
Vol.:(0123456789)1 3

Requirements Engineering (2021) 26:325–370
https://doi.org/10.1007/s00766-021-00347-3

ORIGINAL ARTICLE

A GRL‑compliant iStar extension for collaborative cyber‑physical
systems

Marian Daun1  · Jennifer Brings1  · Lisa Krajinski1 · Viktoria Stenkova1  · Torsten Bandyszak1 

Received: 1 January 2020 / Accepted: 5 January 2021 / Published online: 4 February 2021
© The Author(s) 2021

Abstract
Collaborative cyber-physical systems are capable of forming networks at runtime to achieve goals that are unachievable for
individual systems. They do so by connecting to each other and exchanging information that helps them coordinate their
behaviors to achieve shared goals. Their highly complex dependencies, however, are difficult to document using traditional
goal modeling approaches. To help developers of collaborative cyber-physical systems leverage the advantages of goal
modeling approaches, we developed a GRL-compliant extension to the popular iStar goal modeling language that takes the
particularities of collaborative cyber-physical systems and their developers’ needs into account. In particular, our extension
provides support for explicitly distinguishing between the goals of the individual collaborative cyber-physical systems and
the network and for documenting various dependencies not only among the individual collaborative cyber-physical systems
but also between the individual systems and the network. We provide abstract syntax, concrete syntax, and well-formedness
rules for the extension. To illustrate the benefits of our extension for goal modeling of collaborative cyber-physical systems,
we report on two case studies conducted in different industry domains.

Keywords  Goal modeling · Collaborative cyber-physical systems · iStar · GRL

1  Introduction

Goal orientation has proven useful in the development of
various kinds of systems [1]. Various goal modeling tech-
niques support developers in eliciting, documenting, and
validating stakeholder intentions (e.g., [2–20]). In the devel-
opment of cyber-physical systems (CPS), it has also proven
useful to attribute goals to systems or components rather
than stakeholders [21]. This allows for documenting and rea-
soning about dependencies between the goals of different

systems. For example, an automotive cruise control has
the goal to maintain a safe distance to vehicles ahead. To
achieve this goal, it relies on the electronic stability control
to apply the brakes to the vehicle’s wheels.

Recently there has been a trend to develop highly con-
nected CPS, often referred to as collaborative CPS that form
networks at runtime to achieve goals that cannot be achieved
by individual systems [22]. For example, cooperative adap-
tive cruise control systems allow vehicles to form platoons,
where each vehicle maintains the same speed and a safe
distance to the vehicle ahead. This allows for reducing the
safety distances between the vehicles, which in turn reduces
fuel consumption for all following vehicles. The dependen-
cies between goals in such a network are highly complex.
Besides each system having its own goals, which can depend
on the fulfilment of goals of another system in the network,
the network itself has goals that entirely depend on some
combination of goals fulfilled by the individual systems. For
example, the goal of the platoon to maintain small safety
distances depends on each vehicle in the platoon to main-
tain exactly the preset speed. Moreover, these networks can
vary in size and often contain multiple systems of the same
kind. Consequently, there is not only one possible network

 *	 Marian Daun
	 marian.daun@paluno.uni‑due.de

	 Jennifer Brings
	 jennifer.brings@paluno.uni‑due.de

	 Lisa Krajinski
	 lisa.krajinski@paluno.uni‑due.de

	 Viktoria Stenkova
	 viktoria.stenkova@paluno.uni‑due.de

	 Torsten Bandyszak
	 torsten.bandyszak@paluno.uni‑due.de

1	 University of Duisburg-Essen, Essen, Germany

http://orcid.org/0000-0002-9156-9731
http://orcid.org/0000-0002-2918-5008
http://orcid.org/0000-0002-4936-1873
http://orcid.org/0000-0002-5770-0652
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-021-00347-3&domain=pdf

326	 Requirements Engineering (2021) 26:325–370

1 3

configuration but a multitude of configurations that need to
be considered. So, a goal might not depend on one goal to be
fulfilled by one particular system in the network but rather
that one or a certain number of systems fulfill certain goals.
For example, collaborative transport robots can form fleets
that optimize transportation of goods. They do so, by among
others, maintaining a map of their surroundings. To keep
this map up to date each transport robot depends on all the
other robots to keep their map up to date. Traditional goal
modeling techniques are ill-equipped to handle the complex
dependencies between systems and between systems and the
network [23]. The resulting goal models are difficult to com-
prehend because of their large sizes and their multitude of
dependencies. Hence, there is a need to provide a goal mod-
eling approach that takes the particularities of collaborative
CPS and its developers’ needs into account.

In previous work we evaluated the use of the goal-ori-
ented requirement language (GRL) for modeling collabora-
tive CPS [23]. While we identified that goal modeling with
GRL can considerably contribute to the development of col-
laborative CPS, we identified several shortcomings of GRL
for modeling collaborative CPS. The study was conducted
using two industry case examples and involved workshops
and discussions with industry partners. Hence, application
of GRL for modeling collaborative CPS in industry was the
major concern of the investigation.

To this end, this paper contributes a GRL-compliant
extension to the well-established iStar1 language [21, 24]
to provide support in the engineering of collaborative CPS.
Basing our extension on the iStar 2.0 definition given by
Dalpiaz et al. [21] allows principle compatibility with other
iStar extensions. In addition, as best practices and guidelines
do exist for extending iStar 2.0, this supports the definition
of a coherent extension. GRL compliance is desired as we
determined a severe need for standardization in industry and
the use of GRL2 was highly appreciated by our industry part-
ners. In this paper, we define requirements based on these
shortcomings and provide a GRL-compliant extension of
iStar for modeling collaborative CPS.

The major goal of this extension is to provide developers
with a goal modeling language that leverages the advan-
tages of goal orientation while reducing the complexity by

removing the necessity to explicitly document each indi-
vidual dependency in all possible network configurations.
Thus, in this paper we place emphasis on the graphical
modeling, particularly under consideration of reducing the
complexity of the resulting models. Our aim is to improve
manual analysis, understanding of depicted situations,
and communication. At the current point we do not place
emphasis on automated evaluation of the goal models. This
is particularly for the reason that our industry partners were
more interested in gaining an understanding of the system
to be developed than a formal goal fulfillment analysis. As
industry is typically reluctant to introduce goal modeling
approaches in practice [26, 27], we develop the extension
based on observed industry needs.

Our extension provides various means to reduce the com-
plexity of documenting goals for collaborative CPS while
maintaining precision, comprehensibility, and unambigu-
ousness. In this paper, we provide abstract syntax, concrete
syntax and well-formedness rules for our extension. Our
extension was evaluated using two case studies: an example
from the industry automation domain (a fleet of autonomous
transport robots used in a smart factory) and an example
from the automotive industry (a modern cooperative adap-
tive cruise control system). To show that this extension
serves observed needs [23], we use the same case examples
for investigation. In addition, the same industry partners
were involved in workshops and discussions. Both case
examples were provided by industry partners in the context
of the CrESt-project.3 Beside reporting on this case study
evaluation, we also report findings gained from discussions
of the case study with our industry partners.

This paper is structured as follows: Sect. 2 provides
background information on goal modeling in general and
the iStar modeling language in particular. Furthermore,
we detail the specific characteristics of collaborative CPS
to illustrate the shortcomings of traditional goal modeling
techniques for these kinds of systems and formulate specific
requirements to be addressed by our extension. Section 3
discusses related work and evaluates it w.r.t. these require-
ments in order to highlight the shortcomings of traditional
goal modeling techniques. In Sect. 4 we present our exten-
sion including its foundations, abstract syntax, concrete syn-
tax and well-formedness rules. The evaluation of the exten-
sion is shown in Sect. 5. Section 6 summarizes and discusses
the major findings and threats to validity of our case study
evaluation, while Sect. 7 concludes the paper.

1  iStar was originally proposed by Yu et al. [24] and named i*. Later
on, Dalpiaz et al. [21] defined a new metamodel for the language tak-
ing several extensions into account. This work is typically referred to
as iStar 2.0. In the remainder of the paper, we use iStar to refer to
approaches dealing with i* or iStar 2.0 as long as the distinction is
not relevant for our extension.
2  The goal-oriented requirement language (GRL) is standardized by
Recommendation ITU-T Z.151 [25] which is issued by the Interna-
tional Telecommunication Union. The GRL builds upon iStar so that
a common fundament between iStar and GRL is given.

3  CrESt (Collaborative embedded systems) is a joint research project
publicly funded by the German Federal Ministry for Education and
Research (BMBF).

327Requirements Engineering (2021) 26:325–370	

1 3

2 � Background

In this section, we will briefly introduce iStar and goal
modeling foundations (Sect. 2.1) and discuss characteris-
tics of collaborative CPS (Sect. 2.2) that result in the need
to define an extension to existing goal modeling approaches
(Sect. 2.3).

2.1 � Goal modeling

Goal modeling is an established requirements engineering
technique [28]. Goal modeling helps requirements engineers
in focusing on the intentions of stakeholders and document-
ing these in a structured format which allows for detect-
ing relations between different goals such as dependencies
and conflicts [29]. A variety of goal modeling approaches
exist. Most of these approaches document goals in a tree- or
graph-based fashion, which allows for decomposing goals
into smaller sub-goals. Commonly used are the KAOS goal
modeling language [30, 31], the iStar goal modeling lan-
guage [21, 24], and the GRL [25, 32]. For a recent overview
regarding the state of the art of goal-oriented requirements
engineering, please refer to the systematic review by Horkoff
et al. [28]. Our extension targets the popular iStar modeling
language which forms the basis for the standardized goal-
oriented requirement language (GRL). In Sect. 2.1.1 we pro-
vide a brief overview of iStar and in Sect. 2.1.2 we point out
differences between iStar and GRL.

2.1.1 � iStar

The iStar goal modeling language [21, 24] is graph-based—
goal graphs are assigned to different actors (which can be
human or other stakeholders, the system under development,
other systems in the context, or even components of the sys-
tem). Between these actors and the goals (i.e. intentional
elements as goals are further differentiated) dependencies
and contributions can be specified.

Therefore, core concepts underlying iStar include actors,
their intentions (e.g., goals they would like to achieve) and
dependencies between actors. The iStar modeling language
distinguishes two different perspectives. The Strategic
Dependency (SD) model specifies the actors that have inter-
est in the system (and thus provide rationales for system
requirements), and their dependencies. There are several
dependency types. An actor may depend on goals or tasks
that need to be achieved, or resources provided by some
other actor. In contrast, the Strategic Rationale (SR) model
documents the internal intentional elements and their rela-
tionships of an actor and thereby provides a detailed view on
requirements each actor aims to achieve. iStar distinguishes
four different intentional elements: goals, qualities (formerly

called “soft goals”), tasks, and resources. It is also common
to display both the dependencies among actors, as well as
their internal intentional elements in one diagram as a com-
bined or hybrid SD/SR model. This way the actor depend-
encies can be further detailed by, for instance, allowing to
express dependencies between a goal and a task of different
actors.

Figure 1 shows an exemplary iStar model, which repre-
sents an excerpt of a travel booking transaction. It shows
the actors traveler and travel agency. The goal trip booked
is either fulfilled when the task book bundle or the goal trip
parts booked are fulfilled. The task book bundle depends
on the travel agency regarding the dependum trip bundle
booked.

2.1.2 � Goal‑oriented requirement language (GRL)

The goal-oriented requirement language (GRL) is part of
the User Requirements Notation (URN) as standardized by
the International Telecommunication Union (ITU) in Rec-
ommendation Z.151 URN [25]. GRL is based on a subset
of iStar [33]. While GRL shares many core concepts with
iStar, some differences exist. For example, GRL is less
restrictive than iStar, particularly regarding the usage of
relationships for linking intentional elements [32], which
has also been shown to support the diversity of how goal
models are actually created and used [34]. This is favored
by our industry partners as it gives them more freedom to
express their thoughts and reduces the number of syntacti-
cal errors in their goal models. As GRL does not prevent
users from adhering to the stricter rules set by iStar, we did
not observe any issues arising from the loosening of those
restrictions. For a more detailed discussion regarding the
differences between iStar and GRL, please refer to the work
of Amyot et al. [32]. As the usage of standardized languages
is of importance to our industry partner and previous work
has shown the suitability of GRL for the development of col-
laborative CPS [35], we ensured that the proposed extension
can be used with GRL as well.

2.1.3 � GRL‑compliant iStar extension

In our extension, we build upon concepts from both GRL
and iStar. This is due to the fact that while being very simi-
lar, small differences exist that come with different advan-
tages and disadvantages. Mainly, we target GRL due to
its simplicity and its popularity among industry partners.
We target iStar because there are established guidelines
for extending iStar that can support the development of a
high-quality extension. In addition, we reuse useful existing
concepts already proposed by other iStar extensions, which
helps reduce redundancy and increases acceptance.

328	 Requirements Engineering (2021) 26:325–370

1 3

In detail, we use existing concepts as illustrated in Fig. 2.
The figure shows the main concepts from GRL, iStar, and
an iStar extension from which we borrow a specific concept.
As can be seen, iStar 2.0 differs from GRL in that it includes
two more specialized relationship types, i.e., qualifies and
needed-by relationship. Regarding the relationships between
intentional elements, we stick to GRL since it is less com-
plex and less restrictive, which better reflects industry needs
as it allows for easier model creation. However, although we
do not include these two specific relationship concepts in
our extension, as we did not see any need, it is still possible
to use them. Furthermore, iStar 2.0 defines roles and agents
as specializations of actors, which we take as the basis for

defining specific actor types for modeling collaborative CPS
and CPS networks. In addition to iStar and GRL concepts,
we use the coordination task concept from a related exten-
sion proposed by Teruel et al. [36].

2.2 � Collaborative cyber‑physical systems and their
characteristics

CPS are software-intensive systems that closely integrate
physical and software parts [22, 37, 38]. In addition, CPS
are highly interactive with their environment in sensing and
actuating context values and tightly communicating with
other CPS [37, 39]. For example, all vehicles in a platoon

Fig. 1   iStar travel booking example (based on [21])

Fig. 2   Relation between iStar,
GRL and our extension

329Requirements Engineering (2021) 26:325–370	

1 3

record their surroundings like other vehicles or road signs
with their sensors and communicate with each other via sen-
sor data in order to offer a high level of safety.

Collaborative CPS can form networks in which different
constituent systems collaborate and coordinate their activi-
ties in order to achieve goals that go beyond the goals an
individual system can achieve (cf. [22]). For example, col-
laborative transport robots can distribute tasks among each
other in such a way that all robots remain in motion and there
are no overloaded or underloaded robots. This enables them
to achieve a higher goal, which means that transport tasks
are distributed in a coordinated manner and thus completed
faster. These networks are highly dynamic as they reshape
at runtime when systems join and/or leave the network. For
example, a platoon reshapes as vehicles enter or leave the
platoon.

Most CPS must be considered safety–critical, which
consequently leads to the need for thorough engineering
processes [40]. Vital parts of these engineering processes
are early safety analyses. It has been shown that the use of
goal models allows for application of safety analyses in very
early phases [41] and is therefore considered beneficial. In
case of collaborative CPS, safety can be increased through
cooperation between individual systems. For example, in the
automotive domain, the term “cooperative vehicle safety” is
used to denote CPS applications that aim at avoiding haz-
ards and accidents through inter-vehicle collaboration [42,
43]. On the other hand, the safety of collaborating CPS also
poses additional challenges, e.g., due to the involvement of
several manufacturers and the lack of a central authority
governing the development and operation of CPS networks
[44, 45]. As will be shown in the remainder of this paper,
the use of goal models illustrating the interplay of individual
systems and the network can further support increasing the
safety of collaborative CPS.

2.3 � Requirements for a GRL‑compliant iStar
extension for collaborative cyber‑physical
systems

Modeling collaborative CPS with iStar/GRL goal mod-
els is challenging as such goal models have the tendency
to become large, complex, and thus unsuitable for human
engineers and analysts. In our previous work [23] we report
empirical results, from which we identified challenges for
goal modeling of collaborative CPS. We conducted two
case studies with industry partners from different domains.
The goal of the two case studies was to systematically iden-
tify challenges and limitations of goal modeling with GRL
related to the representation of typical collaborative CPS
characteristics (see Sect. 2.2). Beside the general obser-
vation that goal models of collaborative CPS can easily
become large and complex, we identified six major chal-
lenges regarding what needs to be represented when mod-
eling goals of collaborative CPS and CPS networks.

We further analyzed and refined these challenges in order
to derive specific, detailed requirements for extending iStar
so that it allows engineers to specify collaborative CPS in a
goal-oriented manner. On the one hand, these requirements
are grounded in the characteristics of collaborative CPS and
CPS networks. On the other hand, the requirements are also
substantiated by empirical evidence from our two case stud-
ies reported in our previous work and are thus aligned with
the specific needs faced by requirements engineers. Moreo-
ver, the requirements are tailored specifically for the iStar
goal modeling language that shall be extended. Figure 3
illustrates the three sources that were considered during the
requirements definition process.

In the following, we briefly summarize the six major
challenges reported in [23] and present the respective iStar
extension requirements we derived from these challenges.

Fig. 3   Requirements sources for
the proposed extension

330	 Requirements Engineering (2021) 26:325–370

1 3

2.3.1 � Challenge 1: need for distinction between network
and systems

Collaborative CPS form networks with other collaborative
CPS, which allows them to enhance their functionality and
fulfill goals they cannot fulfill on their own. It is impor-
tant to be able to identify the owner of a goal; i.e. it must
be distinguishable whether an individual system strives to
fulfill a certain goal or just contributes to an overall goal of
the network. In some cases, engineers need to reason about
the CPS network’s goals independent of the goals of the
collaborative CPS, and in some cases, engineers need to be
able to reason about the network under consideration of the
individual collaborative CPS that are part of the network and
their goals. Therefore, we can derive the following specific
requirements for an iStar goal modeling extension:

Req-1.1: The iStar extension must allow the distinction
between individual CPS and the network of CPS.

Req-1.2: The iStar extension must allow for flexibil-
ity regarding the visual representation of the relation of
the CPS network and individual CPS. I.e. it must be pos-
sible to specify individual CPS as part of the CPS network
and also allow for comparing the CPS network and CPS at
the same level of abstraction.

2.3.2 � Challenge 2: need for mirroring of goals

In many cases goals of the network rely on very similar goals
of the individual systems. For example, the vehicles, which
are the individual systems, have the goal to reduce their indi-
vidual driving time, and the platoon, which forms the col-
laborative CPS network, has the goal to save the overall driv-
ing time of all vehicles. Hence, it is often the case that the
network and the individual system have very similar goals
that mutually depend on each other. Consequently, there is a
need to assign goals to individual CPS as well as to the CPS
network and to document the relations between those goals,
which leads to the following requirements:

Req-2.1: The iStar extension must allow for intentional
elements to be attributable to individual CPS.

Req-2.2: The iStar extension must allow for intentional
elements to be attributable to CPS networks.

Req-2.3: The iStar extension must allow for documenting
of mutual dependencies between intentional elements of the
collaborative CPS network and collaborative CPS.

2.3.3 � Challenge 3: need for considering multiple identical
collaborative CPS

A collaborative CPS network may contain multiple col-
laborative CPS of the same type, e.g., a platoon consists
of several identical vehicles. The explicit specification of
each possible network is infeasible as this would require

specifying not only a large number of possible network con-
figurations, but also networks of an extremely large size.
Consequently, not only is the explicit modeling of the goals
for each possible network configuration infeasible, even the
explicit modeling of all individual collaborative CPS in large
networks is infeasible. Consequently, suitable abstractions
are required to enable the modeling of multiple identical
CPS whose number can vary. Therefore, we define the fol-
lowing requirements:

Req-3.1: The iStar extension must allow for documenting
all networks without the need for modeling each possible
network explicitly.

Req-3.2: The iStar extension must allow for documenting
identical collaborative CPS in a network without the need
for modeling each collaborative CPS individually.

2.3.4 � Challenge 4: need for dependencies
between systems of the same type

Another common situation that needs to be considered is a
collaborative CPS relying on systems of the same type to
fulfill the same goal. For example, all following vehicles
in a platoon have the goal to avoid collisions, which can
partly be fulfilled by regulating their speed based on each
other’s speeds. As the goal model cannot show each indi-
vidual collaborative CPS that can be part of such a network,
abstraction mechanisms are needed to adequately represent
the occurrence of multiple identical systems and the depend-
encies between them. Particularly, there is a need to consider
dependencies, where one system’s intentional element relies
on an intentional element from other systems of the same
type. Therefore, we can derive the following specific require-
ments for an iStar goal modeling extension:

Req-4.1: The iStar extension must allow for documenting
intentional elements of collaborative CPS of the same type.

Req-4.2: The iStar extension must allow for documenting
dependencies between an intentional element of a collabora-
tive CPS and the same intentional element of other systems
of the same system type.

2.3.5 � Challenge 5: need for roles and dynamic role
assignments

Collaborative CPS in networks may have different respon-
sibilities. This might even be true for identical collabora-
tive CPS. For example, in a platoon, all collaborative CPS
are vehicles, but the foremost vehicle has the role of lead
vehicle and thus the responsibility for all vehicles in the
platoon. Therefore, there is a need to assign roles to collabo-
rative CPS in a network. As collaborative CPS networks are
dynamic, and therefore, reshape at runtime as collaborative
CPS join or leave the network, roles must be reassignable

331Requirements Engineering (2021) 26:325–370	

1 3

at runtime. Therefore, we can derive the following specific
requirements for an iStar goal modeling extension:

Req-5.1: The iStar extension must allow for documenting
different roles a collaborative CPS can be assigned.

