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Abstract
Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious health-
care challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more 
complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to 
encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and 
study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae 
(MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. 
Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution 
test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against 
MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, 
and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 
60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal 
on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. 
Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was 
higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was 
downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising 
candidate with potent antibacterial activities against drug-resistant K. pneumoniae.
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Introduction

The emergence of multidrug-resistant (MDR) and exten-
sively drug-resistant (XDR) bacteria, combined with the 
failure of most current therapeutics in addition to the decline 
in new antibiotic development, poses a severe threat to 
global public health. Klebsiella pneumoniae is a major drug-
resistant pathogen associated with community-acquired 
(CA) and hospital-acquired (HA) infections. The World 
Health Organization (WHO) recently published a global 
priority list of antibiotic-resistant bacteria, where carbap-
enem-resistant Enterobacteriaceae, including K. pneumo-
niae, was incorporated in the Priority 1 group (Freitas and 
WHO 2017). Reports of MDR K. pneumoniae came from 
numerous Egyptian governorates, where infections appear 
to be growing faster than ever, necessitating strict infection 
control (Sherif et al. 2021; Gamal et al. 2016). Considering 
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the further limitations of antimicrobial options and the high 
mortality rate associated with these infections, there is an 
urgency to develop new antimicrobial strategies to cope with 
these XDR pathogens.

Penicillins, carbapenems, and cephalosporins are only 
a few of the β-lactams that the β-lactamase-producing K. 
pneumoniae may break down. The main resistance mecha-
nisms of K. pneumoniae mainly include the production of 
β-lactamase, the lack of membrane porin proteins, and the 
active efflux of antibacterial drugs (Papp-Wallace et al. 
2011).

Bacterial efflux pumps carry various drugs out of the cell 
and provide multidrug resistance. Certain pumps within 
Gram-negative bacteria form multi-protein structures that 
traverse the cell membrane. These assemblies consist of an 
outer membrane protein, a plasma membrane-spanning pro-
tein, and a periplasmic protein that connects the two trans-
membrane components. The RND-based tripartite efflux 
pump AcrAB-TolC cycles through three different confor-
mational states when transporting drugs. It is made up of 
the inner membrane transporter AcrB, the periplasmic mem-
brane fusion protein AcrA, and the outer membrane protein 
TolC (Wang et al. 2017). Two trimeric porins, OmpK35 and 
OmpK36, are responsible for antimicrobial drug penetra-
tion in K. pneumoniae, to reach the periplasm, antimicro-
bial drugs must first pass through the outer membrane. With 
β-lactams, which are often hydrophilic and charged, porin 
channels appear to be the primary path of passage (Sugawara 
et al. 2016).

The existence of multidrug resistance limits the range 
of antibiotic options available for conclusive therapeutic 
interventions. The use of abandoned antibiotics such as 
polymyxins and drug combinations have been introduced 
as a solution; however, it remains difficult to determine what 
combination would be most effective in any given clinical 
situation (Natan and Banin 2017). This makes alternative 
approaches to combat infections caused by MDR pathogens 
urgently needed and even mandatory (Ahmed et al. 2020).

Antimicrobial peptides (AMPs) are promising candidates 
to overcome the abovementioned drug-resistance crisis. Sev-
eral characteristics make them potential therapeutic alter-
natives to antibiotics.The crucial attributes include stand-
ardized synthetic procedures, swift antimicrobial efficacy, 
a wide spectrum of antimicrobial activity, and a diminished 
likelihood of resistance development (Pandit et al. 1862).

Specifically, the use of cationic AMPs (CAMP) is emerg-
ing as a promising non-antibiotic therapeutic strategy to 
overcome resistance as they have shown to be highly effec-
tive in killing bacterial strains resistant to conventional 
antibiotics (Ocampo-Ibáñez et al. 2020). Cecropins were 
first discovered in Cecropia moth (Hyalophora cecropia) 
pupae (Swithenbank et al. 2020; Zhong et al. 2013; Okasha 
et al. 2021). The cationic low-molecular-weight hemolymph 

proteins appear upon the intrusion of bacteria. The majority 
of cecropins have a helix–hinge–helix structure and are made 
up of an amphipathic N-terminal region and a hydrophobic 
C-terminal component (CDC 2011). One of the cecropins’ 
antibacterial proteins that has received the most research is 
Cecropin-B. In addition, a variety of lepidopteran, dipteran, 
and coleopteran insects have chemicals similar to cecropin 
(Campos et al. 2021). Among the various cecropins, A, B, 
and D stand out as the three primary cecropins. In terms of 
antibacterial effectiveness, B exhibits the highest potency 
against bacteria, establishing the order as B > A > D. Cecro-
pin-B is characterized by a molecular weight of 3.84 kDa 
(35 amino acids) holding + 7 net positive charge at pH 7.0. 
Out of 35 amino acids, 17 amino acids show hydrophobicity.

However, clinical applications of these AMPs have 
been hampered by several problems, such as cytotoxicity 
to host cells, low stability, and hepatic clearance mecha-
nisms resulting in their poor bioavailability from oral and 
non-oral mucosal routes and inactivity at physiological salt 
concentrations (Sarkar et al. 2021). Thus, the above obsta-
cles have to be considered when searching for or developing 
newly effective AMPs for therapeutic use. So, modification 
in peptide structure through conjugation or encapsulation 
will increase their tolerability (Okasha 2023).

