
        
    
        
            
            
                
            

            
        
    

        
    
        
            
            
                
            

            
        
    


        
    




        

        
    Skip to main content

    

    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    




    
        
    
        
            
                
                    
    
        
            	
                        Home




	
                        Requirements Engineering

	
                        Article

RAPID: a knowledge-based assistant for designing web APIs


                    	Original Article
	
                            Published: 03 February 2021
                        


                    	
                            Volume 26, pages 185–236, (2021)
                        
	
                            Cite this article
                        



                    
                        
                        
                    

                
                
                    
                        
                            
                            
                                
                                [image: ]
                            
                            Requirements Engineering
                        
                        
                            
                                Aims and scope
                                
                            
                        
                        
                            
                                Submit manuscript
                                
                            
                        
                    
                

            
        
    


        
            
                

                

                
                    
                        	Mahsa H. Sadi1 & 
	Eric Yu1 


                        
    

                        
                            	
            
                
            1684 Accesses

        
	
            
                
            2 Citations

        
	
                
                    
                2 Altmetric

            
	
            Explore all metrics 
                
            

        


                        

                        
    
    

    
    


                        
                    
                


                
                    Abstract
With the rise in initiatives such as software ecosystems and Internet of Things (IoT), developing web Application Programming Interfaces (web APIs) has become an increasingly common practice. One main concern in developing web APIs is that they expose back-end systems and data toward clients. This exposure threatens critical non-functional requirements, such as the security of back-end systems, the performance of provided services, and the privacy of communications with clients. Although dealing with non-functional requirements during software design has been long studied, there is still no framework to specifically assist software developers in addressing these requirements in web APIs. In this paper, we introduce Rational API Designer (RAPID), an open-source assistant that advises on designing non-functional requirements in the architecture of web APIs. We have equipped RAPID with a broad range of expert knowledge about API design, systematically collected and extracted from the literature. The API design knowledge has been encoded as a set of 156 rules using the Non-Functional Requirements (NFR) multi-valued logic, a formal framework commonly used to describe non-functional and functional requirements of software systems. RAPID uses the encoded knowledge in a stepwise inference procedure to arrive from a given requirement, to a set of design alternatives to a final recommendation for a given API design specification. Seven well-experienced software engineers have blindly evaluated the accuracy of RAPID’s consultations over seven different cases of web API design and on providing design guidelines for thirty design questions. The results of the evaluation show that RAPID’s recommendations meet acceptable standards of the majority of the evaluators 73.3% of the time. Moreover, analysis of the evaluators’ comments suggests that more than one-third of the unacceptable ratings (33.8%) given to RAPID’s answers are due to valid but incomplete design guidelines. We thus expect that the accuracy of the consultations will increase as RAPID’s knowledge of API design is extended and refined.



                    
    


                    
                        
                            
                                
                                    
                                        
                                    
                                    
                                        This is a preview of subscription content, log in via an institution
                                    
                                    
                                        
                                     to check access.
                                

                            

                        

                        
                            
                                
                                    Access this article

                                    
                                        
                                            
                                                
                                                    Log in via an institution
                                                    
                                                        
                                                    
                                                
                                            

                                        
                                    
                                    
                                        
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                    

                                    
                                        Institutional subscriptions
                                            
                                                
                                            
                                        

                                    

                                

                            
                        

                        
                            Fig. 1[image: ]


Fig. 2[image: ]


Fig. 3[image: ]


Fig. 4[image: ]


Fig. 5[image: ]


Fig. 6[image: ]


Fig. 7[image: ]


Fig. 8[image: ]


Fig. 9[image: ]


Fig. 10[image: ]


Fig. 11[image: ]


Fig. 12[image: ]


Fig. 13[image: ]


Fig. 14[image: ]


Fig. 15[image: ]


Fig. 16[image: ]


Fig. 17[image: ]


Fig. 18[image: ]


Fig. 19[image: ]


Fig. 20[image: ]


Fig. 21[image: ]


Fig. 22[image: ]


Fig. 23[image: ]


Fig. 24[image: ]


Fig. 25[image: ]


Fig. 26[image: ]


Fig. 27[image: ]



                        

                    

                    
                        
                    


                    
                        
                            
                                
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        WEBAPIK: a body of structured knowledge on designing web APIs
                                        
                                    

                                    
                                        Article
                                        
                                         14 March 2023
                                    

                                

                                Mahsa H. Sadi & Eric Yu

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Which RESTful API Design Rules Are Important and How Do They Improve Software Quality? A Delphi Study with Industry Experts
                                        
                                    

                                    
                                        Chapter
                                        
                                         © 2021
                                    

                                

                                
                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        A Concept and a Multitenant Web Application for Interactive Software Architecture Analysis
                                        
                                    

                                    
                                        Chapter
                                        
                                         © 2023
                                    

                                

                                
                            
                        

                    
                

            
        
            
        
    
                            
                        
                    

                    

                    

                    Notes
	In the original NFR framework, XOR relationship between a set of variables is not explicitly defined. We define an XOR contribution of the form (Gi, Gj) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Gk between three variables of Gi, Gj, and Gk as following: Gk is satisficeable if one and only one of the two variables Gi and Gj is satisficed and the other variable is denied assuming that the interdependency itself is satisficed (i.e., the XOR contribution holds true). XOR contribution is an associative relation.


	In Fig. 15, to simplify the implementation procedure, we have replaced the original “OR” relationship between design alternatives for “access authorization to API” to “XOR”.


	In the pseudo code, there is a NFR-Evaluate(r) step. The details of this step are explained in Appendix 2.


	https://github.com/m-h-s/RAPID.


	“OR” rule types that have been altered to “XOR” in RAPID’s rule base are represented as “(x)or.”





References
	Jansen S, Finkelstein A, Brinkkemper S (2009) A sense of community: a research agenda for software ecosystems. In: Proceedings of 31st international conference on software engineering-companion volume, pp 187–190. IEEE

	Sadi MH, Yu E (2014) Analyzing the evolution of software development: From creative chaos to software ecosystems. In: 2014 IEEE eighth international conference on research challenges in information science (RCIS), pp 1–11. IEEE

	Tan L, Wang N (2010) Future internet: the internet of things. In: 2010 3rd international conference on advanced computer theory and engineering (ICACTE), vol 5, pp V5–376. IEEE

	Bosch J (2010) Architecture challenges for software ecosystems. In: Proceedings of the fourth European conference on software architecture: companion volume, pp 93–95. ACM

	Weber RH (2010) Internet of things-new security and privacy challenges. Comput Law Secur Rev 26(1):23–30
Article 
    
                    Google Scholar 
                

	Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A (2015) Security, privacy, and trust in Internet of Things: the road ahead. Comput Netw 76:146–164
Article 
    
                    Google Scholar 
                

	Myers BA, Stylos J (2016) Improving API usability. Commun ACM 59(6):62–69
Article 
    
                    Google Scholar 
                

	Siriwardena P (2014) Advanced API security: securing APIs with OAuth 2.0, OpenID Connect, JWS, and JWE. Apress: Berkeley

	De B (2017) API management: An architect’s guide to developing and managing APIs for your organization, 1st edn. Apress, Berkeley
Book 
    
                    Google Scholar 
                

	Vijayakumar T (2018) Practical API architecture and development with azure and AWS. Apress, Berkeley
Book 
    
                    Google Scholar 
                

	Akamai White Paper 1 (xxxx) Strategies for API protection. https://www.akamai.com/us/en/multimedia/documents/white-paper/akamai-strategies-for-api-security-white-aper.pdf?utm_source=twitter&utm_medium=social_organic&utm_campaign=api

	Akamai White Paper 2 (xxxx) Solving API performance, reliability, and security challenges. https://www.akamai.com/uk/en/multimedia/documents/product-brief/akamai-solving-api-security-performance-for-enterprise-applications-focus-sheet.pdf

	RFC 6749 (2012) The OAuth 2.0 authorization framework. https://tools.ietf.org/html/rfc6749

	Sakimura N, Bradley J, Jones M, de Medeiros B, Mortimore C (2014) OpenID connect core 1.0 incorporating errata set 1. The OpenID Foundation, specification

	Sakimura N, Bradley D, de Mederiso B, Jones M, Jay E (2012) OpenID connect standard 1.0-draft 09

	Sun ST, Beznosov K (2012) The devil is in the (implementation) details: an empirical analysis of OAuth SSO systems. In: Proceedings of the 2012 ACM conference on computer and communications security, pp 378–390. ACM

	Li W, Mitchell CJ (2016) Analyzing the security of Google’s implementation of OpenID connect. In: International conference on detection of intrusions and malware, and vulnerability assessment. Springer, Cham, pp 357–376

	Cataldo M, Herbsleb JD (2010) Architecting in software ecosystems: interface translucence as an enabler for scalable collaboration. In: Proceedings of the fourth European conference on software architecture: companion volume, pp 65–72. ACM

	Stylos J, Myers B (2007) Mapping the space of API design decisions. In: IEEE symposium on visual languages and human-centric computing, 2007. VL/HCC 2007, pp 50–60. IEEE

	Bloch J (2006) How to design a good API and why it matters. In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications, pp 506–507. ACM

	Henning M (2009) API design matters. Commun ACM 52(5):46–56
Article 
    MathSciNet 
    
                    Google Scholar 
                

	Richardson C (2015) Pattern: API gateway. Backend for front-end, pp 37–40. http://microservices.io/patterns/apigateway.html