Req-5.2: The iStar extension must allow for documenting
mechanisms to reassign roles.

2.3.6 � Challenge 6: need for considering conflicts
between goals of the individual collaborative CPS
and the CPS network

Collaborative CPS join an existing or form a new network
to achieve some goals they cannot achieve by themselves.
However, participating in a network may be a trade-off that
impedes the fulfillment of other goals. Therefore, it is some-
times impossible to assign values to contribution links for
intentional elements of the network actor because the value
can be different depending on the goals of each collaborative
CPS. For example, in a platoon it can happen that vehicles
have a common goal they can reach together but differ in the
other goals. For example, it can be important for one vehi-
cle to drive in an environmentally friendly manner, while
another vehicle in the same platoon may not consider this
important. Therefore, we define the following requirement:

Req-6.1: The iStar extension must allow for contributions
to be assigned variable values that can change depending
on the goals of a collaborative CPS.

2.3.7 � Further requirements

As already outlined, the iStar extension shall be GRL-com-
pliant due to the fact that we found GRL well-received by
our industry partners in the previous investigation. In addi-
tion, the extension shall adhere to established guidelines for
iStar extensions [46]. Therefore, Table 1 gives the individual
guidelines and briefly explains how they shall be achieved,
and which section of this paper elaborates on the respective
aspects. Note that some realizations overlap (i.e. the same
approach is taken), in these cases we avoid redundancy by
simply referring to the aforementioned realization.

3 � Related work

For discussing the related work, we focus on three kinds
of approaches commonly proposed in the state of the art.
Section 3.1 will introduce goal modeling approaches for
systems-of-systems, which can be interpreted as a network
of collaborative CPS that is designed top to bottom, with
exact knowledge about the partaking systems and their com-
positions. Section 3.2 discusses goal modeling approaches
for multi-agent systems, which are in so far related as
commonly the case is made that the agents in multi-agent

systems collaborate to maximize their goal fulfillment. How-
ever, unlike for collaborative CPS, the network itself is typi-
cally not given the credit of having its own goals. Lastly, in
Sect. 3.3 we review other existing extensions for the iStar
goal modeling language, which we partly build upon, as we
will show in Sect. 3.4.

3.1 � Goal modeling approaches
for systems‑of‑systems

Systems-of-systems (SoS) engineering is a related research
area where the consideration of goals is of particular interest.
Distinguishing goals of the SoS under consideration from
the goals of the individual constituent systems is important
in the requirements engineering for SoS [53]. These two
levels (which are also sometimes called “macro level” and
“micro level” [54]) of goal modeling for SoS allow analyz-
ing collaborations between individual systems by focusing
on how their individual goals contribute to SoS-level goals
[55]. These contributions are conceptually described by
Cavalcante et al. [55], without proposing a specific mod-
eling notation; instead, it is referred to traditional goal
modeling syntax elements, such as actors for modeling both
SoS and its constituent systems. While decomposition links
are mainly used within each goal modeling level, contribu-
tion links also occur between goals on different levels [55].
Additionally, Cavalcante et al. propose a new kind of link,
interaction links, to explicitly account for emergent behavior
through goals whose satisfaction results from interactions
among individual systems.

In addition to such conceptual approaches, there are also
specific guidelines and notations for modeling SoS goals
and constituent system goals. Lewis [53] suggests creating
separate AND/OR goal trees for the individual systems and
the SoS in order to identify common goals in the different
individual systems’ goal models as well as conflicting goals,
both between individual systems and the overall SoS goals.
Garro and Tundis use stereotypes to characterize the goals
of stakeholders and of complex SoS used to achieve these
goals [56]. Additionally, relationships between these goals
are modeled in a manner similar to UML use case diagrams.

According to Silva et al., closely connected to SoS goals
is the mission concept [57]. Goals are associated to the mis-
sion of the overall SoS and the mission of the constituent
systems. Thereby, the goals related to the mission of an SoS
are achieved through collaboration between the individual
systems. Hence, Silva et al. [58] propose a mission-centered
SoS design process, covering a dedicated mission-level,
where missions of individual systems and the SoS are mod-
eled. For modeling missions in an SoS context, they propose
the mKAOS approach [58–60] that builds upon the KAOS
goal modeling language [31] and includes SoS-relevant
extensions. For operationalizing goals, mKAOS includes

332	 Requirements Engineering (2021) 26:325–370

1 3

two kinds of capability models, one of which is concerned
with modeling information exchange between individual
systems and the resulting capabilities the SoS provides
(denoted “communicational capabilities”). Furthermore,
mKAOS includes a dedicated emergent behavior model
that groups and relates such SoS capabilities to resulting
emergent properties/functionalities. Garcés and Nakagawa
provide guidelines and recommendations for the creation of
mKAOS models [61]. These also include global missions
of a SoS on multiple levels of abstraction by goal refine-
ment and abstraction to identify rationales behind a SoS’s
missions.

3.2 � Goal modeling approaches for multi‑agent
systems

Another related term is that of multi-agent systems (MAS),
which refers to systems composed of several autonomous
agents that collaborate in order to autonomously (i.e.,
without human intervention) accomplish tasks (cf. [62]).
According to Wooldridge [63], apart from autonomy, reac-
tiveness, and proactiveness, an agent has essential social
abilities allowing the engagement in collaborations and
interactions to jointly solve complex problems. In such a
collaboration, however, an agent makes rational decisions

Table 1   Realization of the iStar extension guidelines from [45]

a The industry professionals partaking have years of experience in their field and were involved in many substantial projects for their companies,
partly taking leading roles. Thus, we consider them domain experts in the domains of automotive, industry automation and robotics. Among
the authors of this study are researchers highly experienced with GRL and iStar. They have applied GRL and iStar in various industrial settings,
published research on this topic (e.g., [23, 35, 48]), have years of experience in teaching GRL and iStar in university master level requirements
engineering courses (cf. [49, 50]) and have defined an industry course teaching GRL to industry professionals [51]. The course is in use at the
Schaeffler AG to teach goal modeling for the engineering of automotive CPS [52]. However, please note that the authors are no domain experts
and the industry participants no GRL/iStar experts

Guidelines taken from [45] Realization

G1 Preserve the language (iStar) original syntax It is a requirement to propose an extension that makes use of the
original syntax and extends this syntax naturally. The extension of
the concrete syntax will be shown in Sect. 4.3, the integration of
new elements with elements of the original syntax can be seen in
Sect. 5.2

G2 Carry out consistent, complete and without-conflicts extensions and
follow a process/method to do them

We extend the iStar metamodel systematically to provide a clear
definition and also for relating elements of the original iStar
notation to the newly proposed elements. The metamodel of the
extension can be found in Sect. 4.2

G3 Perform a literature review, include the participation of domain
experts and iStar experts and model systems of application area
before extending

We conducted a literature review on the topic to find existing iStar
extensions that can contribute to the above-mentioned require-
ments. Section 3 will discuss related works and Sect. 3.4 will
explicitly show, how these extensions can contribute to fulfilling
the defined requirements. In addition, we conducted a study with
domain experts to identify industry needs for an iStar extension for
collaborative CPS [23]a

G4 Describe a clear definition of the extension concepts see G2
G5 Propose concrete and abstract syntax of the extension We specify the abstract syntax using a metamodel that extends the

iStar 2.0 metamodel. In Sect. 4.1 we introduce a GRL-compliant
iStar metamodel extension and extend this in Sect. 4.2 to the
specifics of collaborative CPS. We provide a definition for the con-
crete syntax in Sect. 4.3 and show its application to industrial case
examples in Sect. 5.2. This application also allows for verifying
consistency between the defined concept and the concrete syntax

G6 Check consistency between abstract and concrete syntaxes see G5
G7 Relate concepts introduced by the extensions with the iStar concepts see G2
G8 Define extensions with the smallest possible number of modifica-

tions and new representations in order not to complicate the use of
the modeling language (iStar)

see G2

G9 Propose careful and simple graphical representations, able to be
drawn on paper without a tool

The concrete syntax extensions are designed to seamlessly integrate
with the existing iStar syntax. Furthermore, we define the concrete
syntax based on guidelines proposed by Moody [47] to achieve a
simple and intuitively usable graphical notation

333Requirements Engineering (2021) 26:325–370	

1 3

w.r.t. maximizing its own benefit according to its agent-
internal goals and interests (cf., e.g., [63]). This is reflected,
for instance, in the established BDI reference model for
autonomous agents (cf. [64, 65]), which describes an agent’s
mental attitudes by information about the current state of its
surroundings (Beliefs), the set of tasks it principally aims
to achieve (Desires), and the tasks it is actually carrying
out (Intentions), all of which determine an agent’s behavior.
Multiple iStar-based agent-oriented modeling approaches
have been proposed [66]. Goal-based MAS approaches typi-
cally consider goals as runtime entities that are used during
operation of agents to coordinate the interaction within a
MAS as well as single agents (cf., e.g., [67]). Thus, goal del-
egation during operation of a MAS (cf., e.g., [68]) is also an
important topic for MAS development. Similarly, the opera-
tional semantics of goals as well as their dynamic lifecycle
are also considered by some approaches [69].

An important concept considered for the development of
MAS is the role concept. The role concept is essential for
both describing the static organization and structure of a
MAS, as well as for enabling the formation of multi-agent
systems (cf. [70, 71]). Roles an agent can take are typically
defined by a set of responsibilities and a set of permissions
[72]. The current roles of an agent define its functionality
and behavior, as well as the possible interactions with other
roles that can be taken by other agents (cf. [73, 74]). In par-
ticular, the responsibilities can be seen as required function-
alities related to a certain role [74]. A role can be responsible
for carrying out a task on its own, but also be involved in a
collaboration to jointly achieve some task [73]. Such a col-
laboration is sometimes named an “agent group”, i.e. a set
of agents that are related via interactions of their roles [75].
There can be relationships between roles, such as compat-
ibility and dependencies [76, 77]. Roles can also determine
a hierarchical structure of a MAS [78].

Specific goal modeling approaches for MAS include
Tropos [2], where, among others, beliefs are considered as
a dedicated modeling concept, in addition to the original
iStar goal modeling language it is built upon. The Tropos
approach comprises a methodology that covers the early
and late requirements phases, where goal models are used,
as well as later phases up to the implementation of agent-
based software systems. In the late requirements analysis
phase, the system under development is introduced as an
actor and related to stakeholders using dependency relation-
ships. Goal-based reasoning in the Tropos methodology is
described in detail by Giorgini et al. [79].

The goal modeling approach proposed by Zhong and
DeLoach [80] explicitly distinguishes goal classes and goal
instances. The latter are created and assigned to specific
agents at runtime. Furthermore, they introduce relationship
types that can materialize between goals in order to spec-
ify control flow structures, such as a goal being triggered

by another goal, or goal precedence (i.e., a goal requires
the execution of some other goals before being allowed to
become active). Goal instances are also explicitly considered
by Thangarajah et al. [81], where goal models are used to
identify interaction between different goals an agent may
be able to achieve simultaneously. Cheong and Winikoff
use so-called interaction goals, which specify goals of the
interaction between different agents, to design multi-agent
systems [82–84]. These interaction goals are modeled in a
hierarchical goal tree.

3.3 � Specific iStar goal modeling extensions

The basic iStar goal modeling language, as described in
Sect. 2.1.1, has been extended by researchers in several
ways. A recent survey of iStar extensions was provided by
Gonçalves et al. [85]. In the following, we will review some
of the approaches that are related to our approach.

Teruel et al. proposed an iStar extension for collaborative
systems [36, 86, 87]. In this approach, the term “collabo-
rative system”, however, is not used to denote the kind of
system that is in focus of our work (cf. Sect. 2.2). Instead,
it refers to information systems that support the collabora-
tion between humans, e.g., collaborative implementation of
code with the help of a version control software like git. The
approach of Teruel et al. aims at specifying requirements of
such collaborative systems. Hence, the proposed extensions
to iStar reflect the collaboration between humans, which
results in the definition of additional concepts. Specifically,
Teruel et al. propose different task types, i.e., individual
tasks of single users as well as collaboration tasks, commu-
nication tasks, and coordination tasks. The latter three types
of tasks are used to model tasks in which two or more users
are involved and are based on the established 3C conceptual
model for groupware [88]. Along with these task specializa-
tions, participation links are proposed to model which user is
involved in which (collaboration, communication, or coordi-
nation) task. Cardinality constraints attached to these partici-
pation links specify the number of users that can be involved
in a task. Furthermore, responsibility links are used to cap-
ture goal and task responsibilities of users, which separates
responsibility from actually carrying out some collaboration
activity. Again, based on the 3C model, Teruel et al. consider
a user’s awareness of other users’ activities in the form of
awareness softgoals and awareness resources.

Ali et al. propose a goal modeling approach that enhances
Tropos goal models with context information [3]. In this
approach, variability that is present in the context of a sys-
tem under consideration is captured through annotations of
goals as well as decomposition, dependency, and contri-
bution links. That way, conditional achievement of goals,
depending on relevant context properties, can be modeled.
As a result, the overall annotated goal model specifies goal

334	 Requirements Engineering (2021) 26:325–370

1 3

model variants, i.e., different ways goals can be achieved,
depending on context information. Ali et al. use the contex-
tual goal modeling approach to support the deployment of
variable systems into environments that also contain variable
parts [89]. Another approach dealing with variability is pre-
sented by Silva et al. [90]. Goal models are used to explicitly
document variability of software product lines. Therefore,
cardinalities are introduced for different intentional ele-
ments as well as for the means-end links connecting variable
intentional elements. Borba and Silva, additionally to the
cardinality concept, suggest the explicit mapping of feature
models and goal models [91].

Another related iStar extension [92] aims at modeling
ambient intelligent systems that are deeply embedded in
daily human activities and invisible to their users. Such
ambient systems, similar to CPS, integrate the physical sur-
roundings and computation, but also human users. Most
notably, the approach relates to goal modeling for collabo-
rative CPS in that it utilizes actor decomposition relation-
ships to constituent components of ambient systems. That
way, actors being composed of other actors can be modeled.
In addition, communication links between actors, includ-
ing communication between users and technology, as well
as between different technological components/subsystems
are defined.

Other iStar and GRL extensions often propose the use
of stereotypes to document additional information. For
instance, Marosin and Ghanavati propose the annotation of
vague and informal information in goals, softgoals, and tasks
via stereotypes [93]. Gailly et al. propose the documentation
of domain knowledge that is annotated using stereotypes and
defined using an ontology-based approach [94].

3.4 � Requirements evaluation

In summary, there exist a multitude of approaches that can
contribute to the individual requirements defined in Sect. 2.3.
Table 2 summarizes the state of the art with respect to the
requirements. However, existing approaches are typically not
capable of fulfilling more than one requirement and not all
requirements can be fulfilled. Nevertheless, the integration
and harmonizing of existing works can support the definition
of a coherent solution concept, as we will show in Sect. 4.

4 � GRL‑compliant iStar extension
for modeling collaborative cyber‑physical
systems

In Sect. 2, we introduced iStar and GRL as the founda-
tion our extension builds upon in detail and discussed the
requirements for the extension. As already some extensions
or modifications to the iStar language exist, which at least

can be partly used to address some of the challenges of goal
modeling for collaborative CPS, we do not rely on the pure
version of the iStar language but an adapted one. As out-
lined above, we had the requirement to develop an exten-
sion compliant with the GRL. In addition, we make use of
different already existing extensions that provided us with
already established modeling concepts. This is outlined in
Sect. 4.1. We build our final extension in Sect. 4.2 on this
initial metamodel consisting of the combination and integra-
tion of proposed concepts from the related work. Based on
the metamodel introduced in Sects. 4.2, and 4.3 defines the
concrete syntax for the new modeling elements. In Sect. 4.4
well-formedness rules are defined and Sect. 4.5 presents tool
support for creating models according to the extension.

In the following subsections, a cooperative adaptive
cruise control system (CACC, [95]) is used as a running
example to motivate the need of the metamodel extensions
and to illustrate the concrete syntax. A CACC is a mod-
ern version of a common adaptive cruise control (ACC).
An ACC is a cruise control system that, in addition to the
cruise control function, also ensures that the distance to the
vehicle ahead does not underrun a safe minimum distance.
The CACC is a collaborative CPS that also communicates
with other CACCs. Thus, they form a platoon (i.e. the CPS
network) which allows driving with minimized distances
between the partaking vehicles. This reduces fuel consump-
tion, emissions, and increases traffic throughput on motor-
ways [96].

4.1 � Foundations for the metamodel
of the extension

Figure 4 shows the metamodel for the goal modeling lan-
guage upon which we build our extension. The goal modeling
language can be considered a combination of the iStar lan-
guage and GRL. The metamodel is similar to the metamodel
defined by Dalpiaz et al. [21]. In the following we use UML
class diagrams to define the metamodel. This ensures com-
parability with the definition of iStar 2.0 by Dalpiaz et al.
[21], who also used UML class diagrams for metamodel
definition. However, some adjustments have been made to
maintain compatibility with GRL. For example, we removed
various restrictions. An intentional element can contribute to
any other kind of intentional element, not just to softgoals,4
and all intentional elements can be refined not just goals
and tasks. Regarding the refinement, the OR-Refinement
was further separated into an IOR-Refinement and an XOR-
Refinement. A further intentional element, defined by GRL,
the belief was added. We do not include the agent concept

4  In accordance with GRL we use the term softgoal instead of qual-
ity.

335Requirements Engineering (2021) 26:325–370	

1 3

Ta
bl

e 
2  

P
os

si
bl

e
co

nt
rib

ut
io

ns
 fr

om
 th

e
st

at
e

of
 th

e
ar

t t
o

ac
hi

ev
e

th
e

re
qu

ire
m

en
ts

Re
qu

ire
m

en
t

C
on

tri
bu

tio
n

fro
m

 st
at

e
of

 th
e

ar
t

Re
q-

1.
1

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 th
e

di
st

in
ct

io
n

be
tw

ee
n

in
di

vi
du

al
 C

PS
 a

nd
 th

e
ne

tw
or

k
of

 C
PS

D
iff

er
en

tia
tio

n
of

 a
ct

or
s,

as
 is

 c
om

m
on

ly
 su

gg
es

te
d

to
 b

e
do

ne
 b

y
us

in
g

ste
re

ot
yp

es
 (c

f
[5

5,
 9

3,
 9

4]
),

ca
n

co
nt

rib
ut

e
to

 th
e

fu
lfi

llm
en

t o
f t

hi
s r

eq
ui

re
m

en
t

Re
q-

1.
2

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r fl

ex
ib

ili
ty

 re
ga

rd
in

g
th

e
vi

su
al

 re
pr

es
en

ta
tio

n
of

 th
e

re
la

tio
n

of
 th

e
C

PS
 n

et
wo

rk
 a

nd
 in

di
vi

du
al

 C
PS

. I
.e

. i
t m

us
t b

e
po

ss
ib

le
 to

 sp
ec

ify

in
di

vi
du

al
 C

PS
 a

s p
ar

t o
f t

he
 C

PS
 n

et
wo

rk
 a

nd
 a

ls
o

al
lo

w
 fo

r c
om

pa
ri

ng
 th

e
C

PS

ne
tw

or
k

an
d

C
PS

 o
n

th
e

sa
m

e
le

ve
l o

f a
bs

tra
ct

io
n

Th
e

co
m

po
si

tio
n

of
 a

ct
or

s (
cf

. [
92

])
 w

hi
ch

 a
llo

w
s f

or
 d

ep
ic

tin
g

ho
w

 a
 C

PS
 n

et
w

or
k

ca
n

be
 m

od
el

ed
 a

s c
om

po
se

d
of

 in
di

vi
du

al
 c

ol
la

bo
ra

tiv
e

C
PS

, c
an

 c
on

tri
bu

te
 to

 th
e

fu
lfi

ll-
m

en
t o

f t
hi

s r
eq

ui
re

m
en

t

Re
q-

2.
1

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r i

nt
en

tio
na

l e
le

m
en

ts
 to

 b
e

at
tr

ib
ut

ab
le

 to
 in

di
vi

du
al

C

PS
Sp

ec
ify

in
g

se
pa

ra
te

 g
oa

l m
od

el
s f

or
 th

e
in

di
vi

du
al

 sy
ste

m
s a

nd
 th

e
ov

er
al

l s
ys

te
m

 (c
f.

[5
3]

) c
an

 c
on

tri
bu

te
 to

 th
e

fu
lfi

llm
en

t o
f t

hi
s r

eq
ui

re
m

en
t

Re
q-

2.
2

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r i

nt
en

tio
na

l e
le

m
en

ts
 to

 b
e

at
tr

ib
ut

ab
le

 to
 C

PS

ne
tw

or
ks

se
e

Re
q-

2.
1

Re
q-

2.
3

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
of

 m
ut

ua
l d

ep
en

de
nc

ie
s b

et
we

en
 in

te
n-

tio
na

l e
le

m
en

ts
 o

f t
he

 c
ol

la
bo

ra
tiv

e
C

PS
 n

et
wo

rk
 a

nd
 c

ol
la

bo
ra

tiv
e

C
PS

In
te

ra
ct

io
n

lin
ks

, t
o

ex
pl

ic
itl

y
ac

co
un

t f
or

 e
m

er
ge

nt
 b

eh
av

io
r t

hr
ou

gh
 g

oa
ls

 w
ho

se
 sa

tis
-

fa
ct

io
n

re
su

lts
 fr

om
 in

te
ra

ct
io

ns
 a

m
on

g
in

di
vi

du
al

 sy
ste

m
s.