Notably, chitosan is gaining importance as an antibacte-
rial agent since bacteria are not reported to develop resist-
ance to it (Ghanbari and Roushani 2018). Chitosan nanopar-
ticles (CSNPs) were initially synthesized in 1994 by Ohya 
and colleagues (Zuhairah Zainuddin and Abdul Hamid 
2021). Many researchers have shown that chitosan nano-
particles and their derivatives have antibacterial properties. 
Chitosan-based drug formulation has gained attention for 
its ability to assist as a carrier and an enhancer for the oral 
delivery of peptides and vaccines. Recently, there has been 
significant research interest in the application of chitosan as 
an enzyme inhibitor, mucoadhesive agent, and efflux pump 
inhibitor. Interaction of positively charged amino groups 
of chitosan with negatively charged sialic acid groups that 
exist in mucin extends the residence time between drugs 
and membranes, therefore enhancing the bioavailability of 
the drugs. Also, peptide aggregation can be avoided, thus 
enhancing the absorption of peptide drugs in the intestinal 
epithelium. (Zuhairah Zainuddin and Abdul Hamid 2021; 
Muheem et al. 2016).

Chitosan’s antimicrobial properties made it a perfect 
choice in the delivery of oral antibiotics to eradicate Gram-
negative bacteria such as E. coli (Goy et al. 2016). This 
approach not only enhances the bioavailability of antibiotics 
in the body but also indirectly improves the effectiveness of 
the drugs in eradicating the infection (Radwan-Pragłowska 
et al. 2019). Previously, Cec-B was produced in E. coli 
using recombinant DNA technology. The purified rCec-B 
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had much less cytotoxicity on normal human WI-38 cells 
and the  IC50 was ≤ 1.469 mg/ml (Okasha and Nasr 2021).

To the best of our knowledge, this is the first study to 
evaluate the antibacterial activity of the antimicrobial effect 
of encapsulated rCec-B against MDR/XDR K. pneumoniae 
clinical isolates as well as to elucidate the anti-efflux and 
porin potential of this peptide against MDR/XDR K. pneu-
moniae biofilms.

We aimed to assess the effect of encapsulated rCec-B on 
MDR isolates of Klebsiella pneumoniae using the microdilu-
tion broth method. The impact of these chitosan-loaded NPs 
with and without Cecropin-B was analyzed by the relative 
expression of efflux pump and porin resistance genes using 
real-time PCR.

Materials and methods

Materials

Chitosan, low-molecular-weight, deacetylated chitin, poly 
(D-glucosamine), glacial acetic acid, and sodium trip-
olyphosphate (TPP) were purchased from Sigma-Aldrich 
(Germany). Phosphate buffer saline (PBS), sodium hydrox-
ide, and hydrochloric acid were supplied by Loba Chemical 
(India). Ultrapure water with a resistivity of 18 MU cm was 
used in all aqueous preparations. Recombinant Cecropin-
B (rCec-B) peptide (free peptide) was a final product of a 
Research project (grant No#28/K) supported by Theodor 
Bilharz Research Institute (TBRI), Giza, Egypt.

Ethics approval

The study’s samples were all preserved, and codes rather 
than patients’ names were used. The study’s protocol was 
authorized by the institutional review board of TBRI under 
Federal Wide Assurance (FWA00010609/PT-691), and the 
work was done in compliance with the Declaration of Hel-
sinki for Experiments in Humans.

Methods

Bacterial strains and growth conditions

Over 1 year, 60 isolates of multidrug-resistant Gram-neg-
ative bacteria were collected from the TBRI microbiology 
clinic, where 50 out of 60 MDR isolates were K. pneumoniae 
which was selected for further study. The isolates were col-
lected from different inpatient and outpatient clinics, and the 
sample sources were respiratory secretions, urine, and blood. 
The cultures of isolates were sent to a Microbiology Labo-
ratory at TBRI, in the context of laboratory surveillance, 

where the bacterial species were confirmed, and the antibi-
otic susceptibility characterization was performed.

Characterization of clinical isolates: resistance profile 
and identification of resistance genes

Following their isolation, the identification of Gram-neg-
ative colonies was primarily done by conventional micro-
biologic methods. The phenotypical and genotypical char-
acterizations of the resistance of clinical isolates were 
performed. For phenotypic characterization, the resistance 
and susceptibility of the bacterial strains were determined 
by the disc diffusion method. Antibiotic discs included ami-
kacin, aztreonam, amoxicillin/clavulanic acid, cefotaxime, 
tetracycline, piperacillin/tazobactam, ceftazidime, trimetho-
prim/sulphamethoxazole, ciprofloxacin, cefaclor, cefepime, 
imipenem, meropenem, cefoxitin, minocycline, and nitro-
furantoin for urine samples only. All discs were purchased 
from Hi-Media Chemicals Pvt. Ltd., Mumbai, India. The 
interpretation of inhibition zone diameters was conducted in 
accordance with the interpretative standards for zone diam-
eters outlined in the guidelines of the Clinical Laboratory 
Standards Institute, as specified by the Kirby–Bauer method 
(CATALOG 2018). Multidrug-resistant (MDR) bacteria 
were considered if the bacterial isolate was non-susceptible 
to at least one agent in three or more antimicrobial cate-
gories (25). The classification of the isolate as extensively 
drug-resistant (XDR) was assigned when it demonstrated 
non-susceptibility to at least one agent in all antimicrobial 
categories except two or fewer. Isolates screened for PCR 
amplification checked by real-time PCR (qPCR) using 
specific primers for detection of efflux pump coding genes 
(AcrAB, TolC, mtdK) and porin coding gene Ompk35 was 
also investigated.

