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Abstract
Pressurized planar electrochromatography (PPEC) of dansyl (DNS) derivatives of amino acids in normal- and reversed-phase 
systems is presented. The results have been obtained for mobile phases with different acetonitrile (ACN) concentrations 
(0–85%). The data obtained show differences in separation selectivity between high-performance thin-layer chromatography 
(HPTLC) and PPEC systems. These differences originate from the electrophoretic effect which is involved in the PPEC 
system, contrary to the HPTLC one.
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1 Introduction

Amino acids are a significant group of biochemical com-
pounds. They have many industrial applications, especially 
in the pharmacy or nutrition industry. Moreover, the deter-
mination of the amino acids is used for the diagnosis of 
various diseases, such as cancer, neurological disorders, 
metabolic diseases, disorders in the functioning of the liver 
or kidneys [1–6]. Chromatographic techniques are widely 
used in the study and analysis of the samples related to these 
aspects. High-performance liquid chromatography (HPLC) 
and capillary electrophoresis techniques are character-
ized by high efficiency and short separation time [7–12]. 
Thin-layer chromatography (TLC/HPTLC) of amino acids 
[13–20] and their dansyl (DNS) derivatives [21–27] has 
been widely described in the scientific literature. Pressurized 
planar electrochromatography (PPEC) is also included in the 
current research on amino acid separation. This technique 
is attractive to that application due to its short separation 
time and high performance [28–38]. The different separa-
tion selectivity in comparison with liquid chromatography 

and electrophoresis is also an essential advantage of PPEC 
[35, 36, 39, 40].

Polak et al. [41–45] reported the use of PPEC to separate 
amino acids enantiomers and diastereoisomers. In previous 
papers by our group, we reported two-dimensional separa-
tion of some amino acids by HPTLC and PPEC on HPTLC 
RP-18W plates [39] and the comparison of separation selec-
tivity of 20 biogenic amino acids in TLC and PPEC in sys-
tems with silica gel and water mobile phase [40].

Gwarda et al. [46–50] presented extensive research on 
peptides chromatography in HPTLC and PPEC systems 
with silica and silica-based C18 stationary phases. They 
reported interesting data on the solutes retention and selec-
tivity depending on ion-pairing reagent in the mobile phase 
[47, 49]. According to these papers, the addition of trifluoro-
acetic acid (TFA) to the mobile phase led to a considerable 
reduction of peptide tailing zones. It was revealed that TFA 
addition was more effective for RP-HPTLC peptide separa-
tion than formic acid (FA) [46]. However, the TFA addition 
resulted in high electric current and high Joule heat genera-
tion during the PPEC process [48]. Based on these data, it 
was interesting to apply analogous systems to separation of 
DNS amino acids derivatives. However, in order to avoid 
the mentioned problems with high current and Joule heat 
generation in PPEC systems, the FA addition to the mobile 
phase was applied in the research presented.

This paper stands for a continuation of the research 
mentioned above and shows differences in the separation 
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selectivity of DNS amino acids between HPTLC and PPEC 
systems.

2  Experimental

2.1  Materials used

All reagents used were of analytical grade. Acetonitrile, 
acetone, diethyl ether, formic acid 98–100%, sodium bicar-
bonate, hydrochloric acid (35–38%), sodium sulfate were 
supplied by POCh (Gliwice, Poland), dansyl chloride was 
from Sigma–Aldrich (St Louis, MO, USA). The deionized 
water was produced in the department using demineralizer 
HLP 5 (Hydrolab, Straszyn, Poland). The solutions of the 
mobile phase were prepared by mixing acetonitrile with 
formic acid and deionized water. All experiments were per-
formed with HPTLC silica gel 60  F254s and HPTLC RP-18W 
plates, both from Merck (Darmstadt, Germany). The amino 
acids investigated were tyrosine (Tyr), glycine (Gly), ala-
nine (Ala), asparagine (Asn), arginine (Arg), lysine (Lys), 
glutamic acid (Glu), valine (Val), phenylalanine (Phe), histi-
dine (His), isoleucine (Ile), methionine (Met), leucine (Leu), 
aspartic acid (Asp), proline (Pro), serine (Ser), threonine 
(Thr), tryptophan (Trp), glutamine (Gln), cysteine (Cys), 
citrulline (Cit), all from Sigma-Aldrich.