(c
f.

 [5
6]

) c
an

 c
on

tri
bu

te
 to

th

e
fu

lfi
llm

en
t o

f t
hi

s r
eq

ui
re

m
en

t
U

si
ng

 U
M

L
us

e
ca

se
-li

ke
 d

ia
gr

am
s t

o
ex

pr
es

s t
he

 re
la

tio
n

be
tw

ee
n

in
di

vi
du

al
 g

oa
ls

 a
nd

ne

tw
or

k
go

al
s (

cf
. [

57
])

 c
an

 c
on

tri
bu

te
 to

 th
e

fu
lfi

llm
en

t o
f t

hi
s r

eq
ui

re
m

en
t

A
 m

is
si

on
 c

on
ce

pt
 to

 e
xp

re
ss

 th
at

 g
oa

ls
 o

f i
nd

iv
id

ua
l s

ys
te

m
s a

re
 u

se
d

to
 a

ch
ie

ve
 th

e
ov

er
al

l s
ys

te
m

’s
 g

oa
ls

 (c
f.

[5
6]

) c
an

 c
on

tri
bu

te
 to

 th
e

fu
lfi

llm
en

t o
f t

hi
s r

eq
ui

re
m

en
t

Re
q-

3.
1

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
al

l n
et

wo
rk

s w
ith

ou
t t

he
 n

ee
d

fo
r m

od
-

el
in

g
ea

ch
 p

os
si

bl
e

ne
tw

or
k

ex
pl

ic
itl

y
–

Re
q-

3.
2

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
id

en
tic

al
 c

ol
la

bo
ra

tiv
e

C
PS

 in
 a

 n
et

-
wo

rk
 w

ith
ou

t t
he

 n
ee

d
fo

r m
od

el
in

g
ea

ch
 c

ol
la

bo
ra

tiv
e

C
PS

 in
di

vi
du

al
ly

Th
e

co
nc

ep
t o

f m
ul

tip
lic

iti
es

 a
nd

 c
ar

di
na

lit
ie

s f
ro

m
 v

ar
ia

bi
lit

y
m

od
el

in
g

an
d

so
ftw

ar
e

pr
od

uc
t l

in
e

en
gi

ne
er

in
g

ca
n

be
 u

se
d

to
 d

ep
ic

t a
ct

or
s t

ha
t c

an
 o

cc
ur

 m
ul

tip
le

 ti
m

es
 [3

,
90

, 9
1]

, w
hi

ch
 c

an
 c

on
tri

bu
te

 to
 th

e
fu

lfi
llm

en
t o

f t
hi

s r
eq

ui
re

m
en

t
Re

q-
4.

1
Th

e
iS

ta
r e

xt
en

si
on

 m
us

t a
llo

w
 fo

r d
oc

um
en

tin
g

in
te

nt
io

na
l e

le
m

en
ts

 o
f c

ol
la

bo
ra

tiv
e

C
PS

 o
f t

he
 sa

m
e

ty
pe

se
e

Re
q-

3.
2

Re
q-

4.
2

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
de

pe
nd

en
ci

es
 b

et
we

en
 a

n
in

te
nt

io
na

l
el

em
en

t o
f a

 c
ol

la
bo

ra
tiv

e
C

PS
 a

nd
 th

e
sa

m
e

in
te

nt
io

na
l e

le
m

en
t o

f o
th

er
 sy

ste
m

s o
f

th
e

sa
m

e
sy

ste
m

 ty
pe

–

Re
q-

5.
1

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
di

ffe
re

nt
 ro

le
s a

 c
ol

la
bo

ra
tiv

e
C

PS
 c

an

be
 a

ss
ig

ne
d

In
tro

du
ci

ng
 a

 ro
le

 c
on

ce
pt

 (c
f.

[7
0,

 7
1]

) t
o

di
ffe

re
nt

ia
te

 b
et

w
ee

n
di

ffe
re

nt
 ro

le
s t

ha
t a

 c
ol

-
la

bo
ra

tiv
e

C
PS

 n
ee

ds
 to

 ta
ke

 w
ith

in
 th

e
C

PS
 n

et
w

or
k

ca
n

co
nt

rib
ut

e
to

 th
e

fu
lfi

llm
en

t
of

 th
is

 re
qu

ire
m

en
t

Re
q-

5.
2

Th
e

iS
ta

r e
xt

en
si

on
 m

us
t a

llo
w

 fo
r d

oc
um

en
tin

g
m

ec
ha

ni
sm

s t
o

re
as

si
gn

 ro
le

s
U

si
ng

 th
e

co
nc

ep
t o

f c
oo

rd
in

at
io

n
ta

sk
s (

cf
. [

36
, 8

6,
 8

7]
) t

o
ex

pr
es

s t
he

 a
ss

ig
nm

en
t o

f a

ro
le

 to
 a

 c
er

ta
in

 a
ct

or
 c

an
 c

on
tri

bu
te

 to
 th

e
fu

lfi
llm

en
t o

f t
hi

s r
eq

ui
re

m
en

t
Re

q-
6.

1
Th

e
iS

ta
r e

xt
en

si
on

 m
us

t a
llo

w
 fo

r c
on

tr
ib

ut
io

ns
 to

 b
e

as
si

gn
ed

 v
ar

ia
bl

e
va

lu
es

 th
at

ca

n
ch

an
ge

 d
ep

en
di

ng
 o

n
th

e
go

al
s o

f a
 c

ol
la

bo
ra

tiv
e

C
PS

–

336	 Requirements Engineering (2021) 26:325–370

1 3

here as it will be further specialized in our extension for col-
laborative CPS. All changes made correspond with the GRL
metamodel presented in Amyot et al. [32].

In the following, we briefly outline the most important
entities and relationships defined by the metamodel. We
detail the use of actors, intentional elements, and depend-
encies especially regarding their use for creating goal models
for collaborative CPS networks.

4.1.1 � Actors

Actors are commonly used to specify stakeholder intentions
or define systems. In our case, we focus on the definition
of systems. Actors are assigned intentional elements for

which the actor strives to achieve fulfillment. An actor can
be linked to another actor through an is-a-relationship or
a participates-in-relationship. The is-a-relationship defines
that some actor is of a certain type defined by the other actor.
For instance, a CACC is also an ACC, thus, sharing parts of
its intentional elements with a common ACC. The semantics
of the participates-in relationship is defined by iStar 2.0; it
depends on the type of actors between which the relation-
ship is modeled. The participates-in relationship resembles a
“plays” relationship when modeled between an agent as the
source and a role as the target element, and “part-of” when
it connects two actors of the same type.

In addition, an actor can be a role (i.e. role as a speciali-
zation of actor). This is a bit counterintuitive, as one would

Fig. 4   GRL-compliant iStar metamodel

337Requirements Engineering (2021) 26:325–370	

1 3

typically assume that an actor plays a role (e.g., the role of an
intruder vehicle). However, we want to stay consistent to the
iStar 2.0 metamodel and thus define role as a specialization
of actor. This also has the benefit that for modeling the role
the actor symbol can be used. In the CACC example roles a
CACC takes in a platoon might be lead or following vehicle.

4.1.2 � Intentional elements

An intentional element can be a goal (i.e. “a condition or
state of affairs in the world that the stakeholders would like
to achieve” [25]), softgoal (i.e. “a condition or state of affairs
in the world that the actor would like to achieve, but […]
there are no clear-cut criteria for whether the condition is
achieved” [25]), task (i.e. an intentional element that “speci-
fies a particular way of doing something” [25]), resource (i.e.
“a physical or informational entity” [25]), or belief (i.e. an
intentional element that is “used to represent design ration-
ale” [25]). A goal of a CACC might be to avoid collisions.
Intentional elements can contribute to other intentional ele-
ments. This means that the fulfillment of one intentional
element is supported, satisfied, hindered, or prevented by the
fulfillment of another intentional element. For further pos-
sible contribution types between intentional elements, please
refer to the ITU Recommendation Z.151 [25]. All intentional
elements can be refined (often referred to as decomposed)
into other intentional elements either through an AND- or
an OR-refinement. The AND-refinement connects one inten-
tional element with two or more sub-intentional elements,
where the fulfillment of the intentional element depends
on the fulfillment of all sub-intentional elements. For OR-
refinements not all sub-intentional elements need to be ful-
filled to achieve fulfillment of the super-intentional element.
OR-refinements can be characterized either as IOR-refine-
ment or as XOR-refinements. The IOR-refinement connects
one intentional element with multiple sub-intentional ele-
ments, where at least one sub-intentional element needs to
be fulfilled to guarantee fulfillment of the super-intentional
element. The XOR-refinement connects one intentional ele-
ment with multiple sub-intentional elements, where the ful-
fillment of the intentional element can be achieved by only
one of the sub-intentional elements.

4.1.3 � Dependencies

Dependencies describe the relationship between different
actors and between intentional elements of different actors.
A dependency defines that one actor is dependent on another
actor with respect to fulfilling some of its intentional ele-
ments or that the fulfillment of one intentional element of
one actor depends on another actor in general or a concrete
fulfillment of one of its intentional elements. A dependency
can exist between two actors, two intentional elements or

combinations thereof. For example, two actors, an actor
and a goal, or a goal and a task can be in a dependency
relationship. The actor can take the position of a depender,
who depends on another actor, for example, to perform a
task or achieve a goal. The actor can also be the dependee,
who provides the required resource or task execution. An
intentional element involved in a dependency can be the
depender element, the dependee element or the dependum.
The dependum is an intentional element which is the object
of the dependency. However, the use of a dependum is not
mandatory in GRL (cf. [25]). For instance, when specify-
ing a dependency between two actors, it might simply be
unknown to the modeler. Therefore, we altered the multi-
plicities in so far, as we no longer expect each dependency to
explicitly model a dependum which is not required by GRL.

4.2 � Metamodel of the extension

To better support goal modeling for networks of collabora-
tive CPS, we developed an iStar extension according to the
requirements set out in Sect. 2.3. The metamodel for our
extension is shown in Fig. 5. All changes done to the meta-
model from Fig. 4 have been highlighted in grey.

We discuss the changes and their rationales again in the
categories from Sect. 4.1, i.e. for actors (Sect. 4.2.1), for
intentional elements (Sect. 4.2.2), and for dependencies
(Sect. 4.2.3).

4.2.1 � Actors

Most notable, we differentiate actors into collaborative CPS
networks, collaborative CPS, and roles. Thus, we refine the
agent concept of iStar 2.0, which covers concrete, tangible
actors, into collaborative CPS and collaborative CPS net-
works. For a collaborative CPS network to be formed, at
least two collaborative CPS need to exist and participate in
such a network. For instance, in the example of the CACC,
the platoon can be considered the collaborative CPS network
and the individual CACCs participate in it. At least two vehi-
cles equipped with CACCs are needed to form a platoon.

While we keep—compared to Fig. 4—the is-a relation
between actors (although we can now state that the is-a rela-
tion is only acceptable between actors of the same kind),
we can be now more restrictive regarding the participates-
in relationship, because we consider very specific types of
“agents”, as mentioned above. We split this dependency
into two, more fine-grained relationships: The collaborates-
in relationship and the is-assigned relationship. Thus, three
kinds of actor relationships can be distinguished:

•	 Is-a relationship: An actor is of the type of another actor.
For instance, a CACC is also an ACC. Note that in iStar
and GRL it is prohibited to define that roles are agents

338	 Requirements Engineering (2021) 26:325–370

1 3

and agents are roles. The same is valid here, is-a rela-
tionships only refine actors of the same type (i.e. CPS
networks, CPS, and roles). For expressing the belonging
of a CPS to a CPS network, the collaborates-in relation-
ship is used, for expressing the assignment of roles to a
CPS the is-assigned relationship is used.

•	 Collaborates-in relationship: A collaborative CPS collab-
orates with other collaborative CPS by partaking in a col-
laborative CPS network (which might be part of another
greater CPS network). For instance, multiple CACCs
cooperate to form a platoon (i.e. each CACC participates
in the platoon). Thus, the collaborates-in-relationship
denotes the membership of one actor in another actor.
In particular, an individual collaborative CPS partakes
in a network of collaborative CPS. In case of the CACC
example, this means that a CACC participates in a pla-
toon. A collaborative CPS network can also collaborate
with other networks in some higher-level collaborative
CPS network, such as a smart city. The collaborates-in

relationship can be distinguished from the original partic-
ipates-in relationship of iStar 2.0, because we restrict the
use to CPS and CPS networks and exclude its use for role
assignments. To assign roles, we define an is-assigned
relationship to assign a role to a collaborative CPS. For
example, a CACC in a platoon might be assigned the
leader role.

•	 Is-assigned relationship: A collaborative CPS can be
assigned a role within a collaborative CPS network.
This subsumes two aspects, having a role and taking
over a role. First, collaborative CPS can have roles. For
instance, a CACC can participate in a platoon either as
lead or as following vehicle. Second, roles in CPS net-
works need to be assigned, i.e. someone has to be respon-
sible for assigning roles to collaborative CPS. This is
expressed by a coordination task, which can belong to
any actor (i.e. to a CPS network, a collaborative CPS,
or a role). For instance, if the lead vehicle exits a pla-
toon, its CACC is responsible for assigning another

Fig. 5   Metamodel extension

339Requirements Engineering (2021) 26:325–370	

1 3

CACC the role of the lead vehicle. The coordination task
then defines which role is to be assigned to which CPS
and, thus, which CPS is assigned which role. Thus, we
stress the notion of active role assignment (and, possibly
role change) in our extension, which is not specifically
emphasized in iStar 2.0, where only “agent plays role”
relationships are considered.

The use of multiplicities allows us to specify the goals
of multiple configurations within one diagram. Therefore,
actors can be assigned multiplicities. This allows us to repre-
sent actors of the same type (e.g., several identical CACCs)
as one actor. In doing so, we can represent different but simi-
lar compositions of a CPS network in one goal model. For
instance, we can use a goal model to represent platoons with
three, four, five, etc., vehicles. However, it must be stressed
that the actors that are subsumed by the use of multiplicities
must be of the same type. For instance, an actor for follow-
ing vehicles will only represent following vehicles that are
equipped with a CACC.

This use of actor multiplicities facilitates the specifica-
tion of CPS networks, as otherwise a multitude of different
configurations would have to be specified. For instance, a
platoon can consist of two following vehicles, three fol-
lowing vehicles, four following vehicles and so forth. To
account for all these configurations, typically all of these
must be explicitly specified. Thus, the use of multiplicities
for actors is a way to facilitate specification (or considering
the number of configurations to be considered) to make goal-
based specification of CPS networks feasible. For analysis,
however, each of the actors must be considered individually.

4.2.2 � Intentional elements

To coordinate role assignment, we define a coordination task
to be a specific kind of task that handles role assignment
(i.e. allows collaborative systems changing their role or the
role of another collaborative CPS). We adopted the idea of
a coordination task from Teruel et al. [36]. A coordination
task can belong to the collaborative CPS network, where,
for instance, a platoon has a coordination task to choose a
new leader in case the former leader leaves the platoon. This
could be, for example, a voting mechanism where the pla-
toon members collectively define which vehicle becomes the
lead and which ones become followers. A collaborative CPS
or a role that is assigned to a collaborative CPS can also be
responsible for performing a coordination task. For instance,
the platoon leader has the coordination task to assign other
CACCs the role of a following vehicle when new vehicles
join, or to exclude them from the platoon.

Other changes to the intentional elements have not been
proposed. The assignment of intentional elements to either
a network of collaborative CPS, a collaborative CPS, or

a role is already given by the relation between actor and
intentional element. Assigning intentional elements to a col-
laborative CPS does not mean that the collaborative CPS
always aims at fulfilling all these intentional elements at the
same time. The intentional elements of a collaborative CPS
rather indicate which intentional elements can be fulfilled
at some point in time. Considering that a collaborative CPS
actor can represent multiple identical collaborative CPS, this
means that identical but individual CPS can pursue differ-
ent goals at the same time. For an example consider our
CACC with two following vehicles. In addition to platoon-
ing relevant goals, each CACC has its own goals that are
driver dependent and which might be conflicting. Take for
instance, the goal to minimize fuel consumption and the goal
to reach the destination as fast as possible. In the platoon
the two following vehicles have in principle the same goals
but the representation as one actor does not mean that both
vehicles try to achieve the same goals as well. For instance,
the driver of following vehicle 1 might prefer fast arrival,
while the driver of following vehicle 2 aims for minimizing
fuel consumption.

Assigning intentional elements to the collaborative CPS
network actor means that these intentional elements cannot
be assigned to an individual collaborative CPS but belong to
the network. As the network consists only of collaborative
CPS, it can be argued that each intentional element of a col-
laborative CPS or a role is also an intentional element of the
network. While this is true, assigning intentional elements
either to a collaborative CPS/role or the networks allows for
distinguishing between those intentional elements that are
under the control of the individual collaborative CPS and
those that are not.

For Challenge 6, we propose the introduction of a new
contribution type: configuration-dependent contribution
value. The configuration-dependent configuration value indi-
cates that the value of a contribution depends on specifics
emerging from certain configuration aspects. As this concept
is somewhat related to the unknown contribution value from
GRL and iStar, we introduce a new label that is related to the
unknown label. Other means of further defining this particu-
lar relationship with potentially changing values turned out
to be too complex and unintuitive for it to be of use.

4.2.3 � Dependencies

To reduce the size and complexity of the resulting goal
model, we introduce further—more complex—dependency
types that allow using fewer dependency links. Therefore,
we define beside the classic dependency, bidirectional
dependencies, self-dependencies, and grouped dependen-
cies. In addition, we define multiplicities for dependencies.

A bidirectional dependency is a dependency, where both
actors or their intentional elements depend on each other

340	 Requirements Engineering (2021) 26:325–370

1 3

(e.g., task A from actor A depends on task B from actor B
and task B from actor B depends on task A from actor A).
This type of bidirectional dependency is quite often needed
for collaborative CPS that are part of a CPS network. The
CPS network has its own intentional elements. However,
as the CPS network is no physical entity, the CPS network
depends on the individual CPS in fulfilling these goals. Vice
versa, the CPS join the network as this allows fulfilling goals
they otherwise could not achieve. For a simple example,
consider the goal of the platoon to reduce the driving time
to the platoon’s destination. To achieve this goal, the pla-
toon depends on the individual CACCs’ goals to reduce the
driving time to their destination. Vice versa, the CACCs
depend on the platoon as the platoon allows for a consider-
able reduction of driving time.

Our extension also includes a self-dependency. Self-
dependencies are used to describe cases where one collab-
orative CPS relies on collaborative CPS of the same type
(which is not the collaborative CPS itself) to fulfill the same
goal, execute the same task, etc., for its own goal fulfillment,
task execution, etc. For instance, to follow the leader of a
platoon each vehicle (i.e. each CACC of each vehicle) in the
platoon depends on other following vehicles to fulfill their
tasks in following the respective vehicle ahead.

Furthermore, we now allow dependencies to be grouped.
A grouped dependency subsumes several other depend-
encies. This allows building complex dependencies that
include relations to multiple actors and/or their intentional
elements. For instance, a network of collaborative CPS relies
on the fulfillment of one of its tasks on all the participating
collaborative CPS in fulfilling their tasks (e.g., to drive with
constant speed the platoon relies on the individual CACCs
to maintain the individual vehicles’ speed).

As we allow multiplicities for actors to simplify the speci-
fication of multiple actors of the same type (e.g., multiple
CACCs in the role following vehicle), we need to also con-
sider multiplicities for dependencies that stretch between
these actors. Thus, we can define that multiple dependers
of the same type depend on multiple dependees of the same
type. For instance, for coordinating the opening of a gap
in a platoon, the CACC of the lead vehicle depends on the
existence of at least two following vehicles.

4.3 � Concrete syntax

4.3.1 � Collaborative CPS

In iStar systems are represented as actors. A collaborative
CPS is a system and is therefore modeled as an actor, as
shown in Fig. 6. In addition, we use stereotypes to distin-
guish between the different types of actors, e.g. in Fig. 6
<<CPS>> defines that Actor A is a collaborative CPS
and neither a role nor a CPS network. Inspired by Moody’s

principles for constructing notations [47], the following
notation follows the principle of semiotic clarity. Accord-
ing to Moody’s principles, the same symbols should not be
used for different concepts, otherwise a symbol overload
may occur. However, we want to reduce the number of sym-
bols and use the circle consistently for all actors and the
stereotypes only for specialization. Here we follow the pat-
tern of approaches from the related work that use symbols
for denoting the supertype (i.e. the actor) and stereotypes
for denoting its specializations (cf. [56, 93, 94]). Thus, since
the notation for actor is specified by iStar, it is supplemented
by stereotypes which serve to differentiate between network
CPS and role.

4.3.2 � Network of collaborative CPS

The CPS networks are also modeled as actors as shown in
Fig. 7. Similar to the notation of collaborative CPS, the nota-
tion of the CPS network uses Moody’s principle of semiotic
clarity [47] by adding a stereotype referring to the CPS net-
work to the existing notation.