Testing integrity of Cec‑B peptide using FPLC

To assure the stability of the free peptide, a sample of the 
rCec-B (100 µg/ml) was preserved in LB media (pH 7) at 37 
°C for 24 h to be a negative control of free peptide for testing 
the peak integrity as a peptide stability test. Buffer exchange 
in 20 mM Tris pH 8 was performed using Vivaspin-500 with 
molecular weight cutoff 3 kDa (Sartorius Co). Using HiTrap 
SP-FF (1ml) cation exchange chromatography column (GE 
Healthcare Life Sciences) and AKTA Purifier 100 FPLC 
system (GE Healthcare Life Sciences, Sweden), rCec-B was 
tested for its integrity. Linear gradient elution was carried 
out by the volume of 20 column volumes and an increase in 
ionic strength to the used as elution buffer B (20 mM Tris 
pH 8 and 1M NaCl) (Duong-Ly and Gabelli 2014).
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Synthesis of chitosan/Cec‑B nanoparticles

Chitosan as a natural polymer and sodium tripolyphosphate 
(TPP) as a cross-linker were used to prepare the nanopar-
ticles according to a slightly modified ionotropic gelation 
method. Particles with and without Cec-B were prepared in 
the same condition. Particles without Cec-B were used as a 
negative control. Different trials were accomplished to opti-
mize the most accurate conditions for nanoparticle prepara-
tion. Then 2 mg/ ml chitosan (CS) in 1% (v/v) acetic acid 
(Thomas et al. 2016) and 1mg/ ml of TPP aqueous solution 
were prepared and filtrated using a 0.45 μm syringe filter 
(from VWR). The pH level of the chitosan and TPP solu-
tions was adjusted to 5.5 by the addition of NaOH and HCl, 
respectively. For the experiments with Cec-B encapsulation, 
the peptide was diluted to a concentration of 50 µg∕ ml with 
the chitosan solution. A glass burette was adjusted to add the 
TPP solution to the chitosan solution (at a TPP to chitosan 
weight ratio of 1:2) dropping wisely with the flow rate of 
1.25 mL/min. During the addition, the chitosan solution was 
stirred vigorously (1000 rpm) using a magnetic stirrer. The 
solution was mixed for an additional 10 min after all of the 
TPP was expended. The nanoparticle mixture was incubated 
at 4 °C for 40 min and then centrifuged at 18,000 rpm for 
50 min at 4 °C. The supernatant was collected for calculat-
ing the efficiency of entrapment and the nanoparticles pel-
let was washed three times with double distilled water to 
remove liberated Cec-B. After three washes, the pellet was 
liquified (resuspended) in double distilled water (5 μg/100 
μL) and stored at −80 °C till freeze-dried. Subsequently, 
the samples were transferred to the freeze dryer under the 
standard freeze-drying conditions (pressure 7 bars, the inlet 
temperature was 96 ºC, and the achieved outlet temperature 
(65–70 °C) (Degobert and Aydin 2021). All experiments 
were done at room temperature.

Efficiency of entrapment

The percent efficiency of entrapment (%EE) of the Cec-B 
entrapped or adsorbed onto the chitosan was obtained from 
the determination of free Cec-B concentration in the super-
natant recovered after particle centrifugation (18,000 rpm, 
50 min) by absorbance measurement at λmax = 210 nm. 
These Cec-B quantities were determined using a Multiskan 
sky spectrophotometer (Thermo Scientific, Germany). The 
supernatant obtained from chitosan-TPP nanoparticles with-
out Cec-B was utilized as a blank (Sedyakina et al. 2020; 
Masalova et al. 2013).

Cec-B entrapment efficiency (%) was the percentage of 
entrapped Cec-B to the total amount of Cec-B added. The 
%EE was calculated using Eq. 1:

where Cec-B0 is the initial amount of Cec-B added for 
encapsulation and Cec-Bf is the amount of non-entrapped 
Cec-B in the supernatant after centrifugation of the particles, 
respectively. Also, the loading capacity of Cec-B onto the 
chitosan particles was determined according to Eq. 2:

where NPs wt is the weight of the recovered particles.

Characterization of the chitosan/rCec‑B nanoparticles

Malvern Zetasizer Nano ZS (Malvern Instruments Ltd., 
Malvern, Worcestershire, UK) was used to determine the 
particle size distribution, zeta potential, and polydispersity 
index (PDI). Typically, 2 mg of chitosan and chitosan/Cec-B 
NPs were resuspended in 2 mL of 1% acetic acid solution; it 
was sonicated for 10 min to ensure uniform dispersion. The 
particle size analysis of the nanoparticles was performed 
in triplicates at 25 °C, an angle of 90° for the photomulti-
plier, and a wavelength of 633 nm. The surface charge (zeta 
potential) of the nanoparticles was determined from the elec-
trophoretic mobility. The zeta potential measurements were 
carried out at pH 5.5 in triplicates using the 100 μL aqueous 
dip cell by Zetasizer, Nano ZS (Malvern Instruments Ltd., 
Malvern, Worcestershire, UK). The samples were diluted to 
1: 100 with double distilled water before measuring.

