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Abstract
The mutant matrilineal (mtl) gene encoding patatin-like phospholipase activity is involved in in-vivo maternal haploid 
induction in maize. Doubling of chromosomes in haploids by colchicine treatment leads to complete fixation of inbreds in 
just one generation compared to 6–7 generations of selfing. Thus, knowledge of patatin-like proteins in other crops assumes 
great significance for in-vivo haploid induction. So far, no online tool is available that can classify unknown proteins into 
patatin-like proteins. Here, we aimed to optimize a machine learning-based algorithm to predict the patatin-like phospholi-
pase activity of unknown proteins. Four different kernels [radial basis function (RBF), sigmoid, polynomial, and linear] were 
used for building support vector machine (SVM) classifiers using six different sequence-based compositional features (AAC, 
DPC, GDPC, CTDC, CTDT, and GAAC). A total of 1170 protein sequences including both patatin-like (585 sequences) 
from various monocots, dicots, and microbes; and non-patatin-like proteins (585 sequences) from different subspecies of Zea 
mays were analyzed. RBF and polynomial kernels were quite promising in the prediction of patatin-like proteins. Among six 
sequence-based compositional features, di-peptide composition attained > 90% prediction accuracies using RBF and poly-
nomial kernels. Using mutual information, most explaining dipeptides that contributed the highest to the prediction process 
were identified. The knowledge generated in this study can be utilized in other crops prior to the initiation of any experiment. 
The developed SVM model opened a new paradigm for scientists working in in-vivo haploid induction in commercial crops. 
This is the first report of machine learning of the identification of proteins with patatin-like activity.
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Introduction

Production of doubled haploid (DH) in maize has emerged 
as an integral component in commercial breeding pro-
grammes (Gain et al. 2022). Development of inbreds using 
DH requires 1–2 generations as compared to 6–7 generations 
using conventional selfing (Dutta et al. 2022). DH lines are 
created through in-vivo and in-vitro methods. In-vitro is not 

widely used to achieve the long-term breeding goal due to 
the involvement of more cumbersome regeneration protocols 
and well-equipped labs coupled with trained technical per-
sonnel. On the contrary, the in-vivo method has become an 
attractive and logistic choice for large production of homozy-
gous lines in maize (Chaikam et al. 2019). Breakthrough 
came when a naturally existing mutant designated as ‘Stock 
6’ was discovered in maize which showed a haploid induc-
tion rate (HIR) higher (< 3%) than the normal maize (Coe 
1959). Later on, several haploid inducers were developed 
in different countries based on the ‘Stock 6’ derived mutant 
line (Prasanna et al. 2012). Improved haploid inducers with 
6–15% HIR have been achieved in recent years (Chaikam 
et al. 2018). Following haploid production, doubled haploid 
(DH) plants are generated through the doubling of chromo-
somes using colchicine treatment (Dutta et al. 2022).
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The underlying genomic region for in-vivo maternal hap-
loid production in maize was designated as qhir1 QTLs on 
chromosome 1 (bin 1.04) explaining 66% of the phenotypic 
variation for haploid induction rate (Dong et al. 2013). Later, 
the underlying gene, matrilineal (mtl) (Kelliher et al. 2017) 
or Not Like Dad (nld) (Gilles et al. 2017) or ZmPLA1 (Liu 
et al. 2017) encoding patatin-like phospholipase was identi-
fied as the candidate for haploid induction in maize. Patatin-
like protein generally possesses non-specific lipolytic acyl 
hydrolase (LAH) activity, which catalyzes the hydrolysis of 
the galactolipids mono galactosyl diacylglycerol (MGDG) 
and di-galactosyl diacylglycerol (DGDG) (Camera et al. 
2005). When one galactose residue is linked to C3 of a di-
acylglycerol, it is termed as MGDG, whereas DGDG con-
tains two galactose residues (Kobayashi et al. 2007). Both 
MGDG and DGDG are important galactolipids for thylakoid 
membrane biosynthesis as the final step of MGDG pathway 
occurs in a plastid envelope catalyzed by MGDG synthase 
enzyme (Kobayashi et al. 2007). Patatin-like protein cat-
alyzes less efficiently for the hydrolysis of phospholipids 
namely phosphatidylcholine (PC), phosphatidylethanola-
mine (PE), phosphatidylglycerol (PG), phosphatidic acid 
(PA), phosphatidylserine (PS) and phosphatidylinositol (PI) 
(Camera et al. 2005). In Arabidopsis, one patatin-like phos-
pholipase was found to be involved in jasmonic acid pro-
duction, pollen maturation, and anther dehiscence (Ishiguro 
et al. 2001). It also negatively regulates disease resistance 
to the necrotic fungal pathogen Botrytis cinerea and aviru-
lent bacteria Pseudomonas syringae by promoting cell death 
and reducing the efficiency of the hypersensitive response, 
respectively (Camera et al. 2009).