	Kitchenham B (2004) Procedures for performing systematic reviews. Keele UK Keele Univ 33(2004):1–26

                    Google Scholar 
                

	Dyba T, Kitchenham BA, Jorgensen M (2005) Evidence-based software engineering for practitioners. IEEE Softw 22(1):58–65
Article 
    
                    Google Scholar 
                

	Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th international conference on evaluation and assessment in software engineering, p 38. ACM

	ISO/IEC TS 25011 (2017) Information technology-systems and software quality requirements and evaluation (SQuaRE)–service quality models. https://www.iso.org/obp/ui#iso:std:iso-iec:ts:25011:ed-1:v2:en

	McLellan SG, Roesler AW, Tempest JT, Spinuzzi CI (1998) Building more usable APIs. IEEE Softw 15(3):78–86
Article 
    
                    Google Scholar 
                

	Robillard MP (2009) What makes APIs hard to learn? Answers from developers. IEEE Softw 26(6):27–34
Article 
    
                    Google Scholar 
                

	Robillard MP, Deline R (2011) A field study of API learning obstacles. Empir Softw Eng 16(6):703–732
Article 
    
                    Google Scholar 
                

	Piccioni M, Furia CA, Meyer B (2013) An empirical study of API usability. In: 2013 ACM/IEEE international symposium on empirical software engineering and measurement, pp 5–14. IEEE

	Gamma E, Helm R, Johnson R, Vlissides J (1993) Design patterns: abstraction and reuse of object-oriented design. In: European conference on object-oriented programming. Springer, Berlin, pp 406–431

	Hogan A, Blomqvist E, Cochez M, d’Amato C, de Melo G, Gutierrez C, Navigli R (2020) Knowledge graphs. arXiv preprint arXiv:2003.02320

	Chung L, Nixon BA, Yu E, Mylopoulos J (2000) Non-functional requirements in software engineering, vol 5. Springer

	Susskind LE, McKearnen S, Thomas-Lamar J (1999) The consensus building handbook: a comprehensive guide to reaching agreement. Sage Publications, Oxford

                    Google Scholar 
                

	Jarke M, Loucopoulos P, Lyytinen K, Mylopoulos J, Robinson W (2011) The brave new world of design requirements. Inf Syst 36(7):992–1008
Article 
    
                    Google Scholar 
                

	Sadi MH (2020) Assisting with API design through reusing design knowledge. Doctoral dissertation, University of Toronto, Canada

	Thomas DR (2006) A general inductive approach for analyzing qualitative evaluation data. Am J Eval 27(2):237–246
Article 
    
                    Google Scholar 
                

	Saldaña J (2009) The coding manual for qualitative researchers. Sage, Oxford

                    Google Scholar 
                

	Flick U (2009) An introduction to qualitative research. Sage Publications Limited, Oxford

                    Google Scholar 
                

	Gulwani S, Polozov O, Singh R (2017) Program synthesis. Found Trends Program Lang 4(1–2):1–119

                    Google Scholar 
                

	Alur R, Singh R, Fisman D, Solar-Lezama A (2018) Search-based program synthesis. Commun ACM 61(12):84–93
Article 
    
                    Google Scholar 
                

	Robillard M, Walker R, Zimmermann T (2009) Recommendation systems for software engineering. IEEE Softw 27(4):80–86
Article 
    
                    Google Scholar 
                

	Green C (1976) The design of the PSI program synthesis system. In: Proceedings of the 2nd international conference on Soft-ware engineering. IEEE Computer Society Press, pp 4–18

	Rich C, Waters RC (1988) The Programmer’s apprentice: a research overview. Computer 21(11):10–25
Article 
    
                    Google Scholar 
                

	Holmes R, Murphy GC (2005) Using structural context to recommend source code examples. In: Proceedings of the 27th international conference on Software engineering, pp 117–125

	Holmes R, Walker RJ, Murphy GC (2005) Strathcona example recommendation tool. In: Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international symposium on Foundations of software engineering, pp 237–240

	Mandelin D, Xu L, Bodík R, Kimelman D (2005) Jungloid mining: helping to navigate the API jungle. ACM Sigplan Notices 40(6):48–61
Article 
    
                    Google Scholar 
                

	Thummalapenta S, Xie T (2007) Parseweb: a programmer assistant for reusing open source code on the web. In: Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering, pp 204–213

	Zhong H, Xie T, Zhang L, Pei J, Mei H (2009) MAPO: mining and recommending API usage patterns. In: European conference on object-oriented programming. Springer, Berlin, pp 318–343

	Hindle A, Barr ET, Su Z, Gabel M, Devanbu P (2012) On the naturalness of software. In: 2012 34th international conference on software engineering (ICSE), pp 837–847 IEEE

	Raychev V, Vechev M, Yahav E (2014) Code completion with statistical language models. In: Proceedings of the 35th ACM SIGPLAN conference on programming language design and implementation, pp 419–428

	Zhang H, Jain A, Khandelwal G, Kaushik C, Ge S, Hu W (2016) Bing developer assistant: improving developer productivity by recommending sample code. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foun-dations of software engineering, pp 956–961

	Wei Y, Chandrasekaran N, Gulwani S, Hamadi Y (2015) Building bing developer assistant. Technical Report. MSR-TR-2015-36, Microsoft Research

	Shrobe H, Katz B, Davis R (2015) Towards a programmer’s apprentice (again). Center for Brains, Minds and Machines (CBMM)

	Dean T, Chiang M, Gomez M, Gruver N, Hindy Y, Lam M, Wang L (2018) Amanuensis: the programmer’s apprentice. arXiv:1807.00082

	Moritz D, Wang C, Nelson GL, Lin H, Smith AM, Howe B, Heer J (2019) Formalizing visualization design knowledge as constraints: actionable and extensible models in Draco. IEEE Trans Visual Comput Graphics 25(1):438–448
Article 
    
                    Google Scholar 
                

	Green C, Luckham D, Balzer R, Cheatham T, Rich C (1986) Kestrel Institute: report on knowledge-based software assistant. In: Readings in artificial intelligence and software engineering. Morgan Kaufmann, pp 377–428

	Boehm B, In H (1996) Identifying quality-requirement conflicts. IEEE Softw 13(2):25–35
Article 
    
                    Google Scholar 
                

	Kruchten P (2010) Where did all this good architectural knowledge go?. In: European conference on software architecture. Springer, Berlin, pp 5–6

	Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, Carriere J (1998) The architecture trade-off analysis method. In: Fourth IEEE international conference on engineering of complex computer systems, ICECCS’98. Proceedings, pp 68–78. IEEE

	Tang A, Jin Y, Han J (2007) A rationale-based architecture model for design traceability and reasoning. J Syst Softw 80(6):918–934
Article 
    
                    Google Scholar 
                

	Dürschmid T, Kang E, Garlan D (2019) Trade-off-oriented development: making quality attribute trade-offs first-class. In: 2019 IEEE/ACM 41st international conference on software engineering: new ideas and emerging results (ICSE-NIER), pp 109–112. IEEE

	Sadi MH, Yu E (2017a) Modeling and analyzing openness trade-offs in software platforms: a goal-oriented approach. In: International working conference on requirements engineering: foundation for software quality. Springer, Cham, pp 33–49

	Sadi MH, Yu E (2017b) Accommodating openness requirements in software platforms: a goal-oriented approach. In: International conference on advanced information systems engineering. Springer, Cham, pp 44–59

	Jackson D (2012) Software abstractions: logic, language, and analysis. MIT press, New York

                    Google Scholar 
                

	Nguyen MC, Sebastiani R, Giorgini P, Mylopoulos J (2018) Multi-objective reasoning with constraint goal models requirements engineering. Requir Eng 23(2):189–225
Article 
    
                    Google Scholar 
                


Download references




Acknowledgement
The first author thanks Prof. Marsha Chechik and Prof. Steve Easterbrook at the University of Toronto for their supervision throughout the course of the research reported in this paper. She also thanks the architects and software engineers at Google and Autodesk, and the domain experts at the University of Toronto for evaluating the results of this research and providing invaluable feedback. For the sake of anonymity and conformance with research ethics, we only mention their first names: Andy, Clayton, Daniel, Nick, Patrick, Rami, Saeed, and Zia.


Author information
Authors and Affiliations
	Department of Computer Science, University of Toronto, Toronto, Canada
Mahsa H. Sadi & Eric Yu


Authors	Mahsa H. SadiView author publications
You can also search for this author in
                        PubMed Google Scholar



	Eric YuView author publications
You can also search for this author in
                        PubMed Google Scholar





Corresponding author
Correspondence to
                Mahsa H. Sadi.


Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Appendices
Appendix 1: The API design knowledge graphs
1.1 The API non-functional requirements

                    [image: figure a]





                  1.2 The API design techniques

                    [image: figure b]





                    [image: figure c]





                  1.3 The trade-offs of the API design techniques

                    [image: figure d]





                    [image: figure e]





                  Appendix 2: A brief overview of NFR multi-valued logic
2.1 Variables and connectives
In NFR, variables are of the form G1, G2, … Gn and are referred to as soft goals. The relationship between variables are of type implication. The implication relationships are either positive: Gi \(\mathop{\longrightarrow}\limits^{{{\text{Help}\left( + \right)}}}\) Gj, Gi \(\mathop{\longrightarrow}\limits^{{{\text{Some}}+}}\) Gj, Gi \(\mathop{\longrightarrow}\limits^{{{\text{Make}\left( + + \right)}}}\) Gj, or negative: Gi \(\mathop{\longrightarrow}\limits^{{{\text{Hurt}}\left( - \right)}}\) Gj, Gi \(\mathop{\longrightarrow}\limits^{{{\text{Some}}-}}\) Gj, Gi \(\mathop{\longrightarrow}\limits^{{{\text{Break}}\left( { - - } \right)}}\) Gj, or unknown: Gi \(\mathop{\longrightarrow}\limits^{{{\text{Unknwon}}\left( ? \right)}}\) Gj, or combinatorial \((G_{1} , \ldots , G_{m} )\mathop{\longrightarrow}\limits^{\text{and}}G_{n}\), \(\left( {G_{1} , \ldots ,G_{m} } \right)\mathop{\longrightarrow}\limits^{\text{or}}G_{n}\).
2.2 Evaluating variables
2.2.1 Value assignment
A soft goal Gi receives a satisfaction value which is in the range of {Denied, Weakly Denied (or partially Denied), Conflict, Undetermined, Weakly Satisfied (or Partially Satisficed), Satisficed}.
$${\text{Sat}}(G_{i} ) \in \left\{ {{\text{Den}},{\text{Pden}}, U,{\text{Conf}},{\text{PSat}},{\text{Sat}}} \right\}$$

The partial ordering between values is as follows:
$${\text{Den}} < {\text{PDen}} \le U \approx {\text{Conf}} \le {\text{Psat}} < {\text{Sat}}$$

We use : = to assign a satisfaction value to a soft goal (e.g., Gi = Den or Gi : = Sat). A soft goal receives a satisfaction value either as direct input or by propagation rules.
2.2.2 Value propagation rules
Once the satisfaction value of a soft goal Gi is determined, the satisfaction values of the existing statements of which Gi is a part can be checked using the propagation rules as described in the following.
$$\begin{aligned} & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Help}}\left( + \right)}}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = {\text{PSat}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Sat}}\;{\text{or}}\;G_{i} : = {\text{PSat}}} \hfill \\ {G_{j} : = {\text{PDen}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Den}}\;{\text{or}}\;G_{i} : = {\text{PDen}}} \hfill \\ {G_{j} : = G_{i} } \hfill & {{\text{if}}\;G_{i} : = {\text{Conf}}\;{\text{or}}\;G_{i} : = U} \hfill \\ \end{array} } \right\} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Hurt}}\left( - \right)}}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = {\text{PDen}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Sat}}\;{\text{or}}\;G_{i} : = {\text{PSat}}} \hfill \\ {G_{j} : = {\text{PSat}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Den}}\;{\text{or}}\;G_{i} : = {\text{PDen}}} \hfill \\ {G_{j} : = G_{i} } \hfill & {{\text{if}}\;G_{i} : = {\text{Conf}}\;{\text{or}}\;G_{i} : = U} \hfill \\ \end{array} } \right\} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Make}}\left( { + + } \right)}}G_{j} :G_{j} : = G_{k} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Break}}\left( { - - } \right)}}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = {\text{PDen}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Sat}}\;{\text{or}}\;G_{i} : = {\text{PSat}}} \hfill \\ {G_{j} : = {\text{PSat}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Den}}\;{\text{or}}\;G_{i} : = {\text{PDen}}} \hfill \\ {G_{j} : = G_{i} } \hfill & {{\text{if}}\;G_{i} : = {\text{Conf}}\;{\text{or}}\;G_{i} : = U} \hfill \\ \end{array} } \right\} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Some}}+}}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = {\text{PSat}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Sat}}\;{\text{or}}\;G_{i} : = {\text{PSat}}} \hfill \\ {G_{j} : = {\text{PDen}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Den}}\;{\text{or}}\;G_{i} : = {\text{PDen}}} \hfill \\ {G_{j} : = G_{i} } \hfill & {{\text{if}}\;G_{i} : = {\text{Conf}}\;{\text{or}}\;G_{i} : = U} \hfill \\ \end{array} } \right\} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Some}}-}}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = {\text{PDen}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Sat}}\;{\text{or}}\;G_{i} : = {\text{PSat}}} \hfill \\ {G_{j} : = {\text{PSat}}} \hfill & {{\text{if}}\;G_{i} : = {\text{Den}}\;{\text{or}}\;G_{i} : = {\text{PDen}}} \hfill \\ {G_{j} : = G_{i} } \hfill & {{\text{if}}\;G_{i} : = {\text{Conf}}\;{\text{or}}\;G_{i} : = U} \hfill \\ \end{array} } \right\} \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Unknown}}\left( ? \right)}}G_{j} :G_{j} : = U \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{Equal}}\left( = \right)}}G_{j} :G_{j} : = G_{i} \\ & \left( {G_{i} ,G_{j} } \right)\mathop{\longrightarrow}\limits^{\text{and}}G_{k} :G_{k} : = \hbox{min} \left( {G_{i} ,G_{j} } \right) \\ & \left( {G_{i} ,G_{j} } \right)\mathop{\longrightarrow}\limits^{\text{or}}G_{k} :G_{k} : = \text{m} {\text{ax}}\left( {G_{i} ,G_{j} } \right) \\ & G_{i} \mathop{\longrightarrow}\limits^{*}G_{j} :G_{j} : = U\;{\text{if}}\;G_{i} : = U \\ & G_{i} \mathop{\longrightarrow}\limits^{{{\text{*}} }}G_{j} :\left\{ {\begin{array}{*{20}l} {G_{j} : = U} \hfill & {{\text{if}}\;G_{i} \mathop{\longrightarrow}\limits^{Unknown\left( ? \right)}G_{j} {\text{and}}\;G_{i} : = {\text{Conf}}} \hfill \\ { G_{j} : = {\text{Conf}}} \hfill & {{\text{else}}\;G_{i} : = {\text{Conf}}} \hfill \\ \end{array} } \right\} \\ \end{aligned}$$

2.3 Value resolution rules
After each step of value propagation, a soft goal Gi may receive several possibly conflicting or inconsistent values. To determine the final value of the soft goal Gi, a set of value resolution rules are used. Some value resolutions rules have only one possible outcome while other may have several outcomes. Those resolution rules with several outcomes require human decision to identify the final value. The value resolution rules are as followsFootnote 5:
$$\begin{aligned} & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Sat}},\;G_{k} \text{ := }{\text{Sat}}}}{{G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Den}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{Den,}}}}{{G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{Den,}}}}{{G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{Den,}}}}{{G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Sat}},\;G_{k} \text{ := }{\text{Den}}}}{{G_{k} : = {\text{Conf}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Help}}\left( + \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Help}}\left( + \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{PSat}},\;G_{k} \text{ := }{\text{PDen}}}}{{G_{k} : = {\text{Conf}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Some}}\left( + \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}}\left( + \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{PSat}},\;G_{k} \text{ := }{\text{PDen}}}}{{G_{k} : = {\text{Conf}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Hurt}}\left( - \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Hurt}}\left( - \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{PDen}},\;G_{k} \text{ := }{\text{PSat}}}}{{G_{k} : = {\text{Conf}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Some}}\left( - \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} - }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{PDen}},\;G_{k} \text{ := }{\text{PSat}}}}{{G_{k} : = {\text{Conf}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Den}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{PSat}},\;G_{k} \text{ := }{\text{Sat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} + }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Sat}},\;G_{k} \text{ := }{\text{PDen}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{Conf}}\;{\text{or}}\;G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} - }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{Sat}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{PSat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Make}}\left( { + + } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} + }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{Sat}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{Conf}}\;{\text{or}}\;G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} + }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{Conf}}\;{\text{or}}\;G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} + }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{PDen}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Break}}\left( { - - } \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} - }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Den}}}}{{\frac{{G_{k} \text{ := }{\text{Den}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{Conf}}\;{\text{or}}\;G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ &\frac{{G_{i} \mathop{\xrightarrow{{\text{Help}}\left( + \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Help}}\left( + \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{PSat}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Some}}\left( + \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} + }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{PSat}},\;G_{k} \text{ := }{\text{PSat}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PSat}}\;{\text{or}}\;G_{k} : = {\text{Sat}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Hurt}}\left( - \right)}}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Hurt}}\left( - \right)}}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{PDen}},\;G_{k} \text{ := }{\text{PDen}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ & \frac{{G_{i} \mathop{\xrightarrow{{\text{Some}}- }}\limits{}G_{k} ,G_{j} \mathop{\xrightarrow{{\text{Some}} - }}\limits{}G_{k} ,G_{i} \text{ := }{\text{Sat}},G_{j} \text{ := }{\text{Sat}}}}{{\frac{{G_{k} \text{ := }{\text{PDen}},\;G_{k} \text{ := }{\text{PDen}}}}{{{\text{Human}}\;{\text{decision}}\;{\text{required}} - G_{k} : = {\text{PDen}}\;{\text{or}}\;G_{k} : = {\text{Den}}}}}} \\ \end{aligned}$$

Appendix 3: The list of rules available to RAPID

                  	
                      1.
                      
                        (Access Simplicity [API], Access Duration [API], Access Rate [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Accessibility [API]: NF-REF

                      
                    
	
                      2.
                      
                        (Compatibility with Minor Changes [API], Compatibility with Major Changes [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Evolvability [API]: NF-REF

                      
                    
	
                      3.
                      
                        (Understandability [API], Efficiency [API], Usage simplicity [API], Consistency [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Usability [API]: NF-REF

                      
                    
	
                      4.
                      
                        (Memorability [API]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Usability [API]: NF-REF

                      
                    
	
                      5.
                      
