
ORIGINAL RESEARCH

An integrated approach for requirement selection
and scheduling in software release planning

Chen Li • Marjan van den Akker •

Sjaak Brinkkemper • Guido Diepen

Received: 3 April 2009 / Accepted: 6 April 2010 / Published online: 5 May 2010

� The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract It is essential for product software companies to

decide which requirements should be included in the next

release and to make an appropriate time plan of the devel-

opment project. Compared to the extensive research done on

requirement selection, very little research has been per-

formed on time scheduling. In this paper, we introduce two

integer linear programming models that integrate time

scheduling into software release planning. Given the

resource and precedence constraints, our first model provides

a schedule for developing the requirements such that the

project duration is minimized. Our second model combines

requirement selection and scheduling, so that it not only

maximizes revenues but also simultaneously calculates an

on-time-delivery project schedule. Since requirement

dependencies are essential for scheduling the development

process, we present a more detailed analysis of these

dependencies. Furthermore, we present two mechanisms that

facilitate dynamic adaptation for over-estimation or under-

estimation of revenues or processing time, one of which

includes the Scrum methodology. Finally, several simula-

tions based on real-life data are performed. The results of

these simulations indicate that requirement dependency can

significantly influence the requirement selection and the

corresponding project plan. Moreover, the model for com-

bined requirement selection and scheduling outperforms the

sequential selection and scheduling approach in terms of

efficiency and on-time delivery.

Keywords Requirement selection � Requirement

scheduling � Release planning � Requirement dependency �
Integer linear programming (ILP) � Simulation � Scrum

1 Introduction

Deciding on the requirements for an upcoming software

release is a complex process [1]. With the evident pressures

on time-to-market [2, 3] and limited availability of

resources, often there are more requirements than can

actually be implemented. The market-driven requirement

engineering processes [4] have a strong focus on require-

ment prioritization [5]. The requirement list needs to fulfill

the interests of the various stakeholders and takes many

variables into consideration. Several scholars have pre-

sented lists of such variables, including: importance or

business value, stakeholder preference, cost of develop-

ment, requirement quality, development risk and require-

ment dependencies [6, 7, 8, 9, 3].

In order to deal with this multi-aspect optimization

problem, several techniques have been applied. The ana-

lytical hierarchy process (AHP) [5, 2] assesses require-

ments by examining all possible requirement pairs and

matrix calculations to determine a weighted list. Jung [10]

extended the AHP approach [5] by using integer linear

programming (ILP) to reduce the complexity of AHP and

made it applicable to large amounts of requirements. The

C. Li (&)

Information Systems Group, University of Twente,

P.O. Box 217, 7500 AE Enschede, The Netherlands

e-mail: lic@cs.utwente.nl

M. van den Akker � S. Brinkkemper

Department of Information and Computing Sciences,

Utrecht University, Utrecht, The Netherlands

e-mail: j.m.vandenakker@cs.uu.nl

S. Brinkkemper

e-mail: s.brinkkemper@cs.uu.nl

G. Diepen

Paragon Decision Technology, Haarlem, The Netherlands

e-mail: Guido.Diepen@aimms.com

123

Requirements Eng (2010) 15:375–396

DOI 10.1007/s00766-010-0104-x

release planning problem was modeled as a multi-dimen-

sional knapsack problem, so that the total revenue is

maximized against the available resources. Carlshamre [6]

also used ILP, based on which a release planning tool was

built and added requirement dependencies as an important

aspect in release planning. Ruhe and Saliu [11] describe a

method based on ILP which embraces stakeholder’s opin-

ions for release planning. Van den Akker et al. [12, 13]

further extended the ILP technique by including different

management steering mechanisms such as deadline exten-

sions, team transfers or hiring external personnel and by

including requirements dependencies into the model and

ran simulations to test the influence of each mechanism.

The complexity of ILP is NP � hard . It is believed that

any algorithm that solves the problem to full optimality has

a running time exponential to the problem size. We refer to

Wolsey [14] for a thorough presentation on ILP.

Besides ILP techniques, the cumulative voting method

[15] allows different stakeholders to assign a fixed number of

points among all requirements, and an average weighted

requirement list is constructed. Ruhe and Saliu [11] provide a

method called EVOLVE to allocate requirements to incre-

mental releases. This approach is further extended with

Genetic Algorithm to handle dynamic resource allocations in

a software release [16]. Berander and Andrews [17] provide

an extensive list of requirement prioritization techniques.

Scheduling of the requirements development, i.e.,

determining a time schedule for the work in the

development teams, is also identified as an important aspect

in this field [7]. Unfortunately, few prioritization methods

have taken this into account. In many cases, scheduling of

requirements development is considered to be the next step

after requirement selection [6], and the selection and

scheduling processes are often used iteratively to find a

group of requirements with an on-time delivery project plan

[1]. In [16], a Genetic Algorithm is used to determine a

development schedule after the requirements have been

fixed to a release. However, this approach handles

requirement scheduling at a lower granularity level and

solve resource constraint in a rather flexible way. Compared

to the extensive research on requirement selection, very

little research has been performed on the scheduling part.

Given the fact that 80% of software projects are late and/or

over budgeted [18], a precise project plan that can help to

synchronize the development teams is essential. A tradi-

tional way of project planning would be to compute the

critical path on the basis of the precedence relations

between the development tasks, commonly depicted in

Gantt charts. However, this does not guarantee that the team

capacities or expertise are respected.

In addition, requirements are hardly isolated islands but

interdependent with each others. Carlshamre has identified

that in fact 80% of the requirements are interdependent,

and there are only a few are singular ones [19]. These

dependencies significantly increase the complexity of

making a project plan.

Table 1 Example requirements sheets of a release planning problem

376 Requirements Eng (2010) 15:375–396

123

1.1 Problem illustration

Table 1 depicts a simplified representation of a typical

release planning problem. Nine requirements with esti-

mated revenues (in Euros), cost (measured by man days in

different teams) and dependencies are listed in the reposi-

tory. In the context of this paper, we use the absolute value

(expected revenue in Euros) to evaluate the importance of

each requirement. It is also possible to use relative values

like in AHP, where each requirement has a relative value

between 0 and 100 [5] or has a weighted importance based

on different stakeholders’ opinions [11].

The composition of teams is defined up-front. Each team

has its own special knowledge and can only contribute to

specific requirements. In international organizations where

this study is performed, development teams are also formed

based on geographic regions.1

Therefore, every team is independently responsible for

completing its contribution of a requirement as a whole, i.e.,

it is responsible for the design, realization and testing for a

particular part of a requirement due to its high efficiency of

knowledge exploitation [13, 20]. The development activities

for a particular requirement in the teams are also decided up-

front whenever a requirement is elicited. In this way, each

team can work independently on a particular requirement

without waiting for others. To evaluate the efforts of devel-

oping a requirement, we refer to [21, 22] for techniques based

on XML use cases and feature estimations.

Given a predefined release date, the available resources

in different teams are limited within the given period. In

our example, teams B and C are over-loaded, while team A

still have room for additional work. Based on the available

resources in different teams, the revenue of each require-

ment and the requirement interdependencies, the best set of

requirements for a next release needs to be determined.

Using the existing ILP technique [5, 6, 12, 13], five

requirements are selected (marked in bold) so that the total

revenue is maximized against the available resources and

requirement dependencies.

The next step is to schedule the selected requirements

exactly in time, i.e., we need to determine the time interval

for developing each requirement in each development team.

Here, we have to deal with dependencies that result in

restrictions in time. For example, requirements pertaining to

foundational software components often need to be imple-

mented before others. Similarly, certain capabilities (for

example, quality issues like safety and security) need to be

architected and built into the system at an early stage rather

than added on later during development [7]. Therefore, an

optimal implementation order of the requirements is desired.

We now formally define precedence constraints. There is

a precedence constraint between Rj and Rj*, denoted as

Rj � Rj�, if requirement Rj* can only start when requirement

Rj is completely finished. Usually, precedence constraints

result from dependencies. It is clear that a precedence con-

straint can influence the development sequence of the

requirements. However, now an important question is: since

we have already selected the requirements based on the

available capacity, why will the precedence constraints still

influence the project deadline for the release?

When there are precedence constraints and several

development teams, scheduling requirements becomes

complex. Figure 1 provides an example of a time schedule

for the release planning problem set out in Table 1.

From Fig. 1, it is clear that although the requirement

selection respects the team capacity constraints, the project

will still be delayed. The reason is that there is an impli-

cation dependency and hence a precedence con-

straint (see Sect. 1 for a detailed analysis of requirement

dependencies and precedence constraint) between require-

ments 25 and 43. Although team B finishes its task for R25 at

day 10, it cannot start to develop R43 (which is dependent on

R25’s completion), because R25 is only available at day 50

when team C finishes its job. So, between day 10 and day 50,

team B only needs 5 days for R34, and the remaining 35 days

are wasted on waiting for team C. When R25 is finally

R 34

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Req 25

Req 25

Req 25

Req 43

Release
date

Req
34

Req
34

Req 63 Req 66

Waiting...

Fig. 1 A numerical example of

requirement scheduling problem

1 It is possible to optimize the team composition using the concept of

‘‘team transfer’’, i.e., we can transfer developers to the teams which

are over-loaded [13].

Requirements Eng (2010) 15:375–396 377

123

available at day 50, it takes team B another 33 days to

develop R43, so the earliest date to finish the whole project is

at day 83 instead of the expected release date day 60. Clearly,

the time wasted on synchronization is undesirable. This

example reveals that precedence relations may have a strong

impact on the project planning.

1.2 Overview of the paper

The above example raises an important question of how to

design a schedule in which teams utilize available time

efficiently without waiting for others. Or if waiting time

cannot be avoided, how to minimize such waiting time and

also minimize the duration of the complete release project?

Another question is: if we need to spend too much time

on waiting, is it possible to re-select requirements so that

the release plan meets a predetermined deadline? For

example, in the case described above, if we still want to

keep the 60 days as the deadline, then we need to re-select

the requirements so that the newly selected requirements

can be implemented within the required time span. For this

case, R43 would have to be dropped or replaced by others

to keep the project on time.

In addition, as factors like revenue, release date and

dependencies are based on estimation, they are often over-

estimated or under-estimated. Obviously, pursuing pre-

ciseness of these factors is a difficult and luxurious goal.

We therefore need to find out which factors have relatively

high impacts on the results so that we can focus on the

estimation of these factors. Or alternatively, we should

allow run-time modifications if actual values turn out to

deviate from estimated values.