The development of sequence-based computational 
tools can be of great help in designing effective meas-
ures for understanding the molecular behavior of the 
unknown proteins. Several machine learning and deep 
learning-based binary predictors have been developed in 
the last two decades for the classification of target pro-
teins of interest against the other proteins in the genome 
(Jones 2019). Machine learning techniques are also used in 
various biological fields including genomics, proteomics, 
microarrays, systems biology, evolution, and text mining 
of biological sequences using natural language process-
ing (NLP) (Larranaga et al. 2006). Several parametric and 
non-parametric machine learning algorithms are currently 
available and have routinely been used in the classifica-
tion or prediction of many proteins (Meher et al. 2017). 
In this context, the development of a machine-learning 
model for the prediction of the proteins involved in in-vivo 
haploid induction in crops assumes great significance. The 
model would not only be useful for the identification of 
patatin-like and non-patatin-like proteins but also support 
the functional annotation of patatin-like genes in mono-
cots and dicots. Understanding the molecular mechanism 

of haploid induction in maize would further be improved 
using molecular approaches. So far, there is no prediction 
algorithm available for the classification of patatin-like 
protein in maize or other crops. Therefore, the present 
study was aimed at machine learning-based classification 
of patatin-like protein sequences against the other non-
patatin-like proteins across crops. The development of 
a machine learning-based classifier that can predict the 
patatin-like protein in advance from the other non-patatin-
like proteins assumes great significance in gaining prior 
knowledge before initiating any experiment.

Materials and methods

Collection of datasets

Two categories of datasets were retrieved from Uniprot 
(http://​www.​unipr​ot.​org/) database for the classification 
of binary data. The first category of protein was termed as 
patalin-like protein (585 protein sequences), whereas, the 
second group of protein was considered as non-patatin-like 
protein (585 protein sequences). Both datasets were pro-
cessed to remove the sequences with the repeated unit. The 
positive dataset contains patatin-like proteins from various 
plant species including both various monocots, dicots, and 
microbes whereas, the negative dataset was constituted 
with protein sequences selected randomly (except patalin-
like proteins) from the maize protein collections available 
in the Uniprot database (Supplementary S1). In the non-
patatin group, various subspecies of maize such as Zea mays 
subsp. huehuetenangensis, Zea mays subsp. mays, Zea mays 
subsp. mexicana, and Zea mays subsp. parviglumis had been 
included (Supplementary S1). A summary of the model 
development is given the Fig. 1.

Feature generation

The generation of features from protein sequences plays a 
key role in classification problems using any machine learn-
ing model. Before being used as an input, numeric feature 
vectors were created from strings of amino acids of each of 
the protein sequences in supervised learning classifiers. In 
the present study, five sequence-based features were gener-
ated from the amino acid sequences to map them on numeric 
vector observations. The features include amino acid com-
positions (AAC), di-peptide composition (DPC), grouped 
di-peptide composition (GDPC), composition-transition-
distribution (CTD), and grouped amino acid composition 
(GAAC). A summary of the size of the vector space of each 
of the data sets was presented in Table 1.

http://www.uniprot.org/
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Amino acid composition (AAC)

AAC is the simplest and most widely used structural 
feature for representing a protein sequence (Bhasin and 
Raghava 2004). It is the proportions of amino acid resi-
dues present in a protein sequence. For a protein sequence 

with N residues, AAC for the ith amino acid can be com-
puted as AAC (i) = fi/N, where i = 1–20. Therefore, every 
protein sequence can be transformed into a vector of 20 
numeric observations.

Di‑peptide composition (DPC)

DPC takes the composition as well as ordering effects of 
amino acid residues in a string of protein sequences (Sara-
vanan and Goutham 2015). DPC can be computed as DPC 
(j) = Mj/(N − 1) for any di-peptide Mj, where j = 1–400 
(202) and N indicates the length of the protein sequence. 
Therefore, each protein sequence can be converted into a 
400-dimensional numeric vector using DPC.

Grouped di‑peptide composition (GDPC)

The GDPC is another var iat ion of the DPC 
descriptor with 25 parameters that are defined 
as: f (r, s) =

Nrs

N−1
, r, s∈{g1, g2, g3, g4, g5} , where Nrs 

is the number of tripeptides represented by amino acid type 
groups r and s, and N is the length of a protein.

Composition‑transition‑distribution (CTD)

CTD features denote distribution patterns of amino acids in 
a peptide sequence (Cai et al. 2003). For computing these 
features, 13 types of physicochemical properties were pre-
viously used (Dubchak et al. 1999). These include hydro-
phobicity, normalized van-der-Waals volume, polarity, 
polarizability, charge, secondary structures, and solvent 
accessibility. The composition (CTDC) feature can be com-
puted as C(r) = N(r)/N, where r belongs to polar, neutral, 
and hydrophobic amino acids, N(r) is the number of amino 
acid types, r is the encoded sequence and N is the length of 
the sequence. The transition (CTDT) feature can then be 
calculated as T(r,s) = (N(r,s) + N(s,r))/(N− 1) where r and s 
belong to a combination of (i) polar and neutral, (ii) neutral 
and hydrophobic, and (iii) hydrophobic and polar residues, 
N(r,s) and N(s,r) are the numbers of dipeptides encoded as 
“rs” and “sr” respectively in the sequence, while N is the 
length of the sequence (Dubchak et al. 1999).