FTIR analysis

The Fourier transform infrared (FTIR) spectra of chitosan, 
chitosan unloaded NPs, and chitosan/Cec-B NPs were 
obtained with a Bruker Vertex 80 IR spectrometer (Ger-
many) from 4000 to 400  cm−1, at a resolution of 4  cm−1, and 
reflective index 2.4.

Swelling kinetics of chitosan/Cec‑B nanoparticles

The swelling behavior of the cross-linked chitosan NPs was 
measured by swelling the NPs in PBS of different pHs at 
room temperature and in deionized water at 4, 25, 37, and 
42 °C. Dry nanoparticles, initially weighed (around 20 mg), 
were submerged in buffer solutions spanning pH 2.5 to 8.5. 
Additionally, the impact of ionic strength on the swelling 
ratio was investigated by employing various concentra-
tions of sodium chloride solution (50, 100, 200, 400, and 
800 mM). The NPs were withdrawn from the solutions at 

(1)

Efficiency of entrapment =
(

Cec − B0 − Cec − Bf/Cec − B0

)

(2)
Loading capacity =

(

Cec - B0− Cec - Bf

)

∕NPs wt x 100
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different time intervals and their wet weight was determined 
after blowing with a stream of air to remove the surface 
water and immediately weighing the NPs. The swelling ratio 
was calculated using the equation

where Sr is the water absorption (%wt) of the NPs, and Wd 
and Ws are the weights of the samples in the dry and swollen 
states, respectively.

In vitro drug release of the chitosan/Cec‑B nanoparticles

First, 5 mg of chitosan–Cec-B nanoparticles were added to 
5 ml 1 × PBS buffer of pHs 2.5, 5.5,7.4, and 8.5, then incu-
bated at 37 °C in an orbital stirring shaker at 100 rpm. An 
aliquot of supernatant (500 μl) was taken out at time inter-
vals and supplemented with 500 μl fresh 1 × PBS buffer (pH 
2.5, 5.5, 7.4, and 8.5) to maintain the total volume of the 
four tubes. The absorbance of released Cec-B at the various 
pHs was measured using a Multiskan sky spectrophotometer 
(Thermo Scientific, Germany), at λmax = 210 nm according 
to the unique calibration curve.

Hemolytic activity of the chitosan/Cec‑B nanoparticles

Collected blood in a heparin tube from a healthy donor was 
used to study the hemolytic effect of free chitosan nanopar-
ticles, rCec-B, and chitosan/Cec-B nanoparticles. One ml of 
blood was centrifuged at 1000 rpm for 5 min at room temper-
ature followed by washing three times with 1 × PBS (pH7.4) 
at a ratio of 1:1. The blood was diluted using 1 × PBS at 
a ratio of 1:10. Twofold dilution (100, 50, 25, 12.5, 6.25, 
3.125, 1.6, and 0.8 µg/ml) was added to erythrocytes suspen-
sion at a ratio of 4:1, then erythrocytes were incubated for 
30 min at 37 °C, followed by centrifugation at 1000 rpm for 
3 min at room temperature. The release of hemoglobin from 
erythrocytes was monitored at 540 nm. The negative control 
had 1 × PBS instead of a sample, while the positive control 
received 0.1% Triton X-100 which caused the hemolysis of 
erythrocytes (Bielawski 1990).

The absorption of the supernatant of erythrocytes lysed in 
Triton X-100 was defined as being 100% hemolysis.

The hemolysis percentage was calculated using the fol-
lowing equation:

(3)Sr (%) = ((Ws −Wd) ∕ Wd) × 100

% hemolysis = (Abs of sample − Abs of (−) control)

∕Abs of (+) control x 100

Antimicrobial assay—free and encapsulated rCec‑B

First, the MIC values of the free peptide were tested on 50 
isolates by the broth microdilution test (Weinstein and Lewis 
2020). Briefly, pure bacterial cultures from specimens were 
obtained in brain heart infusion (BHI) agar and incubated at 
37 °C for 18 to 20 h. A colony from the pure culture was ini-
tially resuspended in sterile water to reach the turbidity of 0.5 
McFarland, and the resulting suspension contained approxi-
mately 1–4 ×  108 colony forming units (CFU)/ml. Using this 
suspension, a final 1:1000 dilution was performed directly into 
cation-adjusted Mueller–Hinton broth to obtain a final con-
centration of 2–7 ×  105 CFU/ml. These bacterial inoculums 
were incubated with different concentrations of tested sam-
ples. Serial dilution of free rCec-B, encapsulated rCec-B, and 
free capsules (100, 50, 25, 12.5, 6.25, 3.125, 1.6, and 0.8 µg/
ml) were applied to wells (Romoli et al. 2019). Mixtures of 
the peptide and inoculums in a final volume of 200 μl were 
incubated in sterile 96-well polypropylene microplates (Sigma-
Aldrich) at 37 °C. A peptide-free control was used for every 
isolate evaluated. The MIC of free peptide for each isolate was 
defined as the lowest concentration that inhibited the visible 
growth of bacteria after incubation for 18 to 20 h. Second, 
sensitive isolates to free peptide were subjected to the free 
capsule and encapsulated rCec-B at twofold dilution (100, 50, 
25, 12.5, 6.25, 3.125, 1.6, and 0.8 µg/ml). Each isolate and 
condition was examined in triplicate, and all experiments were 
run in triplicate (Romoli et al. 2019). The 96-well plate was 
placed inside a microplate ELISA reader set to a wavelength 
of 600 nm (Swithenbank et al. 2020).

