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Abstract
Collaborative cyber-physical systems are capable of forming networks at runtime to achieve goals that are unachievable for 
individual systems. They do so by connecting to each other and exchanging information that helps them coordinate their 
behaviors to achieve shared goals. Their highly complex dependencies, however, are difficult to document using traditional 
goal modeling approaches. To help developers of collaborative cyber-physical systems leverage the advantages of goal 
modeling approaches, we developed a GRL-compliant extension to the popular iStar goal modeling language that takes the 
particularities of collaborative cyber-physical systems and their developers’ needs into account. In particular, our extension 
provides support for explicitly distinguishing between the goals of the individual collaborative cyber-physical systems and 
the network and for documenting various dependencies not only among the individual collaborative cyber-physical systems 
but also between the individual systems and the network. We provide abstract syntax, concrete syntax, and well-formedness 
rules for the extension. To illustrate the benefits of our extension for goal modeling of collaborative cyber-physical systems, 
we report on two case studies conducted in different industry domains.

Keywords  Goal modeling · Collaborative cyber-physical systems · iStar · GRL

1  Introduction

Goal orientation has proven useful in the development of 
various kinds of systems [1]. Various goal modeling tech-
niques support developers in eliciting, documenting, and 
validating stakeholder intentions (e.g., [2–20]). In the devel-
opment of cyber-physical systems (CPS), it has also proven 
useful to attribute goals to systems or components rather 
than stakeholders [21]. This allows for documenting and rea-
soning about dependencies between the goals of different 

systems. For example, an automotive cruise control has 
the goal to maintain a safe distance to vehicles ahead. To 
achieve this goal, it relies on the electronic stability control 
to apply the brakes to the vehicle’s wheels.

Recently there has been a trend to develop highly con-
nected CPS, often referred to as collaborative CPS that form 
networks at runtime to achieve goals that cannot be achieved 
by individual systems [22]. For example, cooperative adap-
tive cruise control systems allow vehicles to form platoons, 
where each vehicle maintains the same speed and a safe 
distance to the vehicle ahead. This allows for reducing the 
safety distances between the vehicles, which in turn reduces 
fuel consumption for all following vehicles. The dependen-
cies between goals in such a network are highly complex. 
Besides each system having its own goals, which can depend 
on the fulfilment of goals of another system in the network, 
the network itself has goals that entirely depend on some 
combination of goals fulfilled by the individual systems. For 
example, the goal of the platoon to maintain small safety 
distances depends on each vehicle in the platoon to main-
tain exactly the preset speed. Moreover, these networks can 
vary in size and often contain multiple systems of the same 
kind. Consequently, there is not only one possible network 
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configuration but a multitude of configurations that need to 
be considered. So, a goal might not depend on one goal to be 
fulfilled by one particular system in the network but rather 
that one or a certain number of systems fulfill certain goals. 
For example, collaborative transport robots can form fleets 
that optimize transportation of goods. They do so, by among 
others, maintaining a map of their surroundings. To keep 
this map up to date each transport robot depends on all the 
other robots to keep their map up to date. Traditional goal 
modeling techniques are ill-equipped to handle the complex 
dependencies between systems and between systems and the 
network [23]. The resulting goal models are difficult to com-
prehend because of their large sizes and their multitude of 
dependencies. Hence, there is a need to provide a goal mod-
eling approach that takes the particularities of collaborative 
CPS and its developers’ needs into account.

In previous work we evaluated the use of the goal-ori-
ented requirement language (GRL) for modeling collabora-
tive CPS [23]. While we identified that goal modeling with 
GRL can considerably contribute to the development of col-
laborative CPS, we identified several shortcomings of GRL 
for modeling collaborative CPS. The study was conducted 
using two industry case examples and involved workshops 
and discussions with industry partners. Hence, application 
of GRL for modeling collaborative CPS in industry was the 
major concern of the investigation.

To this end, this paper contributes a GRL-compliant 
extension to the well-established iStar1 language [21, 24] 
to provide support in the engineering of collaborative CPS. 
Basing our extension on the iStar 2.0 definition given by 
Dalpiaz et al. [21] allows principle compatibility with other 
iStar extensions. In addition, as best practices and guidelines 
do exist for extending iStar 2.0, this supports the definition 
of a coherent extension. GRL compliance is desired as we 
determined a severe need for standardization in industry and 
the use of GRL2 was highly appreciated by our industry part-
ners. In this paper, we define requirements based on these 
shortcomings and provide a GRL-compliant extension of 
iStar for modeling collaborative CPS.

The major goal of this extension is to provide developers 
with a goal modeling language that leverages the advan-
tages of goal orientation while reducing the complexity by 

removing the necessity to explicitly document each indi-
vidual dependency in all possible network configurations. 
Thus, in this paper we place emphasis on the graphical 
modeling, particularly under consideration of reducing the 
complexity of the resulting models. Our aim is to improve 
manual analysis, understanding of depicted situations, 
and communication. At the current point we do not place 
emphasis on automated evaluation of the goal models. This 
is particularly for the reason that our industry partners were 
more interested in gaining an understanding of the system 
to be developed than a formal goal fulfillment analysis. As 
industry is typically reluctant to introduce goal modeling 
approaches in practice [26, 27], we develop the extension 
based on observed industry needs.

Our extension provides various means to reduce the com-
plexity of documenting goals for collaborative CPS while 
maintaining precision, comprehensibility, and unambigu-
ousness. In this paper, we provide abstract syntax, concrete 
syntax and well-formedness rules for our extension. Our 
extension was evaluated using two case studies: an example 
from the industry automation domain (a fleet of autonomous 
transport robots used in a smart factory) and an example 
from the automotive industry (a modern cooperative adap-
tive cruise control system). To show that this extension 
serves observed needs [23], we use the same case examples 
for investigation. In addition, the same industry partners 
were involved in workshops and discussions. Both case 
examples were provided by industry partners in the context 
of the CrESt-project.3 Beside reporting on this case study 
evaluation, we also report findings gained from discussions 
of the case study with our industry partners.

This paper is structured as follows: Sect. 2 provides 
background information on goal modeling in general and 
the iStar modeling language in particular. Furthermore, 
we detail the specific characteristics of collaborative CPS 
to illustrate the shortcomings of traditional goal modeling 
techniques for these kinds of systems and formulate specific 
requirements to be addressed by our extension. Section 3 
discusses related work and evaluates it w.r.t. these require-
ments in order to highlight the shortcomings of traditional 
goal modeling techniques. In Sect. 4 we present our exten-
sion including its foundations, abstract syntax, concrete syn-
tax and well-formedness rules. The evaluation of the exten-
sion is shown in Sect. 5. Section 6 summarizes and discusses 
the major findings and threats to validity of our case study 
evaluation, while Sect. 7 concludes the paper.

1  iStar was originally proposed by Yu et al. [24] and named i*. Later 
on, Dalpiaz et al. [21] defined a new metamodel for the language tak-
ing several extensions into account. This work is typically referred to 
as iStar 2.0. In the remainder of the paper, we use iStar to refer to 
approaches dealing with i* or iStar 2.0 as long as the distinction is 
not relevant for our extension.
2  The goal-oriented requirement language (GRL) is standardized by 
Recommendation ITU-T Z.151 [25] which is issued by the Interna-
tional Telecommunication Union. The GRL builds upon iStar so that 
a common fundament between iStar and GRL is given.

3  CrESt (Collaborative embedded systems) is a joint research project 
publicly funded by the German Federal Ministry for Education and 
Research (BMBF).
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2 � Background

In this section, we will briefly introduce iStar and goal 
modeling foundations (Sect. 2.1) and discuss characteris-
tics of collaborative CPS (Sect. 2.2) that result in the need 
to define an extension to existing goal modeling approaches 
(Sect. 2.3).

2.1 � Goal modeling

Goal modeling is an established requirements engineering 
technique [28]. Goal modeling helps requirements engineers 
in focusing on the intentions of stakeholders and document-
ing these in a structured format which allows for detect-
ing relations between different goals such as dependencies 
and conflicts [29]. A variety of goal modeling approaches 
exist. Most of these approaches document goals in a tree- or 
graph-based fashion, which allows for decomposing goals 
into smaller sub-goals. Commonly used are the KAOS goal 
modeling language [30, 31], the iStar goal modeling lan-
guage [21, 24], and the GRL [25, 32]. For a recent overview 
regarding the state of the art of goal-oriented requirements 
engineering, please refer to the systematic review by Horkoff 
et al. [28]. Our extension targets the popular iStar modeling 
language which forms the basis for the standardized goal-
oriented requirement language (GRL). In Sect. 2.1.1 we pro-
vide a brief overview of iStar and in Sect. 2.1.2 we point out 
differences between iStar and GRL.

2.1.1 � iStar

The iStar goal modeling language [21, 24] is graph-based—
goal graphs are assigned to different actors (which can be 
human or other stakeholders, the system under development, 
other systems in the context, or even components of the sys-
tem). Between these actors and the goals (i.e. intentional 
elements as goals are further differentiated) dependencies 
and contributions can be specified.

Therefore, core concepts underlying iStar include actors, 
their intentions (e.g., goals they would like to achieve) and 
dependencies between actors. The iStar modeling language 
distinguishes two different perspectives. The Strategic 
Dependency (SD) model specifies the actors that have inter-
est in the system (and thus provide rationales for system 
requirements), and their dependencies. There are several 
dependency types. An actor may depend on goals or tasks 
that need to be achieved, or resources provided by some 
other actor. In contrast, the Strategic Rationale (SR) model 
documents the internal intentional elements and their rela-
tionships of an actor and thereby provides a detailed view on 
requirements each actor aims to achieve. iStar distinguishes 
four different intentional elements: goals, qualities (formerly 

called “soft goals”), tasks, and resources. It is also common 
to display both the dependencies among actors, as well as 
their internal intentional elements in one diagram as a com-
bined or hybrid SD/SR model. This way the actor depend-
encies can be further detailed by, for instance, allowing to 
express dependencies between a goal and a task of different 
actors.

Figure 1 shows an exemplary iStar model, which repre-
sents an excerpt of a travel booking transaction. It shows 
the actors traveler and travel agency. The goal trip booked 
is either fulfilled when the task book bundle or the goal trip 
parts booked are fulfilled. The task book bundle depends 
on the travel agency regarding the dependum trip bundle 
booked.

2.1.2 � Goal‑oriented requirement language (GRL)

The goal-oriented requirement language (GRL) is part of 
the User Requirements Notation (URN) as standardized by 
the International Telecommunication Union (ITU) in Rec-
ommendation Z.151 URN [25]. GRL is based on a subset 
of iStar [33]. While GRL shares many core concepts with 
iStar, some differences exist. For example, GRL is less 
restrictive than iStar, particularly regarding the usage of 
relationships for linking intentional elements [32], which 
has also been shown to support the diversity of how goal 
models are actually created and used [34]. This is favored 
by our industry partners as it gives them more freedom to 
express their thoughts and reduces the number of syntacti-
cal errors in their goal models. As GRL does not prevent 
users from adhering to the stricter rules set by iStar, we did 
not observe any issues arising from the loosening of those 
restrictions. For a more detailed discussion regarding the 
differences between iStar and GRL, please refer to the work 
of Amyot et al. [32]. As the usage of standardized languages 
is of importance to our industry partner and previous work 
has shown the suitability of GRL for the development of col-
laborative CPS [35], we ensured that the proposed extension 
can be used with GRL as well.

2.1.3 � GRL‑compliant iStar extension

In our extension, we build upon concepts from both GRL 
and iStar. This is due to the fact that while being very simi-
lar, small differences exist that come with different advan-
tages and disadvantages. Mainly, we target GRL due to 
its simplicity and its popularity among industry partners. 
We target iStar because there are established guidelines 
for extending iStar that can support the development of a 
high-quality extension. In addition, we reuse useful existing 
concepts already proposed by other iStar extensions, which 
helps reduce redundancy and increases acceptance.
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In detail, we use existing concepts as illustrated in Fig. 2. 
The figure shows the main concepts from GRL, iStar, and 
an iStar extension from which we borrow a specific concept. 
As can be seen, iStar 2.0 differs from GRL in that it includes 
two more specialized relationship types, i.e., qualifies and 
needed-by relationship. Regarding the relationships between 
intentional elements, we stick to GRL since it is less com-
plex and less restrictive, which better reflects industry needs 
as it allows for easier model creation. However, although we 
do not include these two specific relationship concepts in 
our extension, as we did not see any need, it is still possible 
to use them. Furthermore, iStar 2.0 defines roles and agents 
as specializations of actors, which we take as the basis for 

defining specific actor types for modeling collaborative CPS 
and CPS networks. In addition to iStar and GRL concepts, 
we use the coordination task concept from a related exten-
sion proposed by Teruel et al. [36].

2.2 � Collaborative cyber‑physical systems and their 
characteristics

CPS are software-intensive systems that closely integrate 
physical and software parts [22, 37, 38]. In addition, CPS 
are highly interactive with their environment in sensing and 
actuating context values and tightly communicating with 
other CPS [37, 39]. For example, all vehicles in a platoon 

Fig. 1   iStar travel booking example (based on [21])

Fig. 2   Relation between iStar, 
GRL and our extension



329Requirements Engineering (2021) 26:325–370	

1 3

record their surroundings like other vehicles or road signs 
with their sensors and communicate with each other via sen-
sor data in order to offer a high level of safety.

Collaborative CPS can form networks in which different 
constituent systems collaborate and coordinate their activi-
ties in order to achieve goals that go beyond the goals an 
individual system can achieve (cf. [22]). For example, col-
laborative transport robots can distribute tasks among each 
other in such a way that all robots remain in motion and there 
are no overloaded or underloaded robots. This enables them 
to achieve a higher goal, which means that transport tasks 
are distributed in a coordinated manner and thus completed 
faster. These networks are highly dynamic as they reshape 
at runtime when systems join and/or leave the network. For 
example, a platoon reshapes as vehicles enter or leave the 
platoon.

Most CPS must be considered safety–critical, which 
consequently leads to the need for thorough engineering 
processes [40]. Vital parts of these engineering processes 
are early safety analyses. It has been shown that the use of 
goal models allows for application of safety analyses in very 
early phases [41] and is therefore considered beneficial. In 
case of collaborative CPS, safety can be increased through 
cooperation between individual systems. For example, in the 
automotive domain, the term “cooperative vehicle safety” is 
used to denote CPS applications that aim at avoiding haz-
ards and accidents through inter-vehicle collaboration [42, 
43]. On the other hand, the safety of collaborating CPS also 
poses additional challenges, e.g., due to the involvement of 
several manufacturers and the lack of a central authority 
governing the development and operation of CPS networks 
[44, 45]. As will be shown in the remainder of this paper, 
the use of goal models illustrating the interplay of individual 
systems and the network can further support increasing the 
safety of collaborative CPS.

2.3 � Requirements for a GRL‑compliant iStar 
extension for collaborative cyber‑physical 
systems

Modeling collaborative CPS with iStar/GRL goal mod-
els is challenging as such goal models have the tendency 
to become large, complex, and thus unsuitable for human 
engineers and analysts. In our previous work [23] we report 
empirical results, from which we identified challenges for 
goal modeling of collaborative CPS. We conducted two 
case studies with industry partners from different domains. 
The goal of the two case studies was to systematically iden-
tify challenges and limitations of goal modeling with GRL 
related to the representation of typical collaborative CPS 
characteristics (see Sect. 2.2). Beside the general obser-
vation that goal models of collaborative CPS can easily 
become large and complex, we identified six major chal-
lenges regarding what needs to be represented when mod-
eling goals of collaborative CPS and CPS networks.