In this paper, we focus on solving the three problems

mentioned above. These can be expressed as follows.

Under the circumstances that there are different develop-

ment teams involved in the release planning and there are

requirement dependencies between the requirements:

1. How should we schedule the requirements to minimize

the project lead time, i.e. the completion time of the

project?

2. How should we integrate the requirement selection and

scheduling so that the revenue is maximized and the

project plan remains on schedule?

3. What are the influences of different factors on the

requirement selection and scheduling, and how to

handle over-estimation or under-estimation which are

revealed after the project has already started?

The goal of this paper is to provide mathematical

models that can assist to determine the requirement

selection and scheduling for the next software release. Like

any planning, careful estimation of the input factors, like

revenue, cost and dependencies, is key to success. We are

also fully aware of the facts that in real world, many

psychological, political and personality factors can influ-

ence the right choices. Decision making cannot be purely

mathematical; however, mathematical models can be con-

sidered as a useful means of decision support.

The remainder of the paper is organized as follows. In

Sect. 2, we first introduce precedence constraints and

describe the relationship between precedence constraints

and the requirement dependencies. Section 3 provides three

ILP models, one for requirement selection, one for require-

ment scheduling and one model for combined requirement

selection and scheduling. In Sect. 4, the combined selection

and scheduling model is extended by requirement depen-

dencies. Section 5 shows our prototype implementation of

the models and presents two simulation experiments: the first

one examines the influence of precedence constraints on

requirement scheduling, and the second one compares the

sequential requirement selection and scheduling approach

with the combined approach. We also analyze the influences

of different input parameters at the end of this section. In

Sect. 6, we present two mechanisms that allow managers to

adaptively handle dynamic changes. The first one provides a

method to dynamically modify parameter estimations during

run-time, and the second one applies Scrum concept in agile

software development method [23, 24]. We conclude the

paper and suggest future research directions in Sect. 7.

This paper significantly extends our work presented in

[25] and provides more technical details and simulation

results. For example, we provide extensions of our model to

handle requirement dependencies (c.f. Sect. 4) and also

introduce two mechanisms to adaptively handle dynamic

changes(c.f. Sect. 6). Additional simulation results are also

depicted in Sect. 5.

2 Preliminary analysis of the problem conditions

2.1 Precedence constraints and requirement

dependencies

Carlshamre et al. [19] identify six types of requirement

dependencies for release planning: (1)Combination : two

requirements are to be implemented jointly; (2) impli-

cation: one requirement requires another one to function;

(3) Exclusion: two requirements conflict with each other.

(4)Revenue-based and (5)cost-based dependencies

mean one requirement influences the revenue/cost of

another; and (6) Time-related dependency means one

requirement needs to be implemented after another.

Table 2 presents the influence of dependencies on

requirement selection and scheduling. The first five

dependencies have been identified as important factors for

requirement selection [6, 12].

378 Requirements Eng (2010) 15:375–396

123

With respect to time, some of the dependencies can not

only influence the requirement selection, but will also influ-

ence the requirement scheduling. For example, if requirement

Rj* requires Rj to function, it is normally better to start develop

Rj* after Rj is finished; or if requirement Rj influences the

implementation cost of requirement Rj*, it is also considered

better to implement Rj first (see [6]). So, together with the

explicitly mentioned time-related dependency, the

implication and cost-related dependencies also

imply precedence constraints during scheduling. Hence, when

scheduling the requirements, we should take three out of six

types of requirement dependencies into consideration. A more

detailed discussion will be given in Sect. 4.

2.2 Two straightforward cases

Figure 1 illustrated the scheduling problem when there are

precedence constraints and different development teams.

However, scheduling will not pose a problem if there are

no precedence constraints between requirements. Because

each team works independently, and no synchronization is

needed, each development team can perform its tasks in

any order it prefers. In this way, scheduling becomes

straightforward, and the deadline will not be exceeded.

Similarly, if there are precedence constraints but no

team or task division, scheduling the activities is not a

difficult issue as well. Now we can apply the traditional

critical path approach. We first create a directed acyclic

graph (DAG) G by setting the requirements Rj as vertexes

and the precedence constraints Rj � Rj� as a directed edges

(Rj, Rj*). Then any topological sort of the directed acyclic

graph results in a feasible schedule [26]. This sort provides

a linear order of all the vertices such that if G contains an

edge (Rj, Rj*), then Rj appears before Rj*. We can compute

this sort in OðN þ EÞ time where N equals the number of

requirements, and E equals the number of dependencies.

Because the development proceeds continuously without

interruption, the release deadline can also be met.

3 ILP models for software requirement selection

and scheduling

In this section, we present three integer linear programming

models for software release planning. In Sect. 3.1, we

briefly review the Knapsack model that was developed in

earlier work. In Sect. 3.2, we show the scheduling model

that can minimize the project time span with the prece-

dence and resource constraints. In Sect. 3.3, we show a

combined selection and scheduling model that can not only

maximize the revenue based on the precedence and

resource constraints, but also provides a schedule for on-

time delivery of the project.

In this section, all parameters, e.g., expected revenues,

requirement dependencies, resource constraints, are con-

sidered to be fixed. Handling the dynamic character of

these parameters will be analyzed later in Sects. 5 and 6.

3.1 Knapsack model for requirement selection

We are given a set of n requirements fR1;R2; . . .;Rng with

expected revenue vj of requirement Rj. Let m be the number

of teams Giði ¼ 1; 2; . . .; mÞ. The development activity by

team Gi for requirement Rj is considered as one individual

job, i.e., each team works on one requirement indepen-

dently from the other teams, and there are no predefined

time restrictions between the jobs within a requirement (c.f.

Sect. 1.1). Let us define a set X ¼ ðJ1; J2; . . .; JkÞ of all the

jobs with non-zero development time, and there are k

(k B m 9 n) jobs in the set.

Because each job belongs to only one requirement, we can

partition the set X into n disjoint subsets fXðR1Þ;
XðR2Þ; . . .;XðRnÞg where X(Rj) = {Jk | job Jk is for

requirement Rjg; ðj ¼ 1; 2; . . .; nÞ . Similarly, one job only

belongs to one team, so we can also partition the set X into m

disjoint subsets fXðG1Þ;XðG2Þ; . . .;XðGmÞg where

XðGiÞ ¼ fJkj job Jk is in team Gig; ði ¼ 1; 2; . . .;mÞ.
Each job Jk 2 XðRjÞ

T
XðGiÞ is associated with a

parameter aij defined as the amount of man days needed for

Requirement Rj in team Gi. Assume the number of devel-

opers in team Gi is Qi. Now the development time dk for

job Jk is
aij

Qi
. Here, we assume that as soon as a team starts

working on a job, they will continue working on it until the

job is completely finished.

The planning period for the next release is T, and the

total amount of working days within this planning period is

denoted by d(T) days.

A known ILP model for release planning is the Knap-

sack model [6, 10, 11, 12]. The objective of the Knapsack

model to maximize the revenue subject to the constraints of

limited capacity of each development team within the

planning period, i.e. we want to include as many require-

ments in the ‘‘Knapsack’’ as possible to get maximal value.

Table 2 The influences of requirement dependencies on requirement

selection and scheduling

Dependency group Dependency

type

Influence

requirement

selection

Influence

requirement

scheduling

Functional dependency Combination 4

Implication 4 4

Exclusion 4

Value-related

dependency

Revenue-based 4

Cost-based 4 4

Time-related

dependency

Time-related 4

Requirements Eng (2010) 15:375–396 379

123

To achieve this, we define a binary decision variable xj

associated with each requirement Rj, where xj = 1 if

requirement Rj is selected and xj = 0 if it is not. The

Knapsack model is formulated as follows:

max
Xn

j¼1

vjxj ð1Þ

Subject to:

Xn

j¼1

aijxj� dðTÞQi; for all i 2 f1; 2; . . .;mg ð2Þ

xj 2 f0; 1g for all j 2 f1; 2; . . .; ng ð3Þ

In this model, (1) is the objective function stating that

we want to maximize revenue. Constraint (2) shows that

the capacity in each group Gi is limited to the total

amount of man days available within the planning period,

i.e., no more than d(T)Qi. If the company decides that

some of the requirements have to be included in the new

release in any case, we can add one more constraint

stating that xj = 1 if requirement Rj is fixed. A

comprehensive description of Knapsack problem can be

found in [27].

As we illustrated in Sect. 1, the Knapsack model cannot

guarantee that the project can be finished on time, since

precedence constraints between requirements can cause

additional waiting time (c.f. Fig. 1). In the next section, we

will show a model that can minimize the waiting time by

minimizing the project makespan.

3.2 RCPSP model for requirement scheduling

To schedule the requirements exactly in time, two issues

need to be considered: the limited resource availability

and the existence of precedence constraints between the

requirements. Within scheduling theory, the problem can

be characterized as a special case of the resource con-

straint project scheduling problem (RCPSP) [28] (see e.g.

[29] for a comprehensive description). It is a special case

because the resources all have a capacity of 1 and the

resources do not have to work on a requirement Rj

simultaneously.

RCPS constitutes a class of NP � hard scheduling

problems [30].

The problem complexity and its practical relevance have

inspired many scholars to develop algorithms to tackle

different variants of this problem. Methods like heuristic

search [31], exact algorithms [32], genetic algorithms [33],

evolutionary algorithms [34], column generation [35] and

so on have been proposed to solve this hard problem (see

[29, 36] for an overview). In this paper, we present an ILP

model of the RCPSP formulation of our problem, inspired

by the model in [28].

3.2.1 The precedence constraints

We define a set A ¼ fðRj;Rj�ÞjRj � Rj�g which contains all

the precedence constraints. We define the set H to show the

precedence relationship between jobs:

H ¼ fðJk;Jk�ÞjJk 2 XðRjÞ; Jk� 2 XðRj�Þ; ðRj;Rj�Þ 2 Ag

In this way, we set all the jobs of requirement Rj* as the

successors of the jobs of requirement Rj, and we make sure

that any job for requirement Rj* can only start after all the

jobs for requirement Rj are finished.

We also need to introduce two virtual jobs, the start of

the project and the end of the project. The job START must

finish before starting the jobs in X, and the job END can

only start when all the jobs are finished. The processing

time of these two virtual jobs is 0. We define a new job set

X0 ¼ X
S
fSTART ;ENDg, which includes all jobs in X and

the two additional virtual jobs START and END.