2.2  Mobile phase preparation

The mobile phase solutions were prepared by adding formic 
acid to deionized water or to acetonitrile and deionized water 
mixtures (the final concentration of FA in the mobile phase 
was equal to 265 mmol/dm3).

2.3  DNS derivatives of amino acids

DNS derivatives of amino acids were obtained according 
to the LeFevre procedure [51, 52]. A quantity of 2 mg of 
each amino acid was dissolved in 6.7 mL of 0.2 M sodium 
bicarbonate. The obtained solution was mixed with 6.7 mL 
of 5.5 mM dansyl chloride; the solution pH was within the 
optimal range for the dansylation reaction (8.5–10.5), and 
shaken for 1 min, then allowed to stay for 90 min in the 
dark at room temperature. After this time, hydrochloric 
acid was added until the pH was equal to 4.0. Then, the 
obtained samples were extracted three times by diethyl ether. 
The obtained solutions were combined and filtered through 
anhydrous sodium sulfate crystals, and then the solution was 
allowed to evaporate the solvent. The obtained DNS amino 
acids were dissolved in 2 mL of acetone.

2.4  Pressurized planar electrochromatography

2.4.1  Plate preparation

The margins of 5 mm width of impregnating agent com-
prised both Sarsil W and Sarsil H50 (Zakłady Chemiczne 
“Silikony Polskie,” Nowa Sarzyna, Poland) were produced 
on the whole periphery of adsorbent layer of the plates 
[37]. Before experiments, the HPTLC silica gel 60  F254s 
and HPTLC RP-18W plates were washed by dipping in 
methanol for 1 min and dried in the air and in the oven at 
temperature 105–110 °C for 15 min. Solutions of the amino 
acids were applied on the plate using Automatic TLC Sam-
pler (CAMAG, Muttenz, Switzerland). The distance of the 
marginal starting spots to both left and right chromato-
graphic plate side edges was equal to 15 mm, and the dis-
tance of start line from lower chromatographic plate edge 
was 16 mm.

2.4.2  Pressurized planar electrochromatography procedure

All PPEC experiments were performed with a PPEC cham-
ber designed for 10 cm × 20 cm plates [53] according to the 
same procedure as presented in the previous work [40]. All 
PPEC experiments were performed in triplicate.

2.5  Detection and documentation

Chromatograms were taken with TLC Visualizer (CAMAG). 
The retardation factor values were determined with a  
VideoScan TLC/HPTLC evaluation software (CAMAG).

3  Results and discussion

The data of migration distance of the solutes depending on 
the acetonitrile concentration, in the range 0–40% (HPTLC 
silica gel 60  F254s plates) and 10–85% (HPTLC RP-18W 
plates) in aqueous formic acid solution, are presented in 
Tables 1 and 2, respectively.

For silica gel plates (Table 1), a significant increase in 
the migration distance of DNS amino acids was observed 
with increasing concentration of acetonitrile in the mobile 
phase in the range of 0–25% (an increase between 9.3 mm 
for DNS-Cit and 43.8 mm for DNS-Cys). This is in line 
with the previous report [54]. For 25% ACN in the mobile 
phase compared to 20%, a reduction of the difference in 
the migration distance of DNS amino acids was observed 
(migration distance differences for 20% ACN ≤39.4 mm; 
for 25% ≤27 mm). Regarding the higher concentrations of 
30% and 40% ACN, the migration distance of DNS amino 
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acids was of low diversity (migration distance differences 
for 30% ≤5.9 mm; for 40% ≤8.2 mm). The exemplary elec-
trochromatogram of DNS amino acids is presented in Fig. 1.