Grouped amino acid composition (GAAC)

According to the physicochemical properties (hydrophobic-
ity, molecular size, and charge), 20 amino acid types are 
further classified into five categories (Lee et al. 2011). The 
five categories include the aliphatic group (g1: GAVLMI), 
aromatic group (g2: FYW), positively charged group (g3: 
KRH), negatively charged group (g4: DE) and uncharged 

Training dataset Testing dataset

TNAGGKNVASELTDT
YWANVSYEQILAWNP
DYIVIAADATYTVDDIL
NDANLAGCNAVKNK
NVVKLPNNIEAWDSP

Extraction of structural features of protein

Model building with parameter optimization

Cross validation of the model

Interpretation of model

Fig. 1   Outline of the model building for patatin-like protein

Table 1   Total number of 
parameters used for each feature 
for classification

AAC​ Amino acid composition; 
DPC Di-peptide Composition; 
GDPC Grouped Di-Peptide 
Composition; CTD-C Com-
position; CTD-D Distribution; 
GAAC​ Grouped Amino Acid 
Composition

Feature Size of the 
vector space

AAC​ 20
DPC 400
GDPC 25
CTDC 39
CTDT 39
GAAC​ 5
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group (g5: STCPNQ). Here symbolic code represented sin-
gle letter code of each of the amino acids viz., G: Glycine, 
A: Alanine, L: Leucine, M: Methionine, F: Phenylalanine, 
W: Tryptophan, K: Lysine, Q: Glutamine, E: Glutamic acid, 
S: Serine, P: Proline, V: Valine, I: Isoleucine, C: Cysteine, 
Y: Tyrosine, H: Histidine, R: Arginine, N: Asparagine, D: 
Aspartic acid, T: Threonine). The frequency of each amino 
acid group is defined as a GAAC descriptor using the follow-
ing notation: f (g) =

N(g)

N
, g∈{g1, g2, g3, g4, g5} 

and N(gt) =
∑

N(t), t∈g , where N(g) denotes the num-
ber of amino acids in group g, N(t) is the number of amino 
acid type t, and N is the protein length.

Support vector machine (SVM) classifier

SVM classifier (Vapnik and Chapelle 2000) was used for 
the classification of patatin-like proteins. SVM is a non-par-
ametric method as it does not make any assumption on the 
probability distribution of the input dataset. Due to its strong 
statistical background, SVM can be efficiently employed in 
various biological studies including computational biology 
and bioinformatics for classification purposes based on the 
statistical principle of structural risk minimization (Meher 
et al. 2017). The ability to handle large and noisy input data-
sets further makes SVM a more attractive machine-learning 
tool for classification studies. The performance of SVM 
highly relies on the type of kernel functions used for tuning 
the model (Cherkassky and Ma 2004). The role of the kernel 
function is to map the input dataset on high-dimensional fea-
ture space. Initially, 80% of the numeric observations were 
used with default hyper-parameters of the SVM classifier 
with four different kernels [radial basis function (RBF), sig-
moid, polynomial, and linear]. The kernel(s) for which the 
highest accuracy was obtained was subsequently used for 
hypermeter optimization.

Classification using a balanced dataset

A total of 1170 protein sequences including both patatin-like 
and non-patatin-like proteins were analyzed in this study. A 
dataset is called balanced if the number of positive and nega-
tive samples are equal, whereas it becomes unbalanced due 
to the difference between samples belonging to positive and 
negative groups. In an imbalanced classification problem, 
the distribution of samples in the training data set is biased 
or skewed. Machine learning-based classifiers may gener-
ate biased results varying from a slight to a severe imbal-
ance. This results in machine learning models that have poor 
predictive performance, particularly for the minority class. 
Therefore, binary classification was carried out using a bal-
anced dataset consisting of 585 protein sequences from each 
group (patatin-like and non-patatin-like) of proteins.

Evaluation of model performance

Model performance was evaluated through analysis of the 
confusion matrix, where actual and predicted patatin-like 
and non-patatin-like proteins were presented as true positive 
(TP), false positive (FP), false negative (FN), and true nega-
tive (TN) categories. Based on actual and predicted obser-
vations, several scores were calculated [precision, recall, 
accuracy score, f1-score, Matthew’s correlation coefficient 
(MCC)] to evaluate the performance of the predicted model. 
Equations for the calculation of the different scores were 
presented in the following-

	 i.	 Precision =  TP

TP+FP

	 ii.	 Recall =  TP

TP+FN

	 iii.	 F1 score = 2 ∗
precision∗recall

precision+recall

	 iv.	 Accuracy =  TP+TN

TP+FN+TN+FP

	 v.	 (v) MCC =  TP∗TN−FP∗FN
√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

A receiver operating characteristic (ROC) curve was also 
used as a criterion for evaluating the model performance 
using different kernels. The ROC curve was plotted using a 
true positive rate vs. a false positive rate. The area under the 
curve (AUC) computed using each of the kernels is used for 
the evaluation of the model performance.