To show that CPS belong to a CPS network, the CPS can
be positioned in a CPS network. According to the princi-
ple of semantic transparency [47], which recommends the
appearance of a notation should suggest its meaning, the
CPS that is a part of a CPS network is displayed inside the
CPS network actor. The idea of graphically nesting CPS
actors inside of CPS network actors is inspired by the work
of Guzman et al. [92] (see also Sect. 3.4). An example of our
notation for nesting actors and thereby relating CPS to a CPS
network is shown in Fig. 8. The CPS Actor B was modeled

Fig. 6   Collaborative CPS actor

Fig. 7   Network of collaborative CPS actor

341Requirements Engineering (2021) 26:325–370	

1 3

inside the CPS network Actor A which indicates that Actor
B participates in the CPS network Actor A.

The nesting of actors, i.e. placing a collaborative CPS
inside a CPS network, has implications for the intentional
elements of the actors:

•	 Intentional elements of the CPS network: For nested
actors, each intentional element belongs to the actor it is
directly placed in. This also means, that the intentional
elements that are not within a CPS boundary but only
in the CPS network boundary only belong to the CPS
network. Intentional elements of the CPS network cannot
be assigned to individual collaborative CPS. However, as
the CPS network is no physical entity on its own but only
consists of the physical CPS that form the CPS network,
all these intentional elements depend on the CPS actors
placed within the CPS network. To make this relation
obvious we propose the use of dependency links to the
respective intentional elements of the CPS they depend
on.

•	 Intentional elements of the CPS: They do belong to the
CPS and as the CPS belongs to the CPS network, they
obviously are also part of the CPS network. However,
they do not necessarily need to address purposes of the
CPS network itself. For instance, a CACC has goals it
tries to achieve when driving alone. When the CACC
joins a platoon, it still has these goals, however, as the
participation in a platoon allows fulfilling other CACC
goals, the CACC will not try to achieve the original
goals when in a platoon. Consequently, the correspond-
ing intentional elements do not contribute to the platoon
and are, thus, just part of the CPS but not intentional
elements of the platoon.

Consequently, the nested representation of actors allows
for illustrating the relations between intentional elements
and actors while supporting the important distinction
between intentional elements that can be assigned to indi-
vidual systems and those that cannot.

4.3.3 � Roles

iStar 2.0 [21] represents roles as shown in Fig. 9 (a). How-
ever, as we define a participates-in relation between actors to
mean that a collaborative CPS participates in a CPS network,
we use a is assigned relation to indicate that a collaborative
CPS assumes a role (cf. Sect. 4.2.1). This is illustrated in
Fig. 9 (b), where the collaborative CPS Actor B assumes the
Role C. We allow for further simplification of the notation
to depict the situation that a collaborative CPS assumes a
role in one model element as shown in Fig. 9c. This allows
reducing the size of models but prevents distinction between
the intentional elements of a collaborative CPS and those of
its roles. Thus, if the notation of Fig. 9 (c) is used, only the
intentional elements belonging to the respective role shall
be modeled. If a certain CPS can participate with different
roles in the same CPS network, the CPS needs to be mod-
eled multiple times as different actors with different roles.
If the actor notation is used without definition of a role,
only intentional elements belonging to the actor in any role
should be modeled.

4.3.4 � Coordination task

In Fig. 10 the concrete syntax for a coordination task is
shown. Again, we use the well-known symbol of a task and
use stereotyping to denote the difference. This is in accord-
ance with Moody’s principles [47], to allow users easy iden-
tification of the overall concept (i.e. task). In addition, an
assignment relation shows which actor (i.e. which type of
collaborative CPS) is assigned to which role.

4.3.5 � Bidirectional dependency

The bidirectional dependency represents a dependency in
both directions between two actors or intentional elements.
The direction of a regular dependency is represented by the
"D". Since we have a dependency in both directions, we use
the “D” in both directions as this is intuitive according to

Fig. 8   Nested actors

342	 Requirements Engineering (2021) 26:325–370

1 3

the principles of Moody [47]. This is illustrated in Fig. 11.
Like regular dependencies, bidirectional dependencies can
be defined including or excluding a dependum.

4.3.6 � Self‑dependency

In a network of collaborative CPS there can be systems that
have the same role, the same goals, the same tasks, etc. For
simplification we represent all these systems using only one

actor in the goal model, which avoids redundancy. As we
can represent more than one system as one actor, several
peculiarities can occur, such as dependencies between the
goals of these systems (i.e. a system of a certain type or role
depends on another system of the same type or role). As
a consequence, we allow for defining dependencies within
one actor. To indicate the different nature of such as depend-
ency (i.e. to indicate that the system does not depend on
itself but on the systems of the same type or role), we define

<<Role>>
Role C

<<CPS>>
Actor B

<<CPS>>

Actor B

<<CPS>>

Actor B

Role C

Role C

Participates in

Is assigned

(a)

(b)

(c)
<<Role>>

Lead Vehicle

<<CPS>>
CACC

<<CPS>>

CACC

<<CPS>>

CACC

Lead Vehicle

Lead Vehicle

Participates in

Is assigned

Concrete Syntax Example

Fig. 9   Roles

<<coordination task>>
Task

<<Role>>
Role C

<<CPS>>
Actor B

assigns

Concrete Syntax Example

<<coordination task>>
Organize Platoon

Structure <<Role>>
Following
Vehicle

<<CPS>>
CACC

assigns
<<coordination task>>

Task
<<Role>>
Role C

<<CPS>>
Actor B

assigns

Concrete Syntax Example

<<coordination task>>
Organize Platoon

Structure <<Role>>
Following
Vehicle

<<CPS>>
CACC

assigns

Fig. 10   Coordination task

343Requirements Engineering (2021) 26:325–370	

1 3

a self-dependency as a new construct. This dependency is
represented as shown in Fig. 12 by a D with a * operator as
it is a well-known symbol for self-properties [97]. The D*
symbol needs to be placed outside the actor boundary so
as to avoid misinterpreting this element for a dependency
within the same instance of an actor.

A self-dependency can exist between different intentional
elements, but it can also exist for a single intentional element
and a dependum as is shown in Fig. 13.

Concrete Syntax Example

Dependum
(goal)Actor A Actor B Collision

avoidance
Lead

vehicle
Following
vehicle

Actor A Actor B Lead
vehicle

Following
vehicle(a)

(b)

Fig. 11   Bidirectional dependency

Fig. 12   Self-dependency
between different tasks

Actor A

Task 1
*

Task 2

Concrete Syntax Example

CACC

Regulate
Speed

*
Communicate

Speed

Fig. 13   a Self-dependency
without a dependum and b self-
dependency with a dependum

Actor A

Task
*

Concrete Syntax Example

CACC

Regulate
Speed

*

Actor A

(a)

(b)
Task 1 Dependum

(resource)

*

*

Actor A

Task 1 Dependum
(resource)

*

*

344	 Requirements Engineering (2021) 26:325–370

1 3

Note that traditionally the use of dependencies between
intentional elements of one actor is discouraged.5 Here, we
explicitly define a special kind of dependency to be used
between intentional elements that are modeled within the
same actor boundary. However, recall that we represent
multiple actors by displaying just one actor to facilitate the
specification of CPS networks consisting of multiple dif-
ferent but identical actors. Therefore, this self-dependency
does not link intentional elements of the same actor but of
different actors of the same type and is thus in line with the
common usage of dependencies.

4.3.7 � Grouped dependency

The concrete syntax for grouped dependencies is similar to
logical gates as these provide symbols for AND, IOR, and
XOR. The AND-dependency is shown in Fig. 14a. Goal A
depends on both, Goal B and Goal C. An IOR-dependency
is shown in Fig. 14b Goal A depends on Goal B or Goals
C. The XOR-dependency is shown in Fig. 14c. The XOR-
dependency shows a dependency, where Goal A can depend
on either Goal B or Goal C but cannot depend on both. We
use symbols well known from logic gates for conjunctions
and disjunctions and combine them with the iStar symbol D
used for dependencies.

4.3.8 � Multiplicities

Multiplicities can be assigned to actors and dependencies.
The use of multiplicities for actors is shown in Fig. 15. For
multiplicities we use the well-known notation for multi-
plicities in the UML. Using multiplicities allows to state
that a certain type of actor is involved multiple times in
the same goal model. For instance, a platoon consists of
multiple CACCs. In Fig. 15, this is specified by using a
[1 … n] multiplicity, showing that at least one CACC must
exist to form a platoon and the upper bound is unlimited.
Note that there exist different assumptions on the relation
between CACCs and platoons, while some developers might

Goal A

Goal B

Goal C

D Allow change
lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving
style

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-
behavior

D

Concrete Syntax Example

(b)

(c)

(a)

Fig. 14   a AND-dependency, b IOR-dependency and c XOR-dependency

5  For GRL, recommendation Z.151 [25] defines in its abstract gram-
mar a dependency as specialization of ElementLink which links
GRLLinkableElements (i.e. actors and intentional elements). Each
ElementLink has a source and a destination. It is not explicitly defined
that source and destination cannot be identical. However, the detailed
guidelines for the use of dependencies illustrate six common usage
scenarios that are explicitly suggested. All of these introduce depend-
encies between different actors, or intentional elements of different
actors, or between a combination thereof. Thus, it can be assumed
that the use of dependencies between intentional elements of the
same actor is not intended.
  For iStar, Dalpiaz et al. define that “the depender and dependee of a
dependency should be different actors” [21].

345Requirements Engineering (2021) 26:325–370	

1 3

want to consider open ended platoons, others might rather
want to work with realistic upper bounds as the platoon is
typically limited in its length by regulations. In addition, it is
a rather philosophical question, whether a CACC on its own

can be a platoon. Thus, also a multiplicity of [2…8] might
be a valid assumption, depending on the current develop-
ment project.

Fig. 15   Multiplicities, in a a
single actor in b a nested actor <<CPS>>

Actor B
[1..n]

<<CPS>>

Actor B
[1..n]

<<CPS network>>

Actor A

<<CPS>>

CACC
[1..n]

<<CPS>>

CACC
[1..n]

<<CPS network>>

Platoon

Concrete Syntax Example

(a)

(b)

Fig. 16   Self-dependency with
multiplicities

<<CPS>>
Actor A

[1..n]

Task 1
*

Task 2

Concrete Syntax Example

<<CPS>>
CACC

[1..n]

Regulate
Speed

*
Communicate

Speed
[1..n] [1..n]

[1..n] [1..n]

Task 1 Task 2

[1..n]

Task 1 Task 2

DD
[1..n][1..n]

(a)

(b)

Lead Platoon Allow
Communication

[1..n]

Distribution of
Tasks Accept Tasks

DD
[1..n][1..n]

Concrete Syntax Example

[1..n] [1..n]

Fig. 17   a One-directional dependency and b bidirectional dependency with multiplicities

346	 Requirements Engineering (2021) 26:325–370

1 3

Multiplicities can also be assigned to the intentional ele-
ments involved in a dependency. The depender, dependee,
and dependum can be assigned a multiplicity regardless of
the kind of dependency (see Figs. 16, 17 and 18). We do not
restrict multiplicities, but we never came across a need for
a [0…n] dependency, as this would mean that the depender
does not necessarily depend on a dependee. Note that in case
of self-dependencies, it is necessary that the multiplicities
allow for there to be more than one actor, as self-dependen-
cies do not define dependencies within the same actor but
between actors of the same type.

Note that in principle iStar and GRL are already equipped
with the potential to define dependency decompositions.
However, this always requires the existence of a decompo-
sition between the depender and dependee elements. A brief
example is given by Fig. 19, which highlights the usefulness
of our extension that limits the complexity of the model and
allows for a different use of grouped dependencies. In par-
ticular, our proposed grouped dependency allows expressing

that an intentional element depends on multiple other inten-
tional elements which do not need to be related to each other.

4.3.9 � Configuration‑dependent contribution value

To express that the value of a contribution depends on a
configuration or on certain aspects related to multiple con-
figurations, we define a new label for contributions. This
contribution is closely related to the unknown contribution
value relation, where it is also not obvious whether the con-
tribution is positive or negative. However, the difference
between unknown contributions and configuration-depend-
ent contributions is that for the latter, we can know how the
contribution impacts but the contribution values are usually
too complex to define all possibilities in graphical model.
However, in addition we propose the formal definition of the
contribution dependence in a comment field or a separate
referenced document. Thus, we provide an index that can
be used for reference. The proposed label compared to the

Goal A

Goal B

Goal C

D Allow change
lane

Open gap

Change lane

D

Goal A

Goal B

Goal C

D

Goal A

Goal B

Goal C

D

Owning a driving
style

Drive eco-friendly

Drive safe

D

Follow the role

Leader-behavior

Follower-
behavior

D

Concrete Syntax Example

(b)

(c)

(a)

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

[1..n]

Fig. 18   a AND-dependency b IOR-dependency and c XOR-dependency (c) with multiplicities

347Requirements Engineering (2021) 26:325–370	

1 3

Goal A
Actor A

Goal B
Actor B

Goal A
Actor A

AND

Goal A1 Goal A2 Goal A3

Goal B
Actor B

AND

Goal B1 Goal B2 Goal B3

Abstract Dependency Between two Goals

Refined Dependency by the Use of AND-Decomposi�ons

Fig. 19   Traditional dependency refinement

Fig. 20   Configuration-depend-
ent contribution value

Unknown Contribu�on Value in GRL

+- ? unknown +- CD

Unknown Contribu�on Value in iStar Configura�on-Dependent Contribu�on Value
for Contribu�on i

i

348	 Requirements Engineering (2021) 26:325–370

1 3

labels for unknown contribution values from GRL and iStar
can be found in Fig. 20.

4.4 � Well‑formedness rules

We define well-formedness rules using OCL [98] for goal
models according to the proposed extension to support the
creation of correct goal models for collaborative CPS as is
recommended for defining modeling languages or extensions
to modeling languages [99].

A self-dependency is defined as a dependency between
actors of the same type, which are represented in a goal
model by one actor. Therefore, the depender and the
dependee must be the same actor (Well-formedness rule 1)
and this actor must have a maximum multiplicity of more
than one (Well-formedness rule 2), as otherwise there could
not be more than one actor of this type in a CPS network.

Well-formedness rule 1 Depender and dependee of a self-
dependency must be the same actor or intentional elements
that belong to the same actor.

context Self-Dependency
inv: self.depender = self.dependee

Well-formedness rule 2 The actor a self-dependency
belongs to (i.e. the depender and dependee or the actor the
depender and dependee elements belong to) must have a
maximum multiplicity larger than one. This is important as
the self-dependency is not a dependency between elements
of the same actor but between elements of actors of the same
type that are just represented by one single actor element.

context Self-Dependency
inv: self.depender.multiplicityMax > 1

To prevent inconsistencies regarding multiplicities, we
stipulate that the following rules must be adhered to. The
minimum multiplicity of an actor may not be larger than the
maximum multiplicity of the same actor. The same holds for
multiplicities related to dependencies (i.e. the multiplicities
of the depender, the dependee, and the dependum).

Well-formedness rule 3: A maximum multiplicity may
not be smaller than the corresponding minimum multiplicity.

context Actor inv: self.multiplicityMin <=
self.multiplicityMax

context Dependency
inv: self.multiplicityDepdenderMin <=
self.multiplicityDependerMax

 context Dependency
inv: self.multiplicityDepdendeeMin <=
self.multiplicityDependeeMax

The minimum multiplicity of a dependency’s dependee
may not be smaller than the minimum multiplicity of the
dependee actor. This prevents cases where the dependency
would allow for requiring a smaller number of collaborative
CPS than are actually permissible according to the actor’s
multiplicity. The same holds for the depender.

Well-formedness rule 4: The minimum multiplicity of a
dependee/depender may not be smaller than the minimum
multiplicity of the dependee/depender actor.

context Dependency
inv: self.multiplicityDependeeMin >=
self.Dependee.multiplicityMin

context Dependency
inv: self.multiplicityDependerMin >=
self.Depender.multiplicityMin

The maximum multiplicity of a dependency’s dependee
may not be larger than the maximum multiplicity of the
dependee actor. This prevents cases where the dependency
would allow for requiring a higher number of collaborative
CPS than are actually permissible according to the actor’s
multiplicity. The same holds for the depender.

Well-formedness rule 5 The maximum multiplicity of a
dependee/depender may not be larger than the maximum
multiplicity of the dependee/depender actor.

context Dependency
inv: self.multiplicityDependeeMax <=
self.Dependee.multiplicityMax

context Dependency
inv: self.multiplicityDependerMax <=
self.Depender.multiplicityMax

349Requirements Engineering (2021) 26:325–370	

1 3

Well-formedness rule 6 Grouped dependencies must have
either the same depender or the same dependee. This rule
prevents the definition of complex dependency relationships
that are difficult to comprehend which carry a high risk of
misinterpretation.

context Dependency
inv: self.GroupedDependency.Dependency->
((forAll(d|d.dependerElmt=self.
dependerElmt) or (forAll(d|d.dependeeElmt=
self. dependeeElmt)))

4.5 � Tool support

We provide tool support for the extension as a Visio stencil.
Microsoft Visio is a commonly used modeling tool that pro-
vides mechanisms for the definition of modeling languages.
In our case, the decision to use Microsoft Visio was made
due to its availability for industry partners from different
domains. In addition, particularly in the industry automa-
tion domain it is very heavily used for the design of produc-
tion systems. Figure 21 shows the stencil and the shapes it
defines. We provide shapes for the newly defined constructs
as well as for the existing constructs. The shapes can be
drag-and-dropped to the drawing to create a goal model
for collaborative CPS according to the proposed exten-
sion. The stencils are available for download at https​://doi.
org/10.6084/m9.figsh​are.13313​093. While Visio primarily
focuses on providing support for modeling, add-ins can be
created to support model validation, such as checks for vio-
lation of syntactic or well-formedness rules. Implementing
these checks as well as support for goal fulfillment analysis
is part of future work.

5 � Evaluation

We evaluated the proposed extension by conducting two case
studies in different industry domains. Section 5.1 elaborates
on the case study research design chosen (cf. [100]). Sec-
tions 5.2 to 5.4 present the results. Subsequently Sect. 6 will
discuss the findings and limitations of the evaluation.

5.1 � Study design

5.1.1 � Goals

The study aims at evaluating the proposed extension for goal
modeling of collaborative CPS. Therefore, we applied the
iStar goal modeling extension to two industrial case stud-
ies (i.e. a cooperative adaptive cruise control and a fleet of

collaborative transport robots). Thereby, we evaluate the
applicability of the approach as well as the benefits of each
introduced modeling element.

5.1.2 � Research questions

To achieve the overall goal of the study, i.e. does the pro-
posed extension aid in goal modeling for collaborative CPS,
we defined several research questions to be answered in the
study:

•	 RQ1: Is the proposed iStar extension applicable to indus-
trial case examples of collaborative CPS?

•	 RQ2: Does the use of the proposed iStar extension lead
to more concise models?

•	 RQ3: Are the proposed modeling elements useful in the
context of modeling collaborative CPS?

•	 RQ4: What challenges remain?

We further refine RQ1 and RQ2 with regard to the two
industrial case examples:

•	 RQ1.1: Is the proposed iStar extension applicable to
model a cooperative adaptive cruise control?

•	 RQ1.2: Is the proposed iStar extension applicable to
model collaborative transport robots?

For RQ 2, we need to define the meaning of concise.
Concise means “marked by brevity of expression or state-
ment: free from all elaboration and superfluous detail.”6
With regard to goal models we refer to a goal model as more
concise if it has fewer elements than another goal model that
expresses the same content.

•	 RQ2.1: Does the use of the proposed iStar extension lead
to a more concise yet still comprehensible model of the
cooperative adaptive cruise control?

•	 RQ2.2: Does the use of the proposed iStar extension lead
to a more concise yet still comprehensible model of the
collaborative transport robots?

For RQ3, we need to define the metrics for usefulness.
Usefulness can be defined as “the quality of having utility
and especially practical worth or applicability.”7 Thus, addi-
tionally to the investigation of the general applicability of the
iStar extension (see RQ1), we investigate the applicability
of each modeling element. Furthermore, it is investigated
whether industry partners deem the modeling element use-
ful (i.e. is it worth to have the modeling element as part of
the iStar extension).

6  cf. https​://www.merri​am-webst​er.com/dicti​onary​/conci​se.
7  cf. https​://www.merri​am-webst​er.com/dicti​onary​/usefu​lness​.

https://doi.org/10.6084/m9.figshare.13313093
https://doi.org/10.6084/m9.figshare.13313093
https://www.merriam-webster.com/dictionary/concise
https://www.merriam-webster.com/dictionary/usefulness

350	 Requirements Engineering (2021) 26:325–370

1 3

In addition, we need to further refine this research ques-
tion for all proposed modeling elements, i.e.:

•	 RQ3.1: Is the use of collaborative CPS and the network
of collaborative CPS as actors useful?

•	 RQ3.2: Is the use of the coordination task useful?
•	 RQ3.3: Is the use of bidirectional dependencies useful?
•	 RQ3.4: Is the use of self-dependencies useful?
•	 RQ3.5: Is the use of grouped dependencies useful?
•	 RQ3.6: Is the use of multiplicities for dependencies use-

ful?

For RQ4, we separate between limitations of the proposed
iStar extension and the resulting needs to be coped with in
future work, i.e.:

•	 RQ4.1: What are limitations of the proposed iStar exten-
sion?

•	 RQ4.2: What are industry’s needs for future work?

