition reasoning techniques is proposed.
This means, techniques and algorithms that given a set of
models, allow identifying and composing a subset of them
automatically, in order to obtain a more complex model
that satisfies the specified requirements. Additionally, since
most existing composition reasoning techniques can only
handle a single functionality, new algorithms for automated
holistic service composition are provided. They extend
existing models to enable more comprehensive composi-
tion requirement specifications, considering systems with
multiple functionalities, offering users more choices, and
handling exceptions.

The work presented in [46] aimed at improving the reus-
ability of model transformations by automating their com-
position. In particular, the authors proposed an automated
model transformation chain by formalizing models and
transformations using alloy. However, with the increasing
number of elements in the input model, the approach was not
feasible because of the exponential growth of computational
steps to identify the necessary model transformations. As a
consequence, a further improvement has been proposed by
introducing optimizations for the identification in the trans-
formation chain by improving its scalability.

Furthermore, previous works with a particular focus on
tools for automation of service composition are collected
and shortly summarized in [47]. Some other important
approaches are reported by distinguishing bindings at the

7Requirements Engineering (2022) 27:1–30

1 3

component level, service level, process level, and software
level. Specifically:

– In [48] a research effort centers on a Client-Provider-
based approach which relies on the concept of data, cus-
tomer and provider. In particular, the data represent the
point of contact between a client and a provider. The
concept of client represents entities that use a particular
data, whereas providers are entities that generate it. Cli-
ents and Providers can be in a many-to-many relation and
they might not know each other directly. To deal with it a
third entity is introduced, called Mediator, that manages
and facilitates connections between clients and provid-
ers, and provides automatic assistance in order to avoid
modeling errors and reduce the manual modeling effort
for integrating models.

– An automated model composition, called Roman model,
which is centered on the behavior of the services, is
proposed in [49]. The composition task operates at the
service level. It consists of synthesizing an orchestra-
tor that preserves specified interactions among artifacts
expressed as virtual target services in order to compose
the overall model automatically.

– In [50] the authors proposed a feature-based automated
model composition. It aims to identify and bind specific
software modules on the basis of their exposed function-
alities. In particular, specific adaptation rules, which are
described in terms of features, are pre-configured to be
able to separate the application logic from runtime adap-
tation mechanism.

3.3 Tracing and verification

Concerning the possibility of establishing traceability
between models as well as to allow property verification,
there are some popular approaches available in the litera-
ture mainly focused on requirements, which are discussed in
the following. As a consequence, the research contributions
discussed in these subsections have been selected by focus-
ing not only on requirements tracing techniques but also on
related available verification approaches.

For example, in [51], a research prototype for the valida-
tion of requirements at the model level is announced. It is
supposed to support the validation of conceptual schemas
by using testing obtained by implementing techniques for
transforming instantiations from a requirements model into
test cases. The general idea of the tool is presented. How-
ever, details and experiments are omitted leading to a lack
of evidence.

In [52], a framework, called Sophia, is proposed that
supports assurance of critical cyber physical systems using
compositional model-based approaches. It helps to trace
the developed analysis outcomes to the requirements in

standards for compliance support by integrating models for
supporting Process Hazard Analysis (PHA), FMEA, and
Fault Tree Analysis (FTA) at the design stage.

The STIMULUS software from Dassault Systèmes allows
system architects, at the specification phase, to define and
verify requirements by using language templates, state
machines, and block diagrams in order to detect ambiguous,
incorrect, or missing requirements before the design phase.
At the validation phase, STIMULUS also offers functionali-
ties to support software testing to check that the source code
is compliant with the system’s specifications [53]. Other
works are present in the literature aimed at supporting the
system verification phase, such as the contribution described
in [54], where a framework centered on a 3-value temporal-
logic for system health management of real-time systems
is presented, which uses a statistical assessment approach
based on Bayesian network.

In [55], a method for continuous usage of scenarios,
embedded in the systems engineering process, was proposed
by dividing complex and intangible development goals into
smaller solvable tasks. The authors place the tracing and ver-
ification task of the requirements in the step “Scenario-based
methods” of the overall method. However, the details about
how tracing and verification are performed are completely
omitted, so as to make the experiment not reproducible.

In [56], the authors present a tool for generating moni-
tors and a Simulink library for supporting model validation
at simulation time. The main weakness of such work, as
it is stated by the authors, is that no support to the user to
describe the model requirements in a formal language with
a syntax closer to the natural languages has been provided.

A recent work is presented in [57], where issues and chal-
lenges related to the capture and analysis of CPS require-
ments are highlighted, as CPS models typically involve time-
varying and real-valued variables, and dynamic behaviors.
The authors present the application of NASA Ames tools
to perform end-to-end analysis of the Ten Lockheed Martin
Challenge Problems (LMCPS), which are a set of industrial
Matlab/Simulink model benchmarks and natural language
requirements developed by domain experts to: (i) elicit and
formalize the semantics of requirements gathered in natural
language; (ii) generate Matlab/Simulink verification code;
and (iii) perform their verification through model checkers.
This is a further demonstration of the increasing interest by
industries on these research topics.

In [58], traceability in Systems Engineering is discussed.
In particular, the authors describe how to capture traceabil-
ity information in a system with heterogeneous artifacts, by
contextually presenting a case study in Avionics, which uses
a traceability model and a reference trace links taxonomy.
The model is presented in UML and well illustrated in the
paper. However, it is unclear from the paper how the experi-
mentation in Simulink is actually realized and tested.

8 Requirements Engineering (2022) 27:1–30

1 3

Furthermore, the ability to perform requirements tracing
can be accomplished by four different types of links, utiliz-
ing both forward and backward direction tracing approaches.
The different links that can be created for requirement trac-
ing are classified into four mechanisms, according to [59]:
(i) Forward from the requirements, when a requirement is
assigned to one or more system components that are respon-
sible for the requirement. This approach allows the evalu-
ation of the impact due to requirement change; (ii) Back-
ward to the requirements, which allows to test and verify a
requirement against a system or part of it by mapping back
its compliance rules as a requirement; (iii) Forward to the
requirements, that is adopted to map customers’ needs and
technical specifications to the requirements in order to evalu-
ate the impact on the system when a change occurs; (iv)
Backward from the requirements, which is typically adopted
when the validation of requirements against the customers’
wishes as well as technical assumptions is required.

Concerning formal verification, there are different tech-
niques. Two major methods are model checking and theorem
proving [60]. In particular, model checking is a technique
that relies on building a finite state model of a system and
checking that the desired property holds in that model. It
is used in hardware and protocol verification. By using
theorem proving, the system under consideration is mod-
eled as a set of mathematical definitions using some formal
mathematical logic, whereas the desired properties of the
system are then derived as theorems that follow from these
definitions. Other approaches are: (i) state space enumera-
tion, which is based on the reachability of a state in order to
check whether a system complies with a specific property.
It is a method that works for a small and medium-size level
of complexity, due to the potential exponential growth of the
state space when the size of the system increases as well as
related functionalities; (ii) partial order reduction, which
tackles the problem of the exponential growth of states, by
trying to select and use only the necessary and relevant ones
to support the evaluation of the property under analysis; (iii)
symbolic model/checking, which is a symbolic verification
method centered on a symbolic representation of the tran-
sition relations by using Boolean expressions modeled as
binary decision diagrams as well as convex polyhedrons
to represent linear constraints. It uses the computation of a
fixed point over an encoding of the state transition relation
to determine the reachability of a given state.

An approach that combines the four mechanisms previ-
ously described, i.e., Forward from the requirements, Back-
ward to the requirements, Forward to the requirements,
and Backward from the requirements, is presented in [33],
where a simulation-driven solution is centered on an equa-
tion-based style by employing concepts and relationships
identified and described through a proposed meta-model
in [34]. According to such proposal, a requirement can be

evaluated to three possible states: (i) Violated, meaning
that under the current simulation parameters a violation of
the requirement was found; (ii) Not violated, meaning that
under the current simulation parameters no violation of the
requirement was found; (iii) Not evaluated, meaning that
in the given scenario, the preconditions of the requirement
were never fulfilled, and thus, the requirement was never
evaluated. Once requirements are evaluated, the fulfilling
relationship is computed according to a specific algorithm
that aims to indicate: (1) when a property is violated, and
(2) how the component responsible for a property violation
can be identified. In particular, a property or a requirement
can be violated, not only when a single component fails, but
also when the interactions among two or more components
are wrong. Basically, the verification and traceability process
requires tracing all the fulfilling relationships for a given
requirement, to reach a set of components that the require-
ment depends on. This set can be then analyzed, to detect
that (i) either a component is not properly working, or (ii)
the interaction among a set of components is not consistent,
contrary to what was expected. In fact, such an approach
distinguishes between two types of properties: (a) one that
defines the expected behavior of a single Physical System
Component; (b) the other that defines the expected behavior
of two or more Physical System Components in terms of
interactions between them. As a consequence, it is possible
to either identify a single component as possibly liable or
a set of components within which one or more components
are responsible for violating the requirement.

3.4 Remarks

From the analysis conducted, it appears that the aspects dis-
cussed in the three previous subsections are of great impor-
tance as shown by the various research efforts conducted
so far.

Unfortunately, the aspect of representation and mod-
eling is typically faced in an isolated way without taking
into account the other aspects, in fact, a lack of integrated
tools clearly emerges; moreover, many of the solutions are
either strictly linked to specific application context or too
high-level, so as to make the conceptual model difficult to
be transformed for its use in operation neither in simula-
tion. With regard to the binding aspect, on the one hand,
there are solutions that deal with it in a manual way, which
makes it inapplicable in contexts with thousands of compo-
nents; in other approaches, they use static criteria based on
specific metadata, making these approaches not efficiently
reusable, whereas concerning the tracing and verification
mechanisms they have not been considered in the context
of properties modeling as validation tools to assess the cor-
rectness of the system under specific conditions as well as

9Requirements Engineering (2022) 27:1–30

1 3

to identify anomalies resulting from component interactions
or external factors.