Effect of encapsulated rCec‑B on MDR‑related genes using 
qPCR

Studying the effect of encapsulated rCec-B on the expression 
of genes coding for efflux pump and porin was performed by 
treating bacterial cells with 50% of obtained MIC. For each 
isolate, from overnight culture, dilution 1:100 was performed 
in 96-well culture plates and encapsulated rCec-B was added. 
The plate was incubated at 37 °C overnight (Zhong et al. 
2013). The treated bacterial cells were harvested and RNA 
extraction was performed using an RNA extraction kit (Biovi-
sion, Inc.). Using Novo™ cDNA Kit (Biovision, Inc), SYBR 
Green master mix (Thermo Fisher Scientific), qPCR was per-
formed. The cycling parameters were: were 95 °C for 15 min 
followed by 45 cycles of (95 °C denaturation for 20 s, and 
60 °C for 1 min (Okasha et al. 2021). The primers sequence 
(Thermo Fisher Scientific) was designed in this study for each 
gene, as shown in Table 1. The average of three experiments 
was used to reflect each marker’s expression ratio. The relative 
comparative quantitation approach identified the amounts of 
gene expression.
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Statistical analysis

The data were presented as the mean ± SD. The test of sig-
nificance was performed by GraphPad Prism 8 (San Diego, 
California, USA) using two-way ANOVA. p ∗  < 0.05 was con-
sidered as statistically significant difference.

Results

Testing integrity of Cec‑B peptide using FPLC

The pH of the buffers employed was 8 since the peptide 
is cationic in pH ranges below 10.44 according to Cec-
B’s pI. As shown in Fig. 1, a sharp peak (UV 210) was 

detected at retention time from 3 to 9 min in a 12% elution 
buffer. This peak concludes the stability of rCec-B.

Efficiency of entrapment

The entrapment efficiency of the chitosan/Cec-B nanopar-
ticles was determined to be 89.2% and the loading capacity 
to be 39.82%. This percentage reveals the nano-chitosan 
as a perfect carrier for the delivery of Cec-B.

Characterization of the chitosan/Cec‑B 
nanoparticles

Upon synthesis and lyophilization, chitosan/Cec-B nano-
particle opalescent suspensions were characterized by 

Table 1  Primer sequences for 
MDR-related gene expression 
analysis using qPCR

Gene Sequence Product length Reference

AcrAB F: TAT TGC GCT GCA GTA TCG CT
R: GGT ATA GCT CTG GGT CAC GC

214 This study

TolC F: TTA ACA ACG TGA ACG CGA GC
R: GCC ACC AGA TCC TGT TCG TT

250 This study

MtdK F: TAT AGC GCG ACC GAT ATG GC
R: ATA TAG CCC GCG TTC CAC AG

221 This study

Ompk35 F: CGA ACG CGG CGG AAA TTT AT
R: CAA AGC TGC CAT ATT CGC CC

276 This study

16Srna F: TGG AGC ATG TGG TTT AAT TCGA 
R: TGC GGG ACT TAA CCC AAC A

159 CDC  
(2011)

Fig. 1  This chromatogram 
represents the purification of 
rCec-B using the SP-FF cation 
exchange column. The X-axis 
represents time in minutes 
(min), the primary Y-axis repre-
sents the absorbance UV at 190 
nm, the red curve represents 
the absorbance UV at 210 nm, 
the green curve represents the 
gradient increasing in salt con-
centration using elution buffer 
(0–100% of 1M NaCl), and the 
secondary Y-axis represents 
buffer conductivity in Sm/cm
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Fig. 2  Nano-chitosan (CF)—
size: 177.6 nm, PDI: 0.412, and 
zeta potential: + 29.2 mV

Fig. 3  Chitosan/Cec-B nanopar-
ticles (CB)—size = 205.4 nm, 
PDI: 0.469, and zeta poten-
tial =  + 31.3 mV

Table 2  Effect of TTP 
concentration on size and zeta 
potential of Cs-NPs

Table 3  Effect of TTP concentration on size, zeta potential, and encapsulation efficiency of Cs-Cec-B NPs

TTP sodium tripolyphosphate, Cs ratio: sodium tripolyphosphate: chitosan ratio, Size: average diameter distribution, PdI: Polydispersity Index, 
Zeta potential: surface charge, LC: loading capacity, EE encapsulation efficiency
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dynamic light scattering (DLS) for the hydrodynamic size 
and the surface zeta potential. The resultant chitosan and 
chitosan– Cec-B nanoparticles showed a narrow size distri-
bution with hydrodynamic size (177.6 ± 6.92 nm for nano-
chitosan and 205.4 ± 10.86 nm for chitosan–Cec-B), polydis-
persity index of 0.412 ± 0.05 and 0.469 ± 0.04 for chitosan 
and chitosan–Cec-B nanoparticles, respectively, and a sur-
face charge of 29 − 31 ± 1.3 mV and + 31.3 for chitosan and 
chitosan–Cec-B nanoparticles, respectively (Fig. 2 and 3), 
Tables 2, 3