5.1.3 � Subject selection

Industry partners and case examples were recruited within
the CrESt-project, a joint research project, publicly funded
by the German Federal Ministry of Education. The project,
aiming at developing engineering methods for model-based
software engineering of collaborative CPS, started in Feb-
ruary 2017 and concluded in April 2020. Industry partners
contributed four case example specifications. For the appli-
cation of our extension we chose two case examples. The
decision was made based upon interest of involved industry
partners (i.e. the involved partners were highly interested
in applying goal modeling techniques to investigate their
case). While each case example was mainly driven by one
responsible industry partner, other partners from the respec-
tive domain were also involved and contributed to the case
study. Industry partners thus participated and contributed
due to their commitment to the project but also due to their
interest in the case and the definition and evaluation of solu-
tions that foster the model-based engineering of collabora-
tive CPS. While research in the project was partly conducted
in close collaboration and resulted in co-authored publica-
tions (e.g., [35, 101, 102]), no further interdependence of
interests exists between the authors of this paper and the
involved industry partners.

The automotive case example of cooperative adaptive
cruise control systems was provided by a large automo-
tive supplier located in Germany. In addition, other suppli-
ers—including one of the world largest automotive suppli-
ers—and original equipment manufacturers (all based in
Germany) were involved in the case example. The transport
robot case example was provided by a medium-sized Ger-
many-based internationally operating company specialized
in the production of autonomous transport robots. In addi-
tion, a very large international company with headquarters in
Germany and multiple interests as well as a broad portfolio
of products and domains that has a major interest in the
domain of industry automation was involved.

5.1.4 � Procedure

During the case study the approach under investigation (i.e.
the iStar extension for collaborative CPS) was applied to
two case examples provided by industry partners. Therefore,
the following procedure was adhered to, to allow answering
Research Questions 1–4.

Over the course of 3 years, we conducted a total of twelve
workshops, one workshop every 3 months. Each workshop
lasted about 2 days. The workshops were closely integrated
in the working structure of the surrounding CrESt project.
Therefore, they were not exclusively used for discussing the
iStar extension but also for other research related to col-
laborative CPS. We did not use fixed time slots so that it was

Fig. 21   Visio stencil for the extension

351Requirements Engineering (2021) 26:325–370	

1 3

always possible to have as much discussions as needed. The
workshops were attended by about a dozen people, among
them employees from various companies and research
institutions. First, we were provided with a brief specifi-
cation and description of the case examples. In workshops
the details of the case example were discussed and answers
regarding specific aspects that remained unclear from the
description were given by industry partners. Subsequently,
initial sketches for the goal models were made. At first this
was done without using the extension to get an understand-
ing of the shortcomings of iStar/GRL with respect to goal
modeling for collaborative CPS, for a report on the find-
ings of this phase, please refer to our previous work [23].
Sketches were handed in for critique and revised based on
the feedback. After additional workshops, the goal models
without the extension were finalized and a number of short-
comings and potential solution concepts were discussed with
the industry partners.

Next, we created goal models using the proposed exten-
sion for goal modeling of collaborative CPS. To allow for
comparability, we started with the agreed upon goal mod-
els without the extension and made changes according to
the extension. After another round of critique and a final
workshop the final versions were created. In addition to the
workshops, regular biweekly web conferences presented
the opportunity to discuss upcoming questions in a timely
manner. Furthermore, industry partners provided in-depth
feedback on the extensions and derived models via mail.

Thus, information was collected during workshops and
web conferences, as well as from documents. These docu-
ments included case descriptions of the case studies, require-
ments for modeling approaches for networks of collaborative
CPS, and goal models in various stages of completion. These
documents were created in close collaboration between
domain experts and goal modeling experts under the auspice
of the respective experts. Thus, we did not use specific ques-
tionnaires to answer the research questions but used an open
and exploratory approach. We took notes on the meetings
and the documents and models created over the course of the
project were iterated regularly. In addition, written feedback
was also received from industry partners. The workshops
were used to discuss the case examples, the requirements,
and the goal models. These discussions involved clarifica-
tion of misunderstandings, detailed discussions of interest-
ing aspects, discussions of created goal models and the pro-
posed extension. These discussions were documented during
the workshop. The notes taken during the workshops served
as input for the proposed extension as well as the evalua-
tion results. This allowed everyone involved to provide input
according to their opinions. However, participants were also
free to keep opinions to themselves.

Results from the application (RQ1) and the impact on the
resulting models (RQ2) can be found in Sect. 5.2. To answer

RQ3 (see Sect. 5.3) we discussed the proposed modeling ele-
ments of the approach with our industry partners to ensure
that these are adequately reflecting the respective complex
situations, are not misunderstood, and are deemed support-
ive. For RQ4, we discussed remaining challenges with our
industry partners, particularly with respect to the severity of
the various needs.

5.1.5 � Case examples

To show the benefits of the proposed extension, we con-
ducted two case studies, one in the automotive and one in
the industry automation domain. Section 5.1.5.1 introduces
the cooperative adaptive cruise control case example and
Sect. 5.1.5.2 the collaborative transport robots.

5.1.5.1  Cooperative adaptive cruise control  Cooperative
adaptive cruise control (CACC) systems allow vehicles to
form a platoon [95]. A platoon is a network of vehicles driv-
ing behind one another with small distances between them.
A platoon consists of a lead vehicle and at least one fol-
lowing vehicle. The lead vehicle is the first vehicle of the
platoon and thus bears the responsibility for the platoon,
since it has to decide, for example, which maneuvers to
execute. All other platoon vehicles are following vehicles,
as they usually adopt the driving style of the preceding vehi-
cle and reproduce it. Platooning offers many advantages, as
the reduced distance between the vehicles allows driving in
the slipstream of the previous vehicle. As a result, the fol-
lowing vehicles consume less fuel. Furthermore, platooning
can reduce congestion on streets, is safer, and provides more
comfort to drivers [96]. Having a CACC allows vehicles to
participate in a platoon, as it enables the vehicles to commu-
nicate with each other within a platoon. With this commu-
nication, vehicles can agree on a common speed, a common
destination, or a common driving style.

5.1.5.2  Collaborative transport robots  Collaborative trans-
port robots are tasked with transporting materials and prod-
ucts between machines and conveyor belts and with dis-
posing of material that is no longer used. They can do so
without getting in each other’s way and more efficiently by
forming a fleet [103]. In order to form a fleet, the robots
need to communicate with each other about their current
positions, tasks, battery statuses, etc. Forming a fleet allows
the individual robots to be better utilized, as the individual
tasks can be divided evenly between the robots. There are
further advantages to having transport robots collaborate as
a fleet rather than individually. For example, if there is an
obstacle in a route, it is included in the map so that all robots
know that the route cannot be taken and that they have to
find an alternative route [104]. In addition, the robots can
automatically visit a charging station if the remaining bat-

352	 Requirements Engineering (2021) 26:325–370

1 3

tery is at a previously set remaining level. If the workload
is high and a large number of transport tasks have to be
executed, the value of the battery life, at which the robot is
to visit a station, can be set to a lower value so that it can
still complete as many transport tasks as possible. Further-
more, since there are different types of transport robots that
are used for different products and materials, for example
because they differ in their load capacity, the fleet can take
this into account when distributing transportation orders.

5.2 � Application results

This section introduces the application of the approach in the
context of the case studies. Therefore, Sect. 5.2.1 shows the
goal model of the cooperative adaptive cruise control case
example, Sect. 5.2.2 shows the goal model of the collabora-
tive transport case example. For comparison in both sections
goal models for case examples are shown with the proposed
extension and without the proposed extension.

5.2.1 � Application to the cooperative adaptive cruise
control case example (RQ1.1)

We applied the iStar extension to the case example of a
cooperative adaptive cruise control from the automotive
domain. Figure 22 shows the resulting goal model. As can
be seen, the CACC itself is not directly represented by an
actor. A platoon, a lead vehicle, and a following vehicle are
depicted as actors. The platoon represents the network which
is formed by the collaboration of multiple vehicles equipped
with a CACC. A CACC takes part in only one of two pos-
sible roles in a platoon, one CACC is the lead vehicle, the
other CACCs have the role following vehicle. Hence, the
three actors shown represent the roles a CACC can take and
the collaborative network a CACC takes part in.

Each actor has its own intentional elements. However, as
can be seen, the actors, and thus their intentional elements,
heavily rely on each other. Particularly, the platoon’s inten-
tional elements depend on goals and tasks of the vehicles.

<<CPS network>>
Platoon

Collision
avoidance

Reduced individual
time

Join platoon

Leave platoon

Perform
communicationReliable sensors

Drive common
speed

Change lane
<<Coordination Task>>
Organize platoon

structure
Guide platoon

Regulate speed

Vehicle information

Higher individual
fuel efficiency

Collision
avoidance

Higher individual
fuel efficiency

Reduced individual
time

Join platoon

Leave platoon

Perform
communication

Reliable sensors

Drive common
speed

Change lane
Close gap

Open gap

Regulate speed

Follow previous
vehicle

Vehicle information

AND

AND

Collision
avoidance

Less traffic jam

Higher overall fuel
efficiency

Reduced overall
time

Execute role
distribution

Reliable
communication

Network security

Allow change lane

Allow leaving

Allow new
vehicles to join

Allow splitting

Allow creating

Allow change
leader

Allow fusion

Allow change
order

Allow dissolving

Allow
communication

Encryption of
information

AND

D

AND

D
D

D

D

DD

D

D

D
*

<<role>>
Following vehicle

<<CPS>>
CACC

<<role>>
Lead vehicle

<<CPS>>
CACC

[1..1]

[1..19]

assigns

[n..n]

*

*

Lead platoon

Common driving
speed

Eco-friendly

Fig. 22   Goal model cooperative adaptive cruise control platoon with extension

353Requirements Engineering (2021) 26:325–370	

1 3

This is not surprising in so far as the platoon does only exist
in the interplay of its physically partaking CACCs. There-
fore, each functionality the platoon shall exhibit must origi-
nate from at least one CACC. For example, the platoon shall
be able to allow new vehicles to enter the platoon (i.e. it has
the goal allow new vehicles to join). To fulfill this goal, the
platoon depends on the vehicles in the platoon that need
to open a gap so that a new vehicle can join the platoon by
entering this gap. Hence, the goal allow new vehicles to join
of the platoon depends on the CACC tasks open gap.

There are also mutual dependencies between the platoon
and the vehicles, for example, the goal reduced individual
(driving) time of the CACC depends on the goal reduced
overall (driving) time of the platoon and vice versa. This is
shown by the bidirectional dependency between those goals.

Furthermore, dependencies between the different roles
exist and are modeled. For example, a following vehicle must
be able to execute the task follow previous vehicle. Therefore,

it depends on other CACCs (either in the role following vehi-
cle or lead vehicle). In this way it is specified that each follow-
ing vehicle needs to follow another vehicle. In cases where the
vehicle ahead is also a following vehicle, a self-dependency
is used to show that a following vehicle depends on another
following vehicle regarding the fulfillment of the task follow
previous vehicle. This self-dependency possesses a condition
whereby the dependency only exists if there are more than one
following vehicle in the platoon, because otherwise a follow-
ing vehicle could not follow another following vehicle.

With respect to RQ1.1 we can state that the iStar exten-
sion is applicable to model the case example of a CACC.
Important aspects of the case example can be specified and
the existing mutual dependencies between the different roles
of the collaborative CPS and the collaborative network can
be defined accordingly.

Lead platoon

Common driving
speed

Eco-friendly

Platoon

Collision
avoidance

Collision
avoidance

Less traffic jam

Higher overall fuel
efficiency

Reduced overall
time

Higher individual
fuel efficiency

Reduced individual
time

Join platoon

Leave platoon

Perform
communication

Execute role
distribution

Reliable sensors

Drive common
speed

AND

Reliable
communication

Change lane

Network security

Collision
avoidance

Reduced individual
time

Join platoon

Leave platoon

Perform
communication

Reliable sensors

Drive common
speed

AND

Change lane

Organize platoon
structureGuide platoon

Close gap

Open gap

Regulate speed

Allow change lane

Follow previous
vehicleAND

Regulate speed

Vehicle information

Vehicle information

Allow leaving

Allow new
vehicles to join

Allow splitting

Allow creating

Allow change
leader

Allow fusion

Allow change
order

Allow dissolving

Allow
communication

Encryption of
information

Collision
avoidance

Higher individual
fuel efficiency

Reduced individual
time

Join platoon

Leave platoon

Perform
communicationReliable sensors

Drive common
speed

AND

Change lane Close gap

Open gap

Regulate speed

Follow previous
vehicle

Vehicle information

Higher individual
fuel efficiency

AND

<<role>>
Lead vehicle

<<CCPS>>
CACC

<<role>>
Following

vehicle

<<CCPS>>
CACC

<<role>>
Following

vehicle

<<CCPS>>
CACCLead

vehicle
Following
vehicle

Following
vehicle

Fig. 23   Cooperative adaptive cruise control platoon without extension

354	 Requirements Engineering (2021) 26:325–370

1 3

5.2.2 � Comparison with original iStar notation
for the cooperative adaptive cruise control case
example (RQ1.2)

To investigate RQ1.2 Fig. 23 shows a goal model for the
CACC that has been created without the proposed exten-
sion. As can be seen, this model is considerably more com-
plex and contains more connections. For instance, another
actor is needed representing another following vehicle. As
it would otherwise not be possible to describe that the task
follow previous vehicle depends on other following vehicles
to also follow the previous vehicle. Among others, the bidi-
rectional dependency and the grouped dependency reduce
the number of lines which improves the readability of the
model. In summary, we can state that the goal model from
Fig. 22 which was created using the iStar extension is more
concise than the goal model from Fig. 23.

5.2.3 � Application to the collaborative transport robots case
example (RQ2.1)

Figure 24 shows the resulting goal model for the case of the
collaborative transport robots. As can be seen, the collabo-
rative transport robot (CTR) is directly represented by an
individual actor as no roles need to be distinguished. How-
ever, as a CTR partakes in a collaborative network, i.e. in
a collaborative transport robot fleet (CTRF), another actor
is used to represent this network. Like for the CACC case
example, the nested representation for network and CPS is
used. As only one type of CTR does exist and no roles need
to be distinguished, the network does not depend in its goal
fulfillment on multiple CPS of different types or roles. Con-
sequently, unlike for the CACC case, no grouped dependen-
cies have been used. However, self-dependencies do exist,
which describe dependencies between identical CTRs. For

Fig. 24   Goal model collaborative transport robot fleet with extension

355Requirements Engineering (2021) 26:325–370	

1 3

instance, for calculating a new route, a CTR depends on the
current routes of the other partaking CTRs as otherwise the
goal avoid imminent collision and consequently the network
goal avoid collisions overall could not be reached.

As in the CACC case, there are goals that both the robot
and the robot fleet share, such as avoid collision overall and
avoid imminent collision. These differ in that the robot fleet
wants to achieve the goals for all robots while the individual
robot is primarily concerned with its own goals. But as these
goals are interdependent, they are linked in the goal model
by a bidirectional dependency.

With respect to RQ2.1 we can state that it is possible
to document the goals of the CTRF and the goals of the
CTR and relate them to each other. Hence, the proposed
iStar extension is also applicable to the case of collaborative
transport robots.

Fig. 25   Goal model collaborative transport robot fleet without extension

Fig. 26   CTR actor nested in CTRF actor

356	 Requirements Engineering (2021) 26:325–370

1 3

5.2.4 � Comparison with original iStar notation
for the collaborative transport robots case example
(RQ2.2)

For the collaborative transport robots, we also investigate
RQ2.2 by comparing the goal model shown in Fig. 24 to a
goal model that does not use the extension. This goal model
is shown in Fig. 25. Although this model is not as large
and complex as the goal model for the CACC example, it
can be easily seen, that the model is much larger and more
complex than the CTR goal model that uses the extension.
This is particularly due to the need for more dependency
links. Again, two CTR actors are necessary to express the
self-dependency between different identical robots. There-
fore, we can state that Fig. 24 is more concise than Fig. 25.
Also discussions with industry partners showed that industry
professionals do not miss any information in the goal model
using the extension compared to the other goal model but do
find Fig. 24 more intuitive and comprehensible than Fig. 25,
as the number of dependencies limits the overall readability.

5.3 � Usefulness of proposed modeling elements

We will illustrate the usefulness of the individual modeling
elements using excerpts from the models of the case exam-
ples. Furthermore, we discuss our major insights gained
from the application and discussion with domain experts.

5.3.1 � The use of actors (RQ3.1)

Particularly, the use of the nested representation of CPS net-
work and collaborative CPS partaking was considered very
helpful as this allows getting an intuitive picture of what the
composition of the CPS network looks like. Figure 26 gives
a brief fragment of the nested actor notation from the CTR
example. As the CTR is a part of the CTRF, the CTR actor
is modeled inside the CTRF actor. Still, the intentional ele-
ments of the CTR are separated from those of the CTRF by
the actor boundary of the CTR.

<<CPS
network>>
Transpor-

ta
on System

Exchange informa
on

<<CPS>>
CTR
[2..n]

<<CPS>>
Conveyor

Belt

Send informa
on

<< CPS network>>
CTFR

Reliable communica
on

Fig. 27   Distinction between collaborative CPS belonging to the CPS network and collaborative CPS Not belonging to the CPS network

Fig. 28   A coordination task in the CACC case example to assign the
role of following vehicle

Fig. 29   Bidirectional dependency between two tasks

357Requirements Engineering (2021) 26:325–370	

1 3

Another advantage was not included in the original case
example description but revealed during discussions. The
CTRF typically does not operate on its own but also interacts
with other systems in a smart factory, production machines,
storage capacities, and even with other transportation sys-
tems. Hence, the nested representation is particularly suit-
able for displaying such systems separately from each other.
As in Fig. 27, the conveyor belt is not part of the CTRF.
It can still communicate with the CTR to announce goods
in need of pickup. This way even further nesting might be
useful to express different degrees of cohesion and collab-
oration. For instance, in the CTR case, a smart factory is
composed of several collaborative CPS, some of which are
assigned transportation tasks. The collaborative CPS with
transportation tasks can, thus, be composed to the transport
system of the smart factory. Hence, the conveyor belt and the
CTRF can be nested into the transport system, which itself
may be nested into the smart factory.

The extension also allows for defining a collaborative
CPS (without defining a role) and a role this collaborative
CPS can assume in the same goal model. The need to do so
never arose in any of the case studies. In practice, it is usu-
ally relevant to either investigate the overall goals of a CPS
(i.e. without considering a specific role) or to investigate
issues that relate to the roles the CPS take.

5.3.2 � The use of the coordination task (RQ3.2)

It has been shown that in the two case examples investigated,
coordination tasks are less often needed as has been assumed
upfront. However, the coordination task has shown useful
to indicate that a certain role is assigned by a particular
task, belonging to a particular actor. This helps engineers in
defining responsibilities, i.e. which entity of the CPS net-
work shall be responsible for the assignment of roles. This
is shown in Fig. 28, the CACC in the role lead vehicle has
the task to organize the platoon, i.e. it coordinates which
CACC joins the platoon and which CACC needs to leave the
platoon. Therefore, it is able to assign the role of a following
vehicle to another CACC.

5.3.3 � The use of bidirectional dependencies (RQ3.3)

The main benefit of the bidirectional dependency is seen
in reducing the number of dependencies displayed. This is
illustrated in Fig. 29, which displays two actors: the col-
laborative system network CTRF and the individual CTR.
Both systems have the task to fulfill an optimal goods trans-
portation. The task of the CTRF refers to the entire network
of collaborative CPS and is therefore called optimal overall
goods transportation, while the task of the CTR refers only
to the robot itself and its current task, therefore it is called
optimal current goods transportation. Both tasks depend
on each other as the individual CTR can only reach an opti-
mal transportation solution when the overall routes (i.e. also
the routes of the other CTR) are optimized so that no colli-
sions and backups occur. However, to achieve this the CTRF
depends on each individual CTR to find optimal routes
within the existing optimized overall routes. Hence, both
tasks depend on each other. Using the bidirectional depend-
ency, not only the number of dependency links is reduced,
but as shown, the bidirectional dependency also indicates a
very close relation between both tasks. This allows engineers
to easily detect parts of the collaborative CPS network that
can only be achieved in collaboration and must therefore be
given particular care during implementation.

5.3.4 � The use of self‑dependencies (RQ3.4)

The major use of self-dependencies must be seen in its abil-
ity to reduce the number of actors shown in the CPS network
as every system type or role is only displayed once regard-
less of how many instances are actually partaking in the sys-
tem network. For instance, a collaborative system such as a
platoon consists of several individual CACCs collaborating.

Follow previous vehicle

*

[n..n]

<<Role>>

Following
vehicle

[1..19]

<<CPS>>

CACC

<<CPS Network>>

Platoon

Fig. 30   Self-dependency link

358	 Requirements Engineering (2021) 26:325–370

1 3

It is not feasible to represent all these configurations in mod-
els as CPS networks are dynamic, thus resulting in a large
number of similar albeit slightly different configurations,
nor is it feasible to represent large configurations such as
platoons consisting of more than five vehicles in one model
if each vehicle is depicted separately. Therefore, the CACC
represents all instances of the CACC in a platoon.