Other standardization efforts are underway regarding
possible approaches to support requirements management,
such as the OSLC (Open Services for Lifecycle Collabora-
tion) initiative that deals with specifications based on W3C
Resource Description Framework (RDF), Linked Data and
REST, in order to allow integration at the data level through
links between related resources [61]. This possibility, which
envisaged extending the Modelica standard on the basis of
other specifications such as those issued to OSLC, was taken
into consideration, proposed and discussed within the Mod-
eling Consortium. From the discussion emerged the will of
not wanting to modify the Modelica standard in order to
keep Modelica a pure and non-hybrid language for reasons
of efficiency and compatibility with the currently available
programming environments.

The proposed solution is based on the representation
of requirements in a temporal-logic based language called
FORM-L.

The idea behind FORM-L is to provide a compact and
“distilled” requirements definition language that can be
implemented in popular Modeling and Simulation tools
(such as, Modelica) hiding the complexity of temporal logic
behind an effective (visual, as in the developed libraries)
representation of main requirements modeling constructs
(see Sects. 4 and 5).

The aim of the proposal is to provide an integrated
approach and toolchain for representing requirements in
terms of a requirements model that can be bound with archi-
tectural and behavioral models in a common modeling and
simulation environment (such as, Modelica) so as to evaluate
requirements against the system design through simulation
(see Sect. 6)

Fig. 1 The IEEE Std 24748-1-
2011 System Life Cycle Stages Development

Concept Production Utilization Retirement

Support

Fig. 2 The simulation-based
verification of requirements
solution

Requirements
model

Behavioral
models

observer

observer

observer

Architectural
models

Engineering
data

Environmental
conditionsDesign

hypothesis

Internal state

Internal state

Internal state

External function

External function

External function

Components

Components

Static attribute

10 Requirements Engineering (2022) 27:1–30

1 3

4 Verification of system requirements
through simulation: an integrated
solution

This section presents a new integrated solution to automate
the verification of system requirements through simulation.
Figure 2 delineates its main parts.

The solution is essentially based on three different kinds
of models and related bindings: (i) “Requirements model”,
which provides a formal representation of the system
requirements; (ii) “Architectural models”, which represent
the system structure at different decomposition levels (e.g.,
system, subsystems, equipment, components); (iii) “behav-
ioral models”, which specify the behavior of system com-
ponents and their interactions. These models can be linked
together by using different binding techniques so as to per-
form several analyses throughout the systems engineering
process. As an example, it is possible to evaluate different
system design alternatives against the requirements through
simulation and potential (emerging) behaviors that can lead
to requirement violations under given state conditions (e.g.,
resources unavailability, errors, and failures at both system
and component level).

Through the formal definition of requirements and the
bindings between the parts, the solution supports the “For-
ward from the requirements” tracing mode (see Subsec-
tion 3.3) by ensuring that each requirement is linked to a
system component. However, a requirements trace matrix
is needed to represent in a non-ambiguous way the links
between requirements and system components.

With reference to the system life cycle stages identified in
the IEEE Std. 24748-1-2011 (see Fig. 1) [62], the proposed
solution offers benefits in the following stages:

– Concept stage —System Requirements Definition. To
establish automatic relationships across requirements to
evaluate the validity and ensure coherence between them;

– Development stage —Design Definition. To support
the decision-making process in determining the best
design by evaluating different design alternatives against
requirements;

– Development stage—Verification and Validation. To
define a digital twin to improve and monitor the entire
CPS. The digital twin technology facilitates visibility
in the system operations and allows to perform what-if
analysis. This is performed through simulation by consid-
ering different conditions that may be otherwise imprac-
ticable to recreate by using the real CPS;

– Utilization and Support stages—Operation and Mainte-
nance. To verify whether changes introduced to the CPS
in operation (such as patches that may degrade perfor-

mance and affect functional requirements) lead to a sys-
tem that still meets the requirements.

Concerning the simulation process, three types of data can
be used for feeding the requirement models: (i) Histori-
cal data, past performance data of the overall system and
individual components; (ii) Real data, data coming from
the system in operation, i.e., from sensors and actuators,
outputs of components disseminated across the production
chain including outputs of supplementary business systems;
(iii) Synthetic data, data from engineers, machine learning
and artificial intelligence systems.

A real-world CPS comes in the form of an ecosystem
of components that are necessary to represent and study
its behavior by considering the myriad of operating condi-
tions. For each of them, the entire CPS must always meet
the requirements and continue its operation. Through the
help of the proposed solution, it is possible to conduct these
analyses.

The following subsections present the proposed solu-
tion along with the details on how it is possible to handle
a requirements model. Specifically, Subsection 4.1 pre-
sents the transformation process that allows deriving for-
mal requirements starting from their description in natural
language. Subsection 4.2 describes how to simulate the
so-obtained formal requirements. Finally, the requirement
verification procedure is presented in Subsection 4.3.

4.1 From natural language to formal requirements

In CPS, requirements typically concern the dynamic behav-
ior of a system. They are expressed as a set of constraints
bearing on objects and involving physical time and events.
Expressing requirements as constraints leaves space for
innovation and optimization. Innovation is the ability to find
new solutions to a problem whose limits are expressed as a
set of spatiotemporal constraints. Optimization is the ability
to find the best solution among the possible newly identified
solutions.

Requirements can be of several types. Three of them are
of particular importance regarding CPS: safety, environmen-
tal, and economic, as the challenge is to build and operate
safe, efficient, and environmental friendly systems. Many
disciplines can be involved, one of the most important being
physics, together with human factors, control engineering,
stochastic aspects, etc.

Also, in the design and operation of CPS, many stake-
holders are involved. They may enter and leave the project
over long periods of time. Among them, the safety authori-
ties are of particular importance because they have veto
power on the engineering and operation decisions, and they
cannot be bypassed (e.g., by turning to another competing
safety authority with less stringent requirements). Therefore,

11Requirements Engineering (2022) 27:1–30

1 3

the ability to demonstrate the correctness of the design (i.e.,
its compliance with respect to all requirements) is as impor-
tant as the design itself. This aspect is often overlooked,
mainly because of the lack of elicitation methods and tools.

These aspects are the main drivers for FORM-L, as a
language and a method for the formal capture and simula-
tion of requirements, all along the engineering lifecycle, in
particular covering the very early stages and the detailed
design phases. The FORM-L language is described in the
next section.

Requirements are always initially expressed using natural
language. Therefore, simulating requirements results from
a complex process that transforms natural language expres-
sions into a formal executable model that can be used to
automatically detect design errors.

The transformation process is similar to the design pro-
cess. It starts from assumptions that describe the invariants
of the system (i.e., its environment) and consists mainly
of refinement and elicitation: one usually starts from very
broad and general statements that are progressively refined
until a first sketch of the system architecture is obtained,
which is in turn decomposed into subsystems and compo-
nents of different engineering domains (Hydraulics, Elec-
tro-mechanics, Telecom, and Instrumentation and Control
- I&C). Refinement narrows the solution space by issuing
new requirements. The challenge is to make sure that the
new requirements are compatible with the existing ones, and
that narrowing the solution space does not eliminate good
potential solutions. The two challenges can be dealt with
by automating the verifications and by exploring alternative
solutions, using a simulator that captures all facets of the
system of interest to the designer. Because the design pro-
cess depends on the initial assumptions, it is often necessary
to explore different scenarios on the possible assumptions
when the engineering process spans over a very long time
period. This amounts to repeating the design process for
each scenario.

Therefore, the process of producing the simulator is very
similar to the process of producing the real system. This is
why the simulator can be thought of as a digital twin of the
system.

This transformation process cannot be entirely automated
because natural languages are rich and ambiguous. Richness
implies that all aspects of an informal requirement cannot be
captured in a formal requirement, or even in a set of formal
requirements. Ambiguity means that there is no one-to-one
relationship between informal and formal concepts. Also,
as seen above, producing the simulator is very similar to
designing the real system. It follows that if one could com-
pletely automate the generation of the simulator, then one
could completely automate the design of the system itself.

As automating the verifications is an important aspect
to ensure at each step that the design is compliant with the

requirements, it turns out that the partial simulators con-
structed at each step are necessary to complete the full
engineering cycle rigorously and eventually construct the
full simulator for the final system. Therefore, if the design
cannot be automated, how is it possible to automate the
verifications?

First, one can notice that the verification problem is in
general much simpler than the design problem. This is rec-
ognized in computational complexity theory that states that
the verification of a solution is much faster than the search
of a solution, as it is the case of NP-complete problems that
(by definition) can be verified in polynomial time, but can-
not be solved in polynomial time (if the conjecture NP ≠ P
is indeed true).

The idea for automating the verification is to start from
a formal description of the requirements that are as close as
possible to their expression in natural language. FORM-L
has been designed with this goal in mind. Going from sheer
natural language expressions to formal expressions close to
natural language can be achieved by the use of ontologies.
This aspect will not be developed here.

FORM-L requirements express constraints on objects
that depend on time, and that must be fulfilled during given
time periods. The possible solutions must be found within
the spatiotemporal (4D) space limited by the constraints. A
given requirement is expressed in the form of a sentence that
is constructed by assembling snippets of four different types:

– WHERE (spatial locator). This defines which objects in
the system are subject to the requirement. The objects
are defined by the architecture of the system that can be
refined when moving from one design step to the next;

– WHEN (time locator). It defines the time periods when
the requirement should be fulfilled. The time periods’
boundaries correspond to events occurrences; a require-
ment without a time locator means that it should be ful-
filled during the entire execution;

– WHAT (condition). It defines the condition to be fulfilled
under WHERE and WHEN. It is a Boolean expression
that defines a constraint on the properties of the objects
involved in the WHERE;

– HOW_WELL (probabilistic constraint). It defines the
probability that the WHAT must be verified (be true).
HOW_WELL is made necessary due to the fact that
no condition can be always verified under any circum-
stances: any system of components exhibits some prob-
ability of failure that must be taken into account in order
to specify realistic systems that can be built according
to realistic economic constraints (following the rule of
thumb that the smaller the probability of failure, the
higher the cost of the system).