FTIR analysis

The FTIR spectra of chitosan (NCLCs), chitosan unloaded 
(CLCs) NPs, and chitosan/Cec-B (CLCs-CB) NPs are illus-
trated in Fig. 4. The appearance, disappearance, or shift of 
bands reveal the interactions between Cs polymer and TPP 
cross-linker (69). The broad absorption bands at 3375.02 and 
3299.8  cm−1 indicate the NH2 and OH groups stretching in 
Cs. Further, the bands at 2854.3, 1641.22, and 1558.3cm−1 
resemble the the C–H stretching vibrations, C = O stretching 
from amide I, as well as N–H bending and C–N stretching 
from amide II, respectively. Furthermore, the bonds corre-
spond to  CH2 bending,  CH3 symmetrical deformation, and 
primary/secondary OH in-plane bending in the FTIR spec-
tra of Cs appeared at 1413.65, 1378.74, and 1313.37  cm−1, 
respectively. The other prominent bands of non-cross-linked 
Cs were detected at 1070.37  cm−1 (amine C–N stretching) 
and 1029.86  cm−1 (skeletal vibration of C–O stretching). In 
both the cross-linked Cs and the loaded Cs-NPs, the broad 
absorption bands at 3375.02 and 3299.8  cm−1 indicate that 
the NH2 and OH groups stretching in Cs were shifted to 

3336.45 and 3224.87, the bands at 1641.22, and 1558.3 cm-1 
resemble C = O stretching from amide I, as well as N–H 
bending and C–N stretching from amide II, respectively, also 
shifted to 1633.51 and 1527.44, another three new bands at 
1213, 1157.15, and 858  cm-1 were observed. The band at 
1415.65 which disappeared the cross-linked Cs was of good 
intensity in the loaded Cs-NPs. It was also noted that the 
peak intensity of the C = O stretching from amide I, as well 
as N–H bending and C–N stretching from amide II, respec-
tively, at 1633.51, and 1527.43 increased and a small peak 
at 3650.8  cm−1 was observed in case of the loaded Cs-NPs.

Fig. 4  The FTIR spectra of chitosan (NCLCs), chitosan unloaded 
(CLCs) NPs, and chitosan/Cec-B (CLCs–CB) NPs
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B effect of pH, and (C) effect of ionic strength



1973A novel antibacterial approach of Cecropin‑B peptide loaded on chitosan nanoparticles against…

1 3

Swelling kinetics of chitosan Nps

Swelling behaviors of the chitosan NPs at different tempera-
tures, pHs, and ionic strengths are shown in Fig. 5. As the 
temperature increased from 4 to 42 °C, the polymer swelled 
faster. This was due to the separation of interpenetrated 
polymeric chains and the destruction of hydrogen bond-
ing between polymer molecules. At a higher temperature, 
the chain mobility was increased which facilitated the net-
work expansion. Also, more alkaline pH and higher ionic 
strengths caused the polymeric NPs to swell faster.

In vitro drug release of the chitosan–rCec‑B 
nanoparticles

In this study, the in vitro release profile of chitosan–rCec-
B nanoparticles in PBS at pH 2.5, 5.5, 7.4, and 8.4 was 
studied over 7 days. A pH-dependent sustained release 
of rCec-B was observed, with a maximum release of 99. 
22 ± 1.24% at pH 8.5, followed by 94.5 ± 1.67% at pH 7.40, 
then 78.22 ± 1.85% at pH 5.5 and 70.15 ± 1.54% at pH 2.5 
up to 144 h of the study period. (Fig. 6). The exponential 
pattern demonstrated by the release profile of chitosan–rCec-
B nanoparticles indicates that the system is suitable for the 
sustained release of therapeutics. The amount of rCec-B and 
chitosan as well as the degree of deacetylation of chitosan 
plays a vital role in the release rate. The higher the deacety-
lation of chitosan, the higher the number of amino groups 
that form ionic interactions with TPP, resulting in the forma-
tion of dense particles. This resulted in the lower permeabil-
ity of the nanoparticle surface and a decrease in release rate.

Hemolytic activity of the chitosan–rCec‑B 
nanoparticles

Results obtained showed low RBCs toxicity (below 50% 
hemolysis) at a high concentration (100 µg/ml) of a free 
capsule (hemolysis equals 36.5 ± 2.5%), rCec-B (hemoly-
sis equals 28.7 ± 2%), and encapsulated rCec-B (hemolysis 
equals 31.3 ± 5.5%) incubated with erythrocytes for 0.5 h 
at 37 °C compared to triton X-100 as a positive control. 
At 100 µg/ml: free chitosan showed 36.52 ± 2.3%, rCec-B 
had 28.75 ± 2%, and encapsulated rCec-B had 31.3 ± 5.5%. 
However, at 6.25 µg/ml, free chitosan had too low cytotox-
icity calculated to be 0.795 ± 0.29%, and zero hemolysis 
was obtained at the same concentration for both rCec-B 
and encapsulated rCec-B. Statistical analysis using two-
way ANOVA showed high significance between different 
samples (free capsule, rCec-B, and encapsulated rCec-B) at 
each tested concentration with p value = 0.0002. Statistical 
significance was found at 50 µg/ml between rCec-B, free 
capsule, and encapsulated rCec-B. Another significance was 
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obtained between the free capsule and encapsulated rCec-B 
at the concentration of 25 µg/ml. (Fig. 7).