In Fig. 30 it is shown that CACCs in the role Following
vehicle are part of the platoon. And, to allow driving in a
platoon formation, each following vehicle needs to follow its
predecessor, i.e., the previous vehicle. Therefore, it depends
on other following vehicles, which also need to each follow
their predecessor. This is represented by a self-dependency.
While this construct is seen as useful, care must be given
to avoid misinterpretations, i.e. an individual system does

Fig. 31   Initial situation

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task
Distribution of

tasks

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task
Distribution of

tasks

Fig. 32   Multidirectional
dependency

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task
Distribution of

tasks D

Fig. 33   Too complex repre-
sentation of a multidirectional
dependency

<<CPS network>>

CTRF

<<CPS>>

CTR
[2..n]

Accept task

Finish task
Distribution of

tasks D

359Requirements Engineering (2021) 26:325–370	

1 3

not depend on itself but on other systems of the same type.
However, using the asterisk was deemed very helpful as it
indicates that it is not a normal dependency. People famil-
iar with the self-*-properties directly—most likely out of
the context of their domain knowledge—related this self-
dependency not to the individual system on an instance level
but as desired on a type level, i.e. that system of this type are
self-dependent on other systems of this type.

5.3.5 � The use of grouped dependencies (RQ3.5)

Grouped dependencies allow to further reduce the num-
ber of dependency links to be displayed. Instead of hav-
ing multiple separate dependency links, dependencies are
grouped, the dependency symbol is only shown once, and
each involved intentional element connects only with one
line to the symbol.

For an illustrative example, Fig. 31 shows the actors
CTRF and CTR. The goal Distribution of tasks and the
tasks Finish task and Accept task are connected through
three dependency links with each other. For example, the
task Finish task depends on the goal Distribution of tasks,
since a CTR can only process and complete a task if it has
been previously assigned to it. In addition, the goal Distri-
bution of tasks depends on Accept task, since this goal is
only achieved if a CTR who is assigned a transportation task
also accepts this assignment. In this simplified model this
may look comprehensible, but with an increasing number of
actors and their goals and tasks, the number of dependencies
can also increase.

Therefore, as shown in Fig. 32, the two actors are con-
nected by using a grouped dependency. This allows us to
express that the task Distribution of tasks depend on the
tasks Finish task and Accept task. Please note that in this
case we could also have reduced the complexity by using a
bidirectional dependency between Distribution of tasks and
Accept task.

Actually, in the early stages of the development of the
extension, we aimed for always needing just one dependency
link between two or more connected intentional elements.
However, this was not achievable, as the resulting depend-
ency constructs were complex and often misunderstood. We
illustrate this in Fig. 33, which shows the initial idea to use
only one multidirectional connector to connect all incoming
and outgoing edges. As shown in Fig. 33, however, this is
comparatively more difficult to understand than the example
in Fig. 32.

5.3.6 � The use of multiplicities for dependencies (RQ3.6)

Much akin to the discussion for the self-dependency, the
multiplicities for dependencies were a necessary means
to achieve displaying just one actor that represents all

collaborative CPS of the same type and in the same role.
Otherwise, it would not be possible to distinguish, e.g., the
following two situations: (1) an intentional element of one
collaborative CPS of a certain type depends on an intentional
element of one collaborative CPS of another type, and (2)
an intentional element of one CPS of a certain type depends
on intentional elements of multiple/all CPS of another type
that do exist. Therefore, the use of multiplicities is neces-
sary. From our observations the use was quite intuitive as
multiplicities are well known from UML class diagrams and
other modeling languages and, thus, their use did not lead to
any misinterpretations.

The use of multiplicities also shows the need to separate
specification and analysis of goal models for collaborative
CPS. For specification purposes, we need abstractions to
reduce the complexity of the models and allow specification
of CPS networks in a manageable fashion. Therefore, we use
the concept of multiplicities to cope with the sheer number
of configurations to be specified at design time. For analysis
purposes, however, we need to ensure proper functionality
in all situations. Thus, for runtime analysis all possible con-
figurations need to be considered.

During specification we define what configurations may
exist and thus need to be considered, however, we do not
place emphasis on how these form or dissolve. The specifi-
cation using multiplicities defines that the number of actors
will vary in a known range at runtime but not how these
variations occur at runtime. For example, in the robot case
example, if we model that the fleet consists of three to eight
identical robots that have the same role, it does not state how
the fleet can actually vary between three and eight robots.
If we want to state that, for instance, a robot might break
down, we need to explicitly specify another actor type robot
in the role “defect robot” and a coordination task can then
be used to explicitly define how a robot can be assigned the
role “defect robot”.

5.4 � Remaining challenges

5.4.1 � Limitations of the iStar extension (RQ4.1)

Despite the usefulness of the proposed extension and the
overall applicability of the proposed extension, we have
found some limitations. While, so far, we have briefly men-
tioned some remaining challenges in Sect. 4 and sketched
limitations throughout Sects. 5.2 and 5.3 in this section we
will discuss the most important limitations in more detail
and provide insights into rationales.

5.4.1.1  Contribution links depending on the current CPS
network configuration  As outlined in Sect. 2.3.6 there is
a need to allow modeling contributions where the value of
the contribution depends on the current configuration. We

360	 Requirements Engineering (2021) 26:325–370

1 3

use multiplicities for actors and dependencies to specify
multiple configurations within one single goal model. Thus,
multiple configurations are incorporated in one model and
hence the nature of a contribution might be ambiguous.
As briefly discussed in Sect. 4.2.3, we propose the use of
configuration-dependent contribution value labels for these
situations. This simple solution is a result of the inability to
define this complex problem with a precise but at the same
time comprehensible notation. Hence, the current solu-
tion for Challenge 6 is largely based on a tradeoff between
expressiveness and proposing an easy to use iStar extension.
We decided to go for simplicity to provide easy access for
industry professionals, thus limiting the expressiveness of
varying contribution links depending on the CPS network
configuration.

Industry professionals have stressed the importance of
investigating and analyzing these situations closer. So far,
our solution to this need is by modeling concrete configura-
tions in distinct models that allow detailed investigation and
comparison. In doing so, the benefits of having only one
model to maintain and analyze vanish and the effort needed
increases. In addition, when it comes to automated sup-
port, the current solution is also not sufficient as a precisely
defined contribution depending on the respective configura-
tions is needed to allow for any kind of automation.

5.4.1.2  Missing support for in‑depth analysis of concrete
instance configurations  There is not only a need to define
and investigate the impact a contribution link has based on
different configurations but more generally to investigate
concrete investigations in-depth. Due to the use of abstrac-
tions in the specification (i.e. representing CPS of similar
type with just one actor having multiplicities), it becomes
difficult to reason about similar CPS that try to achieve dif-
ferent goals at the same time. For instance, two CTR might
collaborate in a CTRF, while they have in principle the same
goals due to the current context situation the robots try to
achieve different goals. As an example, both robots might
have different battery-levels. Depending on the current bat-
tery level, the goals to be fulfilled change. With lower bat-
tery-levels robots shall aim for resource preservation, while
with higher battery-level the maximum number of transpor-
tation tasks shall be processed. Therefore, a means to gener-
ate and investigate concrete instance level configurations is
needed. We have already shown the applicability, effective-
ness, and usefulness of such generations for scenario model
using ITU Message Sequence Charts (cf. [105, 106]). Due
to the feedback we received from our industry partners, we
are confident that this is transferable to goal models and will
allow more in-depth analysis on the impact of certain con-
figurations.

5.4.1.3  Interpreting complex relations involving multiplici‑
ties  The interpretation of complex relations that involve
multiplicities may be error prone. Due to the high amount
of information to be processed for correctly interpreting
the meaning of grouped dependencies with multiplicities
involving actors with multiplicities, there is a risk of misin-
terpretation. However, the reduced size of the model itself
due to the use of these constructs was very much appreci-
ated.

Currently, we assume that the fulfillment of a depend-
ency with multiplicities means that all depender elements
are fulfilled if all dependee elements (AND-dependency),
at least one dependee element (OR-dependency), or exactly
one dependee element (XOR-dependency) are fulfilled. So
far, we found this definition to be sufficiently comprehensive
and intuitive. However, there might be the need to express
that just one of the depender elements will be fulfilled or
just a certain number. For instance, due to access restrictions
a resource might be only accessible by exactly one CPS.
Therefore, not all depending CPS can access this resource
at the same time and therefore, only one CPS can fulfill its
goals that depend on this resource. Furthermore, it is also
conceivable that not all, at least one, exactly one dependee
elements shall be fulfilled but a concrete number (or within
a concrete range). This is, for instance, the case if measure-
ments shall be validated across different members of a CPS
network. To do so, it is not necessary for the measurement to
be provided by all elements, but by at least two or three (as
otherwise no meaningful detection of outliers is possible).

5.4.1.4  Goal fulfillment analysis and semantics of the iStar
extension  Semantics for iStar and GRL are typically
defined based on goal fulfillments [107, 108]. Recommen-
dation Z.151 refers to this as the “GRL model satisfaction
analysis”. For instance, the semantics of an AND-decom-
position is defined such that the super-intentional element
is fulfilled if all intentional elements it is composed of are
fulfilled. Therefore, typically values for qualitative (e.g.,
high satisfaction, medium satisfaction, low satisfaction) and
quantitative analysis (e.g., 0–100% contribution to the satis-
faction) are defined. This allows, among others, automated
analysis of the overall goal fulfillments (i.e. can the overall
goals be sufficiently achieved) or calculating optimized goal
fulfillments (i.e. which subgoals—under consideration of
conflicts, etc.—should be fulfilled to reach the best possible
goal fulfillment).

So far, we have focused on modeling collaborative CPS
and manual analysis by human engineers. However, due to
the complexity automated support based on clear seman-
tics is desired. Particularly, goal fulfillment analyses can
support engineers in identifying problematic CPS network

361Requirements Engineering (2021) 26:325–370	

1 3

configurations, etc. Thus, the aforementioned precise seman-
tics for goal fulfillments will need to be established. Par-
ticularly, the semantics for goal fulfillment of multiplici-
ties, i.e. the impact on the actors with multiplicities, and on
the intentional elements involved with dependencies with
multiplicities need to be precisely defined. At this point,
we have gathered a broad understanding from the engineers
about what it means when a goal is fulfilled. From what we
have learned so far in collaborative CPS networks different
degrees of goal fulfillment must be considered. For instance,
the CTRF will not always fulfill a goal to 100% but in many
cases to a point where it suffices. I.e. equal battery consump-
tion across all CTRs will, depending on the configuration,
not be achievable. However, for many of these configurations
a less then optimal equality is also acceptable. Thus, when it
comes to goal fulfillments and automated analyses thereof,
more precise means are needed to express such complex
situations depending on the configuration.

5.4.1.5  Circular dependencies  Related to the afore-
mentioned point, when analyzing goal fulfilment circu-
lar dependencies are a problem, as this typically can be
interpreted as a deadlock, however, for collaborative CPS
expressing such circular dependencies is important.

As could be seen from the application of the case exam-
ples, circular dependencies occurred regularly. Furthermore,
we even introduced some elements (e.g., bi-directional
dependencies) that contradict the fulfillability of the overall
model in general as these are circular per definition. How-
ever, we deem these elements important. For instance, it is
necessary to express that a CPS network cannot fulfill its
goals if the goals of the individual systems are not fulfilled
and vice versa. A CACC wanting to reduce the overall travel
time depends on the platoon to reach this goal. However,
the platoon depends on each CACC in the platoon trying to
reach this goal as well. In other words, the platoon can only
drive as fast as its slowest member.

The many circular dependency relations between multiple
intentional elements of a CPS network and partaking CPS
were not identified as problematic by industry professionals.
Even more, they were highly appreciated as they express the
inherently collaborative parts of the interplay between the
individual CPS and the CPS network. Thus, these constructs
are severely needed by industry professionals to foster their
analysis in early stages. However, they are problematic for
goal fulfillment analysis, which was also seen as desirable
to support the development of collaborative CPS.

5.4.1.6  Tool support  While we provide Visio stencils to
create goal models for networks of collaborative CPS, the
tool cannot prevent modelers from creating goal models that
violate syntactical or well-formedness rules. Consequently,
the responsibility for adhering to those rules lies completely

with the modeler. This can be problematic for inexperienced
modelers who are not that familiar with the rules and there-
fore more likely to create flawed goal models for networks
of collaborative CPS.

Additionally, the tool does not provide automated analysis
support for goal fulfillment. Goal models can be analyzed
automatically to reason about goal fulfilment. This, how-
ever, is currently not implemented, leaving the requirements
engineer with the task of having to analyze the goal models
manually.

Currently, we are using Microsoft Visio as modeling tool,
which also allows implementing feasibility checks and the
goal fulfillment analysis via add-ins. Due to the popularity of
Visio, we intend to keep and enhance this, instead of using
another modeling tool which has already basic checks for
goal models implemented. The main reason for this is the
broad availability of Microsoft Office products in German
industry. This leads to easy application as modelers already
have sufficient experience with the tool.

5.4.2 � Industry needs for future work (RQ4.2)

Based on the limitations discussed above, the need for future
work arises. While we have already briefly discussed this
need in Sect. 5.4.1. In this section, we briefly summarize
the major needs identified. Particularly, we found needs for:

Contribution links depending on the configuration. The
solution needs to allow for precise definition of the impact
certain configurations or changes in a configuration have
on the value of a contribution link and at the same time
must be reasonably easy to model and comprehend that
it is of value for manual analyzes and discussions in early
development phases.
Providing support for interpreting complex relations
involving multiplicities. Correctly interpreting dependen-
cies with multiplicities and/or dependency groups can be
difficult. While having groups and multiplicities allow for
reducing the size of the goal model considerably (as oth-
erwise each dependency would have to be modeled indi-
vidually), there is an increased risk of misinterpretation.
One possible solution to this issue could be the illustra-
tive generation of model excerpts focusing on a particular
dependency that allow for examining this dependency in
the familiar style with no groups or multiplicities.
Automated goal fulfilment analysis and formal defini-
tion of semantics. Some new constructs (e.g., circular
dependencies, grouped dependencies) hinder the use of
established goal-fulfilment analysis approaches. To pro-
vide automated support for goal fulfilment analysis for
goal models of networks of collaborative CPS, a precise
definition of formal semantics is necessary. Particularly,

362	 Requirements Engineering (2021) 26:325–370

1 3

Table 3   Short summary of the principal findings for each research question

Research
questions

Findings

RQ1.1 Is the proposed iStar extension applicable to model a coopera-
tive adaptive cruise control?

The iStar extension is applicable and the application resulted in a
valid model for the cooperative adaptive cruise control that has
been evaluated by industry professionals as sufficient and helpful
in the engineering process

RQ1.2 Is the proposed iStar extension applicable to model collabora-
tive transport robots?

The iStar extension is applicable and the application resulted in a
valid model for the collaborative transport robots that has been
evaluated by industry professionals as sufficient and helpful in
the engineering process

RQ2.1 Does the use of the proposed iStar extension lead to a more con-
cise yet still comprehensible model of the cooperative adaptive
cruise control?

The resulting model is more concise than a comparable model
created without the extension. Particularly, the number of actors
shown is reduced and the number of dependency links needed
is significantly smaller. Furthermore, other approaches need to
define a single model for each configuration, thus, the number
of diagrams needed to describe the entire CPS network is also
reduced considerably

RQ2.2 Does the use of the proposed iStar extension lead to a more
concise yet still comprehensible model of the collaborative
transport robots?

The resulting model is more concise than a comparable model
created without the extension. Particularly, the number of actors
shown is reduced and the number of dependency links needed
is smaller. However, the effect is not as large as observed for
RQ2.1. Nevertheless, also in this case, other approaches would
need to define a single model for each configuration, thus, the
number of diagrams needed to describe the entire CPS network
is also reduced considerably

RQ3.1 Is the use of collaborative CPS and the network of collaborative
CPS as actors useful?

The differentiation between collaborative CPS and the CPS net-
work allows for expressing goals on different levels of abstrac-
tion and relating them to each other. I.e. it can be expressed how
CPS network goals can be achieved based on the collaborative
CPS’ goals. Particularly, the use of stereotypes allows to easily
distinguish both actor concepts and the use of nesting results
in smaller models while at the same time making the hierarchy
between CPS network and collaborative CPS intuitively clear

RQ3.2 Is the use of the coordination task useful? The coordination task is useful as it allows to document changes
of roles that may occur during runtime and indicate how they
are triggered and who is responsible for changing the role of an
actor. Thus, the coordination task concept allows to express a
complex situation by using just one intentional element

RQ3.3 Is the use of bidirectional dependencies useful? Bidirectional dependencies considerably reduce the size and
complexity of the resulting models. Collaborative CPC are—as
is quite obvious—collaborating and therefore, often rely on each
other, furthermore often the CPS network relies on the indi-
vidual CPS and vice versa. Thus, the bidirectional dependency
reduces the number of dependencies used and adds the notion of
mutuality which is not given by having two independent depend-
ency links

RQ3.4 Is the use of self-dependencies useful? The self-dependency allows to express that one system depends
on another system of the same type and role. Thus, the self-
dependency allows expressing different systems of the same type
with just one actor element Consequently, the size of the goal
model can considerably be reduced, and the clarity of the models
is improved

363Requirements Engineering (2021) 26:325–370	

1 3

a solution for the needed circular dependencies must be
provided.
Advanced tool support. To better support developers in
creating goal models for networks of collaborative CPS,
future tool support should also include checks for adher-
ence to modeling rules as well as support for automated
goal fulfillment analysis. As current tool support already
provides stencils for creating goal models for networks
of collaborative CPS, these analysis functionalities can
be implemented as Visio add-ins, so that already created
goal models can be analyzed,

6 � Discussion

6.1 � Summary and major findings

In this paper, we developed a GRL-compliant extension to
the existing iStar goal modeling language for goal modeling
of collaborative CPS and CPS networks. With the choice
of iStar, we have adopted a widely used goal modeling

approach. To do so, we integrated our extensions into the
iStar metamodel and defined the concrete syntax to specify
what the goal modeling extension looks like graphically con-
sidering best practices for model notation creation. Further-
more, the well-formedness rules were defined to describe
constraints for the goal models. Our extension was evaluated
using two industrial case examples: a CACC (cooperative
adaptive cruise control system) from the automotive industry
as well as a CTRF (collaborative transport robot fleet) from
the industry automation domain.

For the main results of our evaluation we can state that:

•	 RQ1: Our evaluation shows that the iStar extension is
applicable to industrial case examples of collabora-
tive CPS. The resulting models were well received by
industry professionals and rated as very helpful in the
engineering process as the goals of a multitude of con-
figurations to be considered can be easily expressed in
manageable models.

•	 RQ2: The goal models with the extension include fewer
actors and dependency lines compared to the goal mod-

Table 3   (continued)

Research
questions

Findings

RQ3.5 Is the use of grouped dependencies useful? Grouped dependencies can reduce the number of dependencies to
be modeled and therefore reduce the size of the model and add
to model clarity. However, it is to mention that in some cases the
use of grouped dependencies can result in too complex to read
dependencies. This is particular the case when dependent inten-
tional elements are spatially distant. Therefore, this modeling
element should not be used regardless of the layout of the model,
but the current layout should be taken into account. However,
in several situations the model complexity can considerably be
reduced

RQ3.6 Is the use of multiplicities for dependencies useful? As is the case for self-dependencies, this modeling element allows
to model different systems of the same type with just one actor
element. Consequently, the size of the goal model can consider-
ably be reduced, and the clarity of the models is improved

RQ4.1 What are limitations of the proposed iStar extension? As advanced automated support is desired, the proposed iStar
extension is limited as no formal semantics are provided yet.
This is particularly the case when it comes to circular depend-
encies and the proper interpretation of complex dependencies
that involve multiplicities. Furthermore, by providing simplified
type-level specifications using abstractions to allow for concise
models, the ability to reason about concrete, potentially hazard-
ous, instance configurations is limited

RQ4.2 What are industry’s needs for future work? There is particularly a need for revisiting the solution for Chal-
lenge 6 by semantically defining contribution links, where the
contribution value depends on the configuration of the CPS
network (i.e. is related to actor multiplicities). Furthermore,
there is a need to define formal semantics for analyzing circular
dependencies and to allow for automated goal fulfillment
analysis. Furthermore, automated support for analyzing concrete
instance-configurations is needed. These automated aspects can
also be supported by adequately developing the tool support
further

364	 Requirements Engineering (2021) 26:325–370

1 3

els without the extension, although the same situation is
shown in both. Therefore, the use of the iStar extension
results in more concise goal models.

•	 RQ3: We have shown that each of the proposed modeling
elements contributes to modeling complex situations
in a clear and concise way and thus yields the creation
of extensive and yet easily readable models. Accord-
ing to Moody’s principle of complexity management,
it was shown that the modeling elements of the exten-
sion are suitable to reduce the complexity of the iStar
models when modeling collaborative CPS that interact
in dynamic CPS networks.

•	 RQ4: Finally, we have investigated shortcomings of the
extension and needs for future work. Among the remain-
ing challenges, most notably is the proper definition of
formal semantics that also consider circular and bidirec-
tional dependencies, take multiplicities for contributions
into account and, thus, allow for automated goal fulfill-
ment analysis.

For a summary of the major findings for each sub-
research question, please refer to Table 3.

6.2 � Threats to validity

To evaluate our proposed extension, we used a commonly
used evaluation approach (e.g., [17, 100, 109]). However,
like all evaluation approaches, case study evaluations have
some drawbacks [110, 111]. As recommended [112], we
discuss those drawbacks in terms of conclusion, external,
internal, and construct validity.