12 Requirements Engineering (2022) 27:1–30

1 3

Three examples of FORM-L statements are reported in List.
4, List. 5, and List. 6. Concerning examples in List. 4: the
during keyword is used to indicate the time intervals when
the conditions specified in the WHAT part must be verified;
the check keyword states that the condition specified in the
WHAT part must be verified, at the latest, at the end of the
considered time interval. Concerning the example in List. 5
and 6: the while keyword indicates that the time period for
the evaluation of the requirement lasts until a given condi-
tion holds true; the ensure keyword states that the condi-
tion specified in the WHAT part must be verified all along
the considered time period. Further examples of require-
ments expressed in FORM-L are reported in Sect. 6 where
also the after keyword is used to specify that a require-
ment must be evaluated after a condition becomes and holds
true for a given time interval. Additional examples and a
complete description of the FORM-L syntax and semantics
can be found in [15, 18].

4.2 Simulating FORM‑L requirements using ETL

Given a FORM-L requirement of the form:

What is the value of R? This question must be answered
in order to simulate a system, and evaluate the satisfaction
of the FORM-L requirements during the simulation. Given
two requirements R1 and R2 , how can they be combined to

(1)R = [WHERE][WHEN][WHAT][HOW_WELL]

produce a third requirement R3 = f (R1,R2) ? Such a question
must be answered to simulate complex requirements built
from simpler ones.

An answer to those questions is given by the Extended
Temporal Language (ETL) which is aimed at simulating
the temporal aspects of FORM-L, i.e., the WHEN and the
WHAT, given the WHERE and the HOW_WELL, and using
4-value logic [63]. It is worth noting that ETL is not meant to
be used directly by the end-user, but as a means to simulate
models expressed in FORM-L that as a high-level language
for requirements modeling, has been especially conceived
for practitioners. Indeed, ETL enables to express real-time
constraints on continuous physical variables and state events,
and consequently handle several real-time threads. Thus, the
idea is to automatically generate ETL expressions for the
evaluation of the temporal constraints expressed in FORM-
L models [63]. When translating FORM-L expressions into
ETL constructs (see [63] for the ETL complete syntax and

semantics), only the WHEN and WHAT parts are effectively
translated. They are made of ETL expressions that use exter-
nal variables bound to the executable model of the system
architecture using so-called bindings (see Fig. 3).

The model of the system architecture is the behavioral
model of the system equipped with virtual sensors called
observers. The role of the observers is to translate physical
notions (such as flows or potentials) into functional ones
(such as in operation or switched on). It appears here that

13Requirements Engineering (2022) 27:1–30

1 3

some kind of behavioral model is always needed. It can be
of any degree of complexity, ranging from simple intervals
(min and max values) to finite state machines (such as the
SysML state diagram), detailed 1D physical models (such
as Modelica models), or even 3D physical models (such as
CFD models). The behavioral model can be deterministic
(such as Modelica models expressed with hybrid differential
equations) or non-deterministic (such as Stimulus1 models
expressed with stochastic timed automata).

In ETL, the value of a requirement is true if it is satisfied
and false if it is not satisfied (or synonymously, violated).
However, one must take into account the fact that require-
ments are subject to time periods. At time instants outside
of a time period, a requirement is undefined, which means
that it is not applicable. At time instants inside a time period,
it is not always possible to tell whether a requirement is
satisfied because one must wait inside the time period for
the occurrence of a particular event to make this decision.
This particular event is called the decision event. Often, the
decision event is the end of the time period itself, but it can
be a threshold crossing or any other kind of event. Before
the decision event, the requirement is undecided. Therefore,
requirements take their values in the set ℙ4 = {undefined,
undecided, false, true}.

By definition, a requirement R is denoted by Eq. 2.

� is the denotation of the WHAT, similarly P is the denota-
tion of the WHEN. The sign ⊗ expresses the fact that R is
obtained by composing � with P.

(2)R
def
=𝜑⊗ P

The value of R is denoted as val(R), which takes its values
in ℙ4 . As a consequence, R is satisfied when val(R) = true .
val(R) depends on the history of � . 𝜑⊗ P = (𝜑⊗ P)(t) is
an expression of time that is defined over time period P,
where t ∈ ℕ represents a time instant. Outside of P, it takes
by definition the value defined by Eq. 3:

Then, computing the value of R is similar to integrating
R = (𝜑⊗ P)(t) over the duration of the simulation (4).

d((𝜑⊗ P)(t)) acts like a differential operator in continuous
time that extracts events from � by comparing to consecutive
values of � along the time (the details can be found in [63]).

For a discrete clock, the continuous sum ∫ must be
replaced by the discrete sum

∑

 . The sum is evaluated
according to a truth table on ℙ4 that implements the require-
ments evaluation rules. The truth table for the sum operator
is reported in Table 1. Similarly, the truth tables for the other
operators (e.g., ∧ and ¬) can be found in [63].

These rules state, for instance, that when a requirement
is violated, it cannot subsequently be satisfied, or when

(3)t ∉ P ⇔ (𝜑⊗ P)(t) = undefined

(4)val(R) = ∫ d((𝜑⊗ P)(t))

Requirements model

External variable

External variable

External variable

Behavioral model

State variable

State variable

State variable

observer

observer

observer

binding

binding

binding

System architecture

Fig. 3 Bindings

Table 1 The truth table for the sum operator �
1
 + �

2

�
1

�
2

True False Undecided Undefined

True True False True True
False False False False False
Undecided True False Undecided Undecided
Undefined True False Undecided Undefined1 https:// www. argos im. com/ home/ stimu lus- for- requi remen ts/.

https://www.argosim.com/home/stimulus-for-requirements/

14 Requirements Engineering (2022) 27:1–30

1 3

a requirement is undecided, it remains undecided until it
becomes true or false following the decision event. The
value of (𝜑⊗ P)(t) at each time instant t depends on � and P.
For instance, if � checks whether a number of events must be
greater than a given integer n inside P (event counting starts
when P begins and ends when P finishes), then (𝜑⊗ P)(t)
stays undecided inside P until either the number of events
becomes greater than n (then it becomes true), or until the
end of P (then it becomes false).

If P has no duration, then R = val(R) . Therefore, R evalu-
ates to itself if the decision whether R is satisfied can be
made instantaneously. Otherwise, in general R ≠ val(R)
which means that the evaluation of R is delayed with respect
to the current value of R (i.e., at time instant t, R can be true

or false and val(R) still undecided as the evaluation time
interval P is still not ended).

In order to combine requirements, ℙ4 is equipped with
the standard Boolean operators that follow the Morgan
laws a ∨ b = ¬(¬a ∧ ¬b) , a ∧ b = ¬(¬a ∨ ¬b) and ¬¬a = a .
All classical Boolean operators can be defined, e.g.,
a ⇒ b

def
=¬a ∨ b . The truth tables for these operators can be

found in [63]. Applying Boolean operators on elements of
ℙ4 has the same meaning as applying Boolean operators on
elements of ℙ2 = {true, false} , with the difference that at
some time instants the result of the operation may be unde-
fined (if outside of time periods and never evaluated inside
a time period), or undecided (if inside a time period but still
awaiting a decision event). The other difference is that the
tautology a ∧ ¬a = false is not always verified (because a

Fig. 4 Requirement verification
process

Table 2 Monitoring result of requirement block

Input is Requirement is

Satisfied at least once and is never Violated Satisfied
Violated at least once Violated
Otherwise Untested

15Requirements Engineering (2022) 27:1–30

1 3

may be undefined or undecided). The value of requirement
R = R1 opR2 , where op is a Boolean operator, is obtained
using the rule val(R1 opR2)

def
=val(R1) op val(R2).

If � is provided by an observer looking at the physical
system, then � will usually take the values true or false, e.g.,
feed pump in operation or not. However, it may sometimes
take the value undecided if the observer cannot decide on the
actual value, e.g., the reactor current operating point is too
close to the boundary of the authorized operating domain to
decide whether it is inside or outside the operating domain
given measurements uncertainties. Finally, � takes the value
undefined outside of a time period P.

� can also represent the value of a requirement; this
means that R = 𝜑⊗ P(t) is a requirement on the value of a
requirement; it is so possible to express generic requirements
such as “As long as requirement A.1 on system A is satisfied,
n seconds after requirement B.1 of the system B becomes
violated, then requirement C.1 on system C should be satis-
fied”. Requirements A.1, B.1 and C.1 can be inserted into the
generic requirement depending on the detailed design of the
system, and without modifying the generic requirement. This
can be used, for instance, to express mission changes. It is
also possible to express formal refinement schemes (or pat-
terns, or procedures, or rules) such as A1 ⇒ R1 ⇒ R2 which
means that requirement R2 should comply with requirement
R1 (i.e., the satisfaction of R2 does not contradict the satis-
faction of R1), which should comply with assumption A1 (A1
is an assumption because it does not depend on any other
requirement). Such patterns, or even more complex ones,
can be used to express requirements on the design methodol-
ogy. It is also possible to express generic statements of the
contract theory from [64], such as the parallel composition
of contracts ℭ(A,G) = ℭ

1
(A

1
,G

1
)⊗ ℭ

2
(A

2
,G

2
) ∶ G = G

1

∧G
2
,A = (A

1
∧ A

2
) ∨ ¬(G

1
∧ G

2
) , where Ai denotes the

assumptions and Gi denote the guarantees. This can be used

to help stakeholders coordinate with each other and reach a
common agreement.

4.3 Automating verifications: still a blend
of manual and automatic actions

The intent of automating the verifications is the ability to
automatically propagate the impact of modifications in
the assumptions or in the requirements downstream to the
design process. Modifications in the assumptions can be
motivated by exploring alternative scenarios. Modifications
in the requirements can be motivated by detecting design
violations of the requirements when inspecting the verifica-
tion results.