We further analyzed and refined these challenges in order 
to derive specific, detailed requirements for extending iStar 
so that it allows engineers to specify collaborative CPS in a 
goal-oriented manner. On the one hand, these requirements 
are grounded in the characteristics of collaborative CPS and 
CPS networks. On the other hand, the requirements are also 
substantiated by empirical evidence from our two case stud-
ies reported in our previous work and are thus aligned with 
the specific needs faced by requirements engineers. Moreo-
ver, the requirements are tailored specifically for the iStar 
goal modeling language that shall be extended. Figure 3 
illustrates the three sources that were considered during the 
requirements definition process.

In the following, we briefly summarize the six major 
challenges reported in [23] and present the respective iStar 
extension requirements we derived from these challenges.

Fig. 3   Requirements sources for 
the proposed extension
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2.3.1 � Challenge 1: need for distinction between network 
and systems

Collaborative CPS form networks with other collaborative 
CPS, which allows them to enhance their functionality and 
fulfill goals they cannot fulfill on their own. It is impor-
tant to be able to identify the owner of a goal; i.e. it must 
be distinguishable whether an individual system strives to 
fulfill a certain goal or just contributes to an overall goal of 
the network. In some cases, engineers need to reason about 
the CPS network’s goals independent of the goals of the 
collaborative CPS, and in some cases, engineers need to be 
able to reason about the network under consideration of the 
individual collaborative CPS that are part of the network and 
their goals. Therefore, we can derive the following specific 
requirements for an iStar goal modeling extension:

Req-1.1: The iStar extension must allow the distinction 
between individual CPS and the network of CPS.

Req-1.2: The iStar extension must allow for flexibil-
ity regarding the visual representation of the relation of 
the CPS network and individual CPS. I.e. it must be pos-
sible to specify individual CPS as part of the CPS network 
and also allow for comparing the CPS network and CPS at 
the same level of abstraction.

2.3.2 � Challenge 2: need for mirroring of goals

In many cases goals of the network rely on very similar goals 
of the individual systems. For example, the vehicles, which 
are the individual systems, have the goal to reduce their indi-
vidual driving time, and the platoon, which forms the col-
laborative CPS network, has the goal to save the overall driv-
ing time of all vehicles. Hence, it is often the case that the 
network and the individual system have very similar goals 
that mutually depend on each other. Consequently, there is a 
need to assign goals to individual CPS as well as to the CPS 
network and to document the relations between those goals, 
which leads to the following requirements:

Req-2.1: The iStar extension must allow for intentional 
elements to be attributable to individual CPS.

Req-2.2: The iStar extension must allow for intentional 
elements to be attributable to CPS networks.

Req-2.3: The iStar extension must allow for documenting 
of mutual dependencies between intentional elements of the 
collaborative CPS network and collaborative CPS.

2.3.3 � Challenge 3: need for considering multiple identical 
collaborative CPS

A collaborative CPS network may contain multiple col-
laborative CPS of the same type, e.g., a platoon consists 
of several identical vehicles. The explicit specification of 
each possible network is infeasible as this would require 

specifying not only a large number of possible network con-
figurations, but also networks of an extremely large size. 
Consequently, not only is the explicit modeling of the goals 
for each possible network configuration infeasible, even the 
explicit modeling of all individual collaborative CPS in large 
networks is infeasible. Consequently, suitable abstractions 
are required to enable the modeling of multiple identical 
CPS whose number can vary. Therefore, we define the fol-
lowing requirements:

Req-3.1: The iStar extension must allow for documenting 
all networks without the need for modeling each possible 
network explicitly.

Req-3.2: The iStar extension must allow for documenting 
identical collaborative CPS in a network without the need 
for modeling each collaborative CPS individually.

2.3.4 � Challenge 4: need for dependencies 
between systems of the same type

Another common situation that needs to be considered is a 
collaborative CPS relying on systems of the same type to 
fulfill the same goal. For example, all following vehicles 
in a platoon have the goal to avoid collisions, which can 
partly be fulfilled by regulating their speed based on each 
other’s speeds. As the goal model cannot show each indi-
vidual collaborative CPS that can be part of such a network, 
abstraction mechanisms are needed to adequately represent 
the occurrence of multiple identical systems and the depend-
encies between them. Particularly, there is a need to consider 
dependencies, where one system’s intentional element relies 
on an intentional element from other systems of the same 
type. Therefore, we can derive the following specific require-
ments for an iStar goal modeling extension:

Req-4.1: The iStar extension must allow for documenting 
intentional elements of collaborative CPS of the same type.

Req-4.2: The iStar extension must allow for documenting 
dependencies between an intentional element of a collabora-
tive CPS and the same intentional element of other systems 
of the same system type.

2.3.5 � Challenge 5: need for roles and dynamic role 
assignments

Collaborative CPS in networks may have different respon-
sibilities. This might even be true for identical collabora-
tive CPS. For example, in a platoon, all collaborative CPS 
are vehicles, but the foremost vehicle has the role of lead 
vehicle and thus the responsibility for all vehicles in the 
platoon. Therefore, there is a need to assign roles to collabo-
rative CPS in a network. As collaborative CPS networks are 
dynamic, and therefore, reshape at runtime as collaborative 
CPS join or leave the network, roles must be reassignable 
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at runtime. Therefore, we can derive the following specific 
requirements for an iStar goal modeling extension:

Req-5.1: The iStar extension must allow for documenting 
different roles a collaborative CPS can be assigned.

Req-5.2: The iStar extension must allow for documenting 
mechanisms to reassign roles.

2.3.6 � Challenge 6: need for considering conflicts 
between goals of the individual collaborative CPS 
and the CPS network

Collaborative CPS join an existing or form a new network 
to achieve some goals they cannot achieve by themselves. 
However, participating in a network may be a trade-off that 
impedes the fulfillment of other goals. Therefore, it is some-
times impossible to assign values to contribution links for 
intentional elements of the network actor because the value 
can be different depending on the goals of each collaborative 
CPS. For example, in a platoon it can happen that vehicles 
have a common goal they can reach together but differ in the 
other goals. For example, it can be important for one vehi-
cle to drive in an environmentally friendly manner, while 
another vehicle in the same platoon may not consider this 
important. Therefore, we define the following requirement:

Req-6.1: The iStar extension must allow for contributions 
to be assigned variable values that can change depending 
on the goals of a collaborative CPS.

2.3.7 � Further requirements

As already outlined, the iStar extension shall be GRL-com-
pliant due to the fact that we found GRL well-received by 
our industry partners in the previous investigation. In addi-
tion, the extension shall adhere to established guidelines for 
iStar extensions [46]. Therefore, Table 1 gives the individual 
guidelines and briefly explains how they shall be achieved, 
and which section of this paper elaborates on the respective 
aspects. Note that some realizations overlap (i.e. the same 
approach is taken), in these cases we avoid redundancy by 
simply referring to the aforementioned realization.

3 � Related work

For discussing the related work, we focus on three kinds 
of approaches commonly proposed in the state of the art. 
Section 3.1 will introduce goal modeling approaches for 
systems-of-systems, which can be interpreted as a network 
of collaborative CPS that is designed top to bottom, with 
exact knowledge about the partaking systems and their com-
positions. Section 3.2 discusses goal modeling approaches 
for multi-agent systems, which are in so far related as 
commonly the case is made that the agents in multi-agent 

systems collaborate to maximize their goal fulfillment. How-
ever, unlike for collaborative CPS, the network itself is typi-
cally not given the credit of having its own goals. Lastly, in 
Sect. 3.3 we review other existing extensions for the iStar 
goal modeling language, which we partly build upon, as we 
will show in Sect. 3.4.

3.1 � Goal modeling approaches 
for systems‑of‑systems

Systems-of-systems (SoS) engineering is a related research 
area where the consideration of goals is of particular interest. 
Distinguishing goals of the SoS under consideration from 
the goals of the individual constituent systems is important 
in the requirements engineering for SoS [53]. These two 
levels (which are also sometimes called “macro level” and 
“micro level” [54]) of goal modeling for SoS allow analyz-
ing collaborations between individual systems by focusing 
on how their individual goals contribute to SoS-level goals 
[55]. These contributions are conceptually described by 
Cavalcante et al. [55], without proposing a specific mod-
eling notation; instead, it is referred to traditional goal 
modeling syntax elements, such as actors for modeling both 
SoS and its constituent systems. While decomposition links 
are mainly used within each goal modeling level, contribu-
tion links also occur between goals on different levels [55]. 
Additionally, Cavalcante et al. propose a new kind of link, 
interaction links, to explicitly account for emergent behavior 
through goals whose satisfaction results from interactions 
among individual systems.

In addition to such conceptual approaches, there are also 
specific guidelines and notations for modeling SoS goals 
and constituent system goals. Lewis [53] suggests creating 
separate AND/OR goal trees for the individual systems and 
the SoS in order to identify common goals in the different 
individual systems’ goal models as well as conflicting goals, 
both between individual systems and the overall SoS goals. 
Garro and Tundis use stereotypes to characterize the goals 
of stakeholders and of complex SoS used to achieve these 
goals [56]. Additionally, relationships between these goals 
are modeled in a manner similar to UML use case diagrams.

According to Silva et al., closely connected to SoS goals 
is the mission concept [57]. Goals are associated to the mis-
sion of the overall SoS and the mission of the constituent 
systems. Thereby, the goals related to the mission of an SoS 
are achieved through collaboration between the individual 
systems. Hence, Silva et al. [58] propose a mission-centered 
SoS design process, covering a dedicated mission-level, 
where missions of individual systems and the SoS are mod-
eled. For modeling missions in an SoS context, they propose 
the mKAOS approach [58–60] that builds upon the KAOS 
goal modeling language [31] and includes SoS-relevant 
extensions. For operationalizing goals, mKAOS includes 
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two kinds of capability models, one of which is concerned 
with modeling information exchange between individual 
systems and the resulting capabilities the SoS provides 
(denoted “communicational capabilities”). Furthermore, 
mKAOS includes a dedicated emergent behavior model 
that groups and relates such SoS capabilities to resulting 
emergent properties/functionalities. Garcés and Nakagawa 
provide guidelines and recommendations for the creation of 
mKAOS models [61]. These also include global missions 
of a SoS on multiple levels of abstraction by goal refine-
ment and abstraction to identify rationales behind a SoS’s 
missions.

3.2 � Goal modeling approaches for multi‑agent 
systems

Another related term is that of multi-agent systems (MAS), 
which refers to systems composed of several autonomous 
agents that collaborate in order to autonomously (i.e., 
without human intervention) accomplish tasks (cf. [62]). 
According to Wooldridge [63], apart from autonomy, reac-
tiveness, and proactiveness, an agent has essential social 
abilities allowing the engagement in collaborations and 
interactions to jointly solve complex problems. In such a 
collaboration, however, an agent makes rational decisions 

Table 1   Realization of the iStar extension guidelines from [45]

a The industry professionals partaking have years of experience in their field and were involved in many substantial projects for their companies, 
partly taking leading roles. Thus, we consider them domain experts in the domains of automotive, industry automation and robotics. Among 
the authors of this study are researchers highly experienced with GRL and iStar. They have applied GRL and iStar in various industrial settings, 
published research on this topic (e.g., [23, 35, 48]), have years of experience in teaching GRL and iStar in university master level requirements 
engineering courses (cf. [49, 50]) and have defined an industry course teaching GRL to industry professionals [51]. The course is in use at the 
Schaeffler AG to teach goal modeling for the engineering of automotive CPS [52]. However, please note that the authors are no domain experts 
and the industry participants no GRL/iStar experts

Guidelines taken from [45] Realization

G1 Preserve the language (iStar) original syntax It is a requirement to propose an extension that makes use of the 
original syntax and extends this syntax naturally. The extension of 
the concrete syntax will be shown in Sect. 4.3, the integration of 
new elements with elements of the original syntax can be seen in 
Sect. 5.2

G2 Carry out consistent, complete and without-conflicts extensions and 
follow a process/method to do them

We extend the iStar metamodel systematically to provide a clear 
definition and also for relating elements of the original iStar 
notation to the newly proposed elements. The metamodel of the 
extension can be found in Sect. 4.2

G3 Perform a literature review, include the participation of domain 
experts and iStar experts and model systems of application area 
before extending

We conducted a literature review on the topic to find existing iStar 
extensions that can contribute to the above-mentioned require-
ments. Section 3 will discuss related works and Sect. 3.4 will 
explicitly show, how these extensions can contribute to fulfilling 
the defined requirements. In addition, we conducted a study with 
domain experts to identify industry needs for an iStar extension for 
collaborative CPS [23]a

G4 Describe a clear definition of the extension concepts see G2
G5 Propose concrete and abstract syntax of the extension We specify the abstract syntax using a metamodel that extends the 

iStar 2.0 metamodel. In Sect. 4.1 we introduce a GRL-compliant 
iStar metamodel extension and extend this in Sect. 4.2 to the 
specifics of collaborative CPS. We provide a definition for the con-
crete syntax in Sect. 4.3 and show its application to industrial case 
examples in Sect. 5.2. This application also allows for verifying 
consistency between the defined concept and the concrete syntax

G6 Check consistency between abstract and concrete syntaxes see G5
G7 Relate concepts introduced by the extensions with the iStar concepts see G2
G8 Define extensions with the smallest possible number of modifica-

tions and new representations in order not to complicate the use of 
the modeling language (iStar)

see G2

G9 Propose careful and simple graphical representations, able to be 
drawn on paper without a tool

The concrete syntax extensions are designed to seamlessly integrate 
with the existing iStar syntax. Furthermore, we define the concrete 
syntax based on guidelines proposed by Moody [47] to achieve a 
simple and intuitively usable graphical notation
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w.r.t. maximizing its own benefit according to its agent-
internal goals and interests (cf., e.g., [63]). This is reflected, 
for instance, in the established BDI reference model for 
autonomous agents (cf. [64, 65]), which describes an agent’s 
mental attitudes by information about the current state of its 
surroundings (Beliefs), the set of tasks it principally aims 
to achieve (Desires), and the tasks it is actually carrying 
out (Intentions), all of which determine an agent’s behavior. 
Multiple iStar-based agent-oriented modeling approaches 
have been proposed [66]. Goal-based MAS approaches typi-
cally consider goals as runtime entities that are used during 
operation of agents to coordinate the interaction within a 
MAS as well as single agents (cf., e.g., [67]). Thus, goal del-
egation during operation of a MAS (cf., e.g., [68]) is also an 
important topic for MAS development. Similarly, the opera-
tional semantics of goals as well as their dynamic lifecycle 
are also considered by some approaches [69].

An important concept considered for the development of 
MAS is the role concept. The role concept is essential for 
both describing the static organization and structure of a 
MAS, as well as for enabling the formation of multi-agent 
systems (cf. [70, 71]). Roles an agent can take are typically 
defined by a set of responsibilities and a set of permissions 
[72]. The current roles of an agent define its functionality 
and behavior, as well as the possible interactions with other 
roles that can be taken by other agents (cf. [73, 74]). In par-
ticular, the responsibilities can be seen as required function-
alities related to a certain role [74]. A role can be responsible 
for carrying out a task on its own, but also be involved in a 
collaboration to jointly achieve some task [73]. Such a col-
laboration is sometimes named an “agent group”, i.e. a set 
of agents that are related via interactions of their roles [75]. 
There can be relationships between roles, such as compat-
ibility and dependencies [76, 77]. Roles can also determine 
a hierarchical structure of a MAS [78].