Evaluation of model performance using 
cross‑validation

Cross-validation is a statistical technique used to evaluate 
the performance of machine learning algorithms. The per-
formance of the machine learning model was analyzed using 
tenfold cross-validation. For validation purposes, k-fold and 
repeated k-fold cross-validation were used to assess the per-
formance of the binary classifier. In k-fold cross-validation, 
the whole data set was divided into k subsets. Now the cross-
validation is repeated k times in such a way that one of the 
k subsets is used as the test/validation set at each time, and 
the remaining k-1 subsets are assembled together to form 
the training data set. Total effectiveness of the model error 
estimation averaged over all k trials. This reduces bias sig-
nificantly as most of the data are used for fitting. However, 
a single run of the k-fold cross-validation may result in a 
noisy estimate of model performance. Contrarily, repeated 
k-fold cross-validation provides a measure to improve the 
estimated performance of a machine learning algorithm as 
it involves repeated cross-validation procedures multiple 
times and reporting the mean result across all folds from all 
runs (Rodriguez et al. 2009). In both cases, tenfold cross-
validation was performed using all the kernels of SVM.
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Learning curve analysis for the SVM models

The main goal while developing any machine learning 
model is to keep errors as minimal as possible. The major 
sources of error in any machine-learning algorithm are bias 
and variance (Dietterich and Kong 1995). Therefore, the 
main goal is to develop a model with low error by keeping 
both bias and variance at their minimum. However, this is 
hardly possible to get a model of low bias and low vari-
ance. Therefore, there is a trade-off between bias and vari-
ance while building a machine learning model. In practice, 
learning curves usually provide a trade-off between bias and 
variance based on the performance of training and cross-
validation (testing) datasets. The learning curve gives an 
idea of how well the model is learning from the training 
dataset. In the present study, the learning curve was plot-
ted for both training and cross-validation scores against the 
size of training data sets with tenfold cross-validation. Mean 
training scores and cross-validation scores were presented 
along with their standard deviation in the learning curve.

Hypermeter optimisation of SVM model

In SVM, C is the regularization parameter used to control 
errors in the training data set (Cherkassky and Ma 2004). 
C parameter usually adds a penalty for each misclassified 
data point. Due to the small value of C, a decision boundary 
with a large margin is chosen at the cost of a large number 
of misclassifications and hence, the penalty for misclassified 
points is low. SVM tries to minimize the number of misclas-
sified examples while using a large value of C which results 
in a decision boundary with a smaller margin. The penalty is 
directly proportional to the distance to the decision boundary 
and is not the same for all misclassified examples. Gamma is 
another important parameter that defines how far the effect 
of a single training example reaches (Meyer and Wien 2015). 
High gamma value considers only the points close to the 
plausible hyperplane, whereas low gamma considers points 
at a greater distance. To find out the optimum combination, 
GridSearchCV was used on both C (ranging from 10–3 to 107 
with tenfold intervals) and gamma (ranging from 10–5 to 103 
with tenfold intervals) parameters in all possible combina-
tions. A stratified k-fold module with tenfold cross-valida-
tion was used in this exhaustive search.

Feature importance of the parameters

To identify the relevant features that contribute the maxi-
mum explanation towards output classification, mutual 
information was used as a selection criterion. Based on 
‘information theory’, the mutual information of two ran-
dom variables quantifies the mutual dependence between 
the two variables based on their entropy. It estimates the 

amount of information obtained about one random vari-
able while observing another variable. This can be defined 
as I(X;Y) = DKL(P(X,Y)||PX*PY), where DKL denotes Kull-
back–Leibler divergence, PX and PY are the marginal dis-
tributions and P(X,Y) is the joint distribution of two random 
variables X and Y. If two random variables are independent, 
I(X;Y) become zero since their joint distribution coincides 
with the product of the marginal distribution. On the other 
hand, higher values of I(X;Y) indicate greater dependency 
on the output classes and input features. Using mutual infor-
mation, most explanatory features were identified in the 
selected dataset for which the highest accuracy was obtained.

SVM model comparison with other classification 
models

Comparisons were made between the newly constructed 
SVM model with a decision tree, random forest, and logistic 
regression using the DPC dataset. Based on the actual and 
predicted observations, a similar set of measures, including 
accuracy score, precision, recall, f1-score, and MCC, were 
constructed to compare the model.

Statistical analysis

All the statistical analysis was carried out in the Anaconda 
Jupiter Notebook integrated development environment 
(4.8.3) backed with Python Version 3.7. Microsoft Excel 
Version 2019 was used for data curation and labeling of 
the sample. NumPy (v1.18.1) was used to enable numeri-
cal computing with Python. An open-source library Pandas 
(1.0.3) was used for handling the data structure in the analy-
sis. Matplotlib (3.1.3) and Seaborn (0.10.1) were used for 
creating static and statistical visualizations. SVM classifica-
tion, hypermeter optimization, and feature importance were 
performed using the Scikit-learn machine learning library 
(0.22.1). Scripts for implementing the scoring matrices were 
added as a Supplementary S2 file.

Results

Performance of SMV model using different kernels

Among a total of 1170 sequences including both patatin-like 
and non-patatin-like proteins, a sample size of 936 protein 
sequences was used for training the model, and the remain-
ing 234 peptide sequences were included in the testing pur-
pose. Prediction accuracies for the protein were analyzed 
using different kernels of SVM with default parameters 
(Table 2). It was observed that prediction accuracies were 
more precise for the polynomial kernel (95%) followed by 
RBF (94%), sigmoid (82%), and linear (69%), while DPC 
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was used for the prediction purpose. Precision rates of 
polynomial, RBF, linear, and sigmoid kernels were 95, 94, 
79, and 82%, respectively. Recall values were 95, 94, 69, 

and 82% for polynomial, RBF, linear, and sigmoid kernel, 
respectively. Recorded F1-score and MCC were also high-
est for the polynomial kernel (95 and 90%) as compared to 
RBF (94 and 88%), linear (66 and 47%), and sigmoid (82 
and 65%) kernel in the training data set, respectively. AUC 
values were 95, 94, 69, and 82% for polynomial, RBF, linear, 
and sigmoid kernels, respectively. The accuracies, precision, 
recall, MCC, F1-score, and AUC values are presented in 
Table 2. Contrary to DPC, the performance of the model 
was not satisfactory using the GDPC dataset. Model per-
formance with AAC and GAAC datasets was also received 
poorly using all the kernels of SVM (Table 2). Similarly, the 
desired label of accuracies for CTDC and CTDT was not 
obtained using the same hyperparameters (Table 2). There-
fore, DPC was identified as the most suited parameter for the 
classification of patatin-like protein sequences.