If job Jk does not have any successor, then we add (Jk, END)

to H. Or if job Jk does not have any predecessor, then we put

(START, Jk) in H. The precedence relations between jobs can

be represented by a directed acyclic graph G = (X0, H).

3.2.2 The upper bound of the project span

Let Tmax be an upper bound on the project span. We can

compute Tmax using
Pn

j=1 max(dk|Jk [X(Rj)). The upper

bound corresponds to developing the requirements one

after another, i.e. without any time overlap between dif-

ferent requirements.

3.2.3 The earliest start time esk and the latest start time lsk

of each job Jk

For each job Jk, we can compute esk (earliest possible start)

and lsk (latest possible start) as its time window to start. To

compute this, we first topologically sort the jobs, so that job

Jk is before job Jk* in the order if (Jk, Jk*) [H.

We can use a longest path algorithm in a Directed Acyclic

Graph to compute esk [26]. First, set esSTART = 0, then com-

pute esk as the longest path from START to Jk. Similarly, we

can compute the latest start lsk using a longest path algorithm

(backward recursion). First, set lsEND = Tmax and then com-

pute lsk as Tmax minus the longest path from END to Jk.

3.2.4 The integer linear programming model

For the integer linear programming model, we use a time-

indexed formulation. This formulation has successfully been

applied for machine scheduling problems and is known to

have a strong LP relaxation lower bound (see e.g. [37, 38]).

We discretize time, and the integer time t represents the

period of [t, t ? 1). For each job Jk, we define a group of

380 Requirements Eng (2010) 15:375–396

123

variable nkt within the time interval [esk, lsk], where t is the

possible time for Jk to start. Now nkt is a binary variable that

equals 1 if and only if Jk starts at the beginning of period t.

Then, we can formulate the problem as follows:

min
Xt¼lsEND

t¼esEND

t� nENDt ð4Þ

Subject to:

Xt¼lsk

t¼esk

nkt ¼ 1; for all Jk 2 X0 ð5Þ

Xt¼lsk

t¼esk

t �nktþdk�
Xt¼lsk�

t¼esk�

t �ntk�; for all ðJk;Jk�Þ 2H ð6Þ

X

Jk2XðGiÞ

Xt

s¼rðt;kÞ
nks�1; for all t2f0;1;...;Tmaxg;i2f1;...;mg

ð7Þ

nkt 2 f0; 1g for all t 2 ½esk; lsk�; Jk 2 X0 ð8Þ

In constraint (7), r(t, k) = max(0, t - dk ? 1). Constraint

(4) shows the objective to minimize the project span.

Constraint (5) shows that each job is started exactly once.

Constraint (6) models the precedence constraints: a

requirement can only start after its predecessors are

finished. Constraint (7) makes sure that a development

team can only develop at most one job at one time. Please

note that if we ignore constraint (7), this model turn to be

another representation of the longest path algorithm [26].

The strict precedence constraints can also be general-

ized, so that a certain degree of overlapping between pre-

decessors and successors becomes possible (see for

example Ref 43 in Fig. 1). Instead of enforcing that a job

only starts after the completion of all its preceding jobs, we

can define a minimum time lag between the starting time of

jobs. For example, consider the situation that job Jk pre-

cedes job Jl, and both of the two jobs take 5 days to

complete. Instead of setting strict precedence relationship

between them, we allow job Jl to start if the first 40% of job

Jk is finished, i.e., we allow Jl to start at least 2 days after Jk

starts. In this case, the value dk in constraint (6) has to be

changed to the minimum time lag (2 days in this case). In a

similar way, we can define maximum time lags, so that

after one job is finished the start of its succeeding jobs

should not be delayed too much (e.g., if the work for both

jobs contains a lot of similar issues). However, these are

not so critical. We refer [35] for details.

3.3 Combining requirement selection and scheduling

Although the Knapsack model guarantees that the amount

of work corresponding to the selected set of requirements

fits in the teams’ capacity, it is still possible that the

selected set of requirements cannot be scheduled within the

required lead time (c.f. Sect. 1). The RCPSP model

described in Sect. 3.2 can help to minimize the project

makespan, but it cannot guarantee that the computed

schedule completes within the required lead time. In most

of the software development process models, selection and

scheduling are performed iteratively until an optimum

solution is found [1]. However, doing this iteratively is not

only difficult but also time-consuming, because we con-

stantly need to repeat the following three steps:

1. Drop some requirements so that the project plan is fit.

2. Re-fill in some requirements to take up the freed

capacity.

3. Re-make project plan for the new group of

requirements.

Because the Knapsack and RCPSP problem are both

NP � hard; i.e., in principle the time needed to solve the

problem is exponential to problem size, without a proper

search algorithm, it is very difficult to find a solution that can

fulfill the goals of maximizing revenue and on time delivery.

Even if such a search method is found, continuously solving

these two NP � hard problems will be very time-consum-

ing. A better method is needed to solve this problem.

In this section, we will present a new ILP model that

enables us to achieve the goals of maximizing revenue and

on time delivery simultaneously. In the following, we will

present a model for combined selection and scheduling of

the requirements when a fixed project deadline is given.

Similar to previous sections, we assume we can only select

and start implementing a requirement if all its predecessors

have been implemented.

3.3.1 The precedence constraints

We can handle the precedence constraints similarly to Sect.

3.2. We can define a set A ¼ fðRj;Rj�ÞjRj�Rj�g which

contains all the precedence constraints. We define the set H

to show the precedence relationship between jobs:

H ¼ fðJk; Jk�ÞjJk 2 XðRjÞ; Jk� 2 XðRj�Þ; ðRj;Rj�Þ 2 Ag:

In this way, we set all the jobs of requirement Rj* as the

successors of the jobs of requirement Rj, and we can make

sure that any job for requirement Rj* can only start after all

the jobs for requirement Rj are finished. The precedence

relationships between jobs can be represented by a directed

acyclic graph G = (X0, H).

3.3.2 The earliest start time esk and the latest start time lsk

of each job Jk

For the earliest start esk, we can also use the longest path

algorithm from Sect. 3.2. The only difference is since we

Requirements Eng (2010) 15:375–396 381

123

do not have the virtual job START any more, we need to set

the earliest start esk = 0 for all the jobs that do not have

predecessor. We can apply this lower bound because a

requirement can only be selected and developed when all

its predecessors are selected and developed.

For the latest start lsk, it equals d(T) - dk. Please note

that the method to compute lsk is significantly different

from the scheduling model. We cannot lower this upper

bound because we do not know whether the successors of a

job will be selected.

It is possible that lsk \ esk for a certain job Jk. It then

means the job cannot fit in the project time span. So the

requirement Rj that contains this job will also not be a

candidate of the next release. Hence, we can eliminate

these requirements beforehand and define a set X00 that

contains only the feasible jobs.

3.3.3 The integer linear programming model

Like in [12], for each requirement Rj, we define a binary

decision variable xj, where xj = 1 if and only if require-

ment is selected. Moreover, for each job Jk [X00, we

define a group of binary decision variables nkt within its

possible time interval t [[esk, lsk], where nkt = 1 if and

only if job Jk starts at time t.

We can now model the combined selection and sched-

uling problem as follows:

max
Xn

j¼1

vjxj ð9Þ

Subject to:

Xt¼lsk

t¼esk

nkt ¼ xj; for all Jk 2 XðRjÞ; j ¼ 1; . . .; n ð10Þ

xj� � xj; for all ðRj;Rj�Þ 2 A ð11Þ

Xt¼lsk

t¼esk

t � nkt þ dk �
Xt¼lsk�

t¼esk�

t � ntk� þ ð1� xj�Þ � dðTÞ;

for all ðJk; Jk�Þ 2 H; Jk� 2 XðRj�Þ
ð12Þ

X

Jk2XðGiÞ

Xt

s¼rðt;kÞ
nks�1; for all t2f0;1;...;Tmaxg;i2f1;...;mg

ð13Þ

nkt;xj 2f0;1g for all t2 ½esk; lsk�;Jk 2X00; j2f1; . . .;ng
ð14Þ

where in constraint (13), r(t, k) = max(0, t - dk ? 1). The

objective function (9) models that we want to maximize the

revenue. Constraint (10) means that a requirement is

selected if and only if all its jobs are planned. Constraints

(11) and (12) deal with the precedence constraints. Con-

straint (11) ensures that a requirement is only selected

when its predecessors are selected. Constraint (12) guar-

antees that the jobs for the successor requirement can only

start after all the jobs for its preceding requirements are

finished. Please note that this constraint is different from

the precedence constraint modeled in Sect. 3.2 (c.f. con-

straint (6)), because the successor job is not guaranteed to

be selected. Constraint (13) is the resource constraint that

one team is only able to develop one requirement at a time.

Constraint (14) is the {0, 1} constraint for all the variables.

Note that if we ignore the precedence constraints (11)

and (12), it is another way to represent the multi-dimen-

sional Knapsack problem.

3.4 Reflections

In this section, we have presented three ILP models for

requirement selection and scheduling: the Knapsack model

for requirement selection, the RCPSP model for require-

ment scheduling, and a model for combined requirement

selection and scheduling.

The three models are not independent. For example, if

we ignore constraint (11) and (12), the combined model is

then another way to represent the Knapsack model. If we

compare the RCPSP scheduling model and the combined

model, we see that they are very similar in handling the

precedence constraints.

Besides the basic models, we have also built several

extensions to model some management steering mecha-

nisms. For example, in the Knapsack model, we included

deadline extensions, which can extend the deadline T with

certain cost. Moreover, we included hiring external resour-

ces or transferring people, which allows people to be trans-

ferred to other teams with a certain capability reduction [12].

Moreover, we have modeled requirement dependencies in

the Knapsack model. For the combined model, we can also

model different time availability in different groups to syn-

chronize their works [39]. We ignore the details here due to

the limited spaces. In the next section, we further extend the

combined model for requirement selection and scheduling

by modeling requirement dependencies and allowing com-

binatory use of requirement dependencies.

4 Requirement dependencies for the combined

selection and scheduling model

As introduced in Sect. 2, requirements are hardly isolated

islands but dependent on each others. Carlshamre has

found that the majority of requirements are interdependent

with each other, and only a few are singular ones [19].

Most of the requirement dependencies can already be

modeled in the Knapsack model [6, 11, 12]. However this

is not complete since Knapsack model cannot handle time-

related dependencies or precedence constraints (c.f. Fig. 1).