Figure 4 shows a requirement verification process that is
a mixture of manual and automatic actions. Three kinds of
models are involved: informal models, formal models manu-
ally derived from informal models, and executable models
generated automatically from formal models. The idea is to
generate automatically from FORM-L models the executable
model that can observe automatically the behavior of the
system under design and detect possible requirement vio-
lations. The FORM-L model is generated manually from
the requirements expressed in natural language (the orange
blocks are outside the scope of this paper). From the FORM-
L model, test sequences could be generated automatically
(this feature is currently not available).

The executable model that simulates the requirements is
also generated from the same FORM-L model (this feature is
already available in a form of prototype compiler developed
by Inria and Sciworks Technologies that translates FORM-L
models into Modelica models, cf. List. 7 and List. 8). It is
a Modelica model constructed by assembling components
from the ReqSysPro Modelica library developed by EDF
R&D (cf. Subsection 5.2).

16 Requirements Engineering (2022) 27:1–30

1 3

17Requirements Engineering (2022) 27:1–30

1 3

The so-obtained executable model is then semi-auto-
matically bound to the behavioral model using the bind-
ing process described in [65]. The executable code for the
full simulator is generated using a Modelica compiler. The
simulation runs take as inputs the automatically generated
test sequences and the initial conditions calculated from the
assumptions.

The results are provided in the form of a list of require-
ments that are satisfied (true), violated (false), not tested
(undefined, as nothing can be said about the requirement sat-
isfiability) or incompletely tested (undecided, as the require-
ment could have been satisfied/violated during the test but,
as the test has not been completed, it is not possible to say
if, at the end of the test, the requirement would be satisfied/
violated). This principle has been successfully used at EDF
to (partially) automate the FMEA of a HVAC system (see
Subsection 6.2).

5 Libraries for the simulation
of requirements

This section presents two libraries for handling and simulat-
ing FORM-L requirements: (i) The Modelica_Requirements
library; (ii) The Modelica ReqSysPro Library.

The Modelica_Requirements library (Section 5.1) is an
open-source Modelica library, developed by the partners
involved in the MODRIO project [10], that implements a
subset of the FORM-L language in the form of Modelica
blocks.

The Modelica ReqSysPro library (Section 5.2), developed
by EDF R&D, exploits the ETL-based approach (see Sec-
tion 4.2) to simulate a system, and evaluate the satisfaction
of FORM-L requirements during the simulation.

5.1 The Modelica_Requirements library

The Modelica_Requirements library2 allows for the defini-
tion of the FORM-L requirements by drag-and-drop opera-
tions of graphical blocks. It is organized in 15 sub-packages
(see Fig. 5), each of which provides functionalities to allow
the formal definition of requirements and their verification
during the simulation. In total, there are about 60 input/
output blocks to define requirements graphically. A brief
description of the most important sub-packages is given
below. A detailed description of the library can be found
in [19].

– Verify. Blocks to define requirements and evaluate
whether they are satisfied, violated, or not tested during
simulation. It also offers the PrintViolation block that

2 https:// github. com/ model ica- 3rdpa rty/ Model ica_ Requi remen ts.

https://github.com/modelica-3rdparty/Modelica_Requirements

18 Requirements Engineering (2022) 27:1–30

1 3

allows storing, into a log file, the information concerning
the configuration parameters and status of all require-
ments;

– Time Locators. Temporal operator blocks for defining
time intervals of interest (see Fig. 5);

– ChecksInFixedWindow. Blocks that are useful to deter-
mine whether a particular property is fulfilled or not in a
given time window (see Fig. 5);

– ChecksInFixedWindow_withFFT. Blocks that check
properties based on FFT (Fast Fourier Transform) com-
putations in fixed time windows. An FFT determines the
frequency content and amplitudes of a sampled, peri-
odic signal, and the blocks in this package check whether
these frequencies and amplitudes fulfill certain condi-
tions (see Fig. 5);

– ChecksInSlidingWindow. Blocks that allow determining
whether a property is fulfilled or not in a given sliding
window (e.g., if a sliding window has size T and t repre-
sents the current time instant, then in every time range
[t − T , t] the property must be fulfilled).

The library supports two-valued logic with the standard
Modelica type Boolean and a restricted form of three-valued
logic with the user defined type Property that can have val-
ues Satisfied (true), Violated (false) or Undecided (undefined
or undecided). Typical blocks check whether for a fixed or

sliding window defined by various conditions (= WHEN) a
provided Boolean input is true (= WHAT). When the condi-
tions are true, the block outputs Satisfied if the input is true
and outputs Violated if the input is false. If the conditions
are false, the block outputs Undecided. The Property outputs
of these blocks can be combined with logical conditions.
Finally, there is a Requirement block that defines that the
Property input is a required property.

This block, which is provided by the Verify package,
monitors its input over a simulation and computes its status
at the end of the simulation run according to Table 2.

The requirement nominalTempRange of the HVAC sys-
tem (see Subsection 6.2) can be formulated with the Mod-
elica_Requirements library as shown in Fig. 6.

The top-most WithinBand block tempBand has as input
the room temperature tempRi and returns with its Boolean
output signal tempBand.y whether this temperature is in
the required temperature band or not. The middle Dur-
ing block during has as input the Boolean expression
plant.state <> accident and atmosphere.state <> heatwave .
As long as this condition is true, it is monitored whether the
check variable tempBand.y is true. The result is provided as
Property output variable which is connected to the Require-
ment block req_TemperatureRange. The icon of this block
displays the required property in textual form. At the end of

Fig. 5 The Modelica_Require-
ments library

19Requirements Engineering (2022) 27:1–30

1 3

a simulation, the status of all required properties is reported
according to table 2.

Within the ITEA project MODRIO, the library was evalu-
ated by Dassault Aviation with typical requirements for air-
craft systems.

5.2 The Modelica ReqSysPro library

The Modelica ReqSysPro library allows evaluating FORM-L
models expressed as ETL constructs (see Sect. 4.2). It offers
a set of blocks representing basic ETL operators through
Modelica constructs, ETL operators defined as a combina-
tion of lower-level ETL operators, and FORM-L operators
expressed as ETL operators [63]. The library is composed
of two main components time locators and conditions that
can be combined to build the temporal parts of FORM-L
expressions. Figure 7 presents the eight packages that com-
pose ReqSysPro:

– TimeLocators. It provides the blocks for defining the
WHEN with continuous or discrete clocks; as an exam-
ple, the following ContinuousTimeLocators (CTLs) are

available: After, which defines CTLs that begin with each
occurrence of an event and last until the end of the simu-

Fig. 6 FORM-L HVAC require-
ment for thermal conditioning
for one room expressed with
blocks of the Modelica_
Requirements library

Fig. 7 The Modelica ReqSysPro library

20 Requirements Engineering (2022) 27:1–30

1 3

lation run; Always, which defines a single CTL covering
the complete simulation run; During, which define CTLs
when the Boolean input is true;

– Conditions. It provides the blocks for defining the WHAT.
It also provides the blocks for the 4-value logic (and, not,
or, xor, implies, etc.);

– PropertyStatus. It provides the block for translating
requirements values from {undefined, undecided, false,
true} to {NotTested, Violated, Satisfied}.

– Blocks. It provides general-purpose blocks, such as:
BooleanPulse, which generates a pulse signal of type
Boolean; IntegerConstant, which generates a constant
signal of type Integer; EventPeriodicSample, which gen-
erates periodic occurrences of an event.

– Evaluator. It implements Equation 4 for evaluating
requirements.

– Interfaces. It defines the library connectors.
– Types. It defines the types used in the library. In par-

ticular it defines the requirements type as enumeration
{undefined, undecided, false, true}.

– Utilities. It provides utility functions such as: card, which
returns the number of elements of a Boolean vector that
are true; exists, which returns true if at least one element
of a Boolean vector is True; notExists, which returns true
if no element of a Boolean vector is True.

The rationale for the Modelica ReqSysPro library along with
the complete syntax and semantics of the implemented con-
structs for the verification of CPS requirements can be found
in [63].

A requirement is built by connecting a time locator
block to a condition block. Requirements can be connected
together by using blocks for the 4-value logic. Figure 8 illus-
trates requirement “When the system is in operation, the
pump should not be started more than twice, and when the
pump is started, its temperature should never exceed 50◦C ”.
The inputs correspond to external variables. The output is
the value of the requirement. 2-value logic variables are rep-
resented by purple connectors. 4-value logic variables are
represented by brown, connectors.

Figure 9 shows a more abstract requirement R that states
“Over a given time period, if requirement R1 is not satisfied,
then requirement R2 should be satisfied”. It can be used to
express a mission change.

6 Reference scenarios

As presented in the previous sections, the proposed solution
allows formally representing requirements and rules for veri-
fication of system constraints through simulation. To exem-
plify the introduced solution, two case studies concerning a
Trailing-Edge High-Lift system of a commercial transport

aircraft and the FMEA of an HVAC system are presented
in the next sections. The first case study was chosen due to
its complexity since it involved multiple partners involved
in the MODRIO project with different viewpoints on how a
Trailing-Edge High-Lift system should be developed. The
proposed solution has been exploited to bind the system
requirements with various behavioral models to evaluate dif-
ferent architectural designs through simulation by adopting
the Functional Mockup Interface (FMI) standard [66, 67].
The second case study has been chosen due to significant dif-
ferences from the first one, where the organizations’ design
perspective were important. It was chosen to show how the
proposed approach can be exploited to handle the design of
critical systems in combination with well-established tech-
niques for reliability analysis (e.g., FMEA, FMECA).