Specific goal modeling approaches for MAS include 
Tropos [2], where, among others, beliefs are considered as 
a dedicated modeling concept, in addition to the original 
iStar goal modeling language it is built upon. The Tropos 
approach comprises a methodology that covers the early 
and late requirements phases, where goal models are used, 
as well as later phases up to the implementation of agent-
based software systems. In the late requirements analysis 
phase, the system under development is introduced as an 
actor and related to stakeholders using dependency relation-
ships. Goal-based reasoning in the Tropos methodology is 
described in detail by Giorgini et al. [79].

The goal modeling approach proposed by Zhong and 
DeLoach [80] explicitly distinguishes goal classes and goal 
instances. The latter are created and assigned to specific 
agents at runtime. Furthermore, they introduce relationship 
types that can materialize between goals in order to spec-
ify control flow structures, such as a goal being triggered 

by another goal, or goal precedence (i.e., a goal requires 
the execution of some other goals before being allowed to 
become active). Goal instances are also explicitly considered 
by Thangarajah et al. [81], where goal models are used to 
identify interaction between different goals an agent may 
be able to achieve simultaneously. Cheong and Winikoff 
use so-called interaction goals, which specify goals of the 
interaction between different agents, to design multi-agent 
systems [82–84]. These interaction goals are modeled in a 
hierarchical goal tree.

3.3 � Specific iStar goal modeling extensions

The basic iStar goal modeling language, as described in 
Sect. 2.1.1, has been extended by researchers in several 
ways. A recent survey of iStar extensions was provided by 
Gonçalves et al. [85]. In the following, we will review some 
of the approaches that are related to our approach.

Teruel et al. proposed an iStar extension for collaborative 
systems [36, 86, 87]. In this approach, the term “collabo-
rative system”, however, is not used to denote the kind of 
system that is in focus of our work (cf. Sect. 2.2). Instead, 
it refers to information systems that support the collabora-
tion between humans, e.g., collaborative implementation of 
code with the help of a version control software like git. The 
approach of Teruel et al. aims at specifying requirements of 
such collaborative systems. Hence, the proposed extensions 
to iStar reflect the collaboration between humans, which 
results in the definition of additional concepts. Specifically, 
Teruel et al. propose different task types, i.e., individual 
tasks of single users as well as collaboration tasks, commu-
nication tasks, and coordination tasks. The latter three types 
of tasks are used to model tasks in which two or more users 
are involved and are based on the established 3C conceptual 
model for groupware [88]. Along with these task specializa-
tions, participation links are proposed to model which user is 
involved in which (collaboration, communication, or coordi-
nation) task. Cardinality constraints attached to these partici-
pation links specify the number of users that can be involved 
in a task. Furthermore, responsibility links are used to cap-
ture goal and task responsibilities of users, which separates 
responsibility from actually carrying out some collaboration 
activity. Again, based on the 3C model, Teruel et al. consider 
a user’s awareness of other users’ activities in the form of 
awareness softgoals and awareness resources.

Ali et al. propose a goal modeling approach that enhances 
Tropos goal models with context information [3]. In this 
approach, variability that is present in the context of a sys-
tem under consideration is captured through annotations of 
goals as well as decomposition, dependency, and contri-
bution links. That way, conditional achievement of goals, 
depending on relevant context properties, can be modeled. 
As a result, the overall annotated goal model specifies goal 
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model variants, i.e., different ways goals can be achieved, 
depending on context information. Ali et al. use the contex-
tual goal modeling approach to support the deployment of 
variable systems into environments that also contain variable 
parts [89]. Another approach dealing with variability is pre-
sented by Silva et al. [90]. Goal models are used to explicitly 
document variability of software product lines. Therefore, 
cardinalities are introduced for different intentional ele-
ments as well as for the means-end links connecting variable 
intentional elements. Borba and Silva, additionally to the 
cardinality concept, suggest the explicit mapping of feature 
models and goal models [91].

Another related iStar extension [92] aims at modeling 
ambient intelligent systems that are deeply embedded in 
daily human activities and invisible to their users. Such 
ambient systems, similar to CPS, integrate the physical sur-
roundings and computation, but also human users. Most 
notably, the approach relates to goal modeling for collabo-
rative CPS in that it utilizes actor decomposition relation-
ships to constituent components of ambient systems. That 
way, actors being composed of other actors can be modeled. 
In addition, communication links between actors, includ-
ing communication between users and technology, as well 
as between different technological components/subsystems 
are defined.

Other iStar and GRL extensions often propose the use 
of stereotypes to document additional information. For 
instance, Marosin and Ghanavati propose the annotation of 
vague and informal information in goals, softgoals, and tasks 
via stereotypes [93]. Gailly et al. propose the documentation 
of domain knowledge that is annotated using stereotypes and 
defined using an ontology-based approach [94].

3.4 � Requirements evaluation

In summary, there exist a multitude of approaches that can 
contribute to the individual requirements defined in Sect. 2.3. 
Table 2 summarizes the state of the art with respect to the 
requirements. However, existing approaches are typically not 
capable of fulfilling more than one requirement and not all 
requirements can be fulfilled. Nevertheless, the integration 
and harmonizing of existing works can support the definition 
of a coherent solution concept, as we will show in Sect. 4.

4 � GRL‑compliant iStar extension 
for modeling collaborative cyber‑physical 
systems

In Sect. 2, we introduced iStar and GRL as the founda-
tion our extension builds upon in detail and discussed the 
requirements for the extension. As already some extensions 
or modifications to the iStar language exist, which at least 

can be partly used to address some of the challenges of goal 
modeling for collaborative CPS, we do not rely on the pure 
version of the iStar language but an adapted one. As out-
lined above, we had the requirement to develop an exten-
sion compliant with the GRL. In addition, we make use of 
different already existing extensions that provided us with 
already established modeling concepts. This is outlined in 
Sect. 4.1. We build our final extension in Sect. 4.2 on this 
initial metamodel consisting of the combination and integra-
tion of proposed concepts from the related work. Based on 
the metamodel introduced in Sects. 4.2, and 4.3 defines the 
concrete syntax for the new modeling elements. In Sect. 4.4 
well-formedness rules are defined and Sect. 4.5 presents tool 
support for creating models according to the extension.

In the following subsections, a cooperative adaptive 
cruise control system (CACC, [95]) is used as a running 
example to motivate the need of the metamodel extensions 
and to illustrate the concrete syntax. A CACC is a mod-
ern version of a common adaptive cruise control (ACC). 
An ACC is a cruise control system that, in addition to the 
cruise control function, also ensures that the distance to the 
vehicle ahead does not underrun a safe minimum distance. 
The CACC is a collaborative CPS that also communicates 
with other CACCs. Thus, they form a platoon (i.e. the CPS 
network) which allows driving with minimized distances 
between the partaking vehicles. This reduces fuel consump-
tion, emissions, and increases traffic throughput on motor-
ways [96].

4.1 � Foundations for the metamodel 
of the extension

Figure 4 shows the metamodel for the goal modeling lan-
guage upon which we build our extension. The goal modeling 
language can be considered a combination of the iStar lan-
guage and GRL. The metamodel is similar to the metamodel 
defined by Dalpiaz et al. [21]. In the following we use UML 
class diagrams to define the metamodel. This ensures com-
parability with the definition of iStar 2.0 by Dalpiaz et al. 
[21], who also used UML class diagrams for metamodel 
definition. However, some adjustments have been made to 
maintain compatibility with GRL. For example, we removed 
various restrictions. An intentional element can contribute to 
any other kind of intentional element, not just to softgoals,4 
and all intentional elements can be refined not just goals 
and tasks. Regarding the refinement, the OR-Refinement 
was further separated into an IOR-Refinement and an XOR-
Refinement. A further intentional element, defined by GRL, 
the belief was added. We do not include the agent concept 

4  In accordance with GRL we use the term softgoal instead of qual-
ity.
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here as it will be further specialized in our extension for col-
laborative CPS. All changes made correspond with the GRL 
metamodel presented in Amyot et al. [32].

In the following, we briefly outline the most important 
entities and relationships defined by the metamodel. We 
detail the use of actors, intentional elements, and depend-
encies especially regarding their use for creating goal models 
for collaborative CPS networks.

4.1.1 � Actors

Actors are commonly used to specify stakeholder intentions 
or define systems. In our case, we focus on the definition 
of systems. Actors are assigned intentional elements for 

which the actor strives to achieve fulfillment. An actor can 
be linked to another actor through an is-a-relationship or 
a participates-in-relationship. The is-a-relationship defines 
that some actor is of a certain type defined by the other actor. 
For instance, a CACC is also an ACC, thus, sharing parts of 
its intentional elements with a common ACC. The semantics 
of the participates-in relationship is defined by iStar 2.0; it 
depends on the type of actors between which the relation-
ship is modeled. The participates-in relationship resembles a 
“plays” relationship when modeled between an agent as the 
source and a role as the target element, and “part-of” when 
it connects two actors of the same type.

In addition, an actor can be a role (i.e. role as a speciali-
zation of actor). This is a bit counterintuitive, as one would 

Fig. 4   GRL-compliant iStar metamodel
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typically assume that an actor plays a role (e.g., the role of an 
intruder vehicle). However, we want to stay consistent to the 
iStar 2.0 metamodel and thus define role as a specialization 
of actor. This also has the benefit that for modeling the role 
the actor symbol can be used. In the CACC example roles a 
CACC takes in a platoon might be lead or following vehicle.

4.1.2 � Intentional elements

An intentional element can be a goal (i.e. “a condition or 
state of affairs in the world that the stakeholders would like 
to achieve” [25]), softgoal (i.e. “a condition or state of affairs 
in the world that the actor would like to achieve, but […] 
there are no clear-cut criteria for whether the condition is 
achieved” [25]), task (i.e. an intentional element that “speci-
fies a particular way of doing something” [25]), resource (i.e. 
“a physical or informational entity” [25]), or belief (i.e. an 
intentional element that is “used to represent design ration-
ale” [25]). A goal of a CACC might be to avoid collisions. 
Intentional elements can contribute to other intentional ele-
ments. This means that the fulfillment of one intentional 
element is supported, satisfied, hindered, or prevented by the 
fulfillment of another intentional element. For further pos-
sible contribution types between intentional elements, please 
refer to the ITU Recommendation Z.151 [25]. All intentional 
elements can be refined (often referred to as decomposed) 
into other intentional elements either through an AND- or 
an OR-refinement. The AND-refinement connects one inten-
tional element with two or more sub-intentional elements, 
where the fulfillment of the intentional element depends 
on the fulfillment of all sub-intentional elements. For OR-
refinements not all sub-intentional elements need to be ful-
filled to achieve fulfillment of the super-intentional element. 
OR-refinements can be characterized either as IOR-refine-
ment or as XOR-refinements. The IOR-refinement connects 
one intentional element with multiple sub-intentional ele-
ments, where at least one sub-intentional element needs to 
be fulfilled to guarantee fulfillment of the super-intentional 
element. The XOR-refinement connects one intentional ele-
ment with multiple sub-intentional elements, where the ful-
fillment of the intentional element can be achieved by only 
one of the sub-intentional elements.

4.1.3 � Dependencies

Dependencies describe the relationship between different 
actors and between intentional elements of different actors. 
A dependency defines that one actor is dependent on another 
actor with respect to fulfilling some of its intentional ele-
ments or that the fulfillment of one intentional element of 
one actor depends on another actor in general or a concrete 
fulfillment of one of its intentional elements. A dependency 
can exist between two actors, two intentional elements or 

combinations thereof. For example, two actors, an actor 
and a goal, or a goal and a task can be in a dependency 
relationship. The actor can take the position of a depender, 
who depends on another actor, for example, to perform a 
task or achieve a goal. The actor can also be the dependee, 
who provides the required resource or task execution. An 
intentional element involved in a dependency can be the 
depender element, the dependee element or the dependum. 
The dependum is an intentional element which is the object 
of the dependency. However, the use of a dependum is not 
mandatory in GRL (cf. [25]). For instance, when specify-
ing a dependency between two actors, it might simply be 
unknown to the modeler. Therefore, we altered the multi-
plicities in so far, as we no longer expect each dependency to 
explicitly model a dependum which is not required by GRL.

4.2 � Metamodel of the extension

To better support goal modeling for networks of collabora-
tive CPS, we developed an iStar extension according to the 
requirements set out in Sect. 2.3. The metamodel for our 
extension is shown in Fig. 5. All changes done to the meta-
model from Fig. 4 have been highlighted in grey.

We discuss the changes and their rationales again in the 
categories from Sect. 4.1, i.e. for actors (Sect. 4.2.1), for 
intentional elements (Sect. 4.2.2), and for dependencies 
(Sect. 4.2.3).

4.2.1 � Actors

Most notable, we differentiate actors into collaborative CPS 
networks, collaborative CPS, and roles. Thus, we refine the 
agent concept of iStar 2.0, which covers concrete, tangible 
actors, into collaborative CPS and collaborative CPS net-
works. For a collaborative CPS network to be formed, at 
least two collaborative CPS need to exist and participate in 
such a network. For instance, in the example of the CACC, 
the platoon can be considered the collaborative CPS network 
and the individual CACCs participate in it. At least two vehi-
cles equipped with CACCs are needed to form a platoon.

While we keep—compared to Fig. 4—the is-a relation 
between actors (although we can now state that the is-a rela-
tion is only acceptable between actors of the same kind), 
we can be now more restrictive regarding the participates-
in relationship, because we consider very specific types of 
“agents”, as mentioned above. We split this dependency 
into two, more fine-grained relationships: The collaborates-
in relationship and the is-assigned relationship. Thus, three 
kinds of actor relationships can be distinguished:

•	 Is-a relationship: An actor is of the type of another actor. 
For instance, a CACC is also an ACC. Note that in iStar 
and GRL it is prohibited to define that roles are agents 
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and agents are roles. The same is valid here, is-a rela-
tionships only refine actors of the same type (i.e. CPS 
networks, CPS, and roles). For expressing the belonging 
of a CPS to a CPS network, the collaborates-in relation-
ship is used, for expressing the assignment of roles to a 
CPS the is-assigned relationship is used.

•	 Collaborates-in relationship: A collaborative CPS collab-
orates with other collaborative CPS by partaking in a col-
laborative CPS network (which might be part of another 
greater CPS network). For instance, multiple CACCs 
cooperate to form a platoon (i.e. each CACC participates 
in the platoon). Thus, the collaborates-in-relationship 
denotes the membership of one actor in another actor. 
In particular, an individual collaborative CPS partakes 
in a network of collaborative CPS. In case of the CACC 
example, this means that a CACC participates in a pla-
toon. A collaborative CPS network can also collaborate 
with other networks in some higher-level collaborative 
CPS network, such as a smart city. The collaborates-in 

relationship can be distinguished from the original partic-
ipates-in relationship of iStar 2.0, because we restrict the 
use to CPS and CPS networks and exclude its use for role 
assignments. To assign roles, we define an is-assigned 
relationship to assign a role to a collaborative CPS. For 
example, a CACC in a platoon might be assigned the 
leader role.

•	 Is-assigned relationship: A collaborative CPS can be 
assigned a role within a collaborative CPS network. 
This subsumes two aspects, having a role and taking 
over a role. First, collaborative CPS can have roles. For 
instance, a CACC can participate in a platoon either as 
lead or as following vehicle. Second, roles in CPS net-
works need to be assigned, i.e. someone has to be respon-
sible for assigning roles to collaborative CPS. This is 
expressed by a coordination task, which can belong to 
any actor (i.e. to a CPS network, a collaborative CPS, 
or a role). For instance, if the lead vehicle exits a pla-
toon, its CACC is responsible for assigning another 

Fig. 5   Metamodel extension
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CACC the role of the lead vehicle. The coordination task 
then defines which role is to be assigned to which CPS 
and, thus, which CPS is assigned which role. Thus, we 
stress the notion of active role assignment (and, possibly 
role change) in our extension, which is not specifically 
emphasized in iStar 2.0, where only “agent plays role” 
relationships are considered.