Antimicrobial properties of free and encapsulated 
rCec‑B

Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of 
the isolates were XDR while 40% were MDR. The antimi-
crobial activity of free peptide was tested first on 50 MDR K. 
pneumoniae isolates and the bactericidal effect was detected 
on 21 isolates as shown in Fig. 8. Both the free capsule and 
rCec-B were then tested on these 21 isolates to determine 
its antibacterial efficacy. Results of the free capsule showed 
a mild cytotoxic effect on MDR K. pneumoniae at the high-
est concentration, 100 µg/ml, as the highest calculated per-
cent of toxicity on one of MDR K. pneumoniae collected 
isolates was 64.7 ± 1.77% and the lowest percent of toxic-
ity 41.9 ± 1.3% (Fig. 9). The tested free rCec-B had MIC 
that varied according to K. pneumoniae isolates. The high-
est MIC of free peptide was 50 µg/ml on 12 isolates, MIC 
was 25 µg/ml on another 3 isolates, MIC was 12.5 µg/ml on 

another 3 isolates, and MIC was 6.25 µg/ml on another 3 
isolates. However, the encapsulated peptide (Chitosan–rCec-
B) had the highest MIC at 25 µg/ml on 6 isolates, MIC was 
12.5 µg/ml on another 12 isolates, and MIC at 1.6 µg/ml on 
another 3 isolates. Thus, our results revealed that the MIC 
of encapsulated rCec-B was higher than the free peptide as 

Fig. 9  Effect of the chitosan 
nanocapsule at the high-
est concentration used (100 
µg/ml) on the 21 MDR K. 
pneumoniae isolates. Each dot 
represents a different isolate. (p 
value < 0.0001)
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Fig. 11  Effect of encapsulated rCec-B on MDR K. pneumoniae iso-
late. (p value < 0.0001)
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represented in Figs. 10 and 11. Two-way ANOVA showed a 
high significance analysis between the percent of cytotoxic-
ity of encapsulated rCec-B and different tested concentra-
tions, p value < 0.0001.

Effect of encapsulated rCec‑B on MDR‑related genes 
using qPCR

The relative expression of efflux pump and porin coding 
genes (ArcrB, TolC, mtdK, and Ompk35) was detected 
in treated K. pneumoniae bacterial isolates. As shown in 
Figs. 12 and 13, the expression level of four genes was 
downregulated after treatment with encapsulated rCec-B. 
Statistical analysis using two-way ANOVA revealed a high 
significance between untreated and treated bacteria cells 
(p < 0.0002).

Discussion

Infections caused by K. pneumoniae with multiple anti-
biotic-resistance genes, associated with several virulence 
factors, are increasingly reported in hospitalized patients 
in different parts of the world. These infections have been 

a global concern, as the therapeutic limitations associated 
with the pathogenicity of many strains with MDR and XDR 
phenotypes are related to a large number of morbidity and 
mortality (Campos et al. 2021; Palmeiro et al. 2019; Samir 
et al. 2022; Nakamura-Silva et al. 2021; Lam et al. 2021). 
In response to the rise and escalation of antibiotic-resistant 
pathogens, antimicrobial peptides (AMPs) have undergone 
thorough exploration due to their unique characteristics 
distinct from traditional antibiotics. The current work aims 
to take advantage of nanoparticle advancement by encap-
sulating the in-house designed Cecropin-B into chitosan 
nanoparticles to determine if the incorporation into chitosan 
NPs might retain the peptide’s antimicrobial activity while 
reducing its toxicity.

The preparation of the chitosan NPs was performed 
via the ionic gelation method using appropriate ratios of 
chtiosan:TPP:rCec-B. The chitosan percentage affects the 
entrapment efficiency of the recovered particles. A viscous 
solution (2 mg/ ml Cs) might cause effective dispersion of 
rCec-B into the polymer matrix, increasing both the effi-
ciency of entrapment and loading capacity. According to 
Piras et al. (2015), temporin B peptide was encapsulated 
using chitosan (1 mg/ ml), and only 4.8% temporin B was 
loaded with an encapsulation efficacy of 75%. Using a 

Fig. 13  Downregulation of ArcrB, TolC, mtdK, and Ompk35 genes’ expression as a result of treatment with encapsulated rCec-B
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concentration of chitosan, 2 mg/ml and a lower peptide con-
centration (50 µg∕ ml) led to an entrapment efficiency close 
to 90% in agreement with previous studies stated by Janes 
and Alonsoand Agnihotri et al. (Janes and Alonso 2003; 
Agnihotri et al. 2004). In line with the previous study men-
tioned by Mattu et al., the encapsulation procedure at pH 5.5 
resulted in higher entrapment efficiency (Mattu et al. 2013).