                        (Response Time [API], Latency [API], Throughput [API], Availability [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Performance [API]: NF-REF

                      
                    
	
                      6.
                      
                        (Server-Side Extensibility [API], Client-Side Extensibility [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Extensibility [API]: NF-REF

                      
                    
	
                      7.
                      
                        (Flexibility in Message Format [API], Flexibility in Message Parameter [API], Flexibility in Communication Protocol [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Interoperability [API]: NF-REF

                      
                    
	
                      8.
                      
                        (Confidentiality [API], Privacy [API], Operational Security [API], Reliability [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Security [API]: NF-REF

                      
                    
	
                      9.
                      
                        (Message Confidentiality [API], Access Confidentiality [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Confidentiality [API]: NF-REF

                      
                    
	
                      10.
                      
                        (Robustness [API], Traceability [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Operational Security [API]: NF-REF

                      
                    
	
                      11.
                      
                        (Integrity [API]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Reliability [API]: NF-REF

                      
                    
	
                      12.
                      
                        (Usability [API]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Adoptability [API]: NF-REF

                      
                    
	
                      13.
                      
                        (Interface Translation [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Compatibility with Minor Changes [API]: NF-OP

                      
                    
	
                      14.
                      
                        (Adapter [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Interface Translation [ ]: F-OP

                      
                    
	
                      15.
                      
                        (Supporting Multiple Versions of API at the Same Time [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Compatibility with Major Changes [API]: NF-OP

                      
                    
	
                      16.
                      
                        (Multiple Service Instances Handling Multiple API versions [ ], Single Service Instance Handling Multiple API versions [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Supporting Multiple Versions of API at the Same Time [ ]: F-OP

                      
                    
	
                      17.
                      
                        (Access Control [API]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Access Confidentiality [API]: NF-OP

                      
                    
	
                      18.
                      
                        (Access Authorization [API], Key and Certificate Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{and}}\) Access Control [API]: F-REF

                      
                    
	
                      19.
                      
                        (API-Key [ ], Username and Password [ ], Mutual Certificate-Based Authentication X.509 [ ], Open Authorization Version 2.0 [ ], OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{\left( {\text{x}} \right){\text{or}}}}\) Access Authorization [API]: F-OP

                      
                    
	
                      20.
                      
                        (Securing Communication Channels [ ], Message Encryption [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Message Confidentiality [API]: NF-OP

                      
                    
	
                      21.
                      
                        (End-User Notification and Approval upon API Access [ ], Data Masking [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Privacy [API]: NF-OP

                      
                    
	
                      22.
                      
                        (Activity Logging [API], User Auditing [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Traceability [API]: NF-REF

                      
                    
	
                      23.
                      
                        (Failure Management [API], Threat Management [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Robustness [API]: NF-OP

                      
                    
	
                      24.
                      
                        (Failure Detection [API], Failure Prevention [API], Failure Recovery [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Failure Management [API]: F-REF

                      
                    
	
                      25.
                      
                        (Threat Detection [API], Threat Prevention [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Threat Management [API]: F-REF

                      
                    
	
                      26.
                      
                        (Circuit Breaker [ ], Response Time-Outs [ ]) \(\mathop{\longrightarrow}\limits^{{\left( {\text{x}} \right){\text{or}}}}\) Failure Detection [API]: F-OP

                      
                    
	
                      27.
                      
                        (Back-End Service Replication [ ], Congestion Control [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Failure Prevention [API]: F-REF

                      
                    
	
                      28.
                      
                        (Throttling [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Congestion Control [API]: F-REF

                      
                    
	
                      29.
                      
                        (Consumption Quota [ ], Concurrent Rate Limit [ ], Spike Arrest [ ]) \(\mathop{\longrightarrow}\limits^{{\left( {\text{x}} \right){\text{or}}}}\) Congestion Control [API]: F-OP

                      
                    
	
                      30.
                      
                        (Providing Fall Backs [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Failure Recovery [API]: F-REF

                      
                    
	
                      31.
                      
                        (Returning Empty Responses [ ], Returning Cached Responses [ ]) \(\mathop{\longrightarrow}\limits^{{\left( {\text{x}} \right){\text{or}}}}\) Providing Fall Backs [API]: F-OP

                      
                    
	
                      32.
                      
                        (Traffic Monitoring [API]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Threat Detection [API]: F-REF

                      
                    
	
                      33.
                      
                        (Detecting Unusual Request Loads [ ], Detecting Unusual Request Patterns [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Traffic Monitoring [API]: F-REF

                      
                    
	
                      34.
                      
                        (Back-End Service Concurrency [ ] , Load Balancing and Distribution [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Throughput [API]: NF-OP

                      
                    
	
                      35.
                      
                        (Round-Rubin Load Distribution [ ], Weighted Round-Rubin Load Distribution [ ], Least Connection Load Distribution [ ], Weighted Least Connection Load Distribution [ ], Random Load Distribution [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Load Balancing and Distribution [ ]: F-OP

                      
                    
	
                      36.
                      
                        (Caching [ ], Request Traffic Prioritization [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Response Time [API ]: F-REF

                      
                    
	
                      37.
                      
                        (Caching Responses [API], Caching and Maintaining Connections to Back-End Services [API ] ) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Caching [ ]: F-REF

                      
                    
	
                      38.
                      
                        (Caching Most Frequent Responses [ ], Caching Most Recent Responses [ ], Caching Most Probable Responses [ ]) \(\mathop{\longrightarrow}\limits^{{\left( {\text{x}} \right){\text{or}}}}\) Caching Responses [ ]: F-OP

                      
                    
	
                      39.
                      
                        (Connection Pooling [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Caching and Maintaining Connections to Back-End Services [API]: F-OP

                      
                    
	
                      40.
                      
                        (Back-End Service Replication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Availability [API]: NF-OP

                      
                    
	
                      41.
                      
                        (API Gateway [ ], Service Registration [ ], Service Discovery [ ], Service Mapping and Composition [ ], Service Orchestration [ ]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Server-Side Extensibility [API]: NF-OP

                      
                    
	
                      42.
                      
                        (Central Gateway [ ], Multiple Gateways, Back-End for Front-End [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) API Gateway [ ]: F-OP

                      
                    
	
                      43.
                      
                        (Self-Registration [ ], Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Service Registration [ ]: F-OP

                      
                    
	
                      44.
                      
                        (Server-Side Service Discovery [ ], Client-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Service Discovery [ ]: F-OP

                      
                    
	
                      45.
                      
                        (Server-Side Service Mapping and Composition [ ], Server-Side Service Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Service Composition [ ]: F-OP

                      
                    
	
                      46.
                      
                        (Server-Side Service Two-Phase Transaction Management [ ], Client-Side Service Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) Service Orchestration [ ]: F-OP

                      
                    
	
                      47.
                      
                        (Message Format Conversion [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Flexibility in message Format [API]: NF-OP

                      
                    
	
                      48.
                      
                        (JSON-XML Convertor [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Message Format Conversion [ ]: F-OP

                      
                    
	
                      49.
                      
                        (Interface Translation [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Flexibility in Message Parameters [API]: NF-OP

                      
                    
	
                      50.
                      
                        (Protocol Translation [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Flexibility in Communication Protocol [API]: NF-OP

                      
                    
	
                      51.
                      
                        (SOAP-REST Translation [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Protocol Translation [ ]: F-OP

                      
                    
	
                      52.
                      
                        (One-to-One Communication Style [API], One-to-Many Communication Style [API]) \(\mathop{\longrightarrow}\limits^{\text{or}}\) Communication Style [API]: F-REF

                      
                    
	
                      53.
                      
                        (Synchronous Communication [ ], Asynchronous Communication [ ], Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{xor}}\) One-to-One Communication Style [API]: F-OP

                      
                    
	
                      54.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) One-to-Many Communication Style [API]

                      
                    
	
                      55.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Access Simplicity [API]: COR

                      
                    
	
                      56.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      57.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Latency [API]: COR

                      
                    
	
                      58.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Access Confidentiality [API]: COR

                      
                    
	
                      59.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Message Confidentiality [API]: COR

                      
                    
	
                      60.
                      
                        (API-Key [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Privacy [API]: COR

                      
                    
	
                      61.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Simplicity [API]: COR

                      
                    
	
                      62.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      63.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      64.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Access Confidentiality [API]: COR

                      
                    
	
                      65.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Message Confidentiality [API]: COR

                      
                    
	
                      66.
                      
                        (Username and Password [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Privacy [API]: COR

                      
                    
	
                      67.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Access Simplicity [API]: COR

                      
                    
	
                      68.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Usage Simplicity [API]: COR

                      
                    
	
                      69.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      70.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Access Confidentiality [API]: COR

                      
                    
	
                      71.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Message Confidentiality [API]: COR

                      
                    
	
                      72.
                      
                        (Mutual Certificate-Based Authentication X.509 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Break}}^{ - - } }}\) Privacy [API]: COR

                      
                    
	
                      73.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Access Simplicity [API]: COR

                      
                    
	
                      74.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Usage Simplicity [API]: COR

                      
                    
	
                      75.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      76.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      77.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Message Confidentiality [API]: COR

                      
                    
	
                      78.
                      
                        (Open Authorization Version 2.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Privacy [API]: COR

                      
                    
	
                      79.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Access Simplicity [API]: COR

                      
                    
	
                      80.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Usage Simplicity [API]: COR

                      
                    
	
                      81.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Break}} }}\) Latency [API]: COR

                      
                    
	
                      82.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      83.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Message Confidentiality [API]: COR

                      
                    
	
                      84.
                      