In Fig. 2, the correlation of retardation factor values of 
the DNS amino acids in HPTLC silica gel system with for-
mic acid–water solution (265 mmol/dm3) [54] against their 

Table 1  The DNS amino acid 
migration distances (mm) in 
PPEC systems with HPTLC 
silica gel 60  F254s plates 
(Merck) and acetonitrile in 
the concentration range from 
0 to 40% in water–formic acid 
solution (the final concentration 
of formic acid in the mobile 
phase was equal to 265 mmol/
dm3), polarization voltage 
0.500 kV, separation time 
15 min

% Acetonitrile 0% 10% 20% 25% 30% 40%

DNS-Tyr 33.4 39.6 53.2 56.4 51.3 46.8
DNS-Gly 35.5 44.3 53.8 58.9 50.6 47.4
DNS-Ala 32.8 42.3 52.6 58.9 51.3 47.6
DNS-Asn 25.8 32.4 40.0 47.8 51.8 47.9
DNS-Arg 37.5 49.65 64.5 62.4 52.1 48.7
DNS-Lys 11.7 23.6 33.2 45.6 51.5 49.0
DNS-Glu 35.7 42.0 47.9 54.6 51.9 49.5
DNS-Val 26.1 39.2 46.4 56.1 52.1 51.0
DNS-Phe 22.9 35.8 44.5 53.4 52.1 51.4
DNS-His 7.1 18.7 25.7 35.4 52.5 51.8
DNS-Ile 23.7 37.4 47.9 54.9 51.7 52.2
DNS-Met 24.4 38.0 47.1 55.3 52.1 52.1
DNS-Leu 22.5 37.1 47.2 52.8 53.2 52.4
DNS-Asp 35.5 42.7 50.1 57.3 54.4 52.6
DNS-Pro 19.2 36.6 46.6 55.3 54.6 51.9
DNS-Ser 35.0 46.2 52.4 59.3 56.0 51.1
DNS-Thr 19.2 33.9 43.3 50.6 56.0 50.6
DNS-Trp 23.0 30.3 46.7 55.4 56.5 49.7
DNS-Gln 37.8 57.9 65.4 56.1 55.6 48.7
DNS-Cys 11.0 28.1 40.1 54.8 53.3 45.9
DNS-Cit 44.3 58.81 62.2 53.6 53.0 44.4

Table 2  The DNS amino acid 
migration distances (mm) in 
PPEC systems with HPTLC 
RP-18W plates (Merck) and 
acetonitrile in the concentration 
range from 10 to 85% in water–
formic acid solution (the final 
concentration of formic acid in 
the mobile phase was equal to 
265 mmol/dm3), polarization 
voltage 0.500 kV, separation 
time 15 min

% Acetonitrile 10% 25% 40% 55% 70% 85%

DNS-Tyr 7.24 15.02 27.76 31.11 18.77 35.40
DNS-Gly 9.12 17.97 24.94 25.48 14.35 33.52
DNS-Ala 8.32 15.29 23.06 27.36 14.75 34.06
DNS-Asn 6.44 9.79 17.57 28.16 14.62 34.06
DNS-Arg 5.63 7.64 32.05 27.36 16.36 35.94
DNS-Lys 1.07 3.62 8.45 10.59 13.54 34.73
DNS-Glu 8.85 18.64 25.48 24.94 14.22 33.12
DNS-Val 5.10 7.78 15.69 20.65 14.22 34.46
DNS-Phe 2.55 6.17 11.40 18.51 14.22 33.52
DNS-His 0.81 3.22 8.32 27.76 13.68 32.19
DNS-Ile 3.09 5.63 12.74 20.25 13.68 34.33
DNS-Met 4.56 7.24 15.15 20.12 13.68 32.99
DNS-Leu 2.95 5.90 10.59 19.58 13.68 34.87
DNS-Asp 9.12 17.30 25.48 27.09 14.35 29.50
DNS-Pro 4.02 7.78 15.83 22.80 13.54 34.33
DNS-Ser 9.93 20.65 30.58 26.15 13.68 31.38
DNS-Thr 2.68 5.63 9.79 25.75 14.88 31.38
DNS-Trp 2.41 6.97 15.69 23.20 15.02 35.67
DNS-Gln 10.73 20.88 36.07 25.61 16.62 35.94
DNS-Cys 1.07 7.78 10.86 16.90 10.59 29.36
DNS-Cit 4.29 19.84 30.84 26.55 18.64 34.19