Cross‑validation of the model performance

The performance of each SVM model with different ker-
nels was analyzed by tenfold cross-validation using stratified 
k-fold and repeated k-fold cross-validation. Box plots have 
been presented to visualize the performance of the SVM 
model with different kernels for all six parameters (Fig. 2). It 
was observed that model performance was quite satisfactory 
when DPC was used as the parameter for model training. 
Performance with RBF and polynomial kernels was at par 
in all the different datasets (Fig. 2). Using stratified k-fold 
cross-validation, model performance showed greater than 
80% accuracy using ACC, DPC, and CTDT datasets when 
RBF kernel was used. Model accuracy was more than 80% 
using the DPC dataset when kernels were used. In the case 
of the polynomial kernel, model accuracies were greater 
than 80% using AAC, CTDC, and CTDT datasets, and 92% 
accuracy was observed for the DPC dataset (Table 3). Simi-
lar kind of results were obtained from repeated kFold cross-
validation. Using AAC and CTDT datasets, more than 80% 
accuracy was obtained. whereas 93% accuracy was observed 
using the DPC dataset. Model accuracy using the DPC data-
set was observed to be more than 80% when kernels were 
used. Using a polynomial kernel, more than 80% accuracy 
was noticed using AAC, CTDD, and CTDT datasets. In this 
case, the highest accuracy (94%) was observed for the poly-
nomial kernel using the DPC dataset (Table 3). Therefore, 
RBF and polynomial kernels were used further for hyper-
parameter tuning for patatin-like function prediction.

Learning curve analysis using different kernels 
of the SVM

The learning curve was plotted for both training and cross-
validation scores against the size of training data sets with 
tenfold cross-validation to interpret the performance of the 

Table 2   Total number of parameters used for each feature for classi-
fication

AAC​ Amino acid composition; DPC Di-peptide Composition; GDPC 
Grouped Di-Peptide Composition; CTD-C Composition; CTD-D Dis-
tribution; GAAC​ Grouped Amino Acid Composition

RBF Linear Sigmoid Polynomial

AAC​
Accuracy 0.884 0.648 0.572 0.872
Precision 0.884 0.735 0.576 0.872
Recall 0.884 0.648 0.572 0.872
F1-score 0.884 0.612 0.567 0.872
MCC 0.768 0.373 0.147 0.744
AUC​ 0.88 0.64 0.57 0.87
GAAC​
Accuracy 0.63 0.50 0.50 0.63
Precision 0.65 0.50 0.55 0.67
Recall 0.63 0.50 0.50 0.63
F1-score 0.62 0.49 0.37 0.60
MCC 0.28 0.01 0.04 0.30
AUC​ 0.63 0.50 0.50 0.63
DPC
Accuracy 0.94 0.69 0.82 0.95
Precision 0.94 0.79 0.82 0.95
Recall 0.94 0.69 0.82 0.95
F1-score 0.94 0.66 0.82 0.95
MCC 0.88 0.47 0.65 0.90
AUC​ 0.94 0.69 0.82 0.95
GDPC
Accuracy 0.71 0.584 0.572 0.744
Precision 0.73 0.647 0.584 0.748
Recall 0.71 0.584 0.572 0.744
F1-score 0.71 0.534 0.556 0.743
MCC 0.44 0.223 0.155 0.492
AUC​ 0.71 0.58 0.57 0.74
CTDC
Accuracy 0.79 0.72 0.59 0.82
Precision 0.79 0.72 0.59 0.82
Recall 0.79 0.72 0.59 0.82
F1-score 0.79 0.72 0.58 0.82
MCC 0.58 0.44 0.19 0.64
AUC​ 0.79 0.72 0.59 0.82
CTDT
Accuracy 0.82 0.72 0.46 0.84
Precision 0.82 0.73 0.31 0.84
Recall 0.82 0.72 0.46 0.84
F1-score 0.82 0.72 0.32 0.84
MCC 0.64 0.45 − 0.17 0.68
AUC​ 0.82 0.72 0.46 0.83
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four SVM models with different kernels (Fig. 3). In graphs, the accuracy score of the training set and test set is marked 
Fig. 2   Cross validation results of six different parameters using four different kernels of SVM