382 Requirements Eng (2010) 15:375–396

123

The combined requirement selection and scheduling

model (c.f. Sect. 3.3) provides an opportunity to include the

precedence constraints. The reason is that the combined

model does contain not only variables xj that determine the

selection of a requirement Rj but also variables nkt that

determine the time when a job Jk starts. The six types of

requirement dependencies (c.f. Table 2), as introduced in

[19], can now be modeled as follows.

4.1 Modeling requirement dependencies

in the combined model

The combination, implication, exclusion

and revenue-based requirement dependencies can be

modeled the same way as in the Knapsack model [6, 11,

12]. Only the cost-related dependency needs to be

modeled differently. Apparently, the time-related

dependency can only be modeled in the combined model

but not in the Knapsack model. For the sake of com-

pleteness, we will model all six types of requirement

dependencies in this section.2

4.1.1 Combination

This dependency means requirement Ri requires require-

ment Rj, and Rj requires Ri as well. So, we should have

either both of them or none of them. This can be modeled

by adding one additional constraint:

xi ¼ xj ð15Þ

4.1.2 Implication

This dependency means requirement Ri requires require-

ment Rj to function, but not vice-versa. So, we can only

select Ri when Rj is selected. This can be done by adding

one more constraint:

xi� xj ð16Þ

At this moment, we assume that the implication

dependency only concerns the logical relationship between

two requirements, but not the corresponding precedence

relation in time. A detailed discussion will be given later in

this section.

4.1.3 Exclusion

This dependency means we need either Ri or Rj, but it does

not make sense to have both. It is also possible that we

need neither of them. To model this type of dependency,

we can set one additional constraint:

xi þ xj� 1 ð17Þ

4.1.4 Revenue-based

This dependency means that requirement Ri affects the

value of requirement Rj. In this case, if Ri is selected, the

value of Rj will change, either positively or negatively. We

assume that Ri increases the value of Rj by Bij (Bij is

negative if Ri decreases the value of Rj). We need to

introduce a new variable zij that measures whether both Ri

and Rj are selected and add Bijzij to the objective function

(c.f. formula (9)), i.e. the objective function should be
P

j=1
n vjxj ? Bijzij. Finally, we add the following constraint:

zij�ðxi þ xjÞ=2 if Bij [0 ð18Þ

xi þ xj � 1� zij if Bij\0 ð19Þ

4.1.5 Cost-based

This type of dependency means that requirement Ri

affects the development cost of requirement Rj. However,

in the combined model, we assume the development time

dk for job Jk is a fixed number. The cost-based

requirement dependencies will change this assumption

since development time dk for job Jk is not deterministic

but influenced by other requirements. Replacing con-

stant dk by a variable will turn our model into a non-

linear one and will enormously complicate constraint

(12). To maintain the linearity, we need to model it

differently.

Assume that requirement Ri influences the implemen-

tation cost of requirement Rj, the development cost of the

jobs Jk(Jk [X(Rj)) for requirement Rj will change from dk

to dk[i] man days after Ri is implemented. So we can define

a virtual requirement Rj[i] corresponding to Rj, which is

obtained by changing the duration dk of the job Jk in X(Rj)

to dk[i] for each Jk [X(Rj). In this way, this virtual

requirement Rj[i] can represent requirement Rj after taking

the influence of requirement Ri into consideration. We can

now analyze the relationship among Ri, Rj and the virtually

created requirement Rj[i].

1. If we want to obtain the cost benefit, i.e., to have

requirement Rj[i], we must have requirement Ri first.

This means requirement Rj[i] has implication

dependency on requirement Ri, i.e., xj[i] B xi.

2. If we have selected requirement Ri, then we cannot

select requirement Rj any more, because the require-

ment Ri will change the development cost of Rj and

turn Rj to Rj[i]. This means Requirement Ri has

exclusion dependency on requirement Rj, i.e.,

xi ? xj B 1.

2 In this section, we only analyze requirement dependencies between

a pair of requirements. it is also possible to model requirement

dependencies between two sets of requirements, i.e., between

software packages. Due to space limitation, we do not discuss this

issue in this paper, so refer [13, 39] for technical details.

Requirements Eng (2010) 15:375–396 383

123

3. It is clear that it is not possible to select both Rj and

Rj[i], because Rj[i] is not a real requirement, but just

another version of Rj which has taken the influence of

the cost-related dependency between Ri into account.

This means requirement Rj has exclusion depen-

dency on requirement Rj[i]. i.e., xj ? xj[i] B 1.

When analyzing the three constraints, the third con-

straint xj ? xj[i] B 1 is implied by the first and second

constraints. If we add the first and second constraints we

have xj[i] ? xi ? xj B xi ? 1. When ignoring xi at both size,

we obtain the third constraint xj ? xj[i] B 1. Therefore, we

can model the cost-related requirement dependency

by creating a virtual requirement Rj[i] and adding two new

constraints:

xj½i� � xi ð20Þ

xi þ xj� 1 ð21Þ

The artificially introduced requirement Rj[i] leads to the

following question: since we do not know whether the real

requirement Rj or the artificial one Rj[i] is actually used, which

one (Rj or Rj[i]) should we use if we need to model

dependencies between Rj and other requirements? We can

answer this by defining a new variable xj* where xj* = xj ? xj[i].

We therefore use this variable to model the dependencies

between requirement Rj and other requirements. For example,

if requirement Rj has exclusion dependency between

requirement Rm, then we can set xj* ? xm B 1.

4.1.6 Time-related

This type of requirement dependency means that require-

ment Ri needs to be implemented before requirement Rj,

denoted as Ri � Rj . In fact, constraints (11) and (12) are

used to model the precedence constraints. Please note that

if there is no precedence constraint, i.e. no constraints (11)

and (12) in the ILP model as presented in Sect. 3.3, this

model turns out to be another way to represent the Knap-

sack model. This result also corresponds to the analysis we

presented in Sect. 2: when there are no precedence con-

straints, the Knapsack model is sufficient and scheduling is

not an issue.

It is important to mention that we consider the time-

related dependency as extension of the implication

dependency. When Ri needs to be implemented before

Rj, Ri also needs to be selected if Rj is selected, i.e. Ri

implies Rj. This is represented by constraint (11). The time-

related dependency extends implication in the sense that it

also restricts the time when a requirement can start (as

shown in constraint (12)).

On the other hand, one can simply have an impli-

cation dependency without a time relation [19]. How-

ever, to fit the pressure on time-to-market, including the

time-related dependencies can help to deal with the project

plan issues already during the selection of the require-

ments. Here, we can consider a time-related depen-

dency in fact as two dependencies, one restricting logic

relationship (as what implication can do) and one restrict-

ing temporal relationship. This leads to the discussion on

combined use of requirement dependencies as will be

presented in the next section.

4.2 Combined use of requirement dependencies

In [19], Carlshamre assigns weights to different types of

requirement dependencies, and only the highest priority

one is selected as the dependency between a pair of

requirements. However, Carlshamre later suggests that this

mechanism for setting requirement dependencies would

create some problems [6]. For example, if requirement R1

influences the value of R2, excluding one of them would

upset customers more than excluding both of them [6]. So

the user might like to add also a combination depen-

dency between them. Or as discussed in former section, the

user should have the flexibility to determine whether a

logical implication dependency should or should not

be associated with a precedence constraint. To handle this

problem, we suggest allowing setting multiple dependen-

cies between a pair of requirements.

Table 3 shows the possibility of combined use of

requirement dependencies between a pair of requirements

Ri and Rj. It applies to both the Knapsack model and the

combined model. Combination, implication and

exclusion cannot be set together since they are logi-

cally different. In addition, exclusion cannot be used in

combination with others since revenue-based,

cost-based, and time-related require both

requirements Ri and Rj to be selected to take effect. The

rest of the combinations can work well in conjunction with

each other. For the example in the former paragraph, we

can handle this by setting two dependencies between R1

and R2, i.e., cost-related and combination.

As we discussed in the previous subsection, the time-

related dependency is the extension of implication

dependency. Therefore, if a time-related dependency

is used together with combination dependency, we can

ignore the logical constraint (11). The reason is that the

combination dependency has already implied that Ri has

implication relationship between Rj, and vice-versa.

Although many combinations of dependencies may

occur, some combinations are more natural. We already

mentioned the relation between the time-related

dependency and the implication dependency. In

addition, if Ri reduces the development cost of Rj, it is often

required to develop Ri before Rj [6]. This indicates that

cost-based dependency that deals with the actual

384 Requirements Eng (2010) 15:375–396

123

development process of requirements is likely to occur

together with time-related dependencies. On the

other hand, the revenue-based dependency deals with

the functional properties of the collection of selected

requirements, and is hence more related to the combi-

nation and implication dependencies.3

5 Prototype and simulations

5.1 Prototype

We have implemented a Java prototype for requirement

selection and scheduling based on the three ILP models

from Sect. 3, i.e., the Knapsack model, the scheduling

model and the combined model. These prototypes run in a

Linux environment and make use of the callable library of

ILOG CPLEX [40] for solving the ILP problems. CPLEX

is one of the best performing packages for integer linear

programming [41].

Figure 2 shows a screenshot of the prototype for the

combined requirement selection and scheduling model.

The requirements are managed and stored in the database

with estimated revenue, cost and dependencies. Given an

expected release date, we can not only select the require-

ments for the next release, but also calculate an on-time-

delivery project plan simultaneously. The selected

requirements are indicated with check marks at the first

column, and the dates to start are shown for each of the

involved teams. Obviously, this result can easily be trans-

formed to other types of representations, e.g., Gantt chart.

5.2 Simulation setup

In Sect. 1, we have shown that when there are different

development teams and requirement dependencies in the

release planning, the project plan might be delayed due to

the waiting time. However, to which extend requirement

dependencies can influence the project plan is still

unknown. In addition, although the combined model for

requirement selection and scheduling can provide an on-

time-delivery schedule, additional constraints to meet the

strict deadline will lead to lower revenues. The trade-off

between time saving and additional revenues is also

unclear. These unknown relationships lead us to investigate

the following two questions.

1. What is the relationship between the number of time-

related dependencies and the probability of the project

running out of time?

2. What are the differences between selecting and

scheduling requirements simultaneously, and selecting

and scheduling requirements sequentially?

As discussed in Sect. 3, requirement select and sched-

uling are NP � hard problems with numerous factors,

e.g., revenue, cost, dependencies being able to influence the

final results. Such high complexity precludes us from using

mathematical method (such as, algebra, logic or calculus)

to obtain exact information of the models. However, we

can apply simulation to evaluate the performance of them.