108 JPC – Journal of Planar Chromatography – Modern TLC (2021) 34:105–111

1 3

migration distances values in PPEC system comprising the 
same adsorbent layer and mobile phase is presented. It is 
shown that the separation selectivities produced by the two 
systems are different (R = 0.4796). It means that the electro-
phoresis effect involved in the PPEC process significantly 
altered the separation of the solutes in comparison with 
HPTLC. It should be noted that despite the low pH of the 
mobile phase (formic acid in the mobile phase), the data 
obtained suggest that the acid groups of DNS amino acids 
were at least partially dissociated. So DNS amino acids’ 
electrophoretic mobility affected the change in separation 
selectivity in PPEC in comparison with that in HPTLC.

For RP-18W plates (Table 2), an increase in the migration 
distance of DNS amino acids was observed with increas-
ing concentration of acetonitrile in the mobile phase in the 
range of 10‒55% (an increase between 9.52 mm for DNS-
Lys and 26.95 mm for DNS-His). It is characteristic of 
the reversed-phase system. However, for 70% ACN in the 
mobile phase compared to 55%, except DNS-Lys, the solute 

migration distances decreased (a decrease between 5.9 mm 
for DNS-Leu and 14.80 mm for DNS-His), and in addition, 
they migrated distances of low diversity (migration distance 
differences for 55% ACN ≤ 20.52 mm; for 70% ≤ 8.18 mm). 
For 85% ACN in the mobile phase compared to 70% ACN, 
solute migration increased (an increase between 15.15 mm 
for DNS-Asp and 20.79 mm for DNS-Pro), and all DNS 
amino acids showed minor diversity in the migration dis-
tances (migration distance differences ≤6.58 mm) similarly 
as for 70% ACN. The discussed effect can be concerned with 
change of the stationary phase structure, which is dependent 
on modifier concentration in the mobile phase. For lower 
ACN concentration in the mobile phase, C18 ligands of the 
adsorbent surface are expelled from the mobile phase and 
for higher ACN concentration are embedded in it. Then, 
in the latter case, the adsorbent capacity of the stationary 
phase increases in comparison with the former. Similar 
effects have been previously described in publications [55, 
56]. The exemplary electrochromatogram of DNS amino 
acids is presented in Fig. 3.

Correlation of the data obtained for HPTLC RP-18W 
system [54] with those for PPEC RP-18W, one revealed 
substantial changes of separation selectivity of the solutes. 
It is exemplified in Fig. 4 where the retardation factor val-
ues of the solutes investigated in HPTLC system are plot-
ted against migration distances values in the PPEC one (the 
mobile phase comprised 40% ACN in FA water solution, 
y = 0.0084x + 0.1118; R = 0.656). These data evidence that 
the electrophoretic effect significantly changes the separa-
tion selectivity in the PPEC system in comparison with that 
in the HPTLC one.

Fig. 1  Electrochromatogram 
of DNS amino acids, mobile 
phase: water solution of formic 
acid, the final concentration of 
formic acid in the mobile phase 
was equal to 265 mmol/dm3, 
HPTLC silica gel 60  F254s plate 
from Merck, polarization volt-
age 0.500 kV, separation time 
15 min (EOF – electroosmotic 
flow)

Fig. 2  Comparison of the RF values of the DNS amino acids in 
HPTLC system with the migration distances in PPEC one. The silica 
gel 60  F254s plates and formic acid–water solution (265  mmol/dm3) 
were used in both techniques
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4  Conclusion

The data obtained show differences in the separation selec-
tivity between HPTLC and PPEC systems with silica gel 60 
 F254s and RP-18W plates as the stationary phase. In PPEC, 
the electrophoretic effect is responsible for considerable sepa-
ration selectivity differences relative to the HPTLC. It is an 
important issue because the data obtained lead to presume that 
the combination of HPTLC and PPEC in a two-dimensional 
separation process should substantially enhance DNS amino 
acid separation.
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