The use of multiplicities allows us to specify the goals 
of multiple configurations within one diagram. Therefore, 
actors can be assigned multiplicities. This allows us to repre-
sent actors of the same type (e.g., several identical CACCs) 
as one actor. In doing so, we can represent different but simi-
lar compositions of a CPS network in one goal model. For 
instance, we can use a goal model to represent platoons with 
three, four, five, etc., vehicles. However, it must be stressed 
that the actors that are subsumed by the use of multiplicities 
must be of the same type. For instance, an actor for follow-
ing vehicles will only represent following vehicles that are 
equipped with a CACC.

This use of actor multiplicities facilitates the specifica-
tion of CPS networks, as otherwise a multitude of different 
configurations would have to be specified. For instance, a 
platoon can consist of two following vehicles, three fol-
lowing vehicles, four following vehicles and so forth. To 
account for all these configurations, typically all of these 
must be explicitly specified. Thus, the use of multiplicities 
for actors is a way to facilitate specification (or considering 
the number of configurations to be considered) to make goal-
based specification of CPS networks feasible. For analysis, 
however, each of the actors must be considered individually.

4.2.2 � Intentional elements

To coordinate role assignment, we define a coordination task 
to be a specific kind of task that handles role assignment 
(i.e. allows collaborative systems changing their role or the 
role of another collaborative CPS). We adopted the idea of 
a coordination task from Teruel et al. [36]. A coordination 
task can belong to the collaborative CPS network, where, 
for instance, a platoon has a coordination task to choose a 
new leader in case the former leader leaves the platoon. This 
could be, for example, a voting mechanism where the pla-
toon members collectively define which vehicle becomes the 
lead and which ones become followers. A collaborative CPS 
or a role that is assigned to a collaborative CPS can also be 
responsible for performing a coordination task. For instance, 
the platoon leader has the coordination task to assign other 
CACCs the role of a following vehicle when new vehicles 
join, or to exclude them from the platoon.

Other changes to the intentional elements have not been 
proposed. The assignment of intentional elements to either 
a network of collaborative CPS, a collaborative CPS, or 

a role is already given by the relation between actor and 
intentional element. Assigning intentional elements to a col-
laborative CPS does not mean that the collaborative CPS 
always aims at fulfilling all these intentional elements at the 
same time. The intentional elements of a collaborative CPS 
rather indicate which intentional elements can be fulfilled 
at some point in time. Considering that a collaborative CPS 
actor can represent multiple identical collaborative CPS, this 
means that identical but individual CPS can pursue differ-
ent goals at the same time. For an example consider our 
CACC with two following vehicles. In addition to platoon-
ing relevant goals, each CACC has its own goals that are 
driver dependent and which might be conflicting. Take for 
instance, the goal to minimize fuel consumption and the goal 
to reach the destination as fast as possible. In the platoon 
the two following vehicles have in principle the same goals 
but the representation as one actor does not mean that both 
vehicles try to achieve the same goals as well. For instance, 
the driver of following vehicle 1 might prefer fast arrival, 
while the driver of following vehicle 2 aims for minimizing 
fuel consumption.

Assigning intentional elements to the collaborative CPS 
network actor means that these intentional elements cannot 
be assigned to an individual collaborative CPS but belong to 
the network. As the network consists only of collaborative 
CPS, it can be argued that each intentional element of a col-
laborative CPS or a role is also an intentional element of the 
network. While this is true, assigning intentional elements 
either to a collaborative CPS/role or the networks allows for 
distinguishing between those intentional elements that are 
under the control of the individual collaborative CPS and 
those that are not.

For Challenge 6, we propose the introduction of a new 
contribution type: configuration-dependent contribution 
value. The configuration-dependent configuration value indi-
cates that the value of a contribution depends on specifics 
emerging from certain configuration aspects. As this concept 
is somewhat related to the unknown contribution value from 
GRL and iStar, we introduce a new label that is related to the 
unknown label. Other means of further defining this particu-
lar relationship with potentially changing values turned out 
to be too complex and unintuitive for it to be of use.

4.2.3 � Dependencies

To reduce the size and complexity of the resulting goal 
model, we introduce further—more complex—dependency 
types that allow using fewer dependency links. Therefore, 
we define beside the classic dependency, bidirectional 
dependencies, self-dependencies, and grouped dependen-
cies. In addition, we define multiplicities for dependencies.

A bidirectional dependency is a dependency, where both 
actors or their intentional elements depend on each other 
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(e.g., task A from actor A depends on task B from actor B 
and task B from actor B depends on task A from actor A). 
This type of bidirectional dependency is quite often needed 
for collaborative CPS that are part of a CPS network. The 
CPS network has its own intentional elements. However, 
as the CPS network is no physical entity, the CPS network 
depends on the individual CPS in fulfilling these goals. Vice 
versa, the CPS join the network as this allows fulfilling goals 
they otherwise could not achieve. For a simple example, 
consider the goal of the platoon to reduce the driving time 
to the platoon’s destination. To achieve this goal, the pla-
toon depends on the individual CACCs’ goals to reduce the 
driving time to their destination. Vice versa, the CACCs 
depend on the platoon as the platoon allows for a consider-
able reduction of driving time.

Our extension also includes a self-dependency. Self-
dependencies are used to describe cases where one collab-
orative CPS relies on collaborative CPS of the same type 
(which is not the collaborative CPS itself) to fulfill the same 
goal, execute the same task, etc., for its own goal fulfillment, 
task execution, etc. For instance, to follow the leader of a 
platoon each vehicle (i.e. each CACC of each vehicle) in the 
platoon depends on other following vehicles to fulfill their 
tasks in following the respective vehicle ahead.

Furthermore, we now allow dependencies to be grouped. 
A grouped dependency subsumes several other depend-
encies. This allows building complex dependencies that 
include relations to multiple actors and/or their intentional 
elements. For instance, a network of collaborative CPS relies 
on the fulfillment of one of its tasks on all the participating 
collaborative CPS in fulfilling their tasks (e.g., to drive with 
constant speed the platoon relies on the individual CACCs 
to maintain the individual vehicles’ speed).

As we allow multiplicities for actors to simplify the speci-
fication of multiple actors of the same type (e.g., multiple 
CACCs in the role following vehicle), we need to also con-
sider multiplicities for dependencies that stretch between 
these actors. Thus, we can define that multiple dependers 
of the same type depend on multiple dependees of the same 
type. For instance, for coordinating the opening of a gap 
in a platoon, the CACC of the lead vehicle depends on the 
existence of at least two following vehicles.

4.3 � Concrete syntax

4.3.1 � Collaborative CPS

In iStar systems are represented as actors. A collaborative 
CPS is a system and is therefore modeled as an actor, as 
shown in Fig. 6. In addition, we use stereotypes to distin-
guish between the different types of actors, e.g. in  Fig. 6 
<<CPS>> defines that Actor A is a collaborative CPS 
and neither a role nor a CPS network. Inspired by Moody’s 

principles for constructing notations [47], the following 
notation follows the principle of semiotic clarity. Accord-
ing to Moody’s principles, the same symbols should not be 
used for different concepts, otherwise a symbol overload 
may occur. However, we want to reduce the number of sym-
bols and use the circle consistently for all actors and the 
stereotypes only for specialization. Here we follow the pat-
tern of approaches from the related work that use symbols 
for denoting the supertype (i.e. the actor) and stereotypes 
for denoting its specializations (cf. [56, 93, 94]). Thus, since 
the notation for actor is specified by iStar, it is supplemented 
by stereotypes which serve to differentiate between network 
CPS and role.

4.3.2 � Network of collaborative CPS

The CPS networks are also modeled as actors as shown in 
Fig. 7. Similar to the notation of collaborative CPS, the nota-
tion of the CPS network uses Moody’s principle of semiotic 
clarity [47] by adding a stereotype referring to the CPS net-
work to the existing notation.

To show that CPS belong to a CPS network, the CPS can 
be positioned in a CPS network. According to the princi-
ple of semantic transparency [47], which recommends the 
appearance of a notation should suggest its meaning, the 
CPS that is a part of a CPS network is displayed inside the 
CPS network actor. The idea of graphically nesting CPS 
actors inside of CPS network actors is inspired by the work 
of Guzman et al. [92] (see also Sect. 3.4). An example of our 
notation for nesting actors and thereby relating CPS to a CPS 
network is shown in Fig. 8. The CPS Actor B was modeled 

Fig. 6   Collaborative CPS actor

Fig. 7   Network of collaborative CPS actor
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inside the CPS network Actor A which indicates that Actor 
B participates in the CPS network Actor A.

The nesting of actors, i.e. placing a collaborative CPS 
inside a CPS network, has implications for the intentional 
elements of the actors:

•	 Intentional elements of the CPS network: For nested 
actors, each intentional element belongs to the actor it is 
directly placed in. This also means, that the intentional 
elements that are not within a CPS boundary but only 
in the CPS network boundary only belong to the CPS 
network. Intentional elements of the CPS network cannot 
be assigned to individual collaborative CPS. However, as 
the CPS network is no physical entity on its own but only 
consists of the physical CPS that form the CPS network, 
all these intentional elements depend on the CPS actors 
placed within the CPS network. To make this relation 
obvious we propose the use of dependency links to the 
respective intentional elements of the CPS they depend 
on.

•	 Intentional elements of the CPS: They do belong to the 
CPS and as the CPS belongs to the CPS network, they 
obviously are also part of the CPS network. However, 
they do not necessarily need to address purposes of the 
CPS network itself. For instance, a CACC has goals it 
tries to achieve when driving alone. When the CACC 
joins a platoon, it still has these goals, however, as the 
participation in a platoon allows fulfilling other CACC 
goals, the CACC will not try to achieve the original 
goals when in a platoon. Consequently, the correspond-
ing intentional elements do not contribute to the platoon 
and are, thus, just part of the CPS but not intentional 
elements of the platoon.

Consequently, the nested representation of actors allows 
for illustrating the relations between intentional elements 
and actors while supporting the important distinction 
between intentional elements that can be assigned to indi-
vidual systems and those that cannot.

4.3.3 � Roles

iStar 2.0 [21] represents roles as shown in Fig. 9 (a). How-
ever, as we define a participates-in relation between actors to 
mean that a collaborative CPS participates in a CPS network, 
we use a is assigned relation to indicate that a collaborative 
CPS assumes a role (cf. Sect. 4.2.1). This is illustrated in 
Fig. 9 (b), where the collaborative CPS Actor B assumes the 
Role C. We allow for further simplification of the notation 
to depict the situation that a collaborative CPS assumes a 
role in one model element as shown in Fig. 9c. This allows 
reducing the size of models but prevents distinction between 
the intentional elements of a collaborative CPS and those of 
its roles. Thus, if the notation of Fig. 9 (c) is used, only the 
intentional elements belonging to the respective role shall 
be modeled. If a certain CPS can participate with different 
roles in the same CPS network, the CPS needs to be mod-
eled multiple times as different actors with different roles. 
If the actor notation is used without definition of a role, 
only intentional elements belonging to the actor in any role 
should be modeled.

4.3.4 � Coordination task

In Fig. 10 the concrete syntax for a coordination task is 
shown. Again, we use the well-known symbol of a task and 
use stereotyping to denote the difference. This is in accord-
ance with Moody’s principles [47], to allow users easy iden-
tification of the overall concept (i.e. task). In addition, an 
assignment relation shows which actor (i.e. which type of 
collaborative CPS) is assigned to which role.

4.3.5 � Bidirectional dependency

The bidirectional dependency represents a dependency in 
both directions between two actors or intentional elements. 
The direction of a regular dependency is represented by the 
"D". Since we have a dependency in both directions, we use 
the “D” in both directions as this is intuitive according to 

Fig. 8   Nested actors
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the principles of Moody [47]. This is illustrated in Fig. 11. 
Like regular dependencies, bidirectional dependencies can 
be defined including or excluding a dependum.

4.3.6 � Self‑dependency

In a network of collaborative CPS there can be systems that 
have the same role, the same goals, the same tasks, etc. For 
simplification we represent all these systems using only one 

actor in the goal model, which avoids redundancy. As we 
can represent more than one system as one actor, several 
peculiarities can occur, such as dependencies between the 
goals of these systems (i.e. a system of a certain type or role 
depends on another system of the same type or role). As 
a consequence, we allow for defining dependencies within 
one actor. To indicate the different nature of such as depend-
ency (i.e. to indicate that the system does not depend on 
itself but on the systems of the same type or role), we define 

<<Role>>
Role C

<<CPS>>
Actor B

<<CPS>>

Actor B

<<CPS>>

Actor B

Role C

Role C

Participates in

Is assigned

(a)

(b)

(c)
<<Role>>

Lead Vehicle

<<CPS>>
CACC

<<CPS>>

CACC

<<CPS>>

CACC

Lead Vehicle

Lead Vehicle

Participates in

Is assigned

Concrete Syntax Example

Fig. 9   Roles

<<coordination task>>
Task

<<Role>>
Role C

<<CPS>>
Actor B

assigns

Concrete Syntax Example

<<coordination task>>
Organize Platoon 

Structure <<Role>>
Following 
Vehicle

<<CPS>>
CACC

assigns
<<coordination task>>

Task
<<Role>>
Role C

<<CPS>>
Actor B

assigns

Concrete Syntax Example

<<coordination task>>
Organize Platoon 

Structure <<Role>>
Following 
Vehicle

<<CPS>>
CACC

assigns

Fig. 10   Coordination task
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a self-dependency as a new construct. This dependency is 
represented as shown in Fig. 12 by a D with a * operator as 
it is a well-known symbol for self-properties [97]. The D* 
symbol needs to be placed outside the actor boundary so 
as to avoid misinterpreting this element for a dependency 
within the same instance of an actor.

A self-dependency can exist between different intentional 
elements, but it can also exist for a single intentional element 
and a dependum as is shown in Fig. 13.

Concrete Syntax Example

Dependum
(goal)Actor A Actor B Collision 

avoidance
Lead

vehicle
Following
vehicle

Actor A Actor B Lead
vehicle

Following
vehicle(a)

(b)

Fig. 11   Bidirectional dependency

Fig. 12   Self-dependency 
between different tasks

Actor A

Task 1
*

Task 2

Concrete Syntax Example

CACC

Regulate 
Speed

*
Communicate 

Speed

Fig. 13   a Self-dependency 
without a dependum and b self-
dependency with a dependum

Actor A

Task
*

Concrete Syntax Example

CACC

Regulate 
Speed

*

Actor A

(a)

(b)
Task 1 Dependum

(resource)

*

*

Actor A

Task 1 Dependum
(resource)

*

*
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Note that traditionally the use of dependencies between 
intentional elements of one actor is discouraged.5 Here, we 
explicitly define a special kind of dependency to be used 
between intentional elements that are modeled within the 
same actor boundary. However, recall that we represent 
multiple actors by displaying just one actor to facilitate the 
specification of CPS networks consisting of multiple dif-
ferent but identical actors. Therefore, this self-dependency 
does not link intentional elements of the same actor but of 
different actors of the same type and is thus in line with the 
common usage of dependencies.