In a simulation, we numerically excise the model for the

inputs and see how they affect the outputs [42]. Such

technique is widely used in system design, analysis and

evaluation and is one of the most widely used, if not the

most widely used, techniques in fields like operations

research and management science [42]. In the context of

this paper, we use simulations to answer the two research

questions mentioned above. In total, 1,600 different test

cases are randomly generated in our simulations to evaluate

Table 3 Combinatory use of

requirement dependencies Combination

Implication

Exclusion

Revenue
based
Cost

based
Time

related

Combination Implication Exclusion
Revenue

based
Cost

based

3 By setting multiple requirement dependencies, we can also specify

the internal order for developing a particular requirement. Assume

requirement Rj has three jobs J1, J2 and J3; and we want to perform

J1 before J2, and J2 before J3. We can then consider J1, J2 and J3 as

three independent requirements, and set both time-related and

combination dependencies between J1 and J2, and J2 and J3.

Requirements Eng (2010) 15:375–396 385

123

the performance of the three models and to analyze the

influences of the involved factors.

To make sure that our simulations are from a practical

environment, the following two datasets are used (available

online [43] for research purposes). They are:

• Small dataset: 9 requirements and 3 teams, release

duration 60 days.

• Master dataset: 99 requirements and 17 teams, release

duration 30 days.

The Small dataset was the example dataset shown in

Table 1. The Master dataset is collected from a large real-

life dataset originated from a multinational ERP software

vendor located in the Netherlands. All team values were

kept the same, but the team capacities, and revenues were

modified for confidentiality reasons.

In order to make the model not case specific, we ran-

domly generate dependencies. In our simulation, we have

only considered implication dependencies for the

following two reasons: first, only implication and

cost-based dependencies are able to influence both the

requirement selection and requirement scheduling (c.f.

Sect.2.1); second, a cost-based dependency can be

mapped to an implication dependency and an

Exclusion dependency (c.f. Sect. 4.1). Therefore, it is

sufficient to analyze the influence of requirement depen-

dencies on requirement selection and scheduling by only

considering implication dependencies.

For the small dataset, we examine the situations when

there are 1, 2, 3 and 4 dependencies respectively, while for

the master dataset, we check the situations when there are

0.5, 1, 2 and 5% of the maximal number of possible depen-

dencies (the maximal number of dependencies is computed

by assuming every two requirements are interdependent.

This equals C2
n ¼ n � ðn� 1Þ=2 , where n equals the number

of requirements). After determining the number of depen-

dencies, we randomly create 100 (different) groups of

dependencies and call our ILP models to determine the

release for each of these 100 cases. Note that we generate

these dependencies in such a way that they do not create

cycles, i.e., we avoid situations like Ri depends on Rj, Rj

depends on Rk and Rk depends on Ri. This is important

because the requirements in the cycle would be inter-waiting

each other’s completion and cause a deadlock.

5.3 Results of simulation 1: the influence

of dependencies on the project plan

In this simulation, we want to examine to what extend

precedence constraints can influence the project span.

Given the small and master dataset, we first select

requirements using the Knapsack model with a given

release date (60 days for the small data set and 30 for the

master). In order to examine to what degree requirement

dependencies (or precedence constraints) can influence the

project duration, we randomly generate a certain amount of

dependencies and call the scheduling model to make a

project plan. We repeat such procedure for 100 times and

find the maximal, minimal and average of the project

makespans and count how many times the project is

File Edit View Requirement Team Release Help

The projeject duration is set to

days

Team A Team B Team C

Fig. 2 Prototype of the

combined selection and

scheduling model

386 Requirements Eng (2010) 15:375–396

123

delayed, i.e., the schedule is longer than the expected

release date. At last, we compare the results with the lower

bound of the project makespan, which is the maximum

value of the project makespan without precedence con-

straints and the result of longest path algorithm (c.f. Sect.

3.2). Table 4 summarizes the simulation results.

As we have 76 requirements selected for scheduling in

the master dataset, it is possible to set at most 76*75/2 =

2850 dependencies. When setting the dependency ratios to

0.5, 1, 2 and 5%, we have 14, 29, 57 and 142 dependencies

respectively.4

To visualize to what degree requirement dependencies

influence the scheduling results, we plot the results of

master dataset in Fig. 3. The result of small dataset follows

a same trend.

Figure 3a first compare the number of cases that finish

on time (on-time cases) with the number of cases which

exceed the release date (delayed cases). Although in all

cases the requirements selected using Knapsack model are

expected to finish within 30 days, the results vary a lot. For

the cases when there are 14 or 29 dependencies, the

chances that the project will run out of time are not very

high, i.e., at around 30%. However, the results explode

when we set 57 dependencies. In this cases, in around 80%

of cases the project cannot finish on time. If we further

increase the number of dependencies to 142, in none of the

cases the project is able to finish on time.

Figure 3b further analyzes the maximal, minimal and

average of the project durations when setting different

numbers of dependencies. For the cases when there are 14

or 29 dependencies, the project durations of the 100 cases

range within only a few days, and their average is also

close to the release date. Compared to the expected project

duration of 30 days, the average project duration is 30.93

days when setting 14 dependencies, and 31.38 days when

setting 29 dependencies. In these cases, it is still possible to

achieve on-time delivery by means of management

approaches, e.g., over-time tasks. However, the results start

to explode when there are 57 dependencies between the

requirements. The project durations start to vary a lot in

different cases, and the average duration climbs to around

20% above the expected 30 days. If we increase the

number of dependencies to 142, none of the 100 cases are

able to finish on time. On average, they need 56.15 days to

finish, which is almost twice as many as expected, and even

in the best case it requires 38 days to complete.

Table 4 Schedule results of the first simulation

Data set Dep

ratio (%)

No of dep The project span Times of delay

(out of 100)

Difference with lower bound

Max days Min days Average days Max diff (%) Min diff (%) Average

diff (%)

Small

(5 reqs. 60 days)

10 1 83 55 58.80 16 0.00 0.00 0.00

20 2 93 55 63.70 40 27.27 0.00 0.93

30 3 103 55 70.42 62 27.27 0.00 2.64

40 4 108 55 75.32 76 14.55 0.00 2.12

Master

(76 req 30 days)

0.5 14 40 30 30.93 33 30.00 0.00 2.70

1 29 46 30 31.38 27 8.57 0.00 0.22

2 57 69 30 36.92 76 22.58 0.00 2.13

5 142 84 38 56.15 100 19.23 0.00 3.47

0
15
30
45
60
75
90

time range average days

0%

20%

40%

60%

80%

100%

14 29 57 14214 29 57 142

delayed cases ontime cases

(b) The maximal, minimal and average
of project durations

(a) On-time cases V.S. delayed cases for
the scheduling results

R
at

io

Number of dependencies Number of dependencies

D
ay

s

Fig. 3 Schedule results based

on the master dataset

4 Here, we only count the dependencies we set but not the implied

dependencies. For example, if Requirement A precedes Requirement

B and Requirement B precedes Requirement C, we can also conclude

from these two dependencies that Requirement A also precedes

Requirement C. These implied dependencies are not counted in our

simulation, since they are often not considered in practice.

Requirements Eng (2010) 15:375–396 387

123

It is not difficult to conclude that precedence constraints

play an important role for release scheduling. As the number

of dependencies grows, the project span grows significantly.

Based on the complexity of the system, the exact number of

dependencies may vary a lot, but a former survey [6] has

suggested that at least 80% of requirements are interdepen-

dent, and most dependencies are implications and

cost-based. This indicates that we can assume the exact

number of dependencies is at least 40 for master dataset.

According to our simulation, this is the number at which the

simulation results start to show bad behaviors.

5.4 Results of simulation 2: model comparisons

In this simulation, we investigate the differences between

two approaches. In one approach, we first apply the

Knapsack model for requirement selection and then apply

RCPSP model for requirement scheduling (K&S). In

another approach, we call the model for combined

requirement selection and scheduling to select and sche-

dule requirements simultaneously (Comb). Figure 4 shows

the procedure of this comparison.

1. Based on the small or the master datasets, we

randomly generate a group of dependencies.

2. We perform two procedures in parallel. In one branch,

we first use the Knapsack model to select the

requirements and then document the selected require-

ments as well as the dependencies between them.

Then, we call the scheduling model to schedule

the development activities exactly in time (K&S)

approach. Simultaneously in another branch, we call

the combined model (Comb) approach to select and

schedule the requirement simultaneously.

3. At last, we compare the results computed in the two

parallel procedures in step 2. We compare the revenue

difference between the Knapsack model and the

combined model; the time difference between the

scheduling model and release date (which is the

scheduling result of the combined model) and count

the number of cases the project runs out of time when

following the (K&S) approach.

As we have 99 requirements in the master dataset, it is

possible to set at most 99*98/2 = 4851 dependencies. When

setting the dependency ratios to 0.5, 1, 2 and 5%, we obtain

24, 48, 97 and 242 dependencies respectively. For the

Small dataset, we set dependency ratios to 3, 10, 15 and

20%, i.e., 1, 3, 5 and 7 dependencies respectively.5

Note that in case the combined model and the Knapsack

model select the same collection of requirements, the RCPSP

model can always find a timely schedule. Therefore, it is

more interesting to only analyze the delayed cases in more

details. We decided to make separate statistics only for the

delayed cases. The simulation results are shown in Table 5.

5.4.1 Influence of requirement dependencies

When comparing the results of requirement selection (rep-

resented by revenues) and requirement scheduling (repre-

sented by the average project duration) with different

number of dependencies, it becomes clear that precedence

constraints play an important role. As the number of

dependencies increase, the average revenues of the Knap-

sack model and the combined model keep decreasing. For

example, take the master dataset. When the dependency ratio

increases from 1 to 2%, the revenues of the knapsack model

and the combined model both decrease by around 10%.

For the (K&S) approach, both the average project spans

and the probability that the project runs out of time increase

as the number of dependencies increases. The only result that

remains stable is the project duration when applying the

(Comb) approach, because the (Comb) approach can always

find a collection of requirements that are able to finish on

time. This indicates that the number of dependencies cannot

influence the project duration of the combined approach.

However, as the number of dependencies increases, the

revenue of the combined approach decreases faster than that

Fig. 4 Model comparison processes

5 Note that the dependency ratios in Small dataset are different than

in simulation 1. The two simulations are independent from each other,

and we are also not comparing their results. Therefore, the depen-

dency ratios do not necessarily need to be unique. The ratios are set in

the way that they can better illustrate the trend in the two simulations.