Table 3   Cross validation score using different kernels of SVM

AAC​ Amino acid composition; DPC Di-peptide Composition; GDPC Grouped Di-Peptide Composition; CTD-C Composition; CTD-D Distribu-
tion; GAAC​ Grouped Amino Acid Composition; data were presented as mean accuracy ± standard deviation

k-fold cross validation Repeated k-Fold cross validation

Kernel RBF Linear Sigmoid Polynomial RBF Linear Sigmoid Polynomial

AAC​ 0.86 ± 0.05 0.63 ± 0.02 0.56 ± 0.06 0.87 ± 0.03 0.87 ± 0.03 0.65 ± 0.05 0.50 ± 0.06 0.88 ± 0.02
GAAC​ 0.62 ± 0.03 0.53 ± 0.03 0.50 ± 0.01 0.64 ± 0.05 0.63 ± 0.03 0.54 ± 0.04 0.46 ± 0.02 0.64 ± 0.04
DPC 0.91 ± 0.02 0.57 ± 0.10 0.82 ± 0.03 0.92 ± 0.03 0.93 ± 0.01 0.47 ± 0.03 0.83 ± 0.03 0.94 ± 0.02
GDPC 0.68 ± 0.04 0.58 ± 0.04 0.55 ± 0.02 0.70 ± 0.06 0.70 ± 0.04 0.57 ± 0.04 0.56 ± 0.03 0.71 ± 0.03
CTDC 0.76 ± 0.04 0.71 ± 0.07 0.53 ± 0.05 0.84 ± 0.04 0.78 ± 0.03 0.72 ± 0.04 0.46 ± 0.03 0.85 ± 0.03
CTDT 0.82 ± 0.04 0.71 ± 0.04 0.47 ± 0.03 0.85 ± 0.04 0.83 ± 0.02 0.71 ± 0.03 0.46 ± 0.02 0.88 ± 0.02
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as the training score and cross-validation score; respectively 
and were presented along with their standard deviation in 
the learning curve. In the case of the RBF kernel, up to 900 
samples the training score was much higher than that of the 
testing score. However, training and test scores have not yet 
converged, therefore this model would benefit potentially 
following the addition of more training data. In the case of 
the linear kernel, the SVM model failed to train the dataset 
resulting continuous decline in the training score following 
increment of the training size. In the sigmoid kernel, there 
was a huge gap between the training and testing score up 
to 900 training size and a concomitant decline in the train-
ing score of the model. Even though the model converged 
nearly following the addition of more samples in the train-
ing dataset, the accuracy score kept on increasing indicating 
the potentiality of the model to improve further following 
the addition of more data in the training dataset. The learn-
ing curve of the polynomial model was quite similar to the 
RBF kernel where up to 900 samples in the training dataset, 
there was a gap between the training and testing score of the 

model. In the present study, the performance of RBF and 
polynomial model was observed more generalized as com-
pared to the SVM model using sigmoid and linear kernels. 
The model built using RBF and polynomial performed well 
for the training dataset, however, achieved poor performance 
on the test dataset indicating a near overcomplicated model 
with low bias and high variance.

Hyperparameter optimisation

To further optimize the SVM model, two important param-
eters, C (regularization parameter) and gamma, were consid-
ered at specified intervals in all the possible combinations. 
The accuracy scores with tenfold cross-validation obtained 
in each pair of a combination of the C and gamma values 
were presented using a color bar (Fig. 4). The best RBF clas-
sifier (more than 90% accuracy) was detected from the range 
of 1.0–107 (tenfold intervals) for C and with the gamma 
value of 102. On the other hand, a wide-range combination 

Fig. 3   Leaning curve of SVM model with training and cross-validation scores
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of C (10–1–107) and gamma (1.0–103) provided more than 
90% accuracy using a polynomial kernel. However, the 
performance of the SVM model using the RBF kernel was 
far better at a wider range of gamma and C values (Fig. 4). 
Therefore, both C and gamma parameters were important 
for obtaining a better accuracy score in the prediction of the 
patatin-like proteins.

Feature importance of the parameters

To identify the most relevant features that contributed maxi-
mum explanation towards output classification, mutual infor-
mation was used as a selection criterion. The most important 
dipeptide composition was identified of which the top 10 
were visualized (Fig. 5). based on mutual information of two 

Fig. 4   Optimisation of C and gamma parameters of SVM model using RBF and Polynomial kernels; Accuracy scores at all the possible combi-
nation (tenfold intervals) of these two parameters were presented using color bar

Fig. 5   Selection of the features 
in the DPC dataset; only most 
important 10 features were 
shown; dipeptide composition 
was shown as single letter code 
of each of the amino acids
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random variables, RI was found to be the most important fea-
ture (0.1459) in the DPC dataset followed by LA (0.1353), 
ID (0.1337), IP (0.1315), VD (0.1258), DD (0.1239), NL 
(0.1239), TR (0.1224), FD (0.1217) and DI (0.1211). On the 
other side, the 10 least important features were WC (0.0000), 
MM (0.0011), FM (0.0069), PC (0.0090), MC (0.0094), WS 
(0.0097), QM (0.0101), WM (0.0107), CW (0.0111) and YK 
(0.0145). Dipeptides were presented as single-letter codes of 
each of the amino acids.

Performance of other models in protein structure 
prediction

Using a decision tree, random forest, and logistic regression, 
79.60, 91.20, and 82.40% accuracy were obtained using the 
DPC dataset (Table 4). When compared to the recently cre-
ated SVM model, the performance of random forest was 
relatively comparable, while decision tree and logistic 
regression could not outperform the newly built SVM model. 
A comparable set of scoring metrics, including precision, 
recall, f1-score, and MCC, was computed for decision tree, 
random forest, and logistic regression based on the actual 
and predicted protein classes (Table 4).