                        (OpenID Connect Version 1.0 [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Privacy [API]: COR

                      
                    
	
                      85.
                      
                        (Spike Arrest [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Availability [API]: COR

                      
                    
	
                      86.
                      
                        (Spike Arrest [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      87.
                      
                        (Spike Arrest [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Robustness [API]: COR

                      
                    
	
                      88.
                      
                        (Spike Arrest [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Integrity [API]: COR

                      
                    
	
                      89.
                      
                        (Consumption Quota [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Availability [API]: COR

                      
                    
	
                      90.
                      
                        (Consumption Quota [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Robustness [API]: COR

                      
                    
	
                      91.
                      
                        (Consumption Quota [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Integrity [API]: COR

                      
                    
	
                      92.
                      
                        (Concurrent Rate Limit [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Availability [API]: COR

                      
                    
	
                      93.
                      
                        (Concurrent Rate Limit [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      94.
                      
                        (Concurrent Rate Limit [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Robustness [API]: COR

                      
                    
	
                      95.
                      
                        (Concurrent Rate Limit [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Integrity [API]: COR

                      
                    
	
                      96.
                      
                        (Synchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Throughput [API]: COR

                      
                    
	
                      97.
                      
                        (Synchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Latency [API]: COR

                      
                    
	
                      98.
                      
                        (Synchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Robustness [API]: COR

                      
                    
	
                      99.
                      
                        (Synchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Integrity [API]: COR

                      
                    
	
                      100.
                      
                        (Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Throughput [API]: COR

                      
                    
	
                      101.
                      
                        (Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      102.
                      
                        (Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Robustness [API]: COR

                      
                    
	
                      103.
                      
                        (Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Integrity [API]: COR

                      
                    
	
                      104.
                      
                        (Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Throughput [API]: COR

                      
                    
	
                      105.
                      
                        (Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Latency [API]: COR

                      
                    
	
                      106.
                      
                        (Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Robustness [API]: COR

                      
                    
	
                      107.
                      
                        (Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Integrity [API]: COR

                      
                    
	
                      108.
                      
                        (Synchronous to Asynchronous Communication [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Flexibility in Communication Protocol [API]: COR

                      
                    
	
                      109.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Simplicity [API]: COR

                      
                    
	
                      110.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      111.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Client-Side Extensibility [API]: COR

                      
                    
	
                      112.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{\text{Help}}\) Access Confidentiality [API]: COR

                      
                    
	
                      113.
                      
                        (Publish and Subscribe [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Response Time [API]: COR

                      
                    
	
                      114.
                      
                        (Central Gateway [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      115.
                      
                        (Central Gateway [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Throughput [API]: COR

                      
                    
	
                      116.
                      
                        (Central Gateway [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Response Time [API]: COR

                      
                    
	
                      117.
                      
                        (Central Gateway [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      118.
                      
                        (Multiple Gateway, Back-End for Front-End [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      119.
                      
                        (Multiple Gateway, Back-End for Front-End [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Throughput [API]: COR

                      
                    
	
                      120.
                      
                        (Multiple Gateway, Back-End for Front-End [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Response Time [API]: COR

                      
                    
	
                      121.
                      
                        (Multiple Gateway, Back-End for Front-End [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      122.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      123.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      124.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      125.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Usage Simplicity [API]: COR

                      
                    
	
                      126.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      127.
                      
                        (Third-Party Registration [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      128.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      129.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      130.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Latency [API]: COR

                      
                    
	
                      131.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Throughput [API]: COR

                      
                    
	
                      132.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      133.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Usage Simplicity [API]: COR

                      
                    
	
                      134.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      135.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      136.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Throughput [API]: COR

                      
                    
	
                      137.
                      
                        (Server-Side Service Discovery [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      138.
                      
                        (Server-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      139.
                      
                        (Server-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      140.
                      
                        (Server-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Latency [API]: COR

                      
                    
	
                      141.
                      
                        (Server-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Throughput [API]: COR

                      
                    
	
                      142.
                      
                        (Server-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      143.
                      
                        (Client-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Usage Simplicity [API]: COR

                      
                    
	
                      144.
                      
                        (Client-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      145.
                      
                        (Client-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Latency [API]: COR

                      
                    
	
                      146.
                      
                        (Client-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Throughput [API]: COR

                      
                    
	
                      147.
                      
                        (Client-Side API Mapping and Composition [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ - } }}\) Access Confidentiality [API]: COR

                      
                    
	
                      148.
                      
                        (Server-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Usage Simplicity [API]: COR

                      
                    
	
                      149.
                      
                        (Server-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      150.
                      
                        (Server-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Latency [API]: COR

                      
                    
	
                      151.
                      
                        (Server-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Make}}\) Throughput [API]: COR

                      
                    
	
                      152.
                      
                        (Server-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Robustness [API]: COR

                      
                    
	
                      153.
                      
                        (Client-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Usage Simplicity [API]: COR

                      
                    
	
                      154.
                      
                        (Client-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{{{\text{Some}}^{ + } }}\) Server-Side Extensibility [API]: COR

                      
                    
	
                      155.
                      
                        (Client-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Latency [API]: COR

                      
                    
	
                      156.
                      
                        (Client-Side Two-Phase Transaction Management [ ]) \(\mathop{\longrightarrow}\limits^{\text{Break}}\) Throughput [API]: COR

                      
                    


                Appendix 4: The API design question bank

                  	 	
                              Question topics
                            
	
                              Example design questions
                            

	1
	- “API Evolvability”
- “Backward Compatibility with Minor Changes”
	- “The API needs to be upgraded and newer versions of the API need to be released. The changes are minor and only apply to API some request and response parameters. How to handle compatibility with the current version of the API for the clients who are using the current version of the API.”

	2
	- “API Evolvability”
- “Backward Compatibility with Major Changes”
	- “The API needs to be upgraded and newer versions of the API need to be released. The changes are major, and the API calls and the API address will also change. How to handle compatibility with the current version of the API.”

	3
	- “API Security”
- “Confidentiality”
- “Service Confidentiality”
- “Access Control”
- “Access Authorization”
	- “How to secure access to the API?”
- “Design an access authorization mechanism for the API.”
- “Design an access control mechanism for the API.”

	4
	- “API Security”
- “Confidentiality”
- “Message Confidentiality”
	- “How to protect and secure the API from eavesdropping (i.e., unauthorized listening to the API requests and responses.)”
- “Design a mechanism that protects the confidentiality of API interactions (requests and responses) with the clients.”
- “How to protect and security the API from man in the middle attack (i.e., changing the requests and responses that are communicated between the API and the clients.”

	5
	- “API Security”
- “Privacy”
- “Access Privacy”
	- “How to protect the privacy of the end-user’s data upon access to the API.”

	6
	- “API Security”
- “Privacy”
- “Service Privacy”
	- “How to protect the privacy of the data communicated with or stored by the API?”

	7
	- “API Security”
- “Operational Security”
- “Robustness”
- “Failure Prevention”
- “Congestion Control”
- “Throttling”
	- “How to secure and protect the API from denial of service attacks (i.e., bombarding the back-end services with huge volumes of API calls so that other clients cannot access and use the API.”
- “How to protect the API from failure in the face of bursts in the traffic of API calls during peak times?”
- “Design a mechanism to help the API stay robust in the face of bursts in the traffic of API calls during peak times?”
- “How to protect the API from failure in providing service during peak times?”
- “Design a congestion control/throttling mechanism for the API.”

	8
	- “API Security”
- “Operational Security”
- “Robustness”
- “Failure Detection”
	- “Back-end systems and service may become unavailable momentarily or permanently due to various reasons such as failure, upgrade, or disconnection from the network. Design a mechanism that helps the API to detect failure or unavailability of the back-end services.”

	9
	- “API Security”
- “Operational Security”
- “Robustness”
- “Failure Prevention”
	- “Some Back-end systems and service may become unavailable momentarily or permanently due to various reasons such as failure, upgrade, or disconnection from the network. Design a mechanism that prevents the API from complete failure in responding to the clients’ requests.”

	10
	- “API Security”
- “Operational Security”
- “Robustness”
- “Failure Recovery”
	- “Back-end systems and service may become unavailable momentarily or permanently due to various reasons such as failure, upgrade, or disconnection from the network. Design a mechanism that helps the API manage the situations when the back-end systems cannot respond to the clients.”

	11
	- “API Security”
- “Operational Security”
- “Robustness”
- “Threat Detection”
	- “Malicious clients may attack the API and the back-end services and corrupt the healthy operation of the API. Design a mechanism that helps the API be robust against potential attacks or malicious usage.”

	12
	- “API Security”
- “Operational Security”
- “Traceability”
	- “Malicious clients may steal the identity of the original clients and find access to the API. Design a mechanism that allows the API to trace identify theft attacks, and to trace the interactions with malicious clients.”

	13
	- “API Performance”
- “Throughput”
- “Load balancing”
- “Load distribution”
	- “Design a mechanism that allows the API to gracefully manage and handle high volumes/load of API calls per second.”
- “How to handle high loads of API calls per second?”
- “Design a load balancing (or load distribution) mechanism for the API?”

	14
	- “API Performance”
- “Response Time”
- “Caching”
	- “The API should respond to (numerous) clients in real-time (or timely manner). Design a mechanism that helps minimize the response of the API?”
- “Design a caching mechanism for the API.”

	15
	- “API Performance”
- “Response Time”
- “Traffic Prioritization”
	- “The API should respond to the clients in real-time. Design a mechanism that allows the API to control its response time.”