388 Requirements Eng (2010) 15:375–396

123

of the knapsack approach in order to make sure the selected

requirements can be implemented on time. This triggers us to

systematically compare the two suggested approaches.

5.4.2 Comparing the (K&S) approach and the (Comb)

approach

To better compare the two approaches, we plot the com-

putational results of master dataset in Fig. 5. The results

based on the small dataset follow the same trends as the

master dataset.

Figure 5a first compares the number of on-time cases with

the number of delayed cases using (K&S) approach. Note

that we only depicted the results of (K&S) approach in

Fig. 5a because the (Comb) approach guarantees on-time

delivery schedule, i.e., the number of delayed cases is always

0. While the (Comb) approach always provides a schedule

that can finish on time, separating selection and scheduling

stands a high change of being delayed, and this probability

grows as the number of dependencies increases. For exam-

ple, when there are 242 dependencies within the 99

requirements, the chance for missing the release date is 95%.

As discussed in Sect. 5.2, the (comb) approach can save

time by providing an on-time-delivery schedule, but this

additional constraint can also reduce the revenue of the

selected requirements. Fig. 5b then further compares the

revenue and project duration when applying the (K&S)

approach and when applying the (Comb) approach. In

Fig. 5b, the baselines of the comparison are the results of

the (Comb) approach. We then compare the revenue dif-

ference between the (Comb) approach and the (K&S)

approach, and the time difference between the (Comb) and

the (K&S) approach. The differences depicted in Fig. 5b

are measured by the ratios that the (Comb) approach differs

from the (K&S) approach in percentage.

It becomes clear from Fig. 5b that the combined selec-

tion and scheduling approach is more efficient. For

example, if we set 242 dependencies between the 99

requirements (5% of theoretical maximal number), using

(K&S) would require up to 54.77% additional development

time after the expected release date compared with the

(Comb) approach that can always finish on time. However,

it only gains about 7.84% more revenue. Such trend, i.e.,

the revenue gain is significantly lower than the time spent

when using the (K&S) approach, can also be observed

when there are different number of dependencies. Clearly,

adopting the combined requirement selection and sched-

uling model is preferred since it is a lot more efficient with

respect to revenue per unit throughput time.

Based on this simulation, we can conclude that the

(Comb) approach not only can provide an on-time-delivery

schedule (c.f. Fig. 5a) but is also more efficient with respect

Table 5 Simulation results of model comparison

Data set Dep

ratio (%)

No.

of dep

Statistics for the 100 runs Statistics only for the delayed cases

Average

of revenue

(comb)

Average

revenue

(k&s)

Average

project

span (k&s)

No. of

delay

(k&s)

Average

revenue

(comb)

Average

revenue

(k&s)

Average

project span

(k&s)

Average

revenue

diff (%)

Average

time

diff (%)

Small

(9 reqs

60 days)

3 1 1113.36 1130.16 56.62 9 989.36 1176 73 15.87 21.67

10 3 1024.48 1060.24 58.15 17 884.24 1094.56 76 19.15 26.67

15 5 918.48 971.6 59.25 22 794.16 1035.6 76.59 22.92 27.65

20 7 844.72 886.96 57.72 24 832.16 1009.12 76.07 16.84 26.78

Master

(99 reqs

30 days)

0.5 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13 9.41

1 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15 19.41

2 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11 31.42

5 242 26947.7 29127.3 45.61 95 26S04.5 29098.8 46.43 7.84 54.77

0%
10%
20%
30%

40%
50%
60%

revenue difference time difference

0%

20%

40%

60%

80%

100%

24 48 97 24224 48 97 242

delayed cases ontime cases

(a) On-time cases V.S. delayed cases
using k&s approach

(b) Comparing comb approach and k&s approach
by their revenue difference and time difference

R
at

io

Number of dependenciesNumber of dependencies

R
at

io

Fig. 5 Model comparison

result based on master dataset

Requirements Eng (2010) 15:375–396 389

123

to revenue per unit throughput time (c.f. Fig. 5b). In our

simulation, neither the number of requirements nor the

number of dependencies can influence this comparison

results, i.e., such trend can be found in all scenarios.

5.5 Sensitivity of the parameters

There is no need to doubt that a good estimation of the

parameters, like revenue vj, dependencies and the definition

of an appropriate release date T are the key to success in

our approach. It is also apparent that a precise estimation is

extremely difficult and luxury [6, 44]. Therefore, it is

important to know which factors have the most impact on

the solution in case of disturbances. Then, we can focus on

these critical factors when given limited time or resources.

Based on the simulation in this section and the work in [12,

13], we view the importance of these factors as follows:

5.5.1 Revenue vj

The revenue vj shows the absolute market value or relative

importance of a requirement Rj. This factor might be the

most difficult one to predict, since lots of external stake-

holders can influence it, and it is largely based on market

condition. Surprisingly, this factor has a limited influence

on the selection result. We created 1,000 instances based

on the master dataset, and for every instance, we randomly

assigned ±10, ±20 and ±30% perturbation to the revenues

of 10% requirements independently. When we look at the

solutions found for these perturbated instances, in only five

cases the set of selected requirements differ from the

originally selected requirement set. When looking at the

difference, this turns out to be also small: the majority of

the selected requirements in the original solution are also

selected in the solution for the perturbated instances [13].

5.5.2 Dependency

Requirement dependencies show the relationship between

requirements and are also very difficult to estimate in

practice. In this paper, we have evaluated its influences on

the revenue and cost for a software release. In Sect. 5.3, we

have first investigated the influence of requirement

dependencies on the project plan (c.f. Fig. 3). For the

master dataset, when only 5% of all pairs of requirements

are interdependent, the project duration is doubled, and

none of the 100 cases in the simulation lead to a project

plan with on-time delivery (c.f. Table 4). In Sect. 5.4, we

have examined the dependency’s influence on revenues

(c.f. Fig. 5). The expected revenue dropped by almost 25%

if we increase the number of dependencies from 97 to 242

for the master dataset (c.f. Table 5). To sum up, require-

ment dependency has a significant influence on both the

project duration and the project revenue. Special attention

should be paid to the dependencies between the require-

ments in the critical path of the project plan. These

dependencies often lead to waiting time in different teams,

therefore need additional attention to judge whether these

dependencies are really necessary.

5.5.3 Release date T

It is important to decide on a good value for the release

date T since it directly influences the available capacity for

the release. Such date is also hard to determine since it is

largely determined by market conditions [1]. In [13], we

examine the situation where we delay the release for a

while, and the penalty costs for the deadline extension are

linear in its length. The result is depicted in Fig. 6.

The curves show step characteristic due to the fact that

we only obtain an additional revenue when a new col-

lection of requirements are selected. For example, the

expected revenue keeps decreasing as the number of days

extended increases. The reason is that we put penalty cost

for every additional day. However, if we extend the

release date for 10 days, we are able to select a new

collection of requirements which result in additional

revenue. Therefore, we see a jump at day 10. The two

curves in Fig. 6 indicate clearly that the influence of

postponing the release date is largely dependent on the

cost of delaying. When the cost is low, delaying the

release for a few days can yield more profits than the cost

it conducts. However, when the cost of delaying is high, it

is not worth extending the release day.

6 Adaptive software release planning

Until now, our approach supports the release planning for a

fixed time period based on fixed estimations of parameters.

In practice, parameters like revenue, cost of requirements

may evolve over time, because the release is being devel-

oped in a changing market. It may also happen that one

very important customer places an order after the release is

determined, and some of the new features must be added in

the coming release. In this section, we focus on adaptively

handling these changes of the release planning.

It may seem a straightforward solution to change the

deterministic parameters into stochastic ones, i.e., change

parameters from fixed values to variables following certain

probability distribution in order to cover the dynamic

behavior. Although some preliminary work has been con-

ducted in stochastic scheduling, e.g., [45, 46], it is not

recommended based on two reasons. First, despite the

studies analyzing the type of distributions for the parame-

ters in RCPSP models [29, 45, 46], it remains difficult to

390 Requirements Eng (2010) 15:375–396

123

determine which distribution the stochastic data should

follow in software release planning. Second, the com-

plexity of solving stochastic RCPSP problems turns out to

be extremely high, so that the performance of the suggested

approach will not be very satisfactory, and it is not possible

to scale up [45].

In this section, we propose to handle the changes in two

ways. In Sect. 6.1, we provide a method to adaptively

change the parameters after the release has started. In Sect.

6.2, we apply the concept of ‘‘scrum’’ in agile software

development method [23, 24]. By using the ‘‘scrum’’

concept, we can divide the long development project into

several small internal projects so that we can adjust the

parameters after every scrum.

6.1 Dynamic adjustment of the parameters

Based on the requirements given in Table 1, a general

example of the replanning problem is depicted in Fig. 7.

The project started at time T0 with requirements R34, R35,

R63, R66 and R67 determined to be implemented in this

release. Team A, Team B and Team C were assigned with a

couple of jobs to perform in the release period. Assume

that after the project has already started, a replanning is

needed at T1 due to over/under-estimations of parameters

or an important new order. At this replanning time point T1,

we can divide the requirements into three groups.

1. The first group contains all completed requirements,

for example, R34 in Fig. 7.

Fig. 6 Total revenues against

the number of days extended

New
release date

Project start Re-planning day
Release

date

()d T

()d T ′

0T T1T 'T

R 34

0 5 10 15 20 30 35 40

time

...25 45 50 55 60

Team A

Team B

Team C

Req
34

Req
34

Req 63 Req 66

Req 35

Req 35

Req 67

Req 67

65 70

Fig. 7 An example of the

release adjustment problem

Requirements Eng (2010) 15:375–396 391

123

2. The second group contains the requirements currently

under development, for example, R63, R35 and R67 in

Fig. 7. Please note that if any one of the teams has not

completed its work for a certain requirement, such

requirement still belongs to this group, e.g., R67.

3. The third group contains the rest of requirements that

have been scheduled for development but have not yet

started. For example, R67 in Fig. 7 belongs to this

group. This group also contains all the requirements in

the repository, i.e., the ones that have not yet been

selected.

At the replanning point, the product manager needs to

decide which jobs to continue and which to drop if nec-

essary. Moreover, requirements from the repository might

be selected. We can use our model to make such a decision

by re-setting the parameters and re-computing the new

release from T1 until the new release date T0. In the fol-

lowing, we describe how to adjust the parameters to per-

form a replanning of the next software release.

6.1.1 Change release date

Suppose T0 is the new release date. As the project has

already started, we need to re-compute the number of

available working days in the project. We therefore need to

use d(T0) to measure the number of available working days

between the replanning time T1 to T0. In our case, d(T0)
contains 55 days.