Fig. 8 Requirement expressed with ReqSysPro blocks

Fig. 9 Mission change expressed with ReqSysPro blocks

21Requirements Engineering (2022) 27:1–30

1 3

6.1 Case study: verification of a trailing‑edge
high‑lift system

In the aircraft design process, a Trailing-Edge High-Lift sys-
tem is a component or a mechanism mounted on an aircraft’s
wing that allows increasing the amount of lift produced by
the wing when required according to Equation 5 [68].

where:
L is the amount of produced lift;
� is the air density factor;
S is the lifting surface;
CL is the lift coefficient;
V∞ is the velocity.
In this case study, the FMI was adopted to perform the

Co-Simulation of the system components within the Sie-
mens AMESim simulation environment [69]. FMI is a
free standard that defines a container and an interface to
exchange simulation models. It has been proposed by the
Daimler AG within the ITEA2 project MODELISAR and
the first version, namely FMI 1.0, was released in 2010 to
improve the interoperability of simulation models among
suppliers and Original Equipment Manufacturers (OEMs).
The current stable version, which is FMI 2.0, extends the
interface specifications to enable both Model Exchange
(FMI for Model Exchange - FMI ME 2.0) and Co-Simulation
(FMI for Co-Simulation - FMI CS 2.0) of simulation mod-
els. The main objective of the FMI ME 2.0 interface (see
Fig. 10a) is to allow any simulation environment to generate
and export C/C++ code or binaries of a dynamic model as
an input/output block to reuse it in other simulation environ-
ments. The behavior of the model is specified through dif-
ferential, algebraic and discrete equations with time, states,
and step-events, which are specified in the source code since
the model does not have within it the solver. The aim of
the FMI CS 2.0 interface (see Fig. 10b) is to couple two or
more dynamic models in a common co-simulation environ-
ment. This can be done because each model comes with its
specific solver. This interface specifies functionalities for
handling the communications between a Master Algorithm
(MA) and a slave. Each slave has a pre-defined set of inputs
and outputs that are known by the MA. MA is in charge
of the configuration, coordination, and management of the

(5)L =
1

2
⋅ � ⋅ V2

∞
⋅ S ⋅ CL

slaves during their execution. The data exchange is limited
to discrete communication points in time and the models are
solved independently between these communication points.
The standard does not specify any MA but its definition is
in charge of developers.

Models adhering to the FMI standard are called Func-
tional Mock-up Units (FMUs) [66, 70, 71]. More in detail, an
FMU is a compressed file with extension .fmu that contains:
(i) Source code, the C/C++ source code that specifies the
behavior of the dynamic model, including runtime libraries;
(ii) FMI Model Description, an XML file containing the
specifications of all the exposed variables, static informa-
tion used by the model during its execution, and the shared
libraries to the target operating systems, such as Windows
(*.dll), Linux (*.so) and Mac OSX (*.dylib); and, (iii) Addi-
tional resources, a folder containing further data, such as
icons, supporting files, maps, and tables.

6.1.1 Requirements model

High-lift devices can be either movable surfaces or station-
ary components that are designed to increase lift during the
take-off, initial climb, and landing phases of flight but they
may also be exploited in any other low-speed situations.
They allow decreasing the surface area of the wing, thus
reducing its drag and making the aircraft more efficient in
terms of fuel consumption, during the cruise phase of the
flight.

Since the system under study has only aerodynamic pur-
poses, its functional requirements are only related to its aero-
dynamic behavior. The top-level requirement of the high-lift
subsystem is to rototranslate the flap surface during the dif-
ferent flight steps so as to obtain satisfactory performance of
the aircraft (system level) [16]. Concerning the geometrical
variables involved in the requirements, they are measured
from a reference system on the flap surface.

Functional requirements define what a system is sup-
posed to accomplish. The high-lift device shall position the
flap surface to satisfy aerodynamic requirements during the
phases of take-off and landing (2D kinematic characteristics
R1, R2, R3).

– R1a : The longitudinal position of the flap surface shall
be within [Xmin, Xmax]take−off when the Deployment Angle
(DA) is in [Dmin,Dmax]take−off

Fig. 10 The FMI standard
defines an interface to enable
both Co-Simulation (a) and
Model Exchange (b) of an FMU

22 Requirements Engineering (2022) 27:1–30

1 3

– R1b : The longitudinal position of the flap surface shall be
within [Xmin, Xmax]landing when DA is in [Dmin,Dmax]landing

– R2: The lateral position of the flap surface shall be con-
strained during the longitudinal translation to avoid
contact with the wing surface and to ensure a diagonal
translation on the Y-X plane.

– R3a : The vertical position of the flap surface shall be
within [Zmin, Zmax]take−off when the longitudinal position
is in [Xmin,Xmax]take−off

– R3b : The vertical position of the flap surface shall be
within [Zmin, Zmax]landing when the longitudinal position
is in [Xmin,Xmax]landing

Performance requirements are introduced to evaluate and to
compare the design variants regarding features of interest
that should be considered during the design process (R4,
R5, R6).

– R4: The sensitivity angle shall be constrained in order to
ensure a smooth variation of the DA during the deploy-
ment. This variable is obtained as the first derivative of
the DA with respect to the longitudinal position: Y < KSA

.
– R5: The height of the fairing shall be constrained so as

to limit the aerodynamic drag. It represents the vertical
distance between the bottom skin of the wing and the
lowest point of the mechanism: h(t) < KFH.

– R6: The maximum torque used by the motor shall be
minimized to reduce the required motor size.

In the following, it is shown how the requirements R1a and
R5 have been defined in FORM-L. It is worth noting that R1a
has been delineated through the FORM-L keywords during
and check. The first one defines the time locators, which
represent the time intervals when the conditions specified
by check must be verified. In more detail, the check keyword
states that the condition must be verified at the latest at the
end of the time interval.

Fig. 11 Possible implementa-
tion of R1

a
 with the Modelica_

Requirements library

propertyModel Req_HL_device
propertyModel R1
external Real DA, X;
parameter Real DA_min_Toff = 14, DA_max_Toff = 16;
parameter Real X_min_Toff = 300, X_max_Toff = 400;
required property R1_a =
during (DA > DA_min_Toff and DA < DA_max_Toff)
check (X > X_min_Toff and X < X_max_Toff);

end R1;

propertyModel R5
external Real h;
parameter Real K_FH = 0.9;
required property R_FH = check (h < K_FH);

end R5;
end Req_HL_device;

23Requirements Engineering (2022) 27:1–30

1 3

Figure 11 depicts the model of R1a where the Real vari-
ables are inputs of the WithinBand blocks. The Boolean
output is true if the input is within the range specified by
the parameters. Two signals (condition from DA and check
from X) are generated and forwarded as inputs to the During
block. During a condition phase the output value is Satis-
fied if check is true, Violated otherwise. When condition is

false the output is Undecided, suggesting that the property
is not tested.

Figure 12 shows the model of R2. The two Real variables
are the longitudinal and lateral positions of the flap surface
that are provided as inputs to the WithinDomain block.
This latter block checks whether the 2D-input point (x, y)
is within an area defined by a closed polygon. The shape of

Fig. 12 Possible implementa-
tion of R2 with the Modelica_
Requirements library

Fig. 13 Possible implementa-
tion of R5 with the Modelica_
Requirements library

Fig. 14 Architectural model of
the high-lift system

24 Requirements Engineering (2022) 27:1–30

1 3

the polygon is defined by means of its vertices (see Fig. 12).
The “Requirement_R2” block collects the status of R2 dur-
ing the simulation.

Figure 13 depicts the R5 model. The Real variable rep-
resents the height of the fairing, which is given as input to
the LessThreshold block. This latter block checks whether
the input is less than a threshold specified as a parameter.

6.1.2 Architectural model

The architecture of the Trailing-Edge High-Lift system is
composed of seven parts: a motor, a flap, deployment mech-
anisms, actuators, gearboxes, shafts, and a wing attachment
structure. Four variants of the architecture have been defined
with common but different mechanisms in implement-
ing the deployment function. Figure 14 shows the system
architecture.

Variants are realizations of the architecture with differ-
ent component models or different characteristics to change
design variables. Thus, there are four design variants of the
system according to the kind of deployment mechanism (see
Fig. 15) employed in the architecture [72]: (a) Dropped-
Hinge, (b) 4-Bar, (c) Link-Track, and (d) Hooked-Track;
where, the blue line represents a drive link; the green line
delineates a rail link; in red a moving truss; and finally, the
black line is a support truss.

6.1.3 Behavioral model

The multi-body model of the high-lift system can be con-
trolled by interacting with different parameters such as: (i)
kinematic sizing; (ii) geometry for structural sizing; (iii)
finite element analysis to consider flexibility of components
[16] (see Fig. 15a).

6.1.4 Binding models

Once the system requirements have been modeled in FORM-
L and implemented as Modelica sub-models, the binding
with the system model can be made. The binding procedure
has been made by exporting the involved parts as FMUs in
co-simulation modality according to the FMI standard [66,
71]. The FMUs have been linked together and simulated by
using the Siemens AMESim simulation environment (see
Fig. 16). Many test cases can be performed, also allowing
varying the test scenario and the system parameters.

6.1.5 Simulation and results analysis

The objective of the simulation is to evaluate the state of the
requirements and compare the different design alternatives.
In Fig. 17 a 2D representation of requirements R1a and R1b
is shown along with the trajectory for the deployment of the
four design variants.

Fig. 15 CAD models of the deployment mechanisms that define the design variants of the system [72]

25Requirements Engineering (2022) 27:1–30

1 3

The output of a simulation run for a system design
shows the state of the requirements over time, for the input

scenario, which is a combination of the system and require-
ments parameters.

Table 3 summarizes the results for the different design alter-
natives. Obviously, they depend on the chosen parameters and
constraints. From the results, it emerges that the dropped hinge
mechanism fulfills most of the requirements and requires the
minimum motor torque to deploy the flap surface. The last row
enumerates the design variants according to requirement R6,
which is about the maximum torque employed by the motor (I
stand for minimum torque, IV for maximum torque).