	16
	- “API Performance”
- “Availability”
	- “The API should be highly available. Design a mechanism that allows the API to be available even in the presence of failure in the back-end servers (services).”

	17
	- “API Extensibility”
- “Server-Side Extensibility”
	- “Clients may request to upgrade or downgrade the provided service. Design a mechanism that allows easily to scale up or scale down the service of the API; i.e., to add or remove back-end services easily.”

	18
	- “API Extensibility”
- “Server-Side Extensibility”
	- “Clients may request to upgrade or downgrade the provided service. Design a mechanism that allows to easily scale up or scale down the service of the API; i.e., to add or remove back-end services easily.”

	19
	- “API Extensibility”
- “Server-Side Extensibility”
- “Service Registry”
	- “New service providers (or servers, data providers, or data sources) can register themselves as a back-end service for the API. Design a service registry mechanism for the API.”
- “Design a mechanism that allows to dynamically add back-end services or servers to the API over time.”

	20
	- “API Extensibility”
- “Server-Side Extensibility”
- “Service Discovery”
	- “The back-end service providers (data sources) (or their location) change over time. Moreover, some back-end services may be unavailable in a specific time or be disconnected from the network. Design a mechanism that allows the API provider to find related back-end services.”
- “How to handle dynamic addition and removal of the back-end services.”

	21
	- “API Extensibility”
- “Server-Side Extensibility”
- “Service Composition”
	- “The API uses a combination of other APIs to respond to the clients’ requests. How should the API be designed?”

	22
	- “API Extensibility”
- “Server-Side Extensibility”
- “Service Orchestration”
	- “The API cooperates with other APIs to respond to the clients’ requests. How the API should be designed?”

	23
	- “API Communication Style”
- “Interaction Mechanism”
	- “Design a communication style between the API and its clients.”
- “How should the API notify the clients of the updates?”

	24
	- “API Interoperability”
- “Flexibility in data format”
	- “The API should be able to work with different types of clients and with varying data formats (e.g., (JSON, XML, or HTML)). How to handle flexibility in data format?”

	25
	- “API Interoperability”
- “Flexibility in communication protocol”
	- “The API should work with different types of clients with various communication protocols (e.g., RESP, or SOAP). How to handle flexibility in communication protocol?”

	26
	- “API Interoperability”
- “Flexibility in
message parameters”
	- “The API should work with clients having varying message formats (i.e., message header and query parameters). How to handle flexibility in message parameters?”






                Appendix 5: The web API design exam and the answers provided by RAPID
5.1 A banking platform-the payment API
5.1.1 API specification
The Payment API enables online payment and allows to transfer fund from a given customer’s account to a destination account. The transfer is initiated by a client application or service. Access to the destination account is provided by a third-party account API provider.
The Payment API will be used in different scenarios such as online purchases (e.g., a merchant site that integrates secure bank payment).
5.1.2 Functional requirements

                      	
                          The client provides source account, destination account number, and the transfer amount. The API performs transfer an amount of fund from the source account to the destination account.

                        


                    5.1.3 Non-functional requirements

                      	
                          Confidentiality and Privacy are Very Critical: Since the Payment API performs critical transactions on customers’ accounts, confidentiality and privacy are very critical requirements to the Payment API. The API should be immune against unauthorized access, and security attacks, such as (identity theft, man in the middle attack, and eavesdropping attacks).

                        
	
                          Operational Security and Robustness are Very Critical: Correct and successful operation of the Payment API is very critical. The payment API should work correctly even in the case of failure of back-end services (for example, the third-party account provider API (the destination account provider) may be unavailable for some time, but the payment transaction should work correctly.

                        
	
                          Availability is Very Critical: Since the online payment service is used in daily purchases and payment scenarios, it should be highly available (It should provide service 24 * 7 and have 99.95% uptime).

                        
	
                          Interoperability is Critical: The payment API should be API to work with various clients having different communication protocols (such as SOAP or REST).

                        


                    
                      	
                                  System/Platform
                                
	
                                  Banking Platform
                                

	
                                  Name
                                
	
                                  Payment API
                                

	
                                  Type of API
                                
	
                                  Public (Open) Web API
                                

	
                                  Functionality/Data Provided by the API
                                
	Performing online fund transfer between two accounts.

	
                                  Important Requirements and Priority
                                
	(1) Confidentiality of the API is very critical.
(2) Privacy of the API is very critical.
(3) Robustness of the API is very critical.
(4) Availability of the API is critical.
(5) Interoperability of the API is critical.






                      	1
	Question. Design an access authorization mechanism for the Payment API.
Question Topic. Access Authorization [API]
RAPID’s Answer. Either (a) Username and Password, or (b) Open Authorization Version 2.0, or (c) OpenID Connect Version 1.0.
Rating: Acceptable Identical: 2, Acceptable Alternative: 1, Partly Unacceptable:3, Don’t Know: 1
Status: Unacceptable *

	2
	Question. Design a mechanism that protects the confidentiality of the Payment API interactions (requests and responses) with the clients (the mechanism should protect the Payment API from eavesdropping and unauthorized listening to the API interactions with the clients.)
Question Topic. Message Confidentiality [API]
RAPID’s Answer. (a) Secure communication channels or (b) Message Encryption.
Rating: Acceptable Identical: 3, Acceptable Alternative: 1, Partly Unacceptable: 3
Status: Acceptable

	3
	Question. “Design a communication style between the Payment API and its clients.”
Question Topic. Communication Style [API]
RAPID’s Answer. Synchronous to Asynchronous Communication Style
Rating: Acceptable Identical: 2, Acceptable Alternative: 1, Partly Unacceptable: 2, Unacceptable: 1, Insufficient information: 2
Status: Unacceptable *

	4
	Question. “Malicious clients may steal the identity of the original clients and find access to the Payment API. Design a mechanism that allows the payment API to trace identify theft attacks.”
Question Topic. Traceability [API]
RAPID’s Answer. (a) Activity Logging or (b) User Auditing.
Rating: Acceptable Identical: 1, Acceptable Alternative: 2, Partly Unacceptable: 2, Unacceptable: 1, Insufficient information: 1
Status: Unacceptable *

	5
	Question. The Payment API should be able to work with different types of clients and with varying data formats (e.g., (JSON, XML)). How to handle flexibility in message format?
Question Topic. Flexibility in Message Format [API]
RAPID’s Answer. Message format conversion, JSON-XML Convertor
Rating: Acceptable Identical: 2, Acceptable Alternative: 2, Partly Unacceptable: 1, Unacceptable: 2
Status: Acceptable

	6
	Question. The Payment API cooperates with a third-party account API to transfer money to the destination account. How to design the cooperation between the Payment API and the third-party account API to perform a transfer transaction?
Question Topic. Service Orchestration [ ]
RAPID’s Answer. Server-Side Two-Phase Transaction Management.
Rating: Acceptable Identical: 3, Acceptable Alternative: 1, Partly Unacceptable: 1, Don’t Know: 2
Status: Acceptable

	7
	Question. The third-party account API (i.e., the destination account provider) may become unavailable momentarily due to various reasons such as failure or disconnection from the web. Design a mechanism that helps the payment API to detect failure or unavailability of the destination account provider.
Question Topic. Failure Detection [API]
RAPID’s Answer. Either (a) Circuit Breaker (Pattern) or (b) Response Time-Outs.
Rating: Acceptable Identical: 3, Acceptable Alternative: 3, Partly Unacceptable: 1
Status: Acceptable






                    5.2 A weather map platform-the current weather API
5.2.1 API specification
The Current Weather API provides data about the current weather of more than 200,000 cities around the world. Weather data of the cities are frequently updated based on global models and data coming from more than 40,000 weather stations which are dispersed geographically. Weather stations and data sources providers can openly register themselves as a weather data provider and they can be added or removed dynamically over time.
The Weather API has different kinds of clients, including unknown applications and services which can access the API for free as well as customers and partner applications who pay for the use of API. Different clients have different limits for calling the API per day.
5.2.2 Functional requirements

                      	
                          Given the city name or the geographical coordinates of the city or the zip code of the city, the API provides data about the current weather of a given city.

                        


                    5.2.3 Non-functional requirements

                      	
                          Fast Response Time and Low Latency are Very Critical: The Current Weather API should respond to the clients’ requests fast and immediately in the order of milliseconds).

                        
	
                          Extensibility of the Back-End Data Sources is Critical: The back-end data sources (weather data providers) can be added and removed dynamically over time. New weather data providers can register themselves over time and provide weather measurement data. The weather data about a given city can be provided by several weather stations.

                        
	
                          High Throughput is Critical: The Current Weather API should be able to manage and responds to high volumes of the API calls per second. (Assume that the Weather API should handle more than 30,000 API calls per second.)

                        
	
                          Usage Simplicity is Important: The API should be simple and utterly convenient to use.

                        
	
                          Flexibility in Message Parameters is Important: The current weather API should be flexible toward the message and data formats of different clients as well as their request parameters. For example, the clients may ask for the current weather of a city by providing the city name as the request parameter, or ask the weather by proving its longitude and latitude, or by zip code.

                        


                    
                      	
                                  System/Platform
                                
	Weather Map Platform

	
                                  API Name
                                
	The Current Weather API

	
                                  Type of API
                                
	Public (Open) Web API

	
                                  Functionality/Data Provided by the API
                                
	Providing Weather Data of a given city

	
                                  Important Requirements
                                
	(1) Response Time of the API is very critical.
(2) Latency of the API is very critical.
(3) Throughput of the API is critical.
(4) Server-Side Extensibility of the API is critical.
(5) Usage Simplicity of the API is important.
(6) Flexibility in message parameters of the API is important.