4.3.7 � Grouped dependency

The concrete syntax for grouped dependencies is similar to 
logical gates as these provide symbols for AND, IOR, and 
XOR. The AND-dependency is shown in Fig. 14a. Goal A 
depends on both, Goal B and Goal C. An IOR-dependency 
is shown in Fig. 14b Goal A depends on Goal B or Goals 
C. The XOR-dependency is shown in Fig. 14c. The XOR-
dependency shows a dependency, where Goal A can depend 
on either Goal B or Goal C but cannot depend on both. We 
use symbols well known from logic gates for conjunctions 
and disjunctions and combine them with the iStar symbol D 
used for dependencies.

4.3.8 � Multiplicities

Multiplicities can be assigned to actors and dependencies. 
The use of multiplicities for actors is shown in Fig. 15. For 
multiplicities we use the well-known notation for multi-
plicities in the UML. Using multiplicities allows to state 
that a certain type of actor is involved multiple times in 
the same goal model. For instance, a platoon consists of 
multiple CACCs. In Fig. 15, this is specified by using a  
[1 … n] multiplicity, showing that at least one CACC must 
exist to form a platoon and the upper bound is unlimited. 
Note that there exist different assumptions on the relation 
between CACCs and platoons, while some developers might 

Goal A

Goal B

Goal C

D Allow change 
lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving 
style 

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-
behavior

D

Concrete Syntax Example

(b)

(c)

(a)

Fig. 14   a AND-dependency, b IOR-dependency and c XOR-dependency

5  For GRL, recommendation Z.151 [25] defines in its abstract gram-
mar a dependency as specialization of ElementLink which links 
GRLLinkableElements (i.e. actors and intentional elements). Each 
ElementLink has a source and a destination. It is not explicitly defined 
that source and destination cannot be identical. However, the detailed 
guidelines for the use of dependencies illustrate six common usage 
scenarios that are explicitly suggested. All of these introduce depend-
encies between different actors, or intentional elements of different 
actors, or between a combination thereof. Thus, it can be assumed 
that the use of dependencies between intentional elements of the 
same actor is not intended.
  For iStar, Dalpiaz et al. define that “the depender and dependee of a 
dependency should be different actors” [21].
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want to consider open ended platoons, others might rather 
want to work with realistic upper bounds as the platoon is 
typically limited in its length by regulations. In addition, it is 
a rather philosophical question, whether a CACC on its own 

can be a platoon. Thus, also a multiplicity of [2…8] might 
be a valid assumption, depending on the current develop-
ment project.

Fig. 15   Multiplicities, in a a 
single actor in b a nested actor <<CPS>>
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Multiplicities can also be assigned to the intentional ele-
ments involved in a dependency. The depender, dependee, 
and dependum can be assigned a multiplicity regardless of 
the kind of dependency (see Figs. 16, 17 and 18). We do not 
restrict multiplicities, but we never came across a need for 
a [0…n] dependency, as this would mean that the depender 
does not necessarily depend on a dependee. Note that in case 
of self-dependencies, it is necessary that the multiplicities 
allow for there to be more than one actor, as self-dependen-
cies do not define dependencies within the same actor but 
between actors of the same type.

Note that in principle iStar and GRL are already equipped 
with the potential to define dependency decompositions. 
However, this always requires the existence of a decompo-
sition between the depender and dependee elements. A brief 
example is given by Fig. 19, which highlights the usefulness 
of our extension that limits the complexity of the model and 
allows for a different use of grouped dependencies. In par-
ticular, our proposed grouped dependency allows expressing 

that an intentional element depends on multiple other inten-
tional elements which do not need to be related to each other.

4.3.9 � Configuration‑dependent contribution value

To express that the value of a contribution depends on a 
configuration or on certain aspects related to multiple con-
figurations, we define a new label for contributions. This 
contribution is closely related to the unknown contribution 
value relation, where it is also not obvious whether the con-
tribution is positive or negative. However, the difference 
between unknown contributions and configuration-depend-
ent contributions is that for the latter, we can know how the 
contribution impacts but the contribution values are usually 
too complex to define all possibilities in graphical model. 
However, in addition we propose the formal definition of the 
contribution dependence in a comment field or a separate 
referenced document. Thus, we provide an index that can 
be used for reference. The proposed label compared to the 
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labels for unknown contribution values from GRL and iStar 
can be found in Fig. 20.

4.4 � Well‑formedness rules

We define well-formedness rules using OCL [98] for goal 
models according to the proposed extension to support the 
creation of correct goal models for collaborative CPS as is 
recommended for defining modeling languages or extensions 
to modeling languages [99].

A self-dependency is defined as a dependency between 
actors of the same type, which are represented in a goal 
model by one actor. Therefore, the depender and the 
dependee must be the same actor (Well-formedness rule 1) 
and this actor must have a maximum multiplicity of more 
than one (Well-formedness rule 2), as otherwise there could 
not be more than one actor of this type in a CPS network.

Well-formedness rule 1 Depender and dependee of a self-
dependency must be the same actor or intentional elements 
that belong to the same actor.

context Self-Dependency 
inv: self.depender = self.dependee

Well-formedness rule 2 The actor a self-dependency 
belongs to (i.e. the depender and dependee or the actor the 
depender and dependee elements belong to) must have a 
maximum multiplicity larger than one. This is important as 
the self-dependency is not a dependency between elements 
of the same actor but between elements of actors of the same 
type that are just represented by one single actor element.

context Self-Dependency 
inv: self.depender.multiplicityMax > 1

To prevent inconsistencies regarding multiplicities, we 
stipulate that the following rules must be adhered to. The 
minimum multiplicity of an actor may not be larger than the 
maximum multiplicity of the same actor. The same holds for 
multiplicities related to dependencies (i.e. the multiplicities 
of the depender, the dependee, and the dependum).

Well-formedness rule 3: A maximum multiplicity may 
not be smaller than the corresponding minimum multiplicity.

context Actor inv: self.multiplicityMin <= 
self.multiplicityMax

context Dependency 
inv: self.multiplicityDepdenderMin <= 
self.multiplicityDependerMax

 context Dependency 
inv: self.multiplicityDepdendeeMin <= 
self.multiplicityDependeeMax

The minimum multiplicity of a dependency’s dependee 
may not be smaller than the minimum multiplicity of the 
dependee actor. This prevents cases where the dependency 
would allow for requiring a smaller number of collaborative 
CPS than are actually permissible according to the actor’s 
multiplicity. The same holds for the depender.

Well-formedness rule 4: The minimum multiplicity of a 
dependee/depender may not be smaller than the minimum 
multiplicity of the dependee/depender actor.

context Dependency 
inv: self.multiplicityDependeeMin >= 
self.Dependee.multiplicityMin

context Dependency 
inv: self.multiplicityDependerMin >= 
self.Depender.multiplicityMin

The maximum multiplicity of a dependency’s dependee 
may not be larger than the maximum multiplicity of the 
dependee actor. This prevents cases where the dependency 
would allow for requiring a higher number of collaborative 
CPS than are actually permissible according to the actor’s 
multiplicity. The same holds for the depender.

Well-formedness rule 5 The maximum multiplicity of a 
dependee/depender may not be larger than the maximum 
multiplicity of the dependee/depender actor.

context Dependency 
inv: self.multiplicityDependeeMax <= 
self.Dependee.multiplicityMax

context Dependency 
inv: self.multiplicityDependerMax <= 
self.Depender.multiplicityMax
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Well-formedness rule 6 Grouped dependencies must have 
either the same depender or the same dependee. This rule 
prevents the definition of complex dependency relationships 
that are difficult to comprehend which carry a high risk of 
misinterpretation.

context Dependency 
inv: self.GroupedDependency.Dependency-> 
((forAll(d|d.dependerElmt=self.
dependerElmt) or (forAll(d|d.dependeeElmt= 
self. dependeeElmt)))

4.5 � Tool support

We provide tool support for the extension as a Visio stencil. 
Microsoft Visio is a commonly used modeling tool that pro-
vides mechanisms for the definition of modeling languages. 
In our case, the decision to use Microsoft Visio was made 
due to its availability for industry partners from different 
domains. In addition, particularly in the industry automa-
tion domain it is very heavily used for the design of produc-
tion systems. Figure 21 shows the stencil and the shapes it 
defines. We provide shapes for the newly defined constructs 
as well as for the existing constructs. The shapes can be 
drag-and-dropped to the drawing to create a goal model 
for collaborative CPS according to the proposed exten-
sion. The stencils are available for download at https​://doi.
org/10.6084/m9.figsh​are.13313​093. While Visio primarily 
focuses on providing support for modeling, add-ins can be 
created to support model validation, such as checks for vio-
lation of syntactic or well-formedness rules. Implementing 
these checks as well as support for goal fulfillment analysis 
is part of future work.

5 � Evaluation

We evaluated the proposed extension by conducting two case 
studies in different industry domains. Section 5.1 elaborates 
on the case study research design chosen (cf. [100]). Sec-
tions 5.2 to 5.4 present the results. Subsequently Sect. 6 will 
discuss the findings and limitations of the evaluation.

5.1 � Study design

5.1.1 � Goals

The study aims at evaluating the proposed extension for goal 
modeling of collaborative CPS. Therefore, we applied the 
iStar goal modeling extension to two industrial case stud-
ies (i.e. a cooperative adaptive cruise control and a fleet of 

collaborative transport robots). Thereby, we evaluate the 
applicability of the approach as well as the benefits of each 
introduced modeling element.

5.1.2 � Research questions

To achieve the overall goal of the study, i.e. does the pro-
posed extension aid in goal modeling for collaborative CPS, 
we defined several research questions to be answered in the 
study:

•	 RQ1: Is the proposed iStar extension applicable to indus-
trial case examples of collaborative CPS?

•	 RQ2: Does the use of the proposed iStar extension lead 
to more concise models?

•	 RQ3: Are the proposed modeling elements useful in the 
context of modeling collaborative CPS?

•	 RQ4: What challenges remain?

We further refine RQ1 and RQ2 with regard to the two 
industrial case examples:

•	 RQ1.1: Is the proposed iStar extension applicable to 
model a cooperative adaptive cruise control?

•	 RQ1.2: Is the proposed iStar extension applicable to 
model collaborative transport robots?

For RQ 2, we need to define the meaning of concise. 
Concise means “marked by brevity of expression or state-
ment: free from all elaboration and superfluous detail.”6 
With regard to goal models we refer to a goal model as more 
concise if it has fewer elements than another goal model that 
expresses the same content.

•	 RQ2.1: Does the use of the proposed iStar extension lead 
to a more concise yet still comprehensible model of the 
cooperative adaptive cruise control?

•	 RQ2.2: Does the use of the proposed iStar extension lead 
to a more concise yet still comprehensible model of the 
collaborative transport robots?

For RQ3, we need to define the metrics for usefulness. 
Usefulness can be defined as “the quality of having utility 
and especially practical worth or applicability.”7 Thus, addi-
tionally to the investigation of the general applicability of the 
iStar extension (see RQ1), we investigate the applicability 
of each modeling element. Furthermore, it is investigated 
whether industry partners deem the modeling element use-
ful (i.e. is it worth to have the modeling element as part of 
the iStar extension).

6  cf. https​://www.merri​am-webst​er.com/dicti​onary​/conci​se.
7  cf. https​://www.merri​am-webst​er.com/dicti​onary​/usefu​lness​.

https://doi.org/10.6084/m9.figshare.13313093
https://doi.org/10.6084/m9.figshare.13313093
https://www.merriam-webster.com/dictionary/concise
https://www.merriam-webster.com/dictionary/usefulness
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In addition, we need to further refine this research ques-
tion for all proposed modeling elements, i.e.:

•	 RQ3.1: Is the use of collaborative CPS and the network 
of collaborative CPS as actors useful?

•	 RQ3.2: Is the use of the coordination task useful?
•	 RQ3.3: Is the use of bidirectional dependencies useful?
•	 RQ3.4: Is the use of self-dependencies useful?
•	 RQ3.5: Is the use of grouped dependencies useful?
•	 RQ3.6: Is the use of multiplicities for dependencies use-

ful?

For RQ4, we separate between limitations of the proposed 
iStar extension and the resulting needs to be coped with in 
future work, i.e.:

•	 RQ4.1: What are limitations of the proposed iStar exten-
sion?

•	 RQ4.2: What are industry’s needs for future work?

5.1.3 � Subject selection

Industry partners and case examples were recruited within 
the CrESt-project, a joint research project, publicly funded 
by the German Federal Ministry of Education. The project, 
aiming at developing engineering methods for model-based 
software engineering of collaborative CPS, started in Feb-
ruary 2017 and concluded in April 2020. Industry partners 
contributed four case example specifications. For the appli-
cation of our extension we chose two case examples. The 
decision was made based upon interest of involved industry 
partners (i.e. the involved partners were highly interested 
in applying goal modeling techniques to investigate their 
case). While each case example was mainly driven by one 
responsible industry partner, other partners from the respec-
tive domain were also involved and contributed to the case 
study. Industry partners thus participated and contributed 
due to their commitment to the project but also due to their 
interest in the case and the definition and evaluation of solu-
tions that foster the model-based engineering of collabora-
tive CPS. While research in the project was partly conducted 
in close collaboration and resulted in co-authored publica-
tions (e.g., [35, 101, 102]), no further interdependence of 
interests exists between the authors of this paper and the 
involved industry partners.

The automotive case example of cooperative adaptive 
cruise control systems was provided by a large automo-
tive supplier located in Germany. In addition, other suppli-
ers—including one of the world largest automotive suppli-
ers—and original equipment manufacturers (all based in 
Germany) were involved in the case example. The transport 
robot case example was provided by a medium-sized Ger-
many-based internationally operating company specialized 
in the production of autonomous transport robots. In addi-
tion, a very large international company with headquarters in 
Germany and multiple interests as well as a broad portfolio 
of products and domains that has a major interest in the 
domain of industry automation was involved.

5.1.4 � Procedure

During the case study the approach under investigation (i.e. 
the iStar extension for collaborative CPS) was applied to 
two case examples provided by industry partners. Therefore, 
the following procedure was adhered to, to allow answering 
Research Questions 1–4.

Over the course of 3 years, we conducted a total of twelve 
workshops, one workshop every 3 months. Each workshop 
lasted about 2 days. The workshops were closely integrated 
in the working structure of the surrounding CrESt project. 
Therefore, they were not exclusively used for discussing the 
iStar extension but also for other research related to col-
laborative CPS. We did not use fixed time slots so that it was 

Fig. 21   Visio stencil for the extension
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always possible to have as much discussions as needed. The 
workshops were attended by about a dozen people, among 
them employees from various companies and research 
institutions. First, we were provided with a brief specifi-
cation and description of the case examples. In workshops 
the details of the case example were discussed and answers 
regarding specific aspects that remained unclear from the 
description were given by industry partners. Subsequently, 
initial sketches for the goal models were made. At first this 
was done without using the extension to get an understand-
ing of the shortcomings of iStar/GRL with respect to goal 
modeling for collaborative CPS, for a report on the find-
ings of this phase, please refer to our previous work [23]. 
Sketches were handed in for critique and revised based on 
the feedback. After additional workshops, the goal models 
without the extension were finalized and a number of short-
comings and potential solution concepts were discussed with 
the industry partners.

Next, we created goal models using the proposed exten-
sion for goal modeling of collaborative CPS. To allow for 
comparability, we started with the agreed upon goal mod-
els without the extension and made changes according to 
the extension. After another round of critique and a final 
workshop the final versions were created. In addition to the 
workshops, regular biweekly web conferences presented 
the opportunity to discuss upcoming questions in a timely 
manner. Furthermore, industry partners provided in-depth 
feedback on the extensions and derived models via mail.

