Skip to main content
Log in

Quality evaluation and quantification of cucurbitacin E in different cultivars of Cucumis sativus L. fruit by a validated high-performance thin-layer chromatography method

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Cucumis sativus L. of the Cucurbitaceae family, commonly known as cucumber, is commercially cultivated worldwide. The major phytoconstituents present in the Cucurbitaceae family are different curcurbitacins, principally cucurbitacin E. The content of cucurbitacin E differs within the species or cultivars due to factors like genetic variation and geographical location. The present study reports a simple and rapid quantitative analysis of cucurbitacin E in 5 different C. sativus cultivars by a validated high-performance thin-layer chromatography (HPTLC) method. The mobile phase contained petroleum ether, ethyl acetate and formic acid in the ratio of 40:60:0.5 (V/V). Cucurbitacin E was analyzed densitometrically and the absorbance wavelength was 254 nm. The method showed RF spot = 0.79 ± 0.06, corresponding to cucurbitacin E in various samples. The calibration curve of standard cucurbitacin E showed good linear relationship in the concentration range of 2‒10 µg/spot with a correlation coefficient (r) > 0.99. The HPTLC method was validated in terms of sensitivity, linearity, accuracy, precision, and specificity as per the International Conference on Harmonization (ICH) guidelines. The present study revealed that the content of cucurbitacin E differs among the C. sativus cultivars. This method may be beneficial for addressing the quality-related aspects of C. sativus for food and pharmaceutical preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HPTLC:

High-performance thin-layer chromatography

ICH:

International Conference on Harmonization

MAE:

Microwave-assisted extraction

LOD:

Limit of detection

LOQ:

Limit of quantification

%RSD:

Percent relative standard deviation

C. sativus L.:

Cucumis sativus L.

References

  1. Mukherjee PK, Nema NK, Maity N, Sarkar BK (2013) Phytochemical and therapeutic potential of cucumber. Fitoterapia 84:227–236. https://doi.org/10.1016/j.fitote.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  2. Tatlioglu T (1993) Cucumber. In: Kalloo G, Bergh BO (eds) Genetic Improvement of Vegetable Crops. Elsevier, Amsterdam, pp 197–234. https://doi.org/10.1016/b978-0-08-040826-2.50017-5

    Chapter  Google Scholar 

  3. Mariod AA, Saeed Mirghani ME, Hussein I (2017) Cucumis sativus. Cucumber unconventional oilseeds and oil Sources. Academic Press, London, pp 89–94. https://doi.org/10.1016/b978-0-12-809435-8.00016-0

    Book  Google Scholar 

  4. Sotiroudis G, Melliou Sotiroudis E, Chinou I (2010) Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J Food Biochem 34:61–78. https://doi.org/10.1111/j.1745-4514.2009.00296.x

    Article  Google Scholar 

  5. Nema NK, Maity N, Sarkar B (2011) Mukherjee PK (2011) Cucumis sativus fruit—potential antioxidant, anti-hyaluronidase, and anti-elastase agent. Arch Dermatol Res 303(4):247–252. https://doi.org/10.1007/s00403-010-1103-y

    Article  CAS  PubMed  Google Scholar 

  6. Kaur C, Kapoor HC (2002) Anti-oxidant activity and total phenolic content of some Asian vegetables. Int J Food Sci Technol 37:153–161. https://doi.org/10.1046/j.1365-2621.2002.00552.x

    Article  CAS  Google Scholar 

  7. Maheshwar GH, Patil BS, Prashant D (2010) Comperitive sun protection factor determination of fresh fruit extract of cuccumber vs marketed cosmetic formulation. Res Pharm Biol Chem Sci 1:55–59

    Google Scholar 

  8. Roman-Ramos R, Flores-Saenz JL, Alarcon-Aguilar FJ (1995) Anti-hyperglycemic effect of some edible plants. J Ethnopharmacol 48(1):25–32. https://doi.org/10.1016/0378-8741(95)01279-m

    Article  CAS  PubMed  Google Scholar 

  9. Sudheesh S, Vijayalakshmi NR (1999) Lipid-lowering action of pectin from Cucumis sativus. Food Chem 67:281–286. https://doi.org/10.1016/S0308-8146(99)00135-1

    Article  CAS  Google Scholar 

  10. Allen AK (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for beta-1, 4-linked N-acetylglucosamine oligosaccharides. Biochem J 183:133–137. https://doi.org/10.1042/bj1830133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kapoor LD (1990) Handbook of ayurvedic medicinal plants. CRC Press, Boca Raton, FL, pp 361–388

    Google Scholar 

  12. Abu-Reidah IM, Arráez-Román D, Quirantes-Piné R, Fernández-Arroyo S, Segura-Carretero A, Fernández-Gutiérrez A (2012) HPLC–ESI‒Q-TOF‒MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res Inter 46:108–117. https://doi.org/10.1016/j.foodres.2011.11.026