                      	1
	Question. Design an access control mechanism for the Current Weather API. Consider that the Current Weather API has different types of clients with different limits for API calls per day.
Question Topic. Access Control [API]
RAPID’s Answer. API-Key
Rating: Acceptable Identical: 4, Acceptable Alternative: 1, Partly Unacceptable: 2
Status: Acceptable

	2
	Question. Design a mechanism that allows the Current Weather API to gracefully handle 30,000 API calls per second.
Question Topic. Throughput [API]
RAPID’s Answer. (a) Back-end service concurrency and (b) Load distribution and balancing.
For load distribution: Either (a) Round-Rubin Distribution, or (b) Weighted Round Rubin Distribution, or (c) Least Connection Distribution, or (d) Weighted Least Connection Distribution, or (e) Random Load Distribution.
Rating: Acceptable Identical: 2, Acceptable Alternative: 2, Partly Unacceptable: 3
Status: Acceptable

	3
	Question. How to protect the Current Weather API from denial of service failures that might occur due to congestion in the traffic of clients’ requests?
Question Topic. Congestion Control [API]
RAPID’s Answer. Consumption Quota or Rate Limit.
Rating: Acceptable Identical: 4, Acceptable Alternative: 1, Partly Unacceptable:1, Unacceptable:1
Status: Acceptable

	4
	Question. The Current Weather API should respond to numerous clients in real-time. How to minimize the response time of the API?
Question Topic. Response Time [API]
RAPID’s Answer. (a) Caching responses of API or (b) Caching and Maintaining Connections to Back-end services.
For caching responses: Either (a) Caching most frequent responses, or (b) Caching most recent responses, or (c) Caching most Probable Reponses.
For caching and maintaining connections to the back-end services: Connection Pooling.
Rating: Acceptable Identical: 4, Acceptable Alternative: 2, Partly Unacceptable:1
Status: Acceptable

	5
	Question. Design a mechanism that allows to easily add or remove back-end weather data providers (weather stations) for the Weather API over time.
Question Topic. Server-Side Extensibility [API]
RAPID’s Answer. Third-party Service Registration.
Rating: Acceptable Identical: 5, Acceptable Alternative: 1, Partly Unacceptable:1
Status: Acceptable

	6
	Question. The network location (IP address) of weather data providers changes over time. Moreover, there may be several weather data providers that can provide the data about the weather of a given city. How to find related back-end weather data providers?
Question Topic. Service Discovery and Routing [ ]
RAPID’s Answer. Server-side service discovery and routing.
Rating: Acceptable Identical: 3, Acceptable Alternative: 1, Partly Unacceptable: 3
Status: Acceptable

	7
	Question. The Current Weather API should be able to work with different types of clients and with various message parameters (i.e., varying query parameters (such as city name, zip code, or geographical coordinates). How to handle flexibility in message parameters?
Question Topic. Flexibility in message parameters [API]
RAPID’s Answer. Adapter.
Rating: Acceptable Identical: 4, Acceptable Alternative: 3
Status: Acceptable






                    5.3 A cloud storage platform—the write bucket/object API
5.3.1 API specification
The Write Bucket/Object API allows to write a bucket or an object on a cloud storage service.
5.3.2 Functional requirements

                      	
                          Given the ID of a bucket or an object and its content, the API writes or updates the bucket or object on the storage system.

                        


                    5.3.3 Non-functional requirements

                      	
                          High Throughput is Very Critical: The Write API should be able to handle high loads of API calls (Assume that the storage service should be able to handle 100 clients simultaneously, each of which can make 1000 API per second. Hence, the API should be able to handle 100*1000= 100,000 requests per second).

                        
	
                          Privacy of Clients’ Data is Very Critical: Since the stored data belong to the clients, the privacy of the stored objects should be protected on the back-end data storage servers. The clients’ data should not be visible to unintended and unauthorized audience.

                        
	
                          High Availability is Very Critical: The Write API should meet 99.5% uptime.

                        
	
                          Operational Security and Robustness is Very Critical: The write and update operation should work correctly even in the face of failure of the back-end systems (e.g., data storage servers may fail during a write request). The write API should also be immune against corruption in the back-end data storage systems (the storage system may fail permanently). The written objects and buckets should not be corrupted or missed over time.

                        
	
                          Server-Side Extensibility is Very Critical: The clients may need to scale up or down (i.e., upgrade, or downgrade) their space for writing and storing objects. The API should allow the client to seamlessly scale up or down the required storage service.

                        
	
                          Access Confidentiality is Critical: The Write API should only be accessed by the client whose files and content are stored on the storage system.

                        


                    
                      	
                                  System/Platform
                                
	A Cloud Storage Platform

	
                                  API Name
                                
	The Write Bucket/Object API

	
                                  Type of API
                                
	Protected (Partner to Partner) Cloud API

	
                                  Functionality/Data Provided by the API
                                
	Returning back a bucket of stored objects

	
                                  Important Requirements
                                
	(1) Throughput of the API is Very Critical.
(2) Privacy of the API is Very Critical.
(3) Availability of the API is Very Critical.
(4) Robustness of the API is Very Critical.
(5) Server-Side Extensibility of the API is Very Critical.
(6) Access Confidentiality of the API is Critical.






                      	1
	Question: How to protect the privacy of the clients’ data that are received and stored by the Write API? The stored data on the cloud storage belongs to the clients. The storages servers should preserve the privacy of the users’ data.
Question Topic: Privacy [API]
RAPID’s Answer: (a) End-User Notification and Approval or (b) Data Masking.
Rating: Acceptable Alternative: 2, Partly Unacceptable: 2, Unacceptable: 2, Insufficient Information: 1
Status: Unacceptable *

	2
	Question: Design a mechanism that allows the Write API to gracefully manage and handle 100,000API calls per second.
Question Topic: Throughput [API]
RAPID’s Answer: (a) Back-end service concurrency, and (b) Load distribution and balancing.
For load distribution use: Either (a) Round-Rubin Distribution, or (b) Weighted Round Rubin Distribution, or (c) Least Connection Distribution, or (d) Weighted Least Connection Distribution, or (e) Random Load Distribution.
Rating: Acceptable Identical: 3, Acceptable Alternative: 1, Partly Unacceptable: 2, Don’t Know: 1
Status: Acceptable

	3
	Question: The Write API should be highly available. Design a mechanism that allows the API to be available even in the presence of failure in the back-end data storage servers.
Question Topic: Availability [API]
RAPID’s Answer: Back-End Service Replication.
Rating: Acceptable Identical: 4, Partly Unacceptable: 1, Insufficient Information: 1, Don’t Know: 1
Status: Acceptable

	4
	Question: Clients may request to upgrade or downgrade the storage service according to their storage needs. Design some mechanism that allows easily to scale up or scale down the service of the API; i.e., to add or remove back-end services easily.
Question Topic: Server-Side Extensibility [API]
RAPID’s Answer: (a) API Gateway or (b) Service Registration or (c) Service Discovery or (d) Service Mapping and Composition, or (e) Service Orchestration.
Rating: Acceptable Identical: 2, Acceptable Alternative: 1, Partly Unacceptable: 2, Unacceptable: 2
Status: Unacceptable*

	5
	Question: Back-end data sources may become unavailable momentarily or permanently due to various reasons such as failure. Design a mechanism that helps the Write API to proactively detect failure or unavailability of the back-end systems before complete failure.
Question Topic: Failure Detection [API]
RAPID’s Answer: Either (a) Circuit Breaker (Pattern) or (b) Response Time-Outs.
Rating: Acceptable Identical: 3, Acceptable Alternative: 1, Partly Unacceptable: 2, Unacceptable: 1
Status: Acceptable

	6
	Question: Malicious clients may attack the write API and the back-end services and corrupt the healthy operation of the API. Design a mechanism that helps the write API be robust against potential attacks or malicious usage.
Question Topic: Robustness [API]
RAPID’s Answer: Traffic Monitoring. In Traffic monitoring (a) detect unusual request loads, or (b) detect unusual request patterns.
Rating: Acceptable Identical: 2, Acceptable Alternative: 2, Partly Unacceptable: 1, Unacceptable: 1, Don’t Know: 1
Status: Acceptable






                    5.4 A vehicle control platform-the lock status API
5.4.1 API specification
The Lock Status API provides data about the lock status of a vehicle; i.e., It informs the clients whether the vehicle doors are locked or not. Remote client applications can connect to the Lock API via the vehicle WiFi and WLAN to check the lock status.
5.4.2 Functional requirements

                      	
                          Given the Vehicle ID, the API returns the lock status of the related vehicle.

                        


                    5.4.3 Non-functional requirements

                      	
                          Access and Message Confidentiality is Very Critical: The Lock Status API should only be accessed by the clients who are authorized by the driver or owner of the vehicle. Moreover, the requests and responses of the lock status API should be immune against eavesdropping (i.e., unauthorized listening to the API interactions).

                        
	
                          Low Latency is Critical: The Lock Status API should respond to the clients in real-time and in a timely manner.

                        
	
                          Flexibility in Message and Data format is Important: The Lock Status API should be able to provide lock status data in different formats, such as JSON, XML, HTML and should be able to work with client applications having various message formats.