Thus, information was collected during workshops and 
web conferences, as well as from documents. These docu-
ments included case descriptions of the case studies, require-
ments for modeling approaches for networks of collaborative 
CPS, and goal models in various stages of completion. These 
documents were created in close collaboration between 
domain experts and goal modeling experts under the auspice 
of the respective experts. Thus, we did not use specific ques-
tionnaires to answer the research questions but used an open 
and exploratory approach. We took notes on the meetings 
and the documents and models created over the course of the 
project were iterated regularly. In addition, written feedback 
was also received from industry partners. The workshops 
were used to discuss the case examples, the requirements, 
and the goal models. These discussions involved clarifica-
tion of misunderstandings, detailed discussions of interest-
ing aspects, discussions of created goal models and the pro-
posed extension. These discussions were documented during 
the workshop. The notes taken during the workshops served 
as input for the proposed extension as well as the evalua-
tion results. This allowed everyone involved to provide input 
according to their opinions. However, participants were also 
free to keep opinions to themselves.

Results from the application (RQ1) and the impact on the 
resulting models (RQ2) can be found in Sect. 5.2. To answer 

RQ3 (see Sect. 5.3) we discussed the proposed modeling ele-
ments of the approach with our industry partners to ensure 
that these are adequately reflecting the respective complex 
situations, are not misunderstood, and are deemed support-
ive. For RQ4, we discussed remaining challenges with our 
industry partners, particularly with respect to the severity of 
the various needs.

5.1.5 � Case examples

To show the benefits of the proposed extension, we con-
ducted two case studies, one in the automotive and one in 
the industry automation domain. Section 5.1.5.1 introduces 
the cooperative adaptive cruise control case example and 
Sect. 5.1.5.2 the collaborative transport robots.

5.1.5.1  Cooperative adaptive cruise control  Cooperative 
adaptive cruise control (CACC) systems allow vehicles to 
form a platoon [95]. A platoon is a network of vehicles driv-
ing behind one another with small distances between them. 
A platoon consists of a lead vehicle and at least one fol-
lowing vehicle. The lead vehicle is the first vehicle of the 
platoon and thus bears the responsibility for the platoon, 
since it has to decide, for example, which maneuvers to 
execute. All other platoon vehicles are following vehicles, 
as they usually adopt the driving style of the preceding vehi-
cle and reproduce it. Platooning offers many advantages, as 
the reduced distance between the vehicles allows driving in 
the slipstream of the previous vehicle. As a result, the fol-
lowing vehicles consume less fuel. Furthermore, platooning 
can reduce congestion on streets, is safer, and provides more 
comfort to drivers [96]. Having a CACC allows vehicles to 
participate in a platoon, as it enables the vehicles to commu-
nicate with each other within a platoon. With this commu-
nication, vehicles can agree on a common speed, a common 
destination, or a common driving style.

5.1.5.2  Collaborative transport robots  Collaborative trans-
port robots are tasked with transporting materials and prod-
ucts between machines and conveyor belts and with dis-
posing of material that is no longer used. They can do so 
without getting in each other’s way and more efficiently by 
forming a fleet [103]. In order to form a fleet, the robots 
need to communicate with each other about their current 
positions, tasks, battery statuses, etc. Forming a fleet allows 
the individual robots to be better utilized, as the individual 
tasks can be divided evenly between the robots. There are 
further advantages to having transport robots collaborate as 
a fleet rather than individually. For example, if there is an 
obstacle in a route, it is included in the map so that all robots 
know that the route cannot be taken and that they have to 
find an alternative route [104]. In addition, the robots can 
automatically visit a charging station if the remaining bat-
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tery is at a previously set remaining level. If the workload 
is high and a large number of transport tasks have to be 
executed, the value of the battery life, at which the robot is 
to visit a station, can be set to a lower value so that it can 
still complete as many transport tasks as possible. Further-
more, since there are different types of transport robots that 
are used for different products and materials, for example 
because they differ in their load capacity, the fleet can take 
this into account when distributing transportation orders.

5.2 � Application results

This section introduces the application of the approach in the 
context of the case studies. Therefore, Sect. 5.2.1 shows the 
goal model of the cooperative adaptive cruise control case 
example, Sect. 5.2.2 shows the goal model of the collabora-
tive transport case example. For comparison in both sections 
goal models for case examples are shown with the proposed 
extension and without the proposed extension.

5.2.1 � Application to the cooperative adaptive cruise 
control case example (RQ1.1)

We applied the iStar extension to the case example of a 
cooperative adaptive cruise control from the automotive 
domain. Figure 22 shows the resulting goal model. As can 
be seen, the CACC itself is not directly represented by an 
actor. A platoon, a lead vehicle, and a following vehicle are 
depicted as actors. The platoon represents the network which 
is formed by the collaboration of multiple vehicles equipped 
with a CACC. A CACC takes part in only one of two pos-
sible roles in a platoon, one CACC is the lead vehicle, the 
other CACCs have the role following vehicle. Hence, the 
three actors shown represent the roles a CACC can take and 
the collaborative network a CACC takes part in.

Each actor has its own intentional elements. However, as 
can be seen, the actors, and thus their intentional elements, 
heavily rely on each other. Particularly, the platoon’s inten-
tional elements depend on goals and tasks of the vehicles. 
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353Requirements Engineering (2021) 26:325–370	

1 3

This is not surprising in so far as the platoon does only exist 
in the interplay of its physically partaking CACCs. There-
fore, each functionality the platoon shall exhibit must origi-
nate from at least one CACC. For example, the platoon shall 
be able to allow new vehicles to enter the platoon (i.e. it has 
the goal allow new vehicles to join). To fulfill this goal, the 
platoon depends on the vehicles in the platoon that need 
to open a gap so that a new vehicle can join the platoon by 
entering this gap. Hence, the goal allow new vehicles to join 
of the platoon depends on the CACC tasks open gap.

There are also mutual dependencies between the platoon 
and the vehicles, for example, the goal reduced individual 
(driving) time of the CACC depends on the goal reduced 
overall (driving) time of the platoon and vice versa. This is 
shown by the bidirectional dependency between those goals.

Furthermore, dependencies between the different roles 
exist and are modeled. For example, a following vehicle must 
be able to execute the task follow previous vehicle. Therefore, 

it depends on other CACCs (either in the role following vehi-
cle or lead vehicle). In this way it is specified that each follow-
ing vehicle needs to follow another vehicle. In cases where the 
vehicle ahead is also a following vehicle, a self-dependency 
is used to show that a following vehicle depends on another 
following vehicle regarding the fulfillment of the task follow 
previous vehicle. This self-dependency possesses a condition 
whereby the dependency only exists if there are more than one 
following vehicle in the platoon, because otherwise a follow-
ing vehicle could not follow another following vehicle.

With respect to RQ1.1 we can state that the iStar exten-
sion is applicable to model the case example of a CACC. 
Important aspects of the case example can be specified and 
the existing mutual dependencies between the different roles 
of the collaborative CPS and the collaborative network can 
be defined accordingly.
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5.2.2 � Comparison with original iStar notation 
for the cooperative adaptive cruise control case 
example (RQ1.2)

To investigate RQ1.2 Fig. 23 shows a goal model for the 
CACC that has been created without the proposed exten-
sion. As can be seen, this model is considerably more com-
plex and contains more connections. For instance, another 
actor is needed representing another following vehicle. As 
it would otherwise not be possible to describe that the task 
follow previous vehicle depends on other following vehicles 
to also follow the previous vehicle. Among others, the bidi-
rectional dependency and the grouped dependency reduce 
the number of lines which improves the readability of the 
model. In summary, we can state that the goal model from 
Fig. 22 which was created using the iStar extension is more 
concise than the goal model from Fig. 23.

5.2.3 � Application to the collaborative transport robots case 
example (RQ2.1)

Figure 24 shows the resulting goal model for the case of the 
collaborative transport robots. As can be seen, the collabo-
rative transport robot (CTR) is directly represented by an 
individual actor as no roles need to be distinguished. How-
ever, as a CTR partakes in a collaborative network, i.e. in 
a collaborative transport robot fleet (CTRF), another actor 
is used to represent this network. Like for the CACC case 
example, the nested representation for network and CPS is 
used. As only one type of CTR does exist and no roles need 
to be distinguished, the network does not depend in its goal 
fulfillment on multiple CPS of different types or roles. Con-
sequently, unlike for the CACC case, no grouped dependen-
cies have been used. However, self-dependencies do exist, 
which describe dependencies between identical CTRs. For 

Fig. 24   Goal model collaborative transport robot fleet with extension
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instance, for calculating a new route, a CTR depends on the 
current routes of the other partaking CTRs as otherwise the 
goal avoid imminent collision and consequently the network 
goal avoid collisions overall could not be reached.

As in the CACC case, there are goals that both the robot 
and the robot fleet share, such as avoid collision overall and 
avoid imminent collision. These differ in that the robot fleet 
wants to achieve the goals for all robots while the individual 
robot is primarily concerned with its own goals. But as these 
goals are interdependent, they are linked in the goal model 
by a bidirectional dependency.

With respect to RQ2.1 we can state that it is possible 
to document the goals of the CTRF and the goals of the 
CTR and relate them to each other. Hence, the proposed 
iStar extension is also applicable to the case of collaborative 
transport robots.

Fig. 25   Goal model collaborative transport robot fleet without extension

Fig. 26   CTR actor nested in CTRF actor
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5.2.4 � Comparison with original iStar notation 
for the collaborative transport robots case example 
(RQ2.2)

For the collaborative transport robots, we also investigate 
RQ2.2 by comparing the goal model shown in Fig. 24 to a 
goal model that does not use the extension. This goal model 
is shown in Fig. 25. Although this model is not as large 
and complex as the goal model for the CACC example, it 
can be easily seen, that the model is much larger and more 
complex than the CTR goal model that uses the extension. 
This is particularly due to the need for more dependency 
links. Again, two CTR actors are necessary to express the 
self-dependency between different identical robots. There-
fore, we can state that Fig. 24 is more concise than Fig. 25. 
Also discussions with industry partners showed that industry 
professionals do not miss any information in the goal model 
using the extension compared to the other goal model but do 
find Fig. 24 more intuitive and comprehensible than Fig. 25, 
as the number of dependencies limits the overall readability.

5.3 � Usefulness of proposed modeling elements

We will illustrate the usefulness of the individual modeling 
elements using excerpts from the models of the case exam-
ples. Furthermore, we discuss our major insights gained 
from the application and discussion with domain experts.

5.3.1 � The use of actors (RQ3.1)

Particularly, the use of the nested representation of CPS net-
work and collaborative CPS partaking was considered very 
helpful as this allows getting an intuitive picture of what the 
composition of the CPS network looks like. Figure 26 gives 
a brief fragment of the nested actor notation from the CTR 
example. As the CTR is a part of the CTRF, the CTR actor 
is modeled inside the CTRF actor. Still, the intentional ele-
ments of the CTR are separated from those of the CTRF by 
the actor boundary of the CTR.

<<CPS 
network>>
Transpor-

ta
on System

Exchange informa
on

<<CPS>> 
CTR
[2..n]

<<CPS>> 
Conveyor 

Belt

Send informa
on

<< CPS network>>
CTFR

Reliable communica
on

Fig. 27   Distinction between collaborative CPS belonging to the CPS network and collaborative CPS Not belonging to the CPS network

Fig. 28   A coordination task in the CACC case example to assign the 
role of following vehicle

Fig. 29   Bidirectional dependency between two tasks
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Another advantage was not included in the original case 
example description but revealed during discussions. The 
CTRF typically does not operate on its own but also interacts 
with other systems in a smart factory, production machines, 
storage capacities, and even with other transportation sys-
tems. Hence, the nested representation is particularly suit-
able for displaying such systems separately from each other. 
As in Fig. 27, the conveyor belt is not part of the CTRF. 
It can still communicate with the CTR to announce goods 
in need of pickup. This way even further nesting might be 
useful to express different degrees of cohesion and collab-
oration. For instance, in the CTR case, a smart factory is 
composed of several collaborative CPS, some of which are 
assigned transportation tasks. The collaborative CPS with 
transportation tasks can, thus, be composed to the transport 
system of the smart factory. Hence, the conveyor belt and the 
CTRF can be nested into the transport system, which itself 
may be nested into the smart factory.

The extension also allows for defining a collaborative 
CPS (without defining a role) and a role this collaborative 
CPS can assume in the same goal model. The need to do so 
never arose in any of the case studies. In practice, it is usu-
ally relevant to either investigate the overall goals of a CPS 
(i.e. without considering a specific role) or to investigate 
issues that relate to the roles the CPS take.

5.3.2 � The use of the coordination task (RQ3.2)

It has been shown that in the two case examples investigated, 
coordination tasks are less often needed as has been assumed 
upfront. However, the coordination task has shown useful 
to indicate that a certain role is assigned by a particular 
task, belonging to a particular actor. This helps engineers in 
defining responsibilities, i.e. which entity of the CPS net-
work shall be responsible for the assignment of roles. This 
is shown in Fig. 28, the CACC in the role lead vehicle has 
the task to organize the platoon, i.e. it coordinates which 
CACC joins the platoon and which CACC needs to leave the 
platoon. Therefore, it is able to assign the role of a following 
vehicle to another CACC.

5.3.3 � The use of bidirectional dependencies (RQ3.3)

The main benefit of the bidirectional dependency is seen 
in reducing the number of dependencies displayed. This is 
illustrated in Fig. 29, which displays two actors: the col-
laborative system network CTRF and the individual CTR. 
Both systems have the task to fulfill an optimal goods trans-
portation. The task of the CTRF refers to the entire network 
of collaborative CPS and is therefore called optimal overall 
goods transportation, while the task of the CTR refers only 
to the robot itself and its current task, therefore it is called 
optimal current goods transportation. Both tasks depend 
on each other as the individual CTR can only reach an opti-
mal transportation solution when the overall routes (i.e. also 
the routes of the other CTR) are optimized so that no colli-
sions and backups occur. However, to achieve this the CTRF 
depends on each individual CTR to find optimal routes 
within the existing optimized overall routes. Hence, both 
tasks depend on each other. Using the bidirectional depend-
ency, not only the number of dependency links is reduced, 
but as shown, the bidirectional dependency also indicates a 
very close relation between both tasks. This allows engineers 
to easily detect parts of the collaborative CPS network that 
can only be achieved in collaboration and must therefore be 
given particular care during implementation.

5.3.4 � The use of self‑dependencies (RQ3.4)

The major use of self-dependencies must be seen in its abil-
ity to reduce the number of actors shown in the CPS network 
as every system type or role is only displayed once regard-
less of how many instances are actually partaking in the sys-
tem network. For instance, a collaborative system such as a 
platoon consists of several individual CACCs collaborating. 

Follow previous vehicle

*

[n..n]

<<Role>>

Following  
vehicle

[1..19]

<<CPS>>

CACC

<<CPS Network>>

Platoon

Fig. 30   Self-dependency link
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It is not feasible to represent all these configurations in mod-
els as CPS networks are dynamic, thus resulting in a large 
number of similar albeit slightly different configurations, 
nor is it feasible to represent large configurations such as 
platoons consisting of more than five vehicles in one model 
if each vehicle is depicted separately. Therefore, the CACC 
represents all instances of the CACC in a platoon.