6.2.1 � Conclusion Validity

Conclusion validity deals with drawing correct conclusions
from the application results and findings. As case studies
usually draw conclusions from few cases studies, conclu-
sion validity must be considered rather low. To somewhat
alleviate this threat, we conducted two case studies in dif-
ferent domains. We showed that both case examples can be
modeled appropriately using the proposed extension. We
furthermore showed that industry professionals found the
created models easy to understand and helpful. However, at
this point we cannot make any claims as to how well indus-
try professionals can create goal models using the extension
on their own.

6.2.2 � External validity

External validity deals with the ability to generalize results
to cases outside those studied. Collaborative CPS networks
are of a diverse nature and exist in a variety of domains (such
as energy, aviation, etc.) with specific characteristics. We

cannot rule out the need for further adjustment to the exten-
sion for goal models of collaborative CPS for those domains.
However, our case study has shown the applicability of the
proposed extension for goal models of collaborative in two
different domains, automotive and industry automation. We
expect the proposed extension to be at least somewhat ben-
eficial to the development of collaborative CPS from other
domains.

Another remaining threat is if industry will ever use the
extension on their own. Particularly, there is a threat that
goal models at all will not be used by industry as recent
studies have shown industry’s reluctance to the use of goal
modeling [26, 27]. While we cannot rule out this possibility,
we want to highlight that we have shown for the automotive
industry that goal models are welcomed when the introduc-
tion is accompanied with training and tutoring sessions [52].
Regarding the robot case example, the idea of using goal
models was very well-received as it was a good match for
how engineers thought of their robots. We found that the
engineering was already centered around the goals, the indi-
vidual robots have and around questions like when shall a
robot fulfill which goal, etc. However, previously this was
not made explicit and, therefore, the benefits of using goal
models were quite obvious to our partners.

6.2.3 � Internal validity

Internal validity deals with the ability to infer a causal rela-
tionship between treatment and outcome. As the goal models
were largely created by the same persons that created the
extension, a certain degree of bias cannot be dismissed com-
pletely. However, all goal models were frequently reviewed
by industry professionals not involved in the development
of the extension.

Due to being part of the CrESt-project, the timing of the
workshops, data collection procedures, etc., were not com-
pletely under our control, but we made use of the means the
project setup provided. Nevertheless, there was always suf-
ficient space for industry feedback either in writing as com-
ments to the models or during discussions. While we gave
all participants the opportunity to give their opinion publicly
or privately, we cannot rule out that some participants might
have kept their opinions to themselves.

6.2.4 � Construct validity

Construct validity deals with the generalizability of the
results found for the particular case example to the underly-
ing theory. I.e. in our case it must be questioned whether the
case studies are indeed good representatives for collabora-
tive CPS and whether the effects observed during applica-
tion can be attributed to the proposed extension or whether
these are only particular to the case example. Hence, there

365Requirements Engineering (2021) 26:325–370	

1 3

is a risk as the requirements for the iStar extension were
based on findings from the evaluation case examples, that
the proposed extension does only address specific issues for
the two case examples under investigation, but that these are
not representative for collaborative CPS at large.

One further aspect is the generalization beyond the use
for specifying collaborative CPS. Therefore, it is to note
that some of the modeling elements we use are not specific
for collaborative CPS. Furthermore, we make also use of
other proposed extensions that aimed at other system types.
Consequently, we cannot state that the proposed extension
is limited to the specification of collaborative CPS, nor can
we state that there will be no collaborative CPS that cannot
be modeled using our extension. However, the applicability
on two case examples of collaborative CPS indicates that
the proposed extension allows modeling collaborative CPS.
Nevertheless, we assume that also other system types might
be documented using the extension, particularly those we
have briefly sketched in the related work section. However,
we cannot make any reliable claim on this as this was not in
the focus of our evaluation.

6.3 � Inferences

In this paper, we have proposed a GRL-compliant iStar
extension to support goal modeling of collaborative CPS
that partake in dynamic CPS networks. The proposed mod-
eling elements have been created based on needs identified
in industrial applications of goal modeling and have been
evaluated for their ability to solve these needs. In addition,
the resulting overall goal models have shown valid, useful,
and concise. Hence, we can state that the proposed extension
is an adequate solution to an industrial problem situation.
However, it must be questioned whether goal models in gen-
eral are a valid approach for supporting the engineering of
collaborative CPS. Particularly, for collaborative CPS it is
the case that goal modeling is seen as an intuitive approach
as it can be expressed that the individual CPS have their
own goals to fulfill, which might be contradictory from one
system to another as well as the overall goals of the CPS
network. Insights derived from the workshops conducted
with industry partners corroborate this claim. It was seen
as very valuable to identify collaborative CPS and CPS net-
work goals right from the beginning and already discuss
dependencies and conflicts arising from the interplay of the
individual CPS. Particularly, for the CTR case example it
was confirmed that initial conceptual goal models can sup-
port the overall development as the industry partner involved
follows a goal-oriented implementation approach. I.e. the
defined goals are each instantiated by code and deployed on
the robot. Additionally, key performance indicators (KPI)
are defined to allow monitoring of the goal fulfillment

of each goal and decision-making which goal fulfillment
should be optimized in which situation.

Although the approach was only evaluated using two case
examples, they have shown that the proposed extension is
a valid and valuable solution at least for these. However, as
the case examples were taken from different domains and
the results were also discussed with partners working on
other collaborative CPS and also stem from other domains,
we are confident that the approach can be a valuable con-
tribution in general. Particularly, the application of goal
modeling for supporting the engineering of collaborative
CPS seems very reasonable as discussing goal conflicts
between individual collaborative CPS as well as between
individual collaborative CPS and CPS network is vital for
the engineering of these systems. Thus, the use of goal mod-
els can improve the engineering of these systems already
in the early stages and – as, for instance, the application to
the CTR case has shown – can also be used to structure the
engineering process of these systems.

6.4 � Future work

So far, we have identified limitations and needs for future
work regarding the extension and its evaluation, which we
will summarize in this section. As discussed in Sect. 5.4.1
some limitations to the proposed GRL-compliant iStar
extension still exist. These lead to the need for further
improvements to the extension as discussed in Sect. 5.4.2. In
addition, we have discussed limitations originating from the
threats to validity of the evaluation as outlined in Sect. 6.2,
which have been identified as needs for future evaluation
efforts in Sect. 6.3.

Thus, two major research directions exist that need to be
coped with in future work:

•	 Extending and improving the proposed GRL-compliant
iStar extension for collaborative CPS. Most notably there
still exists a need for a formal definition of semantics to
allow for automated analyses and reasoning about goal
fulfillment relations. In addition, industry needs exist
regarding the documentation of contribution links with
values depending on the different configurations as well
as extended tool support.

•	 Extending the evaluation of the proposed GRL-compliant
iStar extension for collaborative CPS. In the evaluation
of the proposed extension, we have shown that the exten-
sion can be used to adequately model the goals for the
two selected industry case examples. We have further
shown that industry professionals regard the extension
as helpful. Beside the need for further evaluation using
different case examples, it is also of interest to study the
use of the extension by industry professionals not only as

366	 Requirements Engineering (2021) 26:325–370

1 3

interpreters of the models but their ability to create goal
models using the extension themselves.

7 � Conclusion

In this paper, we have presented a GRL-compliant iStar
extension for collaborative CPS. Collaborative CPS form
CPS networks in which they can achieve goals that cannot
be achieved by individual CPS on their own [22]. In previ-
ous work we have investigated how suitable GRL/iStar is to
model such collaborative CPS that form CPS networks [23].
We found that goal modeling – particularly using GRL – is
a promising approach to specify collaborative CPS and ana-
lyze the interdependencies between the individual CPS and
the CPS network. However, we also found that some spe-
cific characteristics of collaborative CPS and CPS networks
are not sufficiently covered by the iStar modeling language
so far. Therefore, in this paper we defined requirements for
extending GRL/iStar to allow for consideration of these
aspects. Based on these requirements, we have developed a
GRL-compliant iStar extension and shown its applicability
and usefulness by employing two industrial case examples.
We used a cooperative adaptive cruise control system that
dynamically forms platoons at runtime from the automotive
industry and autonomous transport robots that form fleets of
robots to fulfill transportation tasks in smart factories from
the industry automation domain.

While we have shown the applicability of the approach to
industrial case examples and made the case for its usefulness
as seen by industry partners, we have also identified remain-
ing challenges for future work. In this paper we focused on
defining an appropriate extension to foster graphical mod-
eling in the development of collaborative CPS. This means
that we mainly addressed communication aspects, support
for early comprehension and representation of complex rela-
tions within the CPS network, and manual analyses of goal
relations. This was well-received by industry partners and
has been shown to be applicable and useful for collaborative
CPS and CPS networks. Thus, we believe this extension is a
good starting point for further advanced analysis techniques
to support requirements engineering of collaborative CPS
and CPS networks. This is substantiated by the discovered
desire for automated support in analyzing goal fulfillment
relations and for identifying and in-depth analysis of con-
crete potentially hazardous instance-level configurations.
Therefore, in the next step, a thorough definition of goal
fulfillment semantics is needed. These must also consider
challenging model elements such as circular and bidirec-
tional dependencies or contributions whose value depends
on the respective configuration.

Acknowledgments  We thank Elham Mirzaei, Martin Neumann, and
Jan Stefan Zernickel from InSystems Automation GmbH; Jochen Nick-
les and Markus Sauer from Siemens AG; Frank Houdek from Daimler
AG; and Sebastian Schröck and Peter Heidl from Robert Bosch GmbH
for their support. Furthermore, we like to thank the anonymous review-
ers that provided us with very helpful feedback and comments, thus
supporting us in improving this paper.

Funding  Open Access funding enabled and organized by Projekt
DEAL. This work was partially funded by the German Federal Minis-
try for Education and Research (BMBF) under grant no. 01IS16043V

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

References

	 1.	 van Lamsweerde A, Letier E (2004) From object orientation to
goal orientation: a paradigm shift for requirements engineering.
In: Wirsing M, Knapp A, Balsamo S (eds) Radical innovations of
software and systems engineering in the future. Springer, Berlin
Heidelberg, pp 325–340

	 2.	 Bresciani P, Perini A, Giorgini P et al (2004) Tropos: an
agent-oriented software development methodology. Auton
Agents Multi-Agent Syst 8:203–236. https​://doi.org/10.1023/
B:AGNT.00000​18806​.20944​.ef

	 3.	 Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework
for contextual requirements modeling and analysis. Requir Eng
15:439–458. https​://doi.org/10.1007/s0076​6-010-0110-z

	 4.	 Cheng BHC, Sawyer P, Bencomo N, Whittle J (2009) A goal-
based modeling approach to develop requirements of an adaptive
system with environmental uncertainty. In: Schürr A, Selic B
(eds) Model driven engineering languages and systems. Springer,
Berlin Heidelberg, pp 468–483

	 5.	 Mylopoulos J, Chung L, Yu E (1999) From object-oriented to
goal-oriented requirements analysis. Commun ACM 42:31–37.
https​://doi.org/10.1145/29146​9.29316​5

	 6.	 Ghanavati S, Rifaut A, Dubois E, Amyot D (2014) Goal-oriented
compliance with multiple regulations. In: 2014 IEEE 22nd inter-
national requirements engineering conference (RE). pp 73–82

	 7.	 Grau G, Franch X, Maiden NAM (2008) PRiM: An i*-based pro-
cess reengineering method for information systems specification.
Inform Softw Technol 50:76–100. https​://doi.org/10.1016/j.infso​
f.2007.10.006

	 8.	 Cardoso ECS, Almeida JPA, Guizzardi G, Guizzardi RSS (2009)
Eliciting goals for business process models with non-functional
requirements catalogues. In: Halpin T, Krogstie J, Nurcan S et al
(eds) Enterprise, business-process and information systems mod-
eling. Springer, Berlin, Heidelberg, pp 33–45

	 9.	 Horkoff J, Yu E (2016) Interactive goal model analysis for early
requirements engineering. Requir Eng 21:29–61. https​://doi.
org/10.1007/s0076​6-014-0209-8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
https://doi.org/10.1007/s00766-010-0110-z
https://doi.org/10.1145/291469.293165
https://doi.org/10.1016/j.infsof.2007.10.006
https://doi.org/10.1016/j.infsof.2007.10.006
https://doi.org/10.1007/s00766-014-0209-8
https://doi.org/10.1007/s00766-014-0209-8

367Requirements Engineering (2021) 26:325–370	

1 3

	 10.	 Cleland-Huang J, Settimi R, BenKhadra O et al (2005) Goal-
centric traceability for managing non-functional requirements.
In: Proceedings of the 27th international conference on software
engineering. ACM, New York, NY, USA, pp 362–371

	 11.	 Kavakli V, Loucopoulos P (1999) Goal-driven business process
analysis application in electricity deregulation. Inf Syst 24:187–
207. https​://doi.org/10.1016/S0306​-4379(99)00015​-0

	 12.	 Liaskos S, Alexei, Yu Y et al (2006) On goal-based variability
acquisition and analysis. In: 14th IEEE international require-
ments engineering conference (RE’06). pp 79–88

	 13.	 Yijun Yu, Leite JCSP, Mylopoulos J (2004) From goals to
aspects: discovering aspects from requirements goal models. In:
Proceedings. 12th IEEE international requirements engineering
conference, 2004. pp 38–47

	 14.	 van Lamsweerde A, Darimont R, Letier E (1998) Managing con-
flicts in goal-driven requirements engineering. IEEE Trans Softw
Eng 24:908–926. https​://doi.org/10.1109/32.73054​2

	 15.	 Fuxman A, Liu L, Mylopoulos J et al (2004) Specifying and
analyzing early requirements in Tropos. Requir Eng 9:132–150.
https​://doi.org/10.1007/s0076​6-004-0191-7

	 16.	 Matulevičius R, Mayer N, Mouratidis H et al (2008) Adapting
secure tropos for security risk management in the early phases
of information systems development. In: Bellahsène Z, Léonard
M (eds) Advanced information systems engineering. Springer,
Berlin, Heidelberg, pp 541–555

	 17.	 Mouratidis H, Giorgini P (2007) Secure tropos: a security-ori-
ented extension of the tropos methodology. Int J Soft Eng Knowl
Eng 17:285–309. https​://doi.org/10.1142/S0218​19400​70032​40

	 18.	 Rolland C, Souveyet C, Achour CB (1998) Guiding goal mod-
eling using scenarios. IEEE Trans Softw Eng 24:1055–1071.
https​://doi.org/10.1109/32.73833​9

	 19.	 Goldsby HJ, Sawyer P, Bencomo N et al (2008) Goal-based
modeling of dynamically adaptive system requirements. In: 15th
Annual IEEE international conference and workshop on the engi-
neering of computer based systems (ecbs 2008). pp 36–45

	 20.	 Andersson B, Johannesson P, Zdravkovic J (2009) Aligning goals
and services through goal and business modelling. Inf Syst E-Bus
Manag 7:143–169. https​://doi.org/10.1007/s1025​7-008-0084-2

	 21.	 Dalpiaz F, Franch X, Horkoff J (2016) iStar 2.0 language guide.
https​://arxiv​.org/abs/1605.07767​ [cs]

	 22.	 Mosterman PJ, Zander J (2016) Cyber-physical systems chal-
lenges: a needs analysis for collaborating embedded software
systems. Softw Syst Model 15:5–16. https​://doi.org/10.1007/
s1027​0-015-0469-x

	 23.	 Daun M, Stenkova V, Krajinski L et al (2019) Goal modeling
for collaborative groups of cyber-physical systems with GRL:
reflections on applicability and limitations based on two studies
conducted in industry. In: Proceedings of the 34th ACM/SIGAPP
symposium on applied computing, SAC 2019, Limassol, Cyprus,
April 8–12, 2019. pp 1600–1609

	 24.	 Yu ESK (1997) Towards modelling and reasoning support for
early-phase requirements engineering. In: Proceedings of ISRE
’97: 3rd IEEE international symposium on requirements engi-
neering. pp 226–235

	 25.	 International Telecommunication Union (2018) Recommenda-
tion Z.151 (10/18): user requirements notation (URN)—language
definition. International Telecommunication Union, Geneva,
Switzerland

	 26.	 Mavin A, Wilkinson P, Teufl S et al (2017) Does goal-oriented
requirements engineering achieve its goal? In: 2017 IEEE 25th
international requirements engineering conference (RE). pp
174–183

	 27.	 Wagner S, Fernández DM, Felderer M et al (2019) Status quo
in requirements engineering: a theory and a global family of

surveys. ACM Trans Softw Eng Methodol 28:9:1-9:48. https​://
doi.org/10.1145/33066​07

	 28.	 Horkoff J, Aydemir FB, Cardoso E et al (2019) Goal-oriented
requirements engineering: an extended systematic mapping
study. Requir Eng 24:133–160. https​://doi.org/10.1007/s0076​
6-017-0280-z

	 29.	 Kavakli E (2004) Modeling organizational goals: analysis of cur-
rent methods. In: Proceedings of the 2004 ACM symposium on
applied computing. ACM, New York, NY, USA, pp 1339–1343

	 30.	 Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed
requirements acquisition. Sci Comput Program 20:3–50. https​://
doi.org/10.1016/0167-6423(93)90021​-G

	 31.	 van Lamsweerde A (2009) Requirements engineering: from sys-
tem goals to UML models to software specifications, 1st edn.
Wiley, Hoboken

	 32.	 Amyot D, Horkoff J, Gross D, Mussbacher G (2009) A light-
weight GRL profile for i* modeling. In: Heuser CA, Pernul G
(eds) Advances in conceptual modelling—challenging perspec-
tives. Springer, Berlin Heidelberg, pp 254–264

	 33.	 Amyot D, Mussbacher G (2011) User requirements notation: the
first ten years, the next ten years. JSW 6:747–768. https​://doi.
org/10.4304/jsw.6.5.747-768

	 34.	 Horkoff J, Elahi G, Abdulhadi S, Yu E (2008) Reflective analy-
sis of the syntax and semantics of the i* framework. In: Song
I-Y, Piattini M, Chen Y-PP et al (eds) Advances in conceptual
modeling—challenges and opportunities. Springer, Berlin Hei-
delberg, pp 249–260

	 35.	 Brings J, Daun M, Bandyszak T et al (2019) Model-based doc-
umentation of dynamicity constraints for collaborative cyber-
physical system architectures: findings from an industrial case
study. J Syst Archit 97:153–167. https​://doi.org/10.1016/j.sysar​
c.2019.02.012

	 36.	 Teruel MA, Navarro E, López-Jaquero V et al (2011) CSRML: a
goal-oriented approach to model requirements for collaborative
systems. In: Jeusfeld M, Delcambre L, Ling T-W (eds) Concep-
tual modeling—ER 2011. Springer, Berlin, Heidelberg, pp 33–46

	 37.	 Kim KD, Kumar PR (2012) Cyber-physical systems: a perspec-
tive at the centennial. Proc IEEE 100:1287–1308. https​://doi.
org/10.1109/JPROC​.2012.21897​92

	 38.	 Fitzgerald J, Larsen PG, Verhoef M (2014) From embedded to
cyber-physical systems: challenges and future directions. In:
Fitzgerald J, Larsen PG, Verhoef M (eds) Collaborative design
for embedded systems. Springer, Berlin, Heidelberg, pp 293–303

	 39.	 Lee EA (2008) Cyber physical systems: design challenges. In:
2008 11th IEEE international symposium on object and com-
ponent-oriented real-time distributed computing (ISORC). pp
363–369

	 40.	 Stankovic JA, Lee I, Mok A, Rajkumar R (2005) Opportuni-
ties and obligations for physical computing systems. Computer
38:23–31. https​://doi.org/10.1109/MC.2005.386

	 41.	 Ponsard C, Massonet P, Rifaut A et al (2005) Early verifica-
tion and validation of mission critical systems. Electron Notes
Theor Comput Sci 133:237–254. https​://doi.org/10.1016/j.entcs​
.2004.08.067

	 42.	 Fallah YP, Huang C, Sengupta R, Krishnan H (2010) Design of
cooperative vehicle safety systems based on tight coupling of
communication, computing and physical vehicle dynamics. In:
Proceedings of the 1st ACM/IEEE international conference on
cyber-physical systems. ACM, New York, NY, USA, pp 159–167

	 43.	 Fallah YP, Huang C, Sengupta R, Krishnan H (2011) Analy-
sis of information dissemination in vehicular ad-hoc networks
with application to cooperative vehicle safety systems. IEEE
Trans Veh Technol 60:233–247. https​://doi.org/10.1109/
TVT.2010.20850​22

https://doi.org/10.1016/S0306-4379(99)00015-0
https://doi.org/10.1109/32.730542
https://doi.org/10.1007/s00766-004-0191-7
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1109/32.738339
https://doi.org/10.1007/s10257-008-0084-2
https://arxiv.org/abs/1605.07767
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1145/3306607
https://doi.org/10.1145/3306607
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1007/s00766-017-0280-z
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.1016/0167-6423(93)90021-G
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.4304/jsw.6.5.747-768
https://doi.org/10.1016/j.sysarc.2019.02.012
https://doi.org/10.1016/j.sysarc.2019.02.012
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/JPROC.2012.2189792
https://doi.org/10.1109/MC.2005.386
https://doi.org/10.1016/j.entcs.2004.08.067
https://doi.org/10.1016/j.entcs.2004.08.067
https://doi.org/10.1109/TVT.2010.2085022
https://doi.org/10.1109/TVT.2010.2085022