                        
	
                          Evolvability is Important: The Lock Status API may evolve over time and newer versions of the API with different message (request and response) parameters will be available over time.

                        


                    
                      	
                                  System/Platform
                                
	A Vehicle Control Platform

	
                                  API Name
                                
	The Lock Status API

	
                                  Type of API
                                
	Open Web API

	
                                  Functionality/Data Provided by the API
                                
	Informing the clients of the lock status of a vehicle.

	
                                  Important Requirements
                                
	(1) Access Confidentiality of the API is Very Critical.
(2) Message Confidentiality of the API is Very Critical.
(3) Latency of the API is Critical.
(4) Flexibility in message and data format of the API is important.
(5) Evolvability of the API is important.






                      	1
	Question: Design an access authorization mechanism for the Lock Status API.
Question Topic: Access Authorization [API]
RAPID’s Answer: Mutual Certificate-Based Authentication X .509.
Rating: Acceptable Identical: 5, Partly Unacceptable: 2
Status: Acceptable

	2
	Question. Design a mechanism that protects the confidentiality of Lock Status API interactions (requests and responses) with the clients.
Question Topic: Message Confidentiality [API]
RAPID’s Answer: (a) Secure communication channels or (b) Message Encryption (request and response encryption).
Rating: Acceptable Identical: 5, Acceptable Alternative: 2
Status: Acceptable

	3
	Question. Newer versions of the Lock Status API will be released over time that might differ in the message parameters. How to handle compatibility with the current version of the API.
Question Topic: Compatibility with Minor Changes [API]
RAPID’s Answer. Adapter.
Rating: Acceptable Identical: 1, Acceptable Alternative: 5, Partly Unacceptable: 1
Status: Acceptable






                    5.5 A flight data platform-the flight time table API
5.5.1 API specification
The Flight Time Table API provides data about the status and schedule of any flight around the world. The flight information includes take-off information and all the involved airport arrivals and departure times. The data comes from the various airlines and airports. The Flight Time Table API is used by various clients, such as travel booking agencies.
5.5.2 Functional requirements

                      	
                          Given a flight number, the API returns the status and timetable of the flight.

                        


                    5.5.3 Non-functional requirements

                      	
                          High Availability is Critical: The API is used in many business scenarios and should be available 99.95% of the times.

                        
	
                          Real-Time Response Time is Critical: The API should respond to the clients immediately in the order of milliseconds.

                        
	
                          Robustness is Critical: The API should be immune against the failure of the back-end data providers. Some back-end data source providers may be disconnected in a specific query time.

                        
	
                          High Throughput is Important: The Flight Time Table API should be able to handle up to 15,000 requests per second.

                        


                    
                      	
                                  System/Platform
                                
	A Flight Data Platform

	
                                  API Name
                                
	The Flight Time Table API

	
                                  Type of API
                                
	Public (Open) Web API

	
                                  Functionality/Data Provided by the API
                                
	Informing the clients of the schedule of a given flight

	
                                  Important Requirements
                                
	(1) Availability of the API is critical.
(2) Response time of the API is critical.
(3) Robustness of the API is critical.
(4) Throughput of the API is important.






                      	1
	Question: The Flight Time Table API should respond to numerous clients in real-time (or timely manner). Design a mechanism that helps minimize the response time of the Flight Time Table API?
Question Topic: Response Time [API]
RAPID’s Answer: (a) Caching responses of API or (b) Caching and Maintaining Connections to Back-end services.
For caching responses use: Either (a) Caching most frequent responses or (b) Caching most recent responses, or (c) Caching most probable Reponses.
For caching and maintaining connections to the back-end services use: Connection pooling.
Rating: Acceptable Identical: 5, Acceptable Alternative: 2
Status: Acceptable

	2
	Question: Back-end data sources of the Flight Time Table [API] may anyway become unavailable momentarily. Design a mechanism that helps the Flight Time Table API manage the situations when the back-end systems cannot respond to the clients.
Question Topic: Failure Recovery [API]
RAPID’s Answer: Provide fall backs: Either (a) Return Empty Responses or (b) Return Cached Responses.
Rating: Acceptable Alternative: 2, Partly Unacceptable: 4, Unacceptable: 1
Status: Unacceptable *

	3
	Question. How to protect the Flight Time Table API from denial of service failures that might occur due to congestion in the traffic of clients’ requests?
Question Topic: Congestion Control [API]
RAPID’s Answer: (a) Concurrent Rate Limit or (b) Spike Arrest.
Rating: Acceptable Identical: 3, Acceptable Alternative: 3, Partly Unacceptable: 1
Status: Acceptable

	4
	Question: How to meet 99.95% uptime?
Question Topic: Availability [API]
RAPID’s Answer: Back-end Service Replication.
Rating: Acceptable Identical: 2, Acceptable Alternative: 2, Partly Unacceptable: 1, Insufficient Information: 1, Don’t Know: 1
Status: Acceptable






                    5.6 A social network platform-the friends API
5.6.1 API specification
The Friends API provides the list of friends of a given user to the third-party clients. The API is protected and provides service to partner businesses and enterprise.
Three possible use cases of the Friend API are as follows: (a) to advertise or recommend the products that a user buy to the friends of the user; (b) to show what friends are watching or buying on a web site; (c) to use a third-party service to search within the list of the friends of a user.
5.6.2 Functional requirements

                      	
                          Given a users’ name or ID, the API provides the list of the friends of the user.

                        
	
                          The client may require access the friends list of a user more than one. The client may want to be notified of new friends, when a friend is added.

                        


                    5.6.3 Non-functional requirements

                      	
                          Access Confidentiality is Very Critical: The Friends API should only be accessible to authorized clients.

                        
	
                          Privacy is Very Critical: Friends data is private and belongs to the user. The confidentiality of the friend data is highly important and must be preserved. The Friends API should not allow access to a user’s data without the consent of data owner. The API must not reveal the user’s data to unwanted audience.

                        
	
                          Short Latency is Critical: The API should respond to the clients’ request in a timely manner.

                        


                    
                      	
                                  System/Platform
                                
	A Social Network Platform

	
                                  Name
                                
	The Friends API

	
                                  Type of API
                                
	Protected (Partner to Partner) Web API

	
                                  Functionality/Data Provided by the API
                                
	Providing users’ friends List
-Providing more than once access to the clients

	
                                  Important Requirements
                                
	(1) Privacy of the API is very critical.
(2) Access Confidentiality of the API is very critical.
(3) Latency of the API is critical.






                      	1
	Question: How to protect the privacy of the end-user’s data upon clients’ access to the Friends API. Consider the case that the client may need more than once access to the Friends API.
Question Topic: Privacy [API]
RAPID’s Answer: (a) End-User’s Notification and Approval Upon API Access or (b) Data Masking.
Rating: Acceptable Identical: 1, Acceptable Alternative: 2, Partly Unacceptable: 1, Unacceptable: 2, Don’t Know: 1
Status: Unacceptable *

	2
	Question: Design an access authorization mechanism for the Friends API. Consider the case that the client may need more than once access to the Friends API.
Question Topic: Access Authorization [API]
RAPID’s Answer: Either (a) Username and Password or (b) Open Authorization Version 2.0.
Rating: Acceptable Identical: 2, Partly Unacceptable: 2, Insufficient Information: 1, Don’t Know: 2
Status: Unacceptable *






                    5.7 A social network platform-the filter and track posts API
5.7.1 API specification

                      	
                          The Track Posts API notifies the clients of the users’ posts in which they are interested.

                        
	
                          One use case of the Track Posts API is to fetch users’ posts with certain keywords from the social network platform and show the messages on a third-party application or web site. For example, posts which contain the name of a product.

                        


                    5.7.2 Functional requirements

                      	
                          The API sends the posts of certain topics to the clients who are interested in that topic.

                        


                    5.7.3 Non-functional requirements

                      	
                          Low Latency is important: Real-Time notification of the clients of a post of interest is important.

                        
	
                          Reliability is important: The Filter and Track Posts API should guarantees notifying the client of new updates, meaning that if any new status is posted in which a client is interested, they client will be notified of the new post.

                        


                    
                      	
                                  System/Platform
                                
	A Social Network Platform

	
                                  API Name
                                
	The Filter and Track Posts API

	
                                  Type of API
                                
	Public (Open) Web API

	
                                  Functionality/Data Provided by the API
                                
	Informing the clients of posts in which they are interested.

	
                                  Important Requirements
                                
	(1) Latency of the API is important.
(2) Reliability of the API is important.






                      	1
	Question: How should the Filter and Track Post API notify the clients of the posts in which they are interested?
Question Topic: Communication Style [API]
RAPID’s Answer: Publish and Subscribe
Rating: Acceptable Identical: 5, Partly Unacceptable: 1, Unacceptable: 1
Status: Acceptable






                    

Rights and permissions
Reprints and permissions


About this article
[image: Check for updates. Verify currency and authenticity via CrossMark]       



Cite this article
Sadi, M.H., Yu, E. RAPID: a knowledge-based assistant for designing web APIs.
                    Requirements Eng 26, 185–236 (2021). https://doi.org/10.1007/s00766-020-00342-0
Download citation
	Received: 27 April 2020

	Accepted: 09 November 2020

	Published: 03 February 2021

	Issue Date: June 2021

	DOI: https://doi.org/10.1007/s00766-020-00342-0


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Non-functional requirements
	Software design and architecture
	Search-based software engineering
	Recommendation systems
	Chatbots
	Knowledge-based question answering
	Automated design generation








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					44.203.175.219
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    