    Article  CAS  Google Scholar 

  13. Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22(3):386–399. https://doi.org/10.1039/b418841c

    Article  CAS  PubMed  Google Scholar 

  14. Zhou Y, Ma Y, Zeng J, Duan L, Xue X, Wang H, Lin T, Liu Z, Zeng K, Zhong Y, Zhang S, Hu Q, Liu M, Zhang H, Reed J, Moses T, Liu X, Huang P, Qing Z, Liu X, Tu P, Kuang H, Zhang Z, Osbourn A, Ro DK, Shang Y, Huang S (2016) Convergence and divergence of bitterness biosynthesis and regulation in Cucurbitaceae. Nat Plants 2:16183. https://doi.org/10.1038/nplants.2016.183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gry J, Søborg I, Andersson HC (2006) Cucurbitacins in plant food, vol 556. Tema Nord Nordic Council of Ministers, Ekspressen Tryk and Kopicenter, Copenhagen, pp 5–63

    Google Scholar 

  16. Arjaibi HM, Ahmed MS, Halaweish FT (2017) Mechanistic investigation of hepatoprotective potential for cucurbitacins. Med Chem Res 26(7):1567–1573. https://doi.org/10.1007/s00044-017-1872-3

    Article  CAS  Google Scholar 

  17. Attard E, Martinoli MG (2015) Cucurbitacin E, an experimental lead triterpenoid with anticancer, immunomodulatory and novel effects against degenerative diseases: a mini-review. Curr Top Med Chem 15(17):1708–1713. https://doi.org/10.2174/1568026615666150427121331

    Article  CAS  PubMed  Google Scholar 

  18. Abdelwahab SI, Hassan LE, Sirat HM, Yagi SM, Koko WS, Mohan S, Taha MM, Ahmad S, Chuen CS, Narrima P, Rais MM, Hadi AH (2011) Anti-inflammatory activities of cucurbitacin E isolated from Citrullus lanatus var. citroides: role of reactive nitrogen species and cyclooxygenase enzyme inhibition. Fitoterapia 82(8):1190–7. https://doi.org/10.1016/j.fitote.2011.08.002

    Article  CAS  PubMed  Google Scholar 

  19. Rupachandra S, Sarada DVL (2013) Anticancer activity of methanol extract of the seeds of Borreria hispida and Momordica dioica. J Pharm Res 6:565–568. https://doi.org/10.1016/j.jopr.2013.04.027

    Article  CAS  Google Scholar 

  20. Gantait A, Maji A, Barman T, Banerji P, Venkatesh P, Mukherjee PK (2012) Estimation of capsaicin through scanning densitometry and evaluation of different varieties of capsicum in India. Nat Prod Res 26(3):216–222. https://doi.org/10.1080/14786419.2010.535169

    Article  CAS  PubMed  Google Scholar 

  21. Gantait A, Barman T, Mukherjee PK (2011) Validated method for estimation of curcumin in turmeric powder. Indian J Tradit Knowl 10:247–250

    Google Scholar 

  22. Mukherjee D, Kumar NS, Khatua T, Mukherjee PK (2010) Rapid validated HPTLC method for estimation of betulinic acid in Nelumbo nucifera (Nympahaeaceae) rhizome extract. Phytochem Anal 21(6):556–560. https://doi.org/10.1002/pca.1232

    Article  CAS  PubMed  Google Scholar 

  23. Rice CA, Rymal KS, Chambliss OL, Johnson FA (1981) Chromatographic and mass spectral analysis of cucurbitacins of three Cucumis sativus cultivars. J Agric Food Chem 29:194–196. https://doi.org/10.1021/jf00103a051

    Article  CAS  Google Scholar 

  24. ICH (2005) Validation of analytical procedures: text and methodology, Q2 (R1). International Conference on Harmonization, Geneva. https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf. Accessed: 22 Jan 2020

  25. Valcárcel JV, Peiró RM, Pérez-de-Castro A, Díez MJ (2018) Morphological characterization of the cucumber (Cucumis sativus L.) collection of the COMAV’s Genebank. Genet Resour Crop Evol 65(4):1293–1306. https://doi.org/10.1007/s10722-018-0614-9

    Article  Google Scholar 

  26. Chan CH, Yusoff R, Ngoh GC, Kung FW (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218(37):6213–6225. https://doi.org/10.1016/j.chroma.2011.07.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the ICCR (Indian Council for Cultural Relations), Government of India for proving PhD in Pharmacy research fellowship to the first author. Authors are also thankful to Science and Engineering Research Board (SERB), Government of India, New Delhi, for financial support through Vide Letter Ref. No. EMR/2016/007037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulok K. Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, P., Das, B., Biswas, S. et al. Quality evaluation and quantification of cucurbitacin E in different cultivars of Cucumis sativus L. fruit by a validated high-performance thin-layer chromatography method. JPC-J Planar Chromat 34, 139–146 (2021). https://doi.org/10.1007/s00764-021-00097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-021-00097-6

Keywords

Navigation