In Table 3, the following notation is used: if the system
design fulfills the property, it is indicated with a check-mark
✓; otherwise, the ✗-symbol is used.

The library allows also generating textual reports of
requirements assessment for each simulation run, which can
be useful to build report documents when a large amount of
tests is performed.

Fig. 16 Connection between system and property models in Co-simulation modality with a sub-system exported from the Modelica environment

Fig. 17 Simulation of the four
design variants with respect
to the 2D representation of
the requirements R1

a
 (take-off

scenario) and R1
b
 (landing

scenario)

Table 3 Design alternatives comparison

Property System design

Dropped
hinge

Four bars Curved track Hooked track

R1
a

✓ ✓ ✗ ✗
R1

b
✓ ✓ ✓ ✓

R2 ✓ ✓ ✓ ✗
R3

a
✓ ✗ ✓ ✓

R3
b

✓ ✓ ✓ ✗
R4 ✓ ✗ ✗ ✓
R5 ✗ ✗ ✗ ✓
R6 I IV II III

26 Requirements Engineering (2022) 27:1–30

1 3

The Trailing-Edge High-Lift System has been defined
in the Siemens AMESim simulation platform by using the
FORM-L language and the Modelica_Requirements library.
The project is released under the LGPL-2.1 License. The
source code can be found at the official SMASH-Lab GitHub
repository3, together with the raw simulation results and
some scripts to generate the corresponding graphs.

6.2 Case study: the FMEA of a HVAC system

As in critical systems design, verification is as important as
the design process itself, performing FMEA in a rigorous way
is a key success factor. The goal of FMEA studies is to ensure
those component failures will not lead the system to an unac-
ceptable situation. In theory, it should hence drive the engineer
to find an optimal system configuration where simple failures
will not imply critical consequences. In practice, FMEA stud-
ies are today frequently handled manually: (1) engineers list
the system components, (2) they identify for each component
the possible failure modes, and (3) they assess for each failure
model the level of criticality reached when injecting the failure
into a static description of the system behavior. Conducting

FMEA by hand has several disadvantages. The number of
failure modes grows rapidly with the size and the complexity
of the system and it is not uncommon to have to process thou-
sands of failure events in industrial systems. Manual evaluation
is obviously error-prone and so time-consuming that in reality
FMEAs are performed only at the late stages of the design pro-
cess when all design choices have already been made. FMEA
appears then as a duty to substantiate the system safety, but not
as an enabler for the designer.

To overcome these difficulties, the requirement verification
procedure described in Fig. 4 has been tested to partially auto-
mate the FMEA study of an HVAC system. Both the require-
ments model and dynamic behavioral model have been used.
The objective of an HVAC system is to heat and climate a set of
rooms “Rooms” and to ensure good air quality for the occupants.
Let us focus here only on its thermal conditioning mission.

Informally, the HVAC system has hence a contract ℭ𝔦(Ai,Gi)
with each room ri such as: “in normal or fault conditions (which
means with the assumption that room ri produces a given amount
of heat), the HVAC system is designed to guarantee an overall
room temperature between minTempRi and maxTempRi”. Such
requirement R can be translated into FORM-L as:

Fig. 18 FORM-L and ReqSys-
Pro translation of HVAC
requirement for thermal condi-
tioning

3 https:// github. com/ SMASH- Lab/ Trail ing- Edge- High- Lift- System.

https://github.com/SMASH-Lab/Trailing-Edge-High-Lift-System

27Requirements Engineering (2022) 27:1–30

1 3

Requirement nominalTempRange has then been trans-
lated manually into ReqSysPro blocks (Fig. 18). A Modelica
model has been used to describe the dynamic behavior of
the rooms and of the HVAC system. In particular, it com-
putes the values of the different room temperatures tempRi
by using the FORM-L keywords, while and ensure. In this
case, for each room ri , while the system is in operation, i.e.,
its plant.state is not equal to accident and atmosphere.state
is not equal to heatwave, the ensure condition must be veri-
fied. Specifically, ensure states that the condition must be
verified all along the system operation.

A verification model has been manually developed by
coupling the Modelica behavioral model with the ReqSys-
Pro model. To do so, a binding model has been added to
connect the appropriate variables together (for instance, to
convert the temperatures tempRi of the behavioral model
from Kelvin to Celsius degrees to be coherent with the unit
system of the ReqSysPro model). Then, the possible failure
modes have been listed in an Excel file (one column per
mode), and a kind of “bindings” has been performed to see
how each failure event could be emulated in the behavioral
model and what is the corresponding scenario to simulate
(for instance, a fan failure can be modeled as an air mass
flowrate decreasing to zero).

A dedicated Python application has then been developed
to: (1) run in series the simulation of the verification model
according to the various scenarios listed in the Excel file,
(2) retrieve from the verification model the status of each
requirement (here to know whether each room temperature
is in the authorized range or not) and (3) generate an HTML
report in a “FMEA-style” to recap what is the obtained level
of criticality (1, 2 or 3) for each failure mode (Fig. 19). This

step is a post-processing of the simulation results to be more
easily interpreted by the engineer. It is a kind of a diction-
ary that converts the status of the system requirements (i.e.,
satisfied, violated, etc.) in terms of physical impact on the
system. This dictionary is set manually as it depends on the
system and embeds some physical expertise. Here, critical-
ity level 1 means that the initiating failure does not have any
impact on the thermal conditioning, level 2 leads to una-
vailability of the cooling system but within a time period
sufficiently long to allow repairing the default before losing
completely the system division, level 3 means that a backup
division should be started, and level 4 refers to a critical
issue when the complete cooling system is lost.

Such automation brings many advantages. Specifically, it
guarantees that the tests performed are exhaustive (no risk
of forgetting one case among thousands since the simula-
tions are scripted). It allows a faster (and hence cheaper)
way of getting the results. It offers the possibility to real-
ize FMEA studies all along the system lifecycle, as soon as
requirements are changed (for instance, when a more strin-
gent law is enacted) or when the design is reviewed (for
instance, to test alternatives). This is in particular useful
for impact analysis. It helps engineers to assess the design
margins to consider and test all the different types of solu-
tions that they can envision when a requirement is violated
(should he modify the design or renegotiate the contract?).
Temporal aspects can now be considered in FMEA studies
by the possible use of dynamic models, which is not feasible
by hand. This provides new possibilities to offer additional
operational margins or flexibility, or at least a better under-
standing of failure consequences. Finally, the combination
of failure components can be imagined and tested which
can be useful to test more stringent safety scenarios with
aggravating factors.

Fig. 19 HTML report produced automatically from the different simulations of the verification model

28 Requirements Engineering (2022) 27:1–30

1 3

7 Discussion and conclusion

To support the design, development and operation of CPS,
many research efforts are focusing on the definition of meth-
ods, models and techniques capable of dealing, in an inte-
grated way, with the difficulties associated with managing,
tracking and verifying system properties, requirements and
constraints throughout the CPS lifecycle, through the use of
Modeling and Simulation (M and S) techniques.

The paper presented an integrated solution based on
the FORM-L and Modelica language that allows formally
defining system requirements and automate their verification
through simulation by the use of an integrated toolchain.
The integrated solution delineates a process of requirement
engineering resulting from the integration and extension
of research results mainly achieved within the MODRIO
project.

The solution is exemplified through two case studies
related to the MODRIO project. Concerning the Trailing-
Edge High-Lift system, the main objective of the experi-
mentation was the evaluation of different design alternatives
and the subsequent identification of the best one that meets
the system requirements. As regards the HVAC system, the
objective was to automate the FMEA studies in order to
be able to rigorously assess the system safety all along the
design process, i.e., as soon as modifications are applied
to the system design and not only at the end of the design
process.

The proposed solution has been experimented and cur-
rently adopted by the MODRIO project partners. Some com-
mercial and non-commercial software libraries supporting
the method have been developed and are available on the
Modelica community repository4, where a considerable
number of downloads have been registered in a few months;
this testifies to a great interest in the proposed solution by
the various scientific communities that goes beyond the
partners of the MODRIO project. Although the proposed
solution offers many advantages, it presents some limita-
tions and challenges, such as: (i) the requirements have to be
expressed in a rigorous way as delineated in Subsection 4.1;
(ii) the FORM-L language is tool independent but, at the
moment, it has been formalized only for the Modelica envi-
ronment; (iii) the conducted experimentations of the pro-
posed solution were limited to the partners involved in the
MODRIO project.

To overcome the presented limitations and challenges,
future research efforts will be devoted to: (i) improve and
extend Modelica libraries to support a wider set of FORM-L
concepts; (ii) build FORM-L compilers to generate automat-
ically simulation codes from FORM-L models; (iii) build an

Ontology-based component that allows the automatic gen-
eration of test sequences starting from a FORM-L model;
(iv) investigate the possibility to generate semi-automati-
cally FORM-L models from requirements expressed in natu-
ral language; (v) investigate new strategies for automating
models bindings and requirements verifications; (vi) perform
further experimentations of the solution in different applica-
tion domains; and, (vii) conduct a user satisfaction campaign
through the channels offered by OSMC (Open Source Mod-
elica Consortium)5 to assess the diffusion of the solution
along with its strengths and weaknesses.

Acknowledgements This paper is based on research performed in the
context of the MOdel DRiven physical systems Operation (ITEA 3—
MODRIO) European Project that aimed at extending modeling and
simulation languages and tools based on open standards from system
design to system operation. The authors would like to thank Yulu Dong
(EDF Lab), Pascal Borel and Felix Marsollier (Edvance) for their valu-
able contribution on the experiment reported in Subsection 6.2, and
Pierre Weis (Inria) and Habib Jreige (Sciworks Technologies) for
developing the FORM-L to Modelica compiler.

Funding Open access funding provided by Università della Calabria
within the CRUI-CARE Agreement. The authors received no specific
funding for this work.