6.1.2 Change expected revenue

Suppose at time T1, updates of the estimated revenue of

some requirements become available. We therefore can

change the parameters vj to say v0j. For the replanning, it is

needed to update the revenue values of both the require-

ments under development and requirements scheduled to

be developed later. Obviously, for planning purposes, there

is no need to change revenue values of the completed

requirements, since better or worse, the requirements have

already been developed.

6.1.3 Change the number of man days or change

requirement dependencies

If we need to change the expected number of man days for

developing a requirement or want to add additional

dependencies, we need to separately consider the three

groups of requirements, as described in former paragraphs.

1. First group The requirements in this group have

already been implemented. So it is not necessary to

adjust the number of man days for these requirements.

However, these requirements Rj might appear in

existing or additional dependencies. In this case, these

requirements still need to be considered in the

replanning, and we need to add additional constraints

xj = 1 because these requirements have already been

implemented. In addition, we can also ignore all the

precedence constraints set between this group of

requirements and other requirements, since they have

already completed.

2. Second group For the second group of requirements,

the amount of man days aij should be modified for the

jobs that have not been completed at T1. For the

replanning, we consider the remaining days a0ij to

complete requirement Rj. For example, the man days

needed for requirement R63 in team A should be

changed to 2 days. Please note that we do not deduct

the revenue vj of requirement Rj from replanning

although we have already developed something for this

requirement. Reason is that we assume the expected

revenue can only be obtained after the whole devel-

opment is complete.

As different teams work on a requirement indepen-

dently, the development of a requirement at different

group may have different situations. At the replanning

time T1, the jobs Jk for a requirement in the second

group must have one of the following three conditions:

(a) The jobs are already finished, e.g., the job for

requirement 67 in team B. If some groups have

already finished their jobs for a requirement, we

can simply ignore these jobs in the replanning

and only consider the rest of the jobs. The reason

is that the completion and dependency of this

requirement only depends on the remaining jobs.

(b) The jobs are under development, e.g., the jobs for

requirement R63 in team A, and requirement R35

in team B and team C. If the requirements in this

group are re-selected, we would rather continue

the development after this decision point. So

rather than defining a group of timing variables

nkt for a job under development (c.f. Sect. 3), we

only define one variable nk0, i.e. whether this job

should start at decision point. In this way, we

guarantee that if the model decide to continue

with this requirement, it will start immediately

after this replanning point T1.

(c) The jobs have been scheduled but have not yet

started, e.g, the job for Requirement 67 in team

C. If a job is scheduled to start in future by the

original project plan, we can ignore the old

schedule. Since the job has not yet started, we

have the flexibility to let the new model compute

its starting time again based on the situation at T1.

392 Requirements Eng (2010) 15:375–396

123

Therefore, we need to define nkt in the way as

described in Sect. 3.

3. Third group The third group contains all the require-

ments scheduled to be implemented according to the

old plan and all the requirements in the repository, e.g.,

requirement R66 in Fig. 7 and all the remaining

requirements which were not selected. We can change

the expected number of man-days and dependencies

according to the re-estimations. There is no restriction

to reset them since none of these requirements have

started, and none of them have been guaranteed to be

re-selected again beforehand. In addition, if an impor-

tant new order enforces Rj to be put into this release.

We can set an additional constraint xj = 1 to enforce

the selection of this requirement.

6.1.4 Replanning

After modifying the parameters and re-setting the variables

in the above mentioned way, we can put all the requirements

in the second and third group back into the requirement

repository. We also have to include, with constraint xj = 1,

the requirements Rj from group 1, which are involved in the

dependencies with requirements from group 2 and group 3.

Then, we can run the ILP model again. The result will show

which requirements to drop or which ones to add. If we use

the combined requirement selection and scheduling model

(c.f. Sect. 3), a new project plan according to the new esti-

mations will be also made simultaneously.

When we follow the suggested approach, it is possible to

terminate some ongoing requirements if we are able to find

better candidates. There are mainly three reasons to model

it in this way:

1. From financial point of view [47], the earlier effort put

on a requirement before the decision date is sunk cost.

It should not influence the decision.

2. There is no guarantee that the requirements currently

under development are better than the requirements in

the waiting list. It is possible that after changing the

estimated revenues, the requirements in the waiting list

have higher revenues than the ones under development.

3. At last, the requirements under development have

higher probability to be selected again, because we

have already deduced a part of the development cost.

However, this preemption of ongoing development

should be a management decision rather than a strict con-

straint. If managers decide to in any case continue with the

current development for morale or other reasons, the model

provides such flexibility. To model this situation, i.e., all

requirements in group 2 should continue until the devel-

opments are complete finished, we need to add additional

constraints xj = 1 for all requirements Rj in this group and

add constraints nk0 = 1 for all jobs Jk currently under

development.

Besides how to perform replanning, another question is

when to perform replanning. Two possibilities are as fol-

lows. First, we can re-plan after a fixed period of time, e.g.,

every month. Second, we can re-plan if the disturbances

exceed a certain threshold, e.g., if 10% of the jobs are

delayed for more than 20%. Computer simulation might

help to find appropriate values as well [42]. However, re-

planning has a large impact on the human resource man-

agement of the development process, and therefore the

viewpoint of the management is also essential.

6.2 Scrum development

The scrum development method divides the whole devel-

opment project into several scrums. At the end of each

scrum, an internal release is expected [23, 24]. After every

scrum, the project manager can adjust the project plan

according to the current situation. This incremental method

does not only provide the manager with the flexibility to

adjust the release plan but also reduces the risk of over-

time, since only a limited amount of requirements are

developed in each scrum. We have depicted the concept in

Fig. 8. Let us revisit the example in Fig. 1, where the

project (lasting 60 days) was developed using one shot

development approach. Assume that the project has been

divided into two scrums of 30 days (c.f. Fig. 8). At the end

of each scrum, we expect to finish some requirements.

Compared to the one shot development method, managers

have now one additional opportunity to adjust the release

plan, i.e., at the end of Scrum 1.

However, as all the requirements in a scrum are expected

to finish at the end of this scrum, this strict deadline acts like

‘‘concrete walls’’ which will reduce the flexibility of

scheduling. For example, consider the case in Table 1. If we

divide the development schedule into two scrums with 30

days in each scrum, we are only able to select Requirement

34, 35, 63 and 66 in the first scrum and Requirement 67 in the

second scrum. The total revenue of the selected requirements

in the two scrums is 656 Euro (c.f. Fig. 8). This result is

significantly lower than the result of one shot approach

(1,096 Euro using the combined model), because some long

running but profitable requirements, e.g., Requirement 25,

cannot fit in any scrum.

We can improve the situation by allowing splitting of

jobs. For example, since Requirement 25 is a long running

but very profitable one, we can divide this requirement into

2 sub-requirements, Requirement 25a, and Requirement

25b. Clearly, this split can lead to additional cost, like

addition setup cost or coordination cost. So we may expect

that the development duration of this requirement

Requirements Eng (2010) 15:375–396 393

123

(Requirement 25a ? Requirement 25b) will become longer

(as shown in Fig. 8). Assume that we can split Requirement

25 evenly into Requirement 25a and Requirement 25b with

10% additional man days, i.e., each needs 28 man days and

produces 400 Euro as revenue. As shown in Fig. 8, if we

allow job division, it is then possible to select and schedule

another group of requirements, so that the revenue and

efficiency are increased. The revenue of the new collection

of requirements increases from 656 to 1,000 Euro. Clearly,

managers can split a requirement and estimate the cost and

revenue according to the special feature of this requirement

and the situations in the groups. Note that in a similar way,

we can also split a requirement such that the jobs of dif-

ferent team can be assigned to different scrums.

When compared to the one-shot development process,

adopting the Scrum development concept provides addi-

tional opportunities to adjust the project plans so that it is

more flexible. Hence, we can better handle unforeseen

changes. However, such flexibility will possibly reduce the

revenue of the development project due to the strict

deadlines for completing requirements at the end of each

scrum. To alleviate this problem, we provide an approach

that allows splitting jobs in order to improve the revenue of

the development project. We can identify the candidate

jobs for splitting by comparing the jobs selected in the one

shot development approach but not in the scrum develop-

ment process (e.g. Requirement 25 in Fig. 8).

From a scheduling point of view, we conclude the fol-

lowing. To achieve the benefits of scrum, it is crucial that

the work can be split into relatively small pieces without a

lot of overhead or transition cost (see [48] for an approach

to refine big requirements into smaller ones). Such strategy

of designing only small requirements (or dynamically

divide big requirements into several smaller ones) can also

be observed in several software companies, which typically

work with requirements of maximal 2 to 5 days [48].

7 Conclusion and future research

As deciding on the requirements for upcoming software

release is a complex and critical process, this paper aims at

providing mathematical models to support such a decision.

The main contributions of this paper include:

1. First, we have applied the RCPSP model to solve the

requirement scheduling problem. This scheduling

model can synchronize the development in different

teams and is able to handle the precedence dependen-

cies between requirements and the resource or exper-

tise constraints in the company.

One shot
development

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Req 25a

Req 25

Req 25

Release
date

Req 63 Req 66

Req 25b

Scrum with
job division

Revenue:
1000 euro

Scrum 1 Scrum 2

R 34

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Release
date

Req
34

Req
34

Req 63Req 66

Req 35

Req 35

Req 67

Req 67

Scrum
development

Revenue:
656 euro

Scrum 1 Scrum 2

R 34

0 5 10 15 20 30 35 40 time...25 45 50 55 60

Team A

Team B

Team C Req 25

Req 25

Req 25

Release
date

Req
34

Req
34

Req 63 Req 66
Revenue:
1096 euro

Fig. 8 Scrum development

method

394 Requirements Eng (2010) 15:375–396

123

2. Second, we have designed a new ILP model that

combines the requirement selection and scheduling.

This combined approach not only can maximize the

revenue of the selected requirements, but also provides

an on-time-delivery project plan simultaneously. The

requirement dependencies, which represent the rela-

tionship between requirements, can also be included in

this model. To out best knowledge, this paper has

provided the first model to combine requirement

selection and scheduling together.

3. Third, we have investigated the influences of different

factors and compared the different models by several

simulations. The results indicate that the combined

requirement selection and scheduling model can not

only provide a on-time-delivery schedule, but is also

more efficient than the traditional Knapsack model in

terms of revenue per time unit spent on the project. In

addition, we have indicated that requirement depen-

dencies are more important than other factors, like

revenue, release date, with regard to both requirement

selection and scheduling.