Discussion

In maize, the mtl gene encoding phospholipase contains a 
patatin-like phospholipase domain that triggers maternal 
haploid production (Liu et al. 2017). It was found that a 4-bp 
insertion in the last exon of the mtl gene is the underlying 
factor for the formation of haploid embryos from mater-
nal genotypes (Kelliher et al. 2017). In addition to haploid 
induction, patatin-like phospholipase group of proteins is 
also involved in non-specific hydrolysis of the galactolip-
ids (Kobayashi et al. 2007), phospholipids (Camera et al. 
2005), besides involved in jasmonic acid production, pollen 
maturation and anther dehiscence (Ishiguro et al. 2001) and 
regulating disease resistance (Camera et al. 2009). Here, we 
developed a machine-learning model for prediction of the 
both patatin-like and non-patatin-like proteins.

In this present investigation, combinations of AAC, DPC, 
GDPC, CTDC, CTDT, and GAAC features were used to 
map the peptide sequences onto numeric feature vectors 
which were subsequently used as input in SVM for predic-
tion of patatin-like proteins. It is also desirable to know the 
relationship between the compositional properties of pata-
tin-like proteins and their function concerning biochemical 
properties relevant to haploid induction and lipid hydrolysis. 
In this study, DPC was found more predictive as compared 
to the other five datasets. Huang et al. (2012) also used 
DPC for the prediction and analysis of protein solubility 
using a novel scoring card method. Meher et al. (2017) used 
various compositional (AAC, normalized-AAC, pseudo-
AAC), structural (α -helix propensity, β-sheet propensity, 
turn propensity), and physicochemical (iso-electric point, 
hydrophobicity, and net-charge) features for prediction of 
the antimicrobial peptides using SVM classifier. In another 
study, various features like AAC, DPC, Gap-Pair Compo-
sition, pseudo-AAC, CTD, and auto-correlation function 
were used for the prediction of nitrogen-fixation proteins of 
diazotrophs, among which CTD was selected as a promising 
feature for the prediction purpose using SVM classifier with 
greater than 90% accuracies (Meher et al. 2019).

The present study also suggested that the performance 
of the SVM model with RFB and polynomial kernels was 
better. At the same time, DPC features were used for the 
prediction of the patatin-like protein. Idicula-Thomas 
et al. (2006) proposed an SVM based learning algorithm 
to predict protein solubility by evaluating three feature 
sets. In another study, a large dataset was used for build-
ing a two-layered predictor PROSO combining SVM and 
Naive Bayes classifiers for studying protein solubility 
(Smialowski et al. 2007). Magnan et al. (2009) used a huge 
dataset of 17,408 protein sequences and developed a two-
stage SVM classifier using SVM and Naive Bayes classi-
fiers. SVM has a distinguishing characteristic that sets it 
apart from other machine learning techniques: it searches 
for hyperplanes that linearly segregate positive and nega-
tive training data in feature spaces of increasing size. If 
linear separation is not possible in the supplied feature 
space, the data are transferred into a higher-dimensional 
space where linear separation might be achievable (Rod-
riguez-Perez and Bajorath 2022). The main goal while 
developing any machine learning model is to keep errors 
as minimal as possible (Dietterich and Kong 1995). In 
the present study, the training error of the model using 
RBF and polynomial kernel was very less indicating the 
presence of low bias. However, the difference between 
the training and testing accuracy of the model exists even 
after the training increases indicating the overfitting of the 
model due to high variance. Increased regularization or 
selection of the features are techniques to reduce the com-
plexity of the model. Initially, zero training error occurs 

Table 4   Comparisons of other classifiers using the DPC dataset

Decision tree Random forest Logistic 
regression

Accuracy 0.796 0.912 0.824
Precision 0.789 0.948 0.805
Recall 0.808 0.872 0.856
F1-score 0.798 0.908 0.829
MCC 0.592 0.827 0.649
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because the model fits into a single data point and hence, 
the fitted line lies exactly on the data point. However, when 
the model is applied to unseen validation data, it results in 
a high validation error. As the training size increases, the 
fitted model minimizes the error over all data points and 
therefore, does not fit all data perfectly. Hence, eventu-
ally, the training error increases, and the validation error 
decreases as the size of training instances increases. When 
the curves become plateau after obtaining a certain opti-
mal training data size, increasing size no longer increases 
the efficiency of the training process. The low error of the 
training curve gives information about low bias and vice 
versa. On the contrary, the gap between the error of train-
ing and validation curves provides information about the 
variance. A narrower gap between the training and testing 
error indicates the presence of low variance and vice versa. 
A good model generally has low bias and low variance 
which is eventually very difficult to obtain practically. An 
oversimplified model, on the other hand, generally con-
tains high bias and low variance, as it does not capture 
information from data and produces poor prediction. In 
addition, low bias and high variance lead to an overcom-
plicated model as it performs well for the training dataset 
but poor for test dataset due to capturing the random noise 
present in training data. In SVM, regularization param-
eters C and gamma are the two important parameters to 
control error in the training data set (Cherkassky and Ma 
2004). Due to the small value of C, a decision boundary 
with a large margin is selected at the expense of the large 
number of misclassifications leading to a low penalty for 
misclassified points (Duan et al. 2003; Wainer and Cawley 
2017). The gamma parameter defines how far the effect 
of a single training example reaches (Meyer and Wien 
2015). High gamma value considers only the points close 
to the plausible hyperplane, whereas low gamma considers 
points at a greater distance (Keerthi 2002; Al-Mejibli et al. 
2020). Feature in the training dataset in another is also 
an important parameter that determines the performance 
of the SVM model. In this study, DPC was selected and 
was in converted into a 400-dimensional numeric vector. 
Apart from model performance with a particular dataset, 
it was also a wonder to know which features in the DPC 
dataset are the most important in determining the forecast. 
In this context, feature selection is an important technique 
to identify the relevant features (di-peptide) that contrib-
ute maximum explanation towards output classification. 
In the present study, using mutual information, the 10 
most important dipeptide residues were identified con-
tributing the highest towards predicting the output classes 
(patatin-like and non-patatin-like). Mutual information is 
a non-negative value between two random variables meas-
uring dependency between the variables. Higher values 
depict higher dependency, whereas it becomes zero if two 