In Fig. 30 it is shown that CACCs in the role Following 
vehicle are part of the platoon. And, to allow driving in a 
platoon formation, each following vehicle needs to follow its 
predecessor, i.e., the previous vehicle. Therefore, it depends 
on other following vehicles, which also need to each follow 
their predecessor. This is represented by a self-dependency. 
While this construct is seen as useful, care must be given 
to avoid misinterpretations, i.e. an individual system does 

Fig. 31   Initial situation

<<CPS network>> 
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<<CPS>>
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Fig. 32   Multidirectional 
dependency
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Fig. 33   Too complex repre-
sentation of  a multidirectional 
dependency
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not depend on itself but on other systems of the same type. 
However, using the asterisk was deemed very helpful as it 
indicates that it is not a normal dependency. People famil-
iar with the self-*-properties directly—most likely out of 
the context of their domain knowledge—related this self-
dependency not to the individual system on an instance level 
but as desired on a type level, i.e. that system of this type are 
self-dependent on other systems of this type.

5.3.5 � The use of grouped dependencies (RQ3.5)

Grouped dependencies allow to further reduce the num-
ber of dependency links to be displayed. Instead of hav-
ing multiple separate dependency links, dependencies are 
grouped, the dependency symbol is only shown once, and 
each involved intentional element connects only with one 
line to the symbol.

For an illustrative example, Fig. 31 shows the actors 
CTRF and CTR. The goal Distribution of tasks and the 
tasks Finish task and Accept task are connected through 
three dependency links with each other. For example, the 
task Finish task depends on the goal Distribution of tasks, 
since a CTR can only process and complete a task if it has 
been previously assigned to it. In addition, the goal Distri-
bution of tasks depends on Accept task, since this goal is 
only achieved if a CTR who is assigned a transportation task 
also accepts this assignment. In this simplified model this 
may look comprehensible, but with an increasing number of 
actors and their goals and tasks, the number of dependencies 
can also increase.

Therefore, as shown in Fig. 32, the two actors are con-
nected by using a grouped dependency. This allows us to 
express that the task Distribution of tasks depend on the 
tasks Finish task and Accept task. Please note that in this 
case we could also have reduced the complexity by using a 
bidirectional dependency between Distribution of tasks and 
Accept task.

Actually, in the early stages of the development of the 
extension, we aimed for always needing just one dependency 
link between two or more connected intentional elements. 
However, this was not achievable, as the resulting depend-
ency constructs were complex and often misunderstood. We 
illustrate this in Fig. 33, which shows the initial idea to use 
only one multidirectional connector to connect all incoming 
and outgoing edges. As shown in Fig. 33, however, this is 
comparatively more difficult to understand than the example 
in Fig. 32.

5.3.6 � The use of multiplicities for dependencies (RQ3.6)

Much akin to the discussion for the self-dependency, the 
multiplicities for dependencies were a necessary means 
to achieve displaying just one actor that represents all 

collaborative CPS of the same type and in the same role. 
Otherwise, it would not be possible to distinguish, e.g., the 
following two situations: (1) an intentional element of one 
collaborative CPS of a certain type depends on an intentional 
element of one collaborative CPS of another type, and (2) 
an intentional element of one CPS of a certain type depends 
on intentional elements of multiple/all CPS of another type 
that do exist. Therefore, the use of multiplicities is neces-
sary. From our observations the use was quite intuitive as 
multiplicities are well known from UML class diagrams and 
other modeling languages and, thus, their use did not lead to 
any misinterpretations.

The use of multiplicities also shows the need to separate 
specification and analysis of goal models for collaborative 
CPS. For specification purposes, we need abstractions to 
reduce the complexity of the models and allow specification 
of CPS networks in a manageable fashion. Therefore, we use 
the concept of multiplicities to cope with the sheer number 
of configurations to be specified at design time. For analysis 
purposes, however, we need to ensure proper functionality 
in all situations. Thus, for runtime analysis all possible con-
figurations need to be considered.

During specification we define what configurations may 
exist and thus need to be considered, however, we do not 
place emphasis on how these form or dissolve. The specifi-
cation using multiplicities defines that the number of actors 
will vary in a known range at runtime but not how these 
variations occur at runtime. For example, in the robot case 
example, if we model that the fleet consists of three to eight 
identical robots that have the same role, it does not state how 
the fleet can actually vary between three and eight robots. 
If we want to state that, for instance, a robot might break 
down, we need to explicitly specify another actor type robot 
in the role “defect robot” and a coordination task can then 
be used to explicitly define how a robot can be assigned the 
role “defect robot”.

5.4 � Remaining challenges

5.4.1 � Limitations of the iStar extension (RQ4.1)

Despite the usefulness of the proposed extension and the 
overall applicability of the proposed extension, we have 
found some limitations. While, so far, we have briefly men-
tioned some remaining challenges in Sect. 4 and sketched 
limitations throughout Sects. 5.2 and 5.3 in this section we 
will discuss the most important limitations in more detail 
and provide insights into rationales.

5.4.1.1  Contribution links depending on  the  current CPS 
network configuration  As outlined in Sect.  2.3.6 there is 
a need to allow modeling contributions where the value of 
the contribution depends on the current configuration. We 
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use multiplicities for actors and dependencies to specify 
multiple configurations within one single goal model. Thus, 
multiple configurations are incorporated in one model and 
hence the nature of a contribution might be ambiguous. 
As briefly discussed in Sect. 4.2.3, we propose the use of 
configuration-dependent contribution value labels for these 
situations. This simple solution is a result of the inability to 
define this complex problem with a precise but at the same 
time comprehensible notation. Hence, the current solu-
tion for Challenge 6 is largely based on a tradeoff between 
expressiveness and proposing an easy to use iStar extension. 
We decided to go for simplicity to provide easy access for 
industry professionals, thus limiting the expressiveness of 
varying contribution links depending on the CPS network 
configuration.

Industry professionals have stressed the importance of 
investigating and analyzing these situations closer. So far, 
our solution to this need is by modeling concrete configura-
tions in distinct models that allow detailed investigation and 
comparison. In doing so, the benefits of having only one 
model to maintain and analyze vanish and the effort needed 
increases. In addition, when it comes to automated sup-
port, the current solution is also not sufficient as a precisely 
defined contribution depending on the respective configura-
tions is needed to allow for any kind of automation.

5.4.1.2  Missing support for  in‑depth analysis of  concrete 
instance configurations  There is not only a need to define 
and investigate the impact a contribution link has based on 
different configurations but more generally to investigate 
concrete investigations in-depth. Due to the use of abstrac-
tions in the specification (i.e. representing CPS of similar 
type with just one actor having multiplicities), it becomes 
difficult to reason about similar CPS that try to achieve dif-
ferent goals at the same time. For instance, two CTR might 
collaborate in a CTRF, while they have in principle the same 
goals due to the current context situation the robots try to 
achieve different goals. As an example, both robots might 
have different battery-levels. Depending on the current bat-
tery level, the goals to be fulfilled change. With lower bat-
tery-levels robots shall aim for resource preservation, while 
with higher battery-level the maximum number of transpor-
tation tasks shall be processed. Therefore, a means to gener-
ate and investigate concrete instance level configurations is 
needed. We have already shown the applicability, effective-
ness, and usefulness of such generations for scenario model 
using ITU Message Sequence Charts (cf. [105, 106]). Due 
to the feedback we received from our industry partners, we 
are confident that this is transferable to goal models and will 
allow more in-depth analysis on the impact of certain con-
figurations.

5.4.1.3  Interpreting complex relations involving multiplici‑
ties  The interpretation of complex relations that involve 
multiplicities may be error prone. Due to the high amount 
of information to be processed for correctly interpreting 
the meaning of grouped dependencies with multiplicities 
involving actors with multiplicities, there is a risk of misin-
terpretation. However, the reduced size of the model itself 
due to the use of these constructs was very much appreci-
ated.

Currently, we assume that the fulfillment of a depend-
ency with multiplicities means that all depender elements 
are fulfilled if all dependee elements (AND-dependency), 
at least one dependee element (OR-dependency), or exactly 
one dependee element (XOR-dependency) are fulfilled. So 
far, we found this definition to be sufficiently comprehensive 
and intuitive. However, there might be the need to express 
that just one of the depender elements will be fulfilled or 
just a certain number. For instance, due to access restrictions 
a resource might be only accessible by exactly one CPS. 
Therefore, not all depending CPS can access this resource 
at the same time and therefore, only one CPS can fulfill its 
goals that depend on this resource. Furthermore, it is also 
conceivable that not all, at least one, exactly one dependee 
elements shall be fulfilled but a concrete number (or within 
a concrete range). This is, for instance, the case if measure-
ments shall be validated across different members of a CPS 
network. To do so, it is not necessary for the measurement to 
be provided by all elements, but by at least two or three (as 
otherwise no meaningful detection of outliers is possible).

5.4.1.4  Goal fulfillment analysis and semantics of the iStar 
extension  Semantics for iStar and GRL are typically 
defined based on goal fulfillments [107, 108]. Recommen-
dation Z.151 refers to this as the “GRL model satisfaction 
analysis”. For instance, the semantics of an AND-decom-
position is defined such that the super-intentional element 
is fulfilled if all intentional elements it is composed of are 
fulfilled. Therefore, typically values for qualitative (e.g., 
high satisfaction, medium satisfaction, low satisfaction) and 
quantitative analysis (e.g., 0–100% contribution to the satis-
faction) are defined. This allows, among others, automated 
analysis of the overall goal fulfillments (i.e. can the overall 
goals be sufficiently achieved) or calculating optimized goal 
fulfillments (i.e. which subgoals—under consideration of 
conflicts, etc.—should be fulfilled to reach the best possible 
goal fulfillment).

So far, we have focused on modeling collaborative CPS 
and manual analysis by human engineers. However, due to 
the complexity automated support based on clear seman-
tics is desired. Particularly, goal fulfillment analyses can 
support engineers in identifying problematic CPS network 
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configurations, etc. Thus, the aforementioned precise seman-
tics for goal fulfillments will need to be established. Par-
ticularly, the semantics for goal fulfillment of multiplici-
ties, i.e. the impact on the actors with multiplicities, and on 
the intentional elements involved with dependencies with 
multiplicities need to be precisely defined. At this point, 
we have gathered a broad understanding from the engineers 
about what it means when a goal is fulfilled. From what we 
have learned so far in collaborative CPS networks different 
degrees of goal fulfillment must be considered. For instance, 
the CTRF will not always fulfill a goal to 100% but in many 
cases to a point where it suffices. I.e. equal battery consump-
tion across all CTRs will, depending on the configuration, 
not be achievable. However, for many of these configurations 
a less then optimal equality is also acceptable. Thus, when it 
comes to goal fulfillments and automated analyses thereof, 
more precise means are needed to express such complex 
situations depending on the configuration.

5.4.1.5  Circular dependencies  Related to the afore-
mentioned point, when analyzing goal fulfilment circu-
lar dependencies are a problem, as this typically can be 
interpreted as a  deadlock, however, for collaborative CPS 
expressing such circular dependencies is important.

As could be seen from the application of the case exam-
ples, circular dependencies occurred regularly. Furthermore, 
we even introduced some elements (e.g., bi-directional 
dependencies) that contradict the fulfillability of the overall 
model in general as these are circular per definition. How-
ever, we deem these elements important. For instance, it is 
necessary to express that a CPS network cannot fulfill its 
goals if the goals of the individual systems are not fulfilled 
and vice versa. A CACC wanting to reduce the overall travel 
time depends on the platoon to reach this goal. However, 
the platoon depends on each CACC in the platoon trying to 
reach this goal as well. In other words, the platoon can only 
drive as fast as its slowest member.

The many circular dependency relations between multiple 
intentional elements of a CPS network and partaking CPS 
were not identified as problematic by industry professionals. 
Even more, they were highly appreciated as they express the 
inherently collaborative parts of the interplay between the 
individual CPS and the CPS network. Thus, these constructs 
are severely needed by industry professionals to foster their 
analysis in early stages. However, they are problematic for 
goal fulfillment analysis, which was also seen as desirable 
to support the development of collaborative CPS.

5.4.1.6  Tool support  While we provide Visio stencils to 
create goal models for networks of collaborative CPS, the 
tool cannot prevent modelers from creating goal models that 
violate syntactical or well-formedness rules. Consequently, 
the responsibility for adhering to those rules lies completely 

with the modeler. This can be problematic for inexperienced 
modelers who are not that familiar with the rules and there-
fore more likely to create flawed goal models for networks 
of collaborative CPS.

Additionally, the tool does not provide automated analysis 
support for goal fulfillment. Goal models can be analyzed 
automatically to reason about goal fulfilment. This, how-
ever, is currently not implemented, leaving the requirements 
engineer with the task of having to analyze the goal models 
manually.

Currently, we are using Microsoft Visio as modeling tool, 
which also allows implementing feasibility checks and the 
goal fulfillment analysis via add-ins. Due to the popularity of 
Visio, we intend to keep and enhance this, instead of using 
another modeling tool which has already basic checks for 
goal models implemented. The main reason for this is the 
broad availability of Microsoft Office products in German 
industry. This leads to easy application as modelers already 
have sufficient experience with the tool.

5.4.2 � Industry needs for future work (RQ4.2)

Based on the limitations discussed above, the need for future 
work arises. While we have already briefly discussed this 
need in Sect. 5.4.1. In this section, we briefly summarize 
the major needs identified. Particularly, we found needs for:

Contribution links depending on the configuration. The 
solution needs to allow for precise definition of the impact 
certain configurations or changes in a configuration have 
on the value of a contribution link and at the same time 
must be reasonably easy to model and comprehend that 
it is of value for manual analyzes and discussions in early 
development phases.
Providing support for interpreting complex relations 
involving multiplicities. Correctly interpreting dependen-
cies with multiplicities and/or dependency groups can be 
difficult. While having groups and multiplicities allow for 
reducing the size of the goal model considerably (as oth-
erwise each dependency would have to be modeled indi-
vidually), there is an increased risk of misinterpretation. 
One possible solution to this issue could be the illustra-
tive generation of model excerpts focusing on a particular 
dependency that allow for examining this dependency in 
the familiar style with no groups or multiplicities.
Automated goal fulfilment analysis and formal defini-
tion of semantics. Some new constructs (e.g., circular 
dependencies, grouped dependencies) hinder the use of 
established goal-fulfilment analysis approaches. To pro-
vide automated support for goal fulfilment analysis for 
goal models of networks of collaborative CPS, a precise 
definition of formal semantics is necessary. Particularly, 
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Table 3   Short summary of the principal findings for each research question

Research 
questions

Findings

RQ1.1 Is the proposed iStar extension applicable to model a coopera-
tive adaptive cruise control?

The iStar extension is applicable and the application resulted in a 
valid model for the cooperative adaptive cruise control that has 
been evaluated by industry professionals as sufficient and helpful 
in the engineering process

RQ1.2 Is the proposed iStar extension applicable to model collabora-
tive transport robots?

The iStar extension is applicable and the application resulted in a 
valid model for the collaborative transport robots that has been 
evaluated by industry professionals as sufficient and helpful in 
the engineering process

RQ2.1 Does the use of the proposed iStar extension lead to a more con-
cise yet still comprehensible model of the cooperative adaptive 
cruise control?

The resulting model is more concise than a comparable model 
created without the extension. Particularly, the number of actors 
shown is reduced and the number of dependency links needed 
is significantly smaller. Furthermore, other approaches need to 
define a single model for each configuration, thus, the number 
of diagrams needed to describe the entire CPS network is also 
reduced considerably

RQ2.2 Does the use of the proposed iStar extension lead to a more 
concise yet still comprehensible model of the collaborative 
transport robots?

The resulting model is more concise than a comparable model 
created without the extension. Particularly, the number of actors 
shown is reduced and the number of dependency links needed 
is smaller. However, the effect is not as large as observed for 
RQ2.1. Nevertheless, also in this case, other approaches would 
need to define a single model for each configuration, thus, the 
number of diagrams needed to describe the entire CPS network 
is also reduced considerably

RQ3.1 Is the use of collaborative CPS and the network of collaborative 
CPS as actors useful?