4. At last, we provided two mechanisms allowing

dynamically adjust the release after the project has

started. The first mechanism allows run-time modifi-

cation of the model, and the second one applies the

concept of scrum method in agile software

development.

The results look very promising, but more work still

needs to be done. In the field of requirement engineering,

our simulations show convincing results to combine the

requirement selection and scheduling. However, more

empirical research is needed to fully evaluate this process

improvement opportunity. Applying our models to an

actual project can also yield better understanding of their

benefits. It is also interesting to investigate the uncer-

tainty of the parameters [49], so that we can consider

these uncertainty at the planning phase. In the fields of

scheduling, our first simulation results suggest that the

optimal schedule found by integer linear programming is

not far away from the critical path lower bound. It will

also be interesting to investigate whether there are faster

algorithms, e.g., heuristics search, for scheduling that can

get rather close to the optimum. At last, the scalability of

the models is so far unknown (in this paper, we have

tested the condition up to 100 requirements and 17

teams), more research is needed to test the scalability of

the suggested ILP model and make it applicable for

larger dataset.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which per-

mits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.

References

1. Regnell B, Brinkkemper S (2005) Market-driven requirements

engineering for software products. In: Aurum A, Wohlin C (eds)

Engineering and managing software requirements. Springer,

Dordrecht, pp 287–308

2. Novorita R, Grube G (1996) Benefits of structured requirements

methods for market-based enterprises. In: International council

on systems engineering sixth annual international symposium on

systems engineering: practice and tools (INCOSE’96)

3. van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J,

Bijlsma L (2006) Towards a reference framework for software

product management. In: RE ’06. IEEE Computer Society, pp

312–315

4. Carlshamre P, Bjorn R (2000) Requirements lifecycle manage-

ment and release planning in market-driven requirements engi-

neering processes. In: DEXA Workshop, pp 961–965

5. Joachim K, Kevin R (1997) A cost-value approach for prioritiz-

ing requirements. IEEE Softw 14(5):67–74

6. Carlshamre P (2002) Release planning in market-driven software

product development: provoking an understanding. Requir Eng

7(3):139–151

7. Firesmith D (2004) Prioritizing requirements. J Object Technol

3(8):35–47

8. Greer D, Ruhe G (2004) Software release planning: an evolu-

tionary and iterative approach. Inf Softw Technol 46:243–253

9. Sawyer P, Sommerville I, Kotonya G (1999) Improving market-

driven re processes. In: International conference on product

focused software process improve-ment (PROFES’99)I

10. Ho-Won Jung (1998) Optimizing value and cost in requirements

analysis. IEEE Softw 15(4):74–78

11. Ruhe G, Saliu M. Omolade (2005) The art and science of soft-

ware release planning. IEEE Softw 22(6):47–53

12. van den Akker JM, Brinkkemper S, Diepen G, Versendaal J

(2005) Flexible release planning using integer linear program-

ming. In: REFSQ’05. Essener Informatik Beitrage, pp 247–262

13. van den Akker JM, Brinkkemper S, Diepen G, Versendaal J

(2008) Software product release planning through optimization

andwhat-if analysis. Inf Softw Technol 50(1–2):101–111

14. Wolsey LA (1998) Integer programming. Wiley-Interscience

Series In Discrete Mathematics and Optimization

15. Leffingwell D, Widrig D (2000) Managing software require-

ments— a unified approach. Addison-Wesly

16. Ngo-The A, Ruhe G (2009) Optimized resource allocation for

software release planning. IEEE Trans Softw Eng 35(1):109–123

17. Berander P, Andrews A (2005) Requirements prioritization.

Springer, Dordrecht

18. Cusumano MA (2004) The business of software. Free Press, New

York

19. Carlshamre P, Sandahl K, Lindvall M, Regnell B, Nattoch Dag J

(2001) An industrial survey of requirements interdependencies in

software product release planning. In: RE’10, IEEE Computer

Society, pp 84–91

20. van der Aalst WMP, van Hee KM (2004) Workflow management:

models, methods, and systems. MIT Press, Cambridge

21. Anda B, Dreiem H, Dag I, Sjoberg K, Jorgensen M (2001)

Estimating software development effort based on use cases-

experiences from industry. In: UML’01. Springer, UK, pp 487–

502

22. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a

roadmap. In: ICSE’00—Future of SE Track, pp 35–46. ACM

23. Rising L, Norman JS (2000) The scrum software development

process for small teams. IEEE Softw 17(4):26–32

24. Schwaber K, Beedle M (2001) Agile software development with

scrum. Prentice Hall, USA

Requirements Eng (2010) 15:375–396 395

123

25. Li C, van den Akker JM, Brinkkemper S, Diepen G (2007)

Integrated requirement selection and scheduling for the release

planning of a software product. In: REFSQ’07, pp 93–108.

Springer, LNCS 4542

26. Cormen TH, Leiserson CE, Riverst RL, Stein C (2001) Intro-

duction to algorithms. MIT Press, Cambridge

27. Martello S, Toth P (1990) Knapsack problems: algorithms and

computer implementations. Wiley-Interscience Series In Discrete

Mathematics and Optimization

28. Aristide M, Vittorio M, Salvatore R, Lucio B (1998) An exact

algorithm for the resource-constrained project scheduling prob-

lem based on a new mathematical formulation. Manag Sci

44(5):714–729

29. Artigues C, Demassey S, Neron E (2008) Resource-constrained

project scheduling, models, algorithms, extensions and applica-

tions. Wiley-Iste

30. Blazewicz J, Lenstra JK, Rinnooy Kan AHG (1983) Scheduling

projects subject to resource constraints: classification and com-

plexity. Discrete Appl Math 5:11–24

31. Jorge LV, Balakrishnan R (1995) Strength and adaptability of

problem-space based neighborhoods for resource-constrained

scheduling. OR Spectr 17(1–3):173–182

32. Demeulemeester E, Herroelen W (1992) A branch-and-bound

procedure for the multiple resource-constrained project schedul-

ing problem. Manag Sci 38(12):1803–1818

33. Wall MB (1996) A genetic algorithm for resource-constrained

scheduling. PhD thesis, Massachusetts Institute of Technology

34. Frankola T, Golub M, Jakobovic D (2008) Evolutionary algo-

rithms for the resource constrained scheduling problem. In: 0th

international conference on information technology interfaces, pp

715–722

35. van den Akker JM, Diepen G, Hoogeveen JA (2007) A column

generation based destructive lower bound for resource con-

strained project scheduling problems. In: CPAIOR’07, volume

4510 of LNCS. Springer, pp 376–390

36. Brucker P, Knust S (2006) Complex scheduling. Springer,

Dordrecht

37. Dyer ME, Wolsey LA (1990) Formulating the single machine

sequencing problem with release dates as a mixed integer pro-

gram. Discrete Appl Math 26(2–3):255–270

38. van den Akker JM, van Hoesel CPM, Savelsbergh MWP (1997)

A polyhedral approach to single-machine scheduling problems.

Math Program 85(3):541–572

39. Li C, van den Akker JM, Brinkkemper S (2006) An integer linear

programming approach to product software release planning &

scheduling. Technical Report UU-CS-2006-065, Utrecht Uni-

versity, The Netherlands

40. ILOG Cplex. http://www.01.ibm.com/software/integration/

optimization/cplex

41. ILP Product Comparison. http://www.lionhrtpub.com/orms/surveys/

LP/LP-survey.html

42. Law AM (2006) Simulation modeling and analysis. McGraw-Hill

Higher Education

43. Release Dataset. http://www.home.cs.utwente.nl/*lic/Resources.

html

44. Regnell B, Höst M, Natt och Dag J, Beremark P, Hjelm T (2001)

An industrial case study on distributed prioritisation in market-

driven requirements engineering for packaged software. Requir

Eng 6(1):51–62

45. Golenko-Ginzburg D, Gonik A, Laslo Z (2003) Resource con-

strained scheduling simulation model for alternative stochastic

network projects. Math Comput Simul 63(2):105–117

46. Lambrechts O, Demeulemeester E, Herroelen W (2008) Proactive

and reactive strategies for resource-constrained project schedul-

ing with uncertain resource availabilities. J Sched 11(2):121–136

47. Brealey RA, Myers SC, Marcus AJ (2004) Fundamentals of

corporate finance. McGraw-Hill/Irwin

48. Vlaanderen K, Brinkkemper S, Jansen S, Jaspers E (2009) The

agile requirements refinery: applying scrum principles to software

product management. In: IWSPM’09, USA

49. Klir GJ, Wierman MJ (1999) Uncertainty-based information.

Physica-Verlag, Wurzburg

396 Requirements Eng (2010) 15:375–396

123

http://www.01.ibm.com/software/integration/optimization/cplex
http://www.01.ibm.com/software/integration/optimization/cplex
http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html
http://www.lionhrtpub.com/orms/surveys/LP/LP-survey.html
http://www.home.cs.utwente.nl/~lic/Resources.html
http://www.home.cs.utwente.nl/~lic/Resources.html

	An integrated approach for requirement selection and scheduling in software release planning
	Abstract
	Introduction
	Problem illustration
	Overview of the paper

	Preliminary analysis of the problem conditions
	Precedence constraints and requirement dependencies
	Two straightforward cases

	ILP models for software requirement selection and scheduling
	Knapsack model for requirement selection
	RCPSP model for requirement scheduling
	The precedence constraints
	The upper bound of the project span
	The earliest start time esk and the latest start time lsk of each job Jk
	The integer linear programming model

	Combining requirement selection and scheduling
	The precedence constraints
	The earliest start time esk and the latest start time lsk of each job Jk
	The integer linear programming model

	Reflections

	Requirement dependencies for the combined selection and scheduling model
	Modeling requirement dependencies in the combined model
	Combination
	Implication
	Exclusion
	Revenue-based
	Cost-based
	Time-related

	Combined use of requirement dependencies

	Prototype and simulations
	Prototype
	Simulation setup
	Results of simulation 1: the influence of dependencies on the project plan
	Results of simulation 2: model comparisons
	Influence of requirement dependencies
	Comparing the (K&S) approach and the (Comb) approach

	Sensitivity of the parameters
	Revenue vj
	Dependency
	Release date T

	Adaptive software release planning
	Dynamic adjustment of the parameters
	Change release date
	Change expected revenue
	Change the number of man days or change requirement dependencies
	Replanning

	Scrum development

	Conclusion and future research
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