random variables are independent (Kraskov et al. 2004; 
Ross 2014). The performance of decision tree, random for-
est, and logistic regression classifiers were also compared 
with that of SVM. Though the performance of SVM was 
found at par with that of random forest using DPC data-
set, it was significantly higher than that of decision tree 
and logistic regression classifiers. Since a balanced dataset 
was used for classification purposes, both SVM and ran-
dom forest performance were similar in the prediction of 
the protein sequence. However, unbalanced datasets may 
sometimes lead to varying results using SVM and random 
forest models (Meher et al. 2016).

The quantity and caliber of the information that is read-
ily available affects the predictability of bioinformatics 
approaches, which routinely rely on the knowledge con-
tained in biological sequences (Dutta et al. 2023). Addi-
tionally, protein structure predictions were considerably 
more accurate as a result of the expansion of the knowledge 
included in the Protein Data Bank (Bernstein et al. 1977; 
Berman et al. 2000) as well as the utilization of evolutionary 
data drawn from protein sequence databases and assessed 
with multiple sequence alignments (Cuff and Barton 1999; 
Simossis and Heringa 2004). The SVM algorithm does not 
work well with huge data sets or when the target classes 
are overlapping, which adds more noise to the data set. The 
SVM will perform poorly when there are more training data 
samples than features for each data point. There are currently 
a number of techniques for predicting the local backbone 
conformation of protein residues that are useful tools in 
molecular biology (Frishman and Argos 1995; Rost et al. 
2004). Furthermore, it is clear that more experimental data 
will enable better forecasts to be made. Without knowledge 
of sequence information, no predictions are feasible using 
any computational tools. On the other hand, even if an end-
less amount of experimental data were to become available, 
it would be hardly possible to forecast the perfection of pre-
diction methods. A different angle can be taken to view this 
uncertainty while comparing the accuracy of two or more 
prediction systems (Carugo 2007). Furthermore, they should 
be compared on the same data sets, which is not always 
possible due to the dynamic nature of biological databases, 
where new entries may replace old entries in a database. 
As a result, both the data and the learning algorithms are 
crucial to the long-term success of SVM-associated appli-
cations. Machine learning models may lose their usefulness 
or perform less accurately if the training data are unsuitable 
for learning, such as non-representative, low-quality, irrel-
evant features, or insufficient in quantity (Sarker 2021). For 
a machine learning-based solution and finally developing 
intelligent apps, it is crucial to handle the data and various 
learning algorithms efficiently. To bridge the information 
gap and to get a deeper understanding of the protein of study 
in both material and informational dimensions, experimental 
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validation of bioinformatically produced hypotheses and in 
silico predictions should be triangulated with in-vitro and 
in-vivo methodologies (Laub et al. 2023).

So far, no online tool is available to detect a protein 
having patatin-like activity, thereby posing serious limita-
tions in undertaking in-depth analysis of many such pro-
teins in crops especially those involved in in-vivo haploid 
induction. Here, we also proposed the first machine learn-
ing model to computationally identify the two categories 
of proteins (patatin-like and non-patatin-like). Machine 
learning algorithms are effective enough to handle siz-
able datasets with high levels of noise, dimensionality, 
and/or incompleteness and make few assumptions about 
the probability distributions and generation processes 
used to create the data (Mahood et al. 2020). Although 
in practice the comparison between machine learning and 
statistics is rather hazy, the main focus of machine learn-
ing methods is prediction, which differs from the inferen-
tial focus of conventional statistical approaches (Bzdok 
et al. 2018). SVMs have been demonstrated to be effective 
in multi-class problems as well as binary classification 
issues (Mathur and Foody 2008). The developed model is 
expected to supplement the transcriptional profiling and 
comparative genomics studies for the identification and 
functional annotation of genes related to in-vivo maternal 
haploid induction. The model will not only be useful for 
the identification of patatin-like and non-patatin-like pro-
teins but also support the functional annotation of patatin-
like genes on the genome of many monocot species. The 
developed model not only represents the future direction 
for developing other computational methods but is also 
important for most of the experimental scientists working 
in the field of in-vivo haploid induction. This is the first 
report of machine learning of the identification of proteins 
with patatin-like activity in crops. The developed model 
can be used for the development of an online server portal 
to detect the unknown protein with phospholipase patatin-
like activity. The SVM model with RBF and polynomial 
kernel with specified parameters can be easily used by the 
researchers for proteome-wide identification of patatin-
like proteins without going into details of the statistical 
methods adopted in developing the approach.
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