Code availability The Modelica_Requirements library is an open
source Modelica library that implements a subset ofthe FORM-L lan-
guage in form of Modelica blocks. It is available on the modelica-
3rdparty GitHubrepository at: https:// github. com/ model ica- 3rdpa rty/
Model ica_ Requi remen ts.Examples reported in the paper are available
at: https://github.com/SMASH-Lab/Trailing-Edge-High-Lift-System

Declarations

Conflict of interest All authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Broy M, Schmidt A (2014) Challenges in engineering cyber-
physical systems. Computer 47(2):70–72

4 https:// github. com/ model ica. 5 https:// openm odeli ca. org/ home/ conso rtium.

https://github.com/modelica-3rdparty/Modelica_Requirements
https://github.com/modelica-3rdparty/Modelica_Requirements
http://creativecommons.org/licenses/by/4.0/
https://github.com/modelica
https://openmodelica.org/home/consortium

29Requirements Engineering (2022) 27:1–30

1 3

 2. Bocciarelli P, D’Ambrogio A, Falcone A, Garro A, Giglio A
(2019) A model-driven approach to enable the simulation of com-
plex systems on distributed architectures. Simul Trans Soc Model
Simul Int. https:// doi. org/ 10. 1177/ 00375 49719 829828

 3. Dick J, Hull E, Jackson K (2017) Requirements engineering.
Springer, Berlin

 4. Cheng BHC, Atlee JM (2007) Research directions in requirements
engineering. In: International Conference on Software Engineer-
ing, ISCE 2007, Workshop on the Future of Software Engineer-
ing, FOSE 2007, May 23-25, 2007, Minneapolis, MN, USA, pp.
285–303. https:// doi. org/ 10. 1109/ FOSE. 2007. 17

 5. Ericson CA et al (2015) Hazard analysis techniques for system
safety. Wiley, Hoboken

 6. Garro A, Groß J, Gen Richter MR, Tundis A (2014) Reliability
analysis of an attitude determination and control system (ADCS)
through the RAMSAS method. J Comput Sci 5(3):439–449.
https:// doi. org/ 10. 1016/j. jocs. 2013. 06. 003

 7. Garro A, Tundis A (2015) On the reliability analysis of systems
and SoS: the RAMSAS method and related extensions. IEEE Syst
J 9(1):232–241. https:// doi. org/ 10. 1109/ JSYST. 2014. 23216 17

 8. Liu HC, Liu L, Liu N (2013) Risk evaluation approaches in failure
mode and effects analysis: A literature review. Expert Syst Appl
40(2):828–838

 9. Falcone A, Garro A, Taylor SJE, Anagnostou A, Chaudhry NR,
Salah O (2017) Experiences in simplifying distributed simulation:
The HLA development kit framework. J Simul 11(3):208–227.
https:// doi. org/ 10. 1057/ s41273- 016- 0039-4

 10. ITEA 3 MODRIO: Model driven physical systems operation
project (2018). https://itea3.org/project/modrio.html. Accessed
23 Jun 2018

 11. Ramos AL, Ferreira JV, Barceló J (2011) Model-based systems
engineering: an emerging approach for modern systems. IEEE
Trans Syst Man Cybern Part C (Appl Rev) 42(1):101–111

 12. Jardin A, Bouskela D, Nguyen T, Ruel N, Thomas E, Chastanet
L, Schoenig R, Loembé S (2011) Modelling of system properties
in a Modelica framework. In: Proceedings of the 8th International
Modelica Conference; March 20th-22nd; Technical Univeristy;
Dresden; Germany, 63, pp. 579–592. Linköping University Elec-
tronic Press

 13. Wu J, Liu G, Lane V (1999) Formal verification. CIS 841 Web
Book

 14. Modelica Association: the Modelica association international
home page (2018). https://www.modelica.org/. Accessed 23 June
2018

 15. Nguyen T (2014) Form-l: A Modelica extension for properties
modelling illustrated on a practical example. In: Proceedings of
the 10 th International Modelica Conference; March 10-12; 2014;
Lund; Sweden, 096, pp. 1227–1236. Linköping University Elec-
tronic Press

 16. Aiello F, Garro A, Lemmens Y, Dutré S (2017) Simulation-based
verification of system requirements: An integrated solution. In:
Proceedings of the 14th IEEE International Conference on Net-
working, Sensing and Control (ICNSC), pp. 726–731. IEEE

 17. Garro A, Tundis A (2015) Modeling of system properties:
Research challenges and promising solutions. In: Systems Engi-
neering (ISSE), 2015 IEEE International Symposium on Systems
Engineering, pp. 324–331. IEEE

 18. Garro A, Tundis A, Bouskela D, Jardin A, Thuy N, Otter M, Buf-
foni L, Fritzson P, Sjölund M, Schamai W, et al (2016) On formal
cyber physical system properties modeling: A new temporal logic
language and a modelica-based solution. In: 2016 IEEE Interna-
tional Symposium on Systems Engineering (ISSE), pp. 1–8. IEEE

 19. Otter M, Thuy N, Bouskela D, Buffoni L, Elmqvist H, Fritzson
P, Garro A, Jardin A, Olsson H, Payelleville M, et al (2015) For-
mal requirements modeling for simulation-based verification.
In: Proceedings of the 11th International Modelica Conference,

Versailles, France, September 21-23, 2015, 118, pp. 625–635.
Linköping University Electronic Press

 20. Pinquié R, Micouin P, Véron P, Segonds F (2016) Property model
methodology: a case study with modelica. Tools and Methods of
Competitive Engineering (TMCE)

 21. Alur R (2015) Principles of cyber-physical systems. MIT Press,
Cambridge

 22. Falcone A, Garro A, Tundis A (2014) Modeling and simulation
for the performance evaluation of the on-board communication
system of a metro train. In: Proceedings of the 13th International
Conference on Modeling and Applied Simulation (MAS 2014),
Bordeaux (France)

 23. Sankaranarayanan S, Sipma HB, Manna Z (2004) Constructing
invariants for hybrid systems. In: International Workshop on
Hybrid Systems: Computation and Control, pp. 539–554. Springer

 24. ISO/IEC/IEEE 15288:2015: ISO/IEC/IEEE 15288:2015. Systems
and software engineering: system life cycle processes (2015)

 25. Knight JC (2002) Safety critical systems: challenges and direc-
tions. In: Proceedings of the 24th international conference on
software engineering, pp. 547–550. ACM

 26. Ferrari A (2018) Natural language requirements processing: From
research to practice. In: 2018 IEEE/ACM 40th International Con-
ference on Software Engineering: Companion (ICSE-Compan-
ion), pp. 536–537

 27. Reiterer SH, Balci S, Fu D, Benedikt M, Soppa A, Szczerbicka H
(2020) Continuous integration for vehicle simulations. In: 2020
25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, pp. 1023–1026. IEEE

 28. Ji J, Peng R (2016) An analysis pattern driven requirements mod-
eling method. In: 2016 IEEE 24th International Requirements
Engineering Conference Workshops (REW), pp. 316–319. https://
doi. org/ 10. 1109/ REW. 2016. 058

 29. Ledru Y, Blein Y, du Bousquet L, Groz R, Clere A, Bertrand F
(2018) Requirements for a trace property language for medical
devices. In: 2018 IEEE/ACM International Workshop on Software
Engineering in Healthcare Systems (SEHS), pp. 30–33

 30. Ferrari A, Spagnolo GO, Gnesi S (2017) Pure: A dataset of pub-
lic requirements documents. In: 2017 IEEE 25th International
Requirements Engineering Conference (RE), pp. 502–505. https://
doi. org/ 10. 1109/ RE. 2017. 29

 31. Yang K, Zhao Q, Lu Y, Huang W (2009) The research of system
of systems requirement modeling and toolkits. In: 2009 11th Inter-
national Conference on Computer Modelling and Simulation, pp.
107–110. https:// doi. org/ 10. 1109/ UKSIM. 2009. 115

 32. Zambonelli F, Jennings NR, Wooldridge M (2003) Developing
multiagent systems: the gaia methodology. ACM Trans Softw Eng
Methodol (TOSEM) 12(3):317–370

 33. Buffoni-Rogovchenko L, Fritzson P, Nyberg M, Garro A, Tundis
A (2013) Requirement verification and dependency tracing during
simulation in modelica. In: Modelling and Simulation (EURO-
SIM), 2013 8th EUROSIM Congress on, pp. 561–566. IEEE

 34. Rogovchenko-Buffoni L, Tundis A, Fritzson P, Garro A (2013)
Modeling system requirements in Modelica: Definition and com-
parison of candidate approaches. In: Proceedings of the 5th Inter-
national Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools, EOOLT 2013, April 19, University of Not-
tingham, Nottingham, UK, pp. 15–24

 35. Fritzson P (2014) Principles of object-oriented modeling and
simulation with Modelica 3.3: a cyber-physical approach. Wiley

 36. Open Modelica: The Open Modelica website (2019). https://www.
openmodelica.org/. Accessed 20 Dec 2019

 37. Bauer A, Leucker M (2011) The Theory and Practice of SALT.
In: Bobaru M, Havelund K, Holzmann GJ, Joshi R (eds) NASA
Formal Methods. Springer, Berlin Heidelberg, pp 13–40. https://
doi. org/ 10. 1007/ 978-3- 642- 20398-5_3

https://doi.org/10.1177/0037549719829828
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.1016/j.jocs.2013.06.003
https://doi.org/10.1109/JSYST.2014.2321617
https://doi.org/10.1057/s41273-016-0039-4
https://doi.org/10.1109/REW.2016.058
https://doi.org/10.1109/REW.2016.058
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/UKSIM.2009.115
https://doi.org/10.1007/978-3-642-20398-5_3
https://doi.org/10.1007/978-3-642-20398-5_3

30 Requirements Engineering (2022) 27:1–30

1 3

 38. Object Management Group (OMG): Systems modeling language
(SysML) (2019). www.omgsysml.org/. Accessed 20 Dec 2019

 39. Behjati R, Yue T, Nejati S, Briand L, Selic B (2011) Extending
SysML with AADL concepts for comprehensive system architec-
ture modeling. In: European Conference on Modelling Founda-
tions and Applications, pp. 236–252. Springer