368	 Requirements Engineering (2021) 26:325–370

1 3

	 44.	 Sha L, Gopalakrishnan S, Liu X, Wang Q (2008) Cyber-physical
systems: a new frontier. In: 2008 IEEE international conference
on sensor networks, ubiquitous, and trustworthy computing (sutc
2008). pp 1–9

	 45.	 Lee EA (2010) CPS foundations. In: Design automation confer-
ence. pp 737–742

	 46.	 Gonçalves E, de Oliveira MA, Monteiro I et al (2019) Under-
standing what is important in iStar extension proposals: the
viewpoint of researchers. Requir Eng 24:55–84. https​://doi.
org/10.1007/s0076​6-018-0302-5

	 47.	 Moody D (2009) The “physics” of notations: toward a scientific
basis for constructing visual notations in software engineering.
IEEE Trans Softw Eng 35:756–779. https​://doi.org/10.1109/
TSE.2009.67

	 48.	 Brings J, Daun M, Weyer T, Pohl K (2020) Goal-based con-
figuration analysis for networks of collaborative cyber-physical
systems. In: Proceedings of the 35th annual ACM symposium
on applied computing. Association for Computing Machinery,
Brno, Czech Republic, pp 1387–1396

	 49.	 Daun M, Salmon A, Tenbergen B et al (2014) Industrial case
studies in graduate requirements engineering courses: The impact
on student motivation. In: Bollin A, Hochmüller E, Mittermeir
RT et al (eds) 27th IEEE conference on software engineering
education and training, CSEE&T 2014, Klagenfurt, Austria,
April 23–25, 2014. IEEE, pp 3–12

	 50.	 Tenbergen B, Daun M (2019) Industry Projects in Requirements
Engineering Education: Application in a University Course in
the US and Comparison with Germany. In: 52nd Hawaii Inter-
national Conference on System Sciences

	 51.	 Daun M, Brings J, Obe PA et al (2017) Teaching conceptual
modeling in online courses: coping with the need for individual
feedback to modeling exercises. In: Washizaki H, Mead N (eds)
30th IEEE conference on software engineering education and
training, CSEE&T 2017, Savannah, GA, USA, November 7–9,
2017. IEEE, pp 134–143

	 52.	 Daun M, Keller K, Brings J (2017) Teaching goal modeling to
engineering professionals—an experience report. In: Franch
X, Snoeck M, Guizzardi RSS, Jureta I (eds) Proceedings of the
5th symposium on conceptual modeling education and the 2nd
international iStar teaching workshop co-located with the 36th
international conference on conceptual modeling (ER 2017),
Valencia, Spain, November 6–9, 2017. CEUR-WS.org, pp 38–47

	 53.	 Lewis GA, Morris E, Place P et al (2009) Requirements engineer-
ing for systems of systems. In: 2009 3rd annual IEEE systems
conference. pp 247–252

	 54.	 Kopetz H, Bondavalli A, Brancati F et al (2016) Emergence in
cyber-physical systems-of-systems (CPSoSs). In: Bondavalli A,
Bouchenak S, Kopetz H (eds) Cyber-physical systems of sys-
tems. Springer, Cham, pp 73–96

	 55.	 Cavalcante E, Batista T, Bencomo N, Sawyer P (2015) revisit-
ing goal-oriented models for self-aware systems-of-systems. In:
2015 IEEE international conference on autonomic computing.
pp 231–234

	 56.	 Garro A, Tundis A (2015) On the reliability analysis of systems
and SoS: the RAMSAS method and related extensions. IEEE
Syst J 9:232–241. https​://doi.org/10.1109/JSYST​.2014.23216​17

	 57.	 Silva E, Cavalcante E, Batista T et al (2014) On the characteriza-
tion of missions of systems-of-systems. In: Proceedings of the
2014 European conference on software architecture workshops.
ACM, New York, NY, USA, pp 26:1–26:8

	 58.	 Silva E, Batista T, Cavalcante E (2015) A mission-oriented tool
for system-of-systems modeling. In: Proceedings of the third
international workshop on software engineering for systems-of-
systems. IEEE Press, Piscataway, NJ, USA, pp 31–36

	 59.	 Silva E, Batista T, Oquendo F (2015) A mission-oriented
approach for designing system-of-systems. In: 2015 10th system
of systems engineering conference (SoSE). pp 346–351

	 60.	 Silva E, Batista T (2018) Formal modeling systems-of-systems
missions with mKAOS. In: Proceedings of the 33rd annual ACM
symposium on applied computing. ACM, New York, NY, USA,
pp 1674–1679

	 61.	 Garcés L, Nakagawa EY (2017) A process to establish, model
and validate missions of systems-of-systems in reference archi-
tectures. In: Proceedings of the symposium on applied comput-
ing. ACM, New York, NY, USA, pp 1765–1772

	 62.	 Rogers A, Ramchurn SD, Jennings NR (2012) Delivering the
smart grid: challenges for autonomous agents and multi-agent
systems research. In: Proceedings of the twenty-sixth AAAI con-
ference on artificial intelligence. pp 2166–2172

	 63.	 Wooldridge M (1997) Agent-based software engineering. IEE
Proc Softw Eng 144:26–37. https​://doi.org/10.1049/ip-sen:19971​
026

	 64.	 Rao AS, Georgeff MP (1991) Modeling rational agents within
a BDI-architecture. In: Proceedings of the second international
conference on principles of knowledge representation and rea-
soning. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, pp 473–484

	 65.	 Rao AS, Georgeff MP (1995) BDI Agents: from theory to prac-
tice. In: Proceedings of the first international conference on
multi-agent systems (ICMAS-95), San Francisco. pp 312–319

	 66.	 Grau G, Cares C, Franch X, Navarrete FJ (2006) A comparative
analysis of i*agent-oriented modelling techniques. In: Proceed-
ings of the eighteenth international conference on software engi-
neering and knowledge engineering (SEKE’06). pp 1–7

	 67.	 Vrbaski M, Mussbacher G, Petriu D, Amyot D (2012) Goal mod-
els as run-time entities in context-aware systems. In: Proceedings
of the 7th workshop on Models@Run.Time. ACM, New York,
NY, USA, pp 3–8

	 68.	 Bergenti F, Rimassa G, Somacher M, Botelho LM (2003) A FIPA
compliant goal delegation protocol. In: Huget M-P (ed) Com-
munication in multiagent systems: agent communication lan-
guages and conversation policies. Springer, Berlin, Heidelberg,
pp 223–238

	 69.	 Braubach L, Pokahr A, Moldt D, Lamersdorf W (2005) Goal
representation for BDI agent systems. In: Bordini RH, Dastani
M, Dix J, El Seghrouchni Fallah A (eds) Programming multi-
agent systems. Springer, Berlin Heidelberg, pp 44–65

	 70.	 Partsakoulakis I, Vouros G (2002) Roles in collaborative activity.
In: Vlahavas IP, Spyropoulos CD (eds) Methods and applica-
tions of artificial intelligence. Springer, Berlin, Heidelberg, pp
449–460

	 71.	 Vally J-D, Courdier R (1998) A conceptual “role-centered”
model for design of multi-agents systems. In: Ishida T (ed)
Multiagent platforms. Springer, Berlin, Heidelberg, pp 33–46

	 72.	 Wooldridge M, Jennings NR, Kinny D (1999) A methodology for
agent-oriented analysis and design. In: Proceedings of the third
annual conference on autonomous agents. ACM, New York, NY,
USA, pp 69–76

	 73.	 Kendall EA (2000) Role modeling for agent system analysis,
design, and implementation. IEEE Concurr 8:34–41. https​://doi.
org/10.1109/4434.84619​2

	 74.	 Kinny D, Georgeff M, and Rao A (1996) A methodology and
modelling technique for systems of BDI agents. In: Van de Velde
W, Perram JW (eds) Agents Breaking Away, pp. 56–71

	 75.	 Odell J, Nodine M, Levy R (2004) A metamodel for agents, roles,
and groups. In: Agent-oriented software engineering V. Springer,
Berlin, Heidelberg, pp 78–92

https://doi.org/10.1007/s00766-018-0302-5
https://doi.org/10.1007/s00766-018-0302-5
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/JSYST.2014.2321617
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1049/ip-sen:19971026
https://doi.org/10.1109/4434.846192
https://doi.org/10.1109/4434.846192

369Requirements Engineering (2021) 26:325–370	

1 3

	 76.	 Beydoun G, Low G, Henderson-Sellers B et al (2009) FAML:
a generic metamodel for MAS development. IEEE Trans Softw
Eng 35:841–863. https​://doi.org/10.1109/TSE.2009.34

	 77.	 Adam E, Strugeon EGL, Mandiau R (2008) Flexible hierarchical
organisation of role based agents. In: 2008 Second IEEE interna-
tional conference on self-adaptive and self-organizing systems
workshops. pp 186–191

	 78.	 Adam E, Mandiau R (2007) Flexible roles in a holonic multi-
agent system. In: Mařík V, Vyatkin V, Colombo AW (eds) Hol-
onic and multi-agent systems for manufacturing. Springer, Ber-
lin, Heidelberg, pp 59–70

	 79.	 Giorgini P, Mylopoulos J, Sebastiani R (2005) Goal-oriented
requirements analysis and reasoning in the Tropos methodol-
ogy. Eng Appl Artif Intell 18:159–171. https​://doi.org/10.1016/j.
engap​pai.2004.11.017

	 80.	 Zhong C, DeLoach SA (2011) Runtime models for automatic
reorganization of multi-robot systems. In: Proceedings of the
6th international symposium on software engineering for adap-
tive and self-managing systems. ACM, New York, NY, USA, pp
20–29

	 81.	 Thangarajah J, Padgham L, Winikoff M (2003) Detecting and
exploiting positive goal interaction in intelligent agents. In: Pro-
ceedings of the second international joint conference on auton-
omous agents and multiagent systems. ACM, New York, NY,
USA, pp 401–408

	 82.	 Cheong C, Winikoff M (2005) Hermes: implementing goal-ori-
ented agent interactions. In: Programming multi-agent systems.
Springer, Berlin, Heidelberg, pp 168–183

	 83.	 Cheong C, Winikoff M (2005) Hermes: designing goal-oriented
agent interactions. In: Müller JP, Zambonelli F (eds) Agent-ori-
ented software engineering VI. Springer, Berlin, Heidelberg, pp
16–27

	 84.	 Cheong C, Winikoff M (2005) Hermes: a methodology for goal
oriented agent interactions. In: Proceedings of the fourth inter-
national joint conference on autonomous agents and multiagent
systems. ACM, New York, NY, USA, pp 1121–1122

	 85.	 Gonçalves E, Castro J, Araújo J, Heineck T (2018) A systematic
literature review of iStar extensions. J Syst Softw 137:1–33. https​
://doi.org/10.1016/j.jss.2017.11.023

	 86.	 Teruel MA, Tardío R, Navarro E et al (2014) CSRML4BI: a
goal-oriented requirements approach for collaborative business
intelligence. In: Yu E, Dobbie G, Jarke M, Purao S (eds) Con-
ceptual modeling. Springer, Cham, pp 423–430

	 87.	 Teruel MA, Navarro E, López-Jaquero V et al (2017) A com-
prehensive framework for modeling requirements of CSCW sys-
tems. J Softw Evol Process 29:e1858. https​://doi.org/10.1002/
smr.1858

	 88.	 Ellis CA, Gibbs SJ, Rein G (1991) Groupware: some issues
and experiences. Commun ACM 34:39–58. https​://doi.
org/10.1145/99977​.99987​

	 89.	 Ali R, Dalpiaz F, Giorgini P (2014) Requirements-driven deploy-
ment. Softw Syst Model 13:433–456. https​://doi.org/10.1007/
s1027​0-012-0255-y

	 90.	 Silva C, Borba C, Castro J (2011) A goal oriented approach to
identify and configure feature models for software product lines.
WER

	 91.	 Borba C, Silva C (2009) A Comparison of goal-oriented
approaches to model software product lines variability. In: Heu-
ser CA, Pernul G (eds) Advances in conceptual modelling—chal-
lenging perspectives. Springer, Berlin, Heidelberg, pp 244–253

	 92.	 Guzman A, Martínez Rebollar A, Vargas F et al (2016) A meth-
odology for modeling Ambient Intelligence applications using
i* framework. In: iStar 2016 ninth international i* workshop
1674:61–66

	 93.	 Marosin D, Ghanavati S (2017) Principle-based goal-oriented
requirements language. In: Proper HA, Winter R, Aier S, de
Kinderen S (eds) Architectural coordination of enterprise trans-
formation. Springer, Cham, pp 235–247

	 94.	 Gailly F, España S, Poels G, Pastor O (2008) Integrating business
domain ontologies with early requirements modelling. In: Song
I-Y, Piattini M, Chen Y-PP et al (eds) Advances in conceptual
modeling—challenges and opportunities. Springer, Berlin, Hei-
delberg, pp 282–291

	 95.	 van Arem B, van Driel CJG, Visser R (2006) The impact of
cooperative adaptive cruise control on traffic-flow character-
istics. IEEE Trans Intell Transp Syst 7:429–436. https​://doi.
org/10.1109/TITS.2006.88461​5

	 96.	 Han S-Y, Chen Y-H, Wang L, Abraham A (2013) Decentral-
ized longitudinal tracking control for cooperative adaptive cruise
control systems in a platoon. In: 2013 IEEE international confer-
ence on systems, man, and cybernetics. IEEE, Manchester, pp
2013–2018

	 97.	 Salehie M, Tahvildari L (2009) Self-adaptive software: landscape
and research challenges. ACM Trans Auton Adapt Syst 4:14:1-
14:42. https​://doi.org/10.1145/15165​33.15165​38

	 98.	 OMG (2014) Object constraint language. OMG
	 99.	 Hölldobler K, Roth A, Rumpe B, Wortmann A (2017) Advances

in modeling language engineering. In: Ouhammou Y, Ivanovic
M, Abelló A, Bellatreche L (eds) Model and data engineering.
Springer, Cham, pp 3–17

	100.	 Runeson P, Höst M (2009) Guidelines for conducting and report-
ing case study research in software engineering. Empir Softw
Eng 14:131. https​://doi.org/10.1007/s1066​4-008-9102-8

	101.	 Daun M, Brings J, Obe PA et al (2019) Using view-based archi-
tecture descriptions to aid in automated runtime planning for
a smart factory. In: IEEE international conference on software
architecture companion, ICSA Companion 2019, Hamburg, Ger-
many, March 25–26, 2019. IEEE, pp 202–209

	102.	 Bandyszak T, Daun M, Tenbergen B et al (2020) Orthogonal
uncertainty modeling in the engineering of cyber-physical
systems. IEEE Trans Autom Sci Eng. https​://doi.org/10.1109/
TASE.2020.29807​26

	103.	 Bhatt RM, Tang CP, Krovi VN (2009) Formation optimization
for a fleet of wheeled mobile robots—a geometric approach.
Robot Auton Syst 57:102–120. https​://doi.org/10.1016/j.robot​
.2006.12.012

	104.	 Schlingloff B-H (2018) Specification and verification of collabo-
rative transport robots. In: 2018 4th international workshop on
emerging ideas and trends in the engineering of cyber-physical
systems (EITEC). IEEE, Porto, pp 3–8

	105.	 Stenkova V, Brings J, Daun M, Weyer T (2019) Generic negative
scenarios for the specification of collaborative cyber-physical
systems. In: Conceptual modeling—38th international confer-
ence, ER 2019, proceedings. Springer, p in press

	106.	 Daun M, Brings J, Weyer T (2020) Do instance-level review
diagrams support validation processes of cyber-physical system
specifications: results from a controlled experiment. In: Proceed-
ings of the international conference on software and system pro-
cesses, ICSSP 2020, Seoul, Republic of Korea. IEEE/ACM

	107.	 Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R (2003)
Formal reasoning techniques for goal models. In: Spaccapietra
S, March S, Aberer K (eds) Journal on data semantics I. Springer,
Berlin Heidelberg, pp 1–20

	108.	 Amyot D, Ghanavati S, Horkoff J et al (2010) Evaluating goal
models within the goal-oriented requirement language. Int J
Intell Syst 25:841–877. https​://doi.org/10.1002/int.20433​

	109.	 Lockerbie J, Maiden NAM, Engmann J et al (2012) Exploring the
impact of software requirements on system-wide goals: a method

https://doi.org/10.1109/TSE.2009.34
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1016/j.engappai.2004.11.017
https://doi.org/10.1016/j.jss.2017.11.023
https://doi.org/10.1016/j.jss.2017.11.023
https://doi.org/10.1002/smr.1858
https://doi.org/10.1002/smr.1858
https://doi.org/10.1145/99977.99987
https://doi.org/10.1145/99977.99987
https://doi.org/10.1007/s10270-012-0255-y
https://doi.org/10.1007/s10270-012-0255-y
https://doi.org/10.1109/TITS.2006.884615
https://doi.org/10.1109/TITS.2006.884615
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/TASE.2020.2980726
https://doi.org/10.1109/TASE.2020.2980726
https://doi.org/10.1016/j.robot.2006.12.012
https://doi.org/10.1016/j.robot.2006.12.012
https://doi.org/10.1002/int.20433

370	 Requirements Engineering (2021) 26:325–370

1 3

using satisfaction arguments and i* goal modelling. Requir Eng
17:227–254. https​://doi.org/10.1007/s0076​6-011-0138-8

	110.	 Runeson P, Höst M, Rainer A, Regnell B (2012) Case study
research in software engineering: guidelines and examples.
Wiley, Hoboken

	111.	 Yin RK (2018) Case study research and applications: design and
methods, 6th edn. Sage Publications Ltd., Los Angeles

	112.	 Wohlin C, Runeson P, Höst M et al (2012) Experimentation in
software engineering, 2012th edn. Springer, New York

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00766-011-0138-8

	A GRL-compliant iStar extension for collaborative cyber-physical systems
	Abstract
	1 Introduction
	2 Background
	2.1 Goal modeling
	2.1.1 iStar
	2.1.2 Goal-oriented requirement language (GRL)
	2.1.3 GRL-compliant iStar extension

	2.2 Collaborative cyber-physical systems and their characteristics
	2.3 Requirements for a GRL-compliant iStar extension for collaborative cyber-physical systems
	2.3.1 Challenge 1: need for distinction between network and systems
	2.3.2 Challenge 2: need for mirroring of goals
	2.3.3 Challenge 3: need for considering multiple identical collaborative CPS
	2.3.4 Challenge 4: need for dependencies between systems of the same type
	2.3.5 Challenge 5: need for roles and dynamic role assignments
	2.3.6 Challenge 6: need for considering conflicts between goals of the individual collaborative CPS and the CPS network
	2.3.7 Further requirements

	3 Related work
	3.1 Goal modeling approaches for systems-of-systems
	3.2 Goal modeling approaches for multi-agent systems
	3.3 Specific iStar goal modeling extensions
	3.4 Requirements evaluation

	4 GRL-compliant iStar extension for modeling collaborative cyber-physical systems
	4.1 Foundations for the metamodel of the extension
	4.1.1 Actors
	4.1.2 Intentional elements
	4.1.3 Dependencies

	4.2 Metamodel of the extension
	4.2.1 Actors
	4.2.2 Intentional elements
	4.2.3 Dependencies

	4.3 Concrete syntax
	4.3.1 Collaborative CPS
	4.3.2 Network of collaborative CPS
	4.3.3 Roles
	4.3.4 Coordination task
	4.3.5 Bidirectional dependency
	4.3.6 Self-dependency
	4.3.7 Grouped dependency
	4.3.8 Multiplicities
	4.3.9 Configuration-dependent contribution value

	4.4 Well-formedness rules
	4.5 Tool support

	5 Evaluation
	5.1 Study design
	5.1.1 Goals
	5.1.2 Research questions
	5.1.3 Subject selection
	5.1.4 Procedure
	5.1.5 Case examples
	5.1.5.1 Cooperative adaptive cruise control
	5.1.5.2 Collaborative transport robots

	5.2 Application results
	5.2.1 Application to the cooperative adaptive cruise control case example (RQ1.1)
	5.2.2 Comparison with original iStar notation for the cooperative adaptive cruise control case example (RQ1.2)
	5.2.3 Application to the collaborative transport robots case example (RQ2.1)
	5.2.4 Comparison with original iStar notation for the collaborative transport robots case example (RQ2.2)

	5.3 Usefulness of proposed modeling elements
	5.3.1 The use of actors (RQ3.1)
	5.3.2 The use of the coordination task (RQ3.2)
	5.3.3 The use of bidirectional dependencies (RQ3.3)
	5.3.4 The use of self-dependencies (RQ3.4)
	5.3.5 The use of grouped dependencies (RQ3.5)
	5.3.6 The use of multiplicities for dependencies (RQ3.6)

	5.4 Remaining challenges
	5.4.1 Limitations of the iStar extension (RQ4.1)
	5.4.1.1 Contribution links depending on the current CPS network configuration
	5.4.1.2 Missing support for in-depth analysis of concrete instance configurations
	5.4.1.3 Interpreting complex relations involving multiplicities
	5.4.1.4 Goal fulfillment analysis and semantics of the iStar extension
	5.4.1.5 Circular dependencies
	5.4.1.6 Tool support

	5.4.2 Industry needs for future work (RQ4.2)

	6 Discussion
	6.1 Summary and major findings
	6.2 Threats to validity
	6.2.1 Conclusion Validity
	6.2.2 External validity
	6.2.3 Internal validity
	6.2.4 Construct validity

	6.3 Inferences
	6.4 Future work

	7 Conclusion
	Acknowledgments
	References