The differentiation between collaborative CPS and the CPS net-
work allows for expressing goals on different levels of abstrac-
tion and relating them to each other. I.e. it can be expressed how 
CPS network goals can be achieved based on the collaborative 
CPS’ goals. Particularly, the use of stereotypes allows to easily 
distinguish both actor concepts and the use of nesting results 
in smaller models while at the same time making the hierarchy 
between CPS network and collaborative CPS intuitively clear

RQ3.2 Is the use of the coordination task useful? The coordination task is useful as it allows to document changes 
of roles that may occur during runtime and indicate how they 
are triggered and who is responsible for changing the role of an 
actor. Thus, the coordination task concept allows to express a 
complex situation by using just one intentional element

RQ3.3 Is the use of bidirectional dependencies useful? Bidirectional dependencies considerably reduce the size and 
complexity of the resulting models. Collaborative CPC are—as 
is quite obvious—collaborating and therefore, often rely on each 
other, furthermore often the CPS network relies on the indi-
vidual CPS and vice versa. Thus, the bidirectional dependency 
reduces the number of dependencies used and adds the notion of 
mutuality which is not given by having two independent depend-
ency links

RQ3.4 Is the use of self-dependencies useful? The self-dependency allows to express that one system depends 
on another system of the same type and role. Thus, the self-
dependency allows expressing different systems of the same type 
with just one actor element Consequently, the size of the goal 
model can considerably be reduced, and the clarity of the models 
is improved
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a solution for the needed circular dependencies must be 
provided.
Advanced tool support. To better support developers in 
creating goal models for networks of collaborative CPS, 
future tool support should also include checks for adher-
ence to modeling rules as well as support for automated 
goal fulfillment analysis. As current tool support already 
provides stencils for creating goal models for networks 
of collaborative CPS, these analysis functionalities can 
be implemented as Visio add-ins, so that already created 
goal models can be analyzed,

6 � Discussion

6.1 � Summary and major findings

In this paper, we developed a GRL-compliant extension to 
the existing iStar goal modeling language for goal modeling 
of collaborative CPS and CPS networks. With the choice 
of iStar, we have adopted a widely used goal modeling 

approach. To do so, we integrated our extensions into the 
iStar metamodel and defined the concrete syntax to specify 
what the goal modeling extension looks like graphically con-
sidering best practices for model notation creation. Further-
more, the well-formedness rules were defined to describe 
constraints for the goal models. Our extension was evaluated 
using two industrial case examples: a CACC (cooperative 
adaptive cruise control system) from the automotive industry 
as well as a CTRF (collaborative transport robot fleet) from 
the industry automation domain.

For the main results of our evaluation we can state that:

•	 RQ1: Our evaluation shows that the iStar extension is 
applicable to industrial case examples of collabora-
tive CPS. The resulting models were well received by 
industry professionals and rated as very helpful in the 
engineering process as the goals of a multitude of con-
figurations to be considered can be easily expressed in 
manageable models.

•	 RQ2: The goal models with the extension include fewer 
actors and dependency lines compared to the goal mod-

Table 3   (continued)

Research 
questions

Findings

RQ3.5 Is the use of grouped dependencies useful? Grouped dependencies can reduce the number of dependencies to 
be modeled and therefore reduce the size of the model and add 
to model clarity. However, it is to mention that in some cases the 
use of grouped dependencies can result in too complex to read 
dependencies. This is particular the case when dependent inten-
tional elements are spatially distant. Therefore, this modeling 
element should not be used regardless of the layout of the model, 
but the current layout should be taken into account. However, 
in several situations the model complexity can considerably be 
reduced

RQ3.6 Is the use of multiplicities for dependencies useful? As is the case for self-dependencies, this modeling element allows 
to model different systems of the same type with just one actor 
element. Consequently, the size of the goal model can consider-
ably be reduced, and the clarity of the models is improved

RQ4.1 What are limitations of the proposed iStar extension? As advanced automated support is desired, the proposed iStar 
extension is limited as no formal semantics are provided yet. 
This is particularly the case when it comes to circular depend-
encies and the proper interpretation of complex dependencies 
that involve multiplicities. Furthermore, by providing simplified 
type-level specifications using abstractions to allow for concise 
models, the ability to reason about concrete, potentially hazard-
ous, instance configurations is limited

RQ4.2 What are industry’s needs for future work? There is particularly a need for revisiting the solution for Chal-
lenge 6 by semantically defining contribution links, where the 
contribution value depends on the configuration of the CPS 
network (i.e. is related to actor multiplicities). Furthermore, 
there is a need to define formal semantics for analyzing circular 
dependencies and to allow for automated goal fulfillment 
analysis. Furthermore, automated support for analyzing concrete 
instance-configurations is needed. These automated aspects can 
also be supported by adequately developing the tool support 
further
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els without the extension, although the same situation is 
shown in both. Therefore, the use of the iStar extension 
results in more concise goal models.

•	 RQ3: We have shown that each of the proposed modeling 
elements contributes to modeling complex situations 
in a clear and concise way and thus yields the creation 
of extensive and yet easily readable models. Accord-
ing to Moody’s principle of complexity management, 
it was shown that the modeling elements of the exten-
sion are suitable to reduce the complexity of the iStar 
models when modeling collaborative CPS that interact 
in dynamic CPS networks.

•	 RQ4: Finally, we have investigated shortcomings of the 
extension and needs for future work. Among the remain-
ing challenges, most notably is the proper definition of 
formal semantics that also consider circular and bidirec-
tional dependencies, take multiplicities for contributions 
into account and, thus, allow for automated goal fulfill-
ment analysis.

For a summary of the major findings for each sub-
research question, please refer to Table 3.

6.2 � Threats to validity

To evaluate our proposed extension, we used a commonly 
used evaluation approach (e.g., [17, 100, 109]). However, 
like all evaluation approaches, case study evaluations have 
some drawbacks [110, 111]. As recommended [112], we 
discuss those drawbacks in terms of conclusion, external, 
internal, and construct validity.

6.2.1 � Conclusion Validity

Conclusion validity deals with drawing correct conclusions 
from the application results and findings. As case studies 
usually draw conclusions from few cases studies, conclu-
sion validity must be considered rather low. To somewhat 
alleviate this threat, we conducted two case studies in dif-
ferent domains. We showed that both case examples can be 
modeled appropriately using the proposed extension. We 
furthermore showed that industry professionals found the 
created models easy to understand and helpful. However, at 
this point we cannot make any claims as to how well indus-
try professionals can create goal models using the extension 
on their own.

6.2.2 � External validity

External validity deals with the ability to generalize results 
to cases outside those studied. Collaborative CPS networks 
are of a diverse nature and exist in a variety of domains (such 
as energy, aviation, etc.) with specific characteristics. We 

cannot rule out the need for further adjustment to the exten-
sion for goal models of collaborative CPS for those domains. 
However, our case study has shown the applicability of the 
proposed extension for goal models of collaborative in two 
different domains, automotive and industry automation. We 
expect the proposed extension to be at least somewhat ben-
eficial to the development of collaborative CPS from other 
domains.

Another remaining threat is if industry will ever use the 
extension on their own. Particularly, there is a threat that 
goal models at all will not be used by industry as recent 
studies have shown industry’s reluctance to the use of goal 
modeling [26, 27]. While we cannot rule out this possibility, 
we want to highlight that we have shown for the automotive 
industry that goal models are welcomed when the introduc-
tion is accompanied with training and tutoring sessions [52]. 
Regarding the robot case example, the idea of using goal 
models was very well-received as it was a good match for 
how engineers thought of their robots. We found that the 
engineering was already centered around the goals, the indi-
vidual robots have and around questions like when shall a 
robot fulfill which goal, etc. However, previously this was 
not made explicit and, therefore, the benefits of using goal 
models were quite obvious to our partners.

6.2.3 � Internal validity

Internal validity deals with the ability to infer a causal rela-
tionship between treatment and outcome. As the goal models 
were largely created by the same persons that created the 
extension, a certain degree of bias cannot be dismissed com-
pletely. However, all goal models were frequently reviewed 
by industry professionals not involved in the development 
of the extension.

Due to being part of the CrESt-project, the timing of the 
workshops, data collection procedures, etc., were not com-
pletely under our control, but we made use of the means the 
project setup provided. Nevertheless, there was always suf-
ficient space for industry feedback either in writing as com-
ments to the models or during discussions. While we gave 
all participants the opportunity to give their opinion publicly 
or privately, we cannot rule out that some participants might 
have kept their opinions to themselves.

6.2.4 � Construct validity

Construct validity deals with the generalizability of the 
results found for the particular case example to the underly-
ing theory. I.e. in our case it must be questioned whether the 
case studies are indeed good representatives for collabora-
tive CPS and whether the effects observed during applica-
tion can be attributed to the proposed extension or whether 
these are only particular to the case example. Hence, there 
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is a risk as the requirements for the iStar extension were 
based on findings from the evaluation case examples, that 
the proposed extension does only address specific issues for 
the two case examples under investigation, but that these are 
not representative for collaborative CPS at large.

One further aspect is the generalization beyond the use 
for specifying collaborative CPS. Therefore, it is to note 
that some of the modeling elements we use are not specific 
for collaborative CPS. Furthermore, we make also use of 
other proposed extensions that aimed at other system types. 
Consequently, we cannot state that the proposed extension 
is limited to the specification of collaborative CPS, nor can 
we state that there will be no collaborative CPS that cannot 
be modeled using our extension. However, the applicability 
on two case examples of collaborative CPS indicates that 
the proposed extension allows modeling collaborative CPS. 
Nevertheless, we assume that also other system types might 
be documented using the extension, particularly those we 
have briefly sketched in the related work section. However, 
we cannot make any reliable claim on this as this was not in 
the focus of our evaluation.

6.3 � Inferences

In this paper, we have proposed a GRL-compliant iStar 
extension to support goal modeling of collaborative CPS 
that partake in dynamic CPS networks. The proposed mod-
eling elements have been created based on needs identified 
in industrial applications of goal modeling and have been 
evaluated for their ability to solve these needs. In addition, 
the resulting overall goal models have shown valid, useful, 
and concise. Hence, we can state that the proposed extension 
is an adequate solution to an industrial problem situation. 
However, it must be questioned whether goal models in gen-
eral are a valid approach for supporting the engineering of 
collaborative CPS. Particularly, for collaborative CPS it is 
the case that goal modeling is seen as an intuitive approach 
as it can be expressed that the individual CPS have their 
own goals to fulfill, which might be contradictory from one 
system to another as well as the overall goals of the CPS 
network. Insights derived from the workshops conducted 
with industry partners corroborate this claim. It was seen 
as very valuable to identify collaborative CPS and CPS net-
work goals right from the beginning and already discuss 
dependencies and conflicts arising from the interplay of the 
individual CPS. Particularly, for the CTR case example it 
was confirmed that initial conceptual goal models can sup-
port the overall development as the industry partner involved 
follows a goal-oriented implementation approach. I.e. the 
defined goals are each instantiated by code and deployed on 
the robot. Additionally, key performance indicators (KPI) 
are defined to allow monitoring of the goal fulfillment 

of each goal and decision-making which goal fulfillment 
should be optimized in which situation.

Although the approach was only evaluated using two case 
examples, they have shown that the proposed extension is 
a valid and valuable solution at least for these. However, as 
the case examples were taken from different domains and 
the results were also discussed with partners working on 
other collaborative CPS and also stem from other domains, 
we are confident that the approach can be a valuable con-
tribution in general. Particularly, the application of goal 
modeling for supporting the engineering of collaborative 
CPS seems very reasonable as discussing goal conflicts 
between individual collaborative CPS as well as between 
individual collaborative CPS and CPS network is vital for 
the engineering of these systems. Thus, the use of goal mod-
els can improve the engineering of these systems already 
in the early stages and – as, for instance, the application to 
the CTR case has shown – can also be used to structure the 
engineering process of these systems.

6.4 � Future work

So far, we have identified limitations and needs for future 
work regarding the extension and its evaluation, which we 
will summarize in this section. As discussed in Sect. 5.4.1 
some limitations to the proposed GRL-compliant iStar 
extension still exist. These lead to the need for further 
improvements to the extension as discussed in Sect. 5.4.2. In 
addition, we have discussed limitations originating from the 
threats to validity of the evaluation as outlined in Sect. 6.2, 
which have been identified as needs for future evaluation 
efforts in Sect. 6.3.

Thus, two major research directions exist that need to be 
coped with in future work:

•	 Extending and improving the proposed GRL-compliant 
iStar extension for collaborative CPS. Most notably there 
still exists a need for a formal definition of semantics to 
allow for automated analyses and reasoning about goal 
fulfillment relations. In addition, industry needs exist 
regarding the documentation of contribution links with 
values depending on the different configurations as well 
as extended tool support.

•	 Extending the evaluation of the proposed GRL-compliant 
iStar extension for collaborative CPS. In the evaluation 
of the proposed extension, we have shown that the exten-
sion can be used to adequately model the goals for the 
two selected industry case examples. We have further 
shown that industry professionals regard the extension 
as helpful. Beside the need for further evaluation using 
different case examples, it is also of interest to study the 
use of the extension by industry professionals not only as 



366	 Requirements Engineering (2021) 26:325–370

1 3

interpreters of the models but their ability to create goal 
models using the extension themselves.

7 � Conclusion

In this paper, we have presented a GRL-compliant iStar 
extension for collaborative CPS. Collaborative CPS form 
CPS networks in which they can achieve goals that cannot 
be achieved by individual CPS on their own [22]. In previ-
ous work we have investigated how suitable GRL/iStar is to 
model such collaborative CPS that form CPS networks [23]. 
We found that goal modeling – particularly using GRL – is 
a promising approach to specify collaborative CPS and ana-
lyze the interdependencies between the individual CPS and 
the CPS network. However, we also found that some spe-
cific characteristics of collaborative CPS and CPS networks 
are not sufficiently covered by the iStar modeling language 
so far. Therefore, in this paper we defined requirements for 
extending GRL/iStar to allow for consideration of these 
aspects. Based on these requirements, we have developed a 
GRL-compliant iStar extension and shown its applicability 
and usefulness by employing two industrial case examples. 
We used a cooperative adaptive cruise control system that 
dynamically forms platoons at runtime from the automotive 
industry and autonomous transport robots that form fleets of 
robots to fulfill transportation tasks in smart factories from 
the industry automation domain.

While we have shown the applicability of the approach to 
industrial case examples and made the case for its usefulness 
as seen by industry partners, we have also identified remain-
ing challenges for future work. In this paper we focused on 
defining an appropriate extension to foster graphical mod-
eling in the development of collaborative CPS. This means 
that we mainly addressed communication aspects, support 
for early comprehension and representation of complex rela-
tions within the CPS network, and manual analyses of goal 
relations. This was well-received by industry partners and 
has been shown to be applicable and useful for collaborative 
CPS and CPS networks. Thus, we believe this extension is a 
good starting point for further advanced analysis techniques 
to support requirements engineering of collaborative CPS 
and CPS networks. This is substantiated by the discovered 
desire for automated support in analyzing goal fulfillment 
relations and for identifying and in-depth analysis of con-
crete potentially hazardous instance-level configurations. 
Therefore, in the next step, a thorough definition of goal 
fulfillment semantics is needed. These must also consider 
challenging model elements such as circular and bidirec-
tional dependencies or contributions whose value depends 
on the respective configuration.
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