 40. de Saqui-Sannes P, Hugues J (2012) Combining SysML and
AADL for the design, validation and implementation of critical
systems. In: ERTS2 2012, p. 117

 41. Vilela J, Castro J, Martins LEG, Gorschek T, Silva C (2017) Spec-
ifying safety requirements with gore languages. In: Proceedings
of the 31st Brazilian Symposium on Software Engineering, pp.
154–163

 42. Joochim T, Poppleton M (2007) Transforming timing diagrams
into knowledge acquisition in automated specification

 43. Krishna A, Le Pallec M, Mateescu R, Noirie L, SalaÃn G (2019)
Iot composer: composition and deployment of IoT applications.
In: 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion), pp.
19–22. https:// doi. org/ 10. 1109/ ICSE- Compa nion. 2019. 00028

 44. Shmeleva TR (2017) Automated composition of petri net models
for cellular structures. In: 2017 IEEE First Ukraine Conference on
Electrical and Computer Engineering (UKRCON), pp. 1019–1024
https:// doi. org/ 10. 1109/ UKRCON. 2017. 81004 05

 45. Zhu W, Bastani F, Yen I, Fu J, Zhang Y (2017) Automated holistic
service composition: modeling and composition reasoning tech-
niques. In: 2017 IEEE International Conference on Web Services
(ICWS), pp. 596–603. https:// doi. org/ 10. 1109/ ICWS. 2017. 70

 46. Castellanos C, Borde E, Pautet L, Sébastien G, Vergnaud T (2015)
Improving reusability of model transformations by automating
their composition. In: 2015 41st Euromicro Conference on Soft-
ware Engineering and Advanced Applications, pp. 267–274.
https:// doi. org/ 10. 1109/ SEAA. 2015. 76

 47. Maigre R (2010) Survey of the tools for automating service com-
position. In: 2010 IEEE International Conference on Web Ser-
vices, pp. 628–629. https:// doi. org/ 10. 1109/ ICWS. 2010. 72

 48. Schamai W, Buffoni L, Fritzson P (2014) An approach to auto-
mated model composition illustrated in the context of design veri-
fication. Model Identif Control 35(2):79

 49. De Giacomo G, Mecella M, Patrizi F (2014) Automated service
composition based on behaviors: The roman model. In: Web
Services Foundations, pp. 189–214. https:// doi. org/ 10. 1007/
978-1- 4614- 7518-7_8

 50. Rosenmüller M, Siegmund N, Apel S, Saake G (2011) Flexible
feature binding in software product lines. Autom Softw Eng
18(2):163–197

 51. Granda MF, Condori-Fernandez N, Vos TEJ, Pastor O (2017)
Costest: A tool for validation of requirements at model level. In:
2017 IEEE 25th International Requirements Engineering Confer-
ence (RE), pp. 464–467. https:// doi. org/ 10. 1109/ RE. 2017. 69

 52. Adedjouma M, Yakymets N (2019) A framework for model-based
dependability analysis of cyber-physical systems. In: 2019 IEEE
19th International Symposium on High Assurance Systems Engi-
neering (HASE), pp. 82–89. https:// doi. org/ 10. 1109/ HASE. 2019.
00022

 53. Dassault Systèmes: The stimulus project home page (2020).
https://www.argosim.com. Accessed 31 Jan 2020

 54. Reinbacher T, Rozier KY, Schumann J (2014) Temporal-logic
based runtime observer pairs for system health management of
real-time systems. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pp.
357–372. Springer

 55. Sippl C, Bock F, Lauer C, Heinz A, Neumayer T, German
R (2019) Scenario-based systems engineering: An approach
towards automated driving function development. In: 2019 IEEE

International Systems Conference (SysCon), pp. 1–8. https:// doi.
org/ 10. 1109/ SYSCON. 2019. 88367 63

 56. Balsini A, Di Natale M, Celia M, Tsachouridis V (2017) Genera-
tion of Simulink monitors for control applications from formal
requirements. In: 2017 12th IEEE International Symposium on
Industrial Embedded Systems (SIES), pp. 1–9. IEEE

 57. Mavridou A, Bourbouh H, Giannakopoulou D, Pressburger T,
Hejase M, Garoche PL, Schumann J (2020) The Ten Lockheed
Martin Cyber-Physical Challenges: formalized, Analyzed, and
Explained. In: 2020 IEEE 28th International Requirements Engi-
neering Conference (RE), pp. 300–310. IEEE. https:// doi. org/ 10.
1109/ RE485 21. 2020. 00040

 58. Mustafa N, Labiche Y, Towey D (2018) Traceability in systems
engineering: An avionics case study. In: 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC),
02, pp. 818–823. https:// doi. org/ 10. 1109/ COMPS AC. 2018. 10345

 59. Jarke M (1998) Requirements tracing. Commun ACM
41(12):32–36

 60. Shankar N (2000) Combining theorem proving and model check-
ing through symbolic analysis. In: International Conference on
Concurrency Theory, pp. 1–16. Springer

 61. Open Services for Lifecycle Collaboration (OSLC): The oslc
international home page (2021). https://open-services.net/.
Accessed 01 Jan 2021

 62. IEEE Std 24748-1-2011: IEEE Guide–Adoption of ISO/IEC TR
24748-1:2010 Systems and Software Engineering–Life Cycle
Management–Part 1: Guide for Life Cycle Management (2011).
https:// doi. org/ 10. 1109/ IEEES TD. 2011. 58716 57

 63. Bouskela D, Jardin A (2018) ETL: A new temporal language for
the verification of cyber-physical systems. In: 2018 Annual IEEE
International Systems Conference (SysCon), pp. 1–8. IEEE

 64. Benveniste A, Caillaud B, Nickovic D, Passerone R, Raclet JB,
Reinkemeier P, Sangiovanni-Vincentelli A, Damm W, Henzinger
TA, Larsen KG et al (2018) Contracts for system design. Found
Trends® in Electron Des Autom 12(2–3):124–400

 65. Bouskela D, Nguyen T, Jardin A (2017) Toward a rigorous
approach for verifying cyber-physical systems against require-
ments. Can J Electr Comput Eng 40(2):66–73

 66. Daimler AG: The functional mock-up interface (FMI) standard home
page (2019). http://www.fmi-standard.org. Accessed 23 Jun 2019

 67. Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2018)
Co-simulation: a survey. ACM Comput Surv (CSUR) 51(3):1–33

 68. Dal Monte A, Castelli MR, Benini E (2012) A retrospective of
high-lift device technology. In: Proceedings of World Academy of
Science, Engineering and Technology, 71, p. 1979. World Acad-
emy of Science, Engineering and Technology (WASET)

 69. Siemens: Siemens amesim-motion simulation environment home
page (2019). https:// www. plm. autom ation. sieme ns. com. Accessed
23 Jun 2019

 70. Garro A, Falcone A (2015) On the integration of HLA and FMI for
supporting interoperability and reusability in distributed simula-
tion. In: Symposium on Theory of Modeling & Simulation: DEVS
Integrative M&S Symposium, part of the 2015 Spring Simulation
Multiconference, SpringSim 2015, Alexandria, VA, USA, April
12-15, 2014, pp. 9–16. The Society for Modeling and Simulation
International Inc.. http://dl.acm.org/citation.cfm?id=2872967

 71. Falcone A, Garro A (2019) Distributed co-simulation of complex
engineered systems by combining the high level architecture and
functional mock-up interface. Simul Model Pract Theory. https://
doi. org/ 10. 1016/j. simpat. 2019. 101967

 72. Zaccai D, Bertels F, Vos R (2016) Design methodology for trail-
ing-edge high-lift mechanisms. CEAS Aeronaut J 7(4):521–534

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/ICSE-Companion.2019.00028
https://doi.org/10.1109/UKRCON.2017.8100405
https://doi.org/10.1109/ICWS.2017.70
https://doi.org/10.1109/SEAA.2015.76
https://doi.org/10.1109/ICWS.2010.72
https://doi.org/10.1007/978-1-4614-7518-7_8
https://doi.org/10.1007/978-1-4614-7518-7_8
https://doi.org/10.1109/RE.2017.69
https://doi.org/10.1109/HASE.2019.00022
https://doi.org/10.1109/HASE.2019.00022
https://doi.org/10.1109/SYSCON.2019.8836763
https://doi.org/10.1109/SYSCON.2019.8836763
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1109/COMPSAC.2018.10345
https://doi.org/10.1109/IEEESTD.2011.5871657
https://www.plm.automation.siemens.com
https://doi.org/10.1016/j.simpat.2019.101967
https://doi.org/10.1016/j.simpat.2019.101967

	Formal requirements modeling for cyber-physical systems engineering: an integrated solution based on FORM-L and Modelica
	Abstract
	1 Introduction
	2 Requirements modeling for cyber-physical systems engineering
	2.1 Basic definitions
	2.2 Issues and challenges

	3 Related work
	3.1 Conceptual properties representation
	3.2 Binding and automated model composition
	3.3 Tracing and verification
	3.4 Remarks

	4 Verification of system requirements through simulation: an integrated solution
	4.1 From natural language to formal requirements
	4.2 Simulating FORM-L requirements using ETL
	4.3 Automating verifications: still a blend of manual and automatic actions

	5 Libraries for the simulation of requirements
	5.1 The Modelica_Requirements library
	5.2 The Modelica ReqSysPro library

	6 Reference scenarios
	6.1 Case study: verification of a trailing-edge high-lift system
	6.1.1 Requirements model
	6.1.2 Architectural model
	6.1.3 Behavioral model
	6.1.4 Binding models
	6.1.5 Simulation and results analysis

	6.2 Case study: the FMEA of a HVAC system

	7 Discussion and conclusion
	Acknowledgements
	References