Among the numerous obstacles in the development of 
antimicrobial peptides (AMPs) for clinical use is their mark-
edly diminished antimicrobial effectiveness attributed to low 
stability in specific environments (Lei et al. 2019). The pH 
and thermal stability of AMPs are essential for their prepara-
tion, processing, and storage (Wong et al. 2019). At the same 
time, the stability of AMPs in serum and under physiological 
salt conditions is also crucial when administrating AMPs 
in vivo (Mishra et al. 2019).

In agreement with previous reports, the dynamic light 
scattering analysis of the current study showed us that the 
particle size and zeta potential of formulated chitosan NPs 
increased significantly when the concentration of chitosan 
was increased. The zeta potential on the surface of nano-
particles indicates the particles are stable. Nanoparticles 
possessing higher negative or positive zeta potentials will 
tend to repel each other and not form aggregates (Bilal et al. 
2019; Cinteza et al. 2018).

According to the pI of rCec-B, the peptide is cationic in 
pH below 10.44. During the formulation of chitosan–rCec-
B NPs, the pH was maintained at 5.5 to facilitate the con-
jugation of chitosan with rCec-B peptide and produce a 
carrier with enhanced ability to facilitate cellular uptake. 
Acidification of chitosan in addition to protonation of these 
amino groups makes chitosan positively charged (Wang 
et al. 2006). Chitosan’s -NH +2 groups are changed to the 
soluble protonated NH 3+ form when the pH of the solu-
tion falls below its pKa value of 6.3, making it soluble 
in acidic aqueous solutions. This soluble protonated NH 
3 + form, in turn, reacts with the negatively charged phos-
phate ions of TTP and results in stable nanoparticles. The 
characteristic absorption peaks at 1213, 1157.15, and 858 
 cm−1 indicate the successful interaction between chitosan 
(-NH3

+ groups) and TPP  (P3O10
5– groups which dissociate 

in water to give both hydroxyl -OH− and phosphoric ions) 
and the P = O groups were also detected in the absorption 
bands at wave numbers of 1157.15 and 858  cm−1 (Shah et al. 
2016) whereas the peaks at 3650.8, 1633.51, 1527.43, and 
1415.65  cm−1 resemble the loading of the peptide on the 
chitosan NPs and the bands of amide I and amide II dramati-
cally shifted to 1633.51 and 1527.43  cm−1. These results 
are in agreement with the previous report which studied the 
antimicrobial efficacy of chitosan-encapsulated Cecropin-A 
(1–7)–melittin-cell-penetrating peptide against multi-drug-
resistant Salmonella enteritidis (Wu et al. 2017). Similar 
results were observed by Xu et al. and Devika et al., in their 

study of the formation of chitosan NPs and chitosan film 
treated with phosphate (Xu and Du 2003; Bhumkar and 
Pokharkar 2006).

The temperature-dependent equilibrium swelling behav-
ior of the chitosan NPs in deionized water (pH 7) at a 
temperature range from 4 to 42 °C was observed. As the 
temperature of the NPs in the swelling state increased, the 
swelling ratio of the NPs samples increased. All particles 
exhibited a temperature-responsive swelling behavior due 
to the association/dissociation of hydrogen bonding between 
the amino groups within the chitosan chains. Less swell-
ing was observed with increasing temperature because of 
increased solubility. The obtained results were in accord-
ance with many conducted studies in which they studied the 
swelling properties of chitosan hydrogels compared to other 
pH-sensitive polymeric hydrogels (Rohindra et al. 2004; 
Vishal Gupta and Shivakumar 2012).

Because the rCec-B release from the chitosan NPs was 
accomplished via a variety of mechanisms, including diffu-
sion and erosion, the pH-dependent release profile revealed 
that the maximum release occurred at pH 8.5, whereas the 
lower release was at low pH 2.50. This lower release is due 
to the protonated chtiosan’s amino group, which protects 
rCec-B from acidic pH. In this study, the highest release 
of rCec-B within 24 hours was ascribed to the diffusion of 
rCec-B that was loosely entrapped. Additionally, a continu-
ous, gradual release was observed, which was attributed 
to the relaxation of chitosan and sodium tripolyphosphate 
(STPP) ionic crosslinking in both physiological pH (7.40) 
and alkaline pH. These results are in accordance with the 
previously published reports (Wu et al. 2017).

The release of drugs from the chitosan NPs is affected 
by the hydrophilicity of chitosan and the pH of the swelling 
solution. Due to the hydrophilicity of chitosan, chitosan NPs 
exhibit a pH-dependent drug and controlled drug release 
system. The larger amount of encapsulated rCec-B leads to a 
higher diffusion rate due to the formation of a concentration 
gradient between the chitosan and buffer matrix (Wang et al. 
2006). Since the rCec-B encapsulated was a small amount 
and chitosan–rCec-B NPs showed 89.2% entrapment effi-
ciency, the release rate was slow. That is because the chi-
tosan used in the study is of low concentration (2 mg/ml) 
and high degree of deacetylation.

The results of the release study agreed with the previous 
study reported by Jayathilaka et al. (2022). The maximum 
cumulative release was 88.26% at 96 h using low-molecular-
weight chitosan. Another study reported a maximum BSA 
cumulative release of 72.52% at 350 h using low-molecular-
weight chitosan (60). Whereas, the release kinetics of the 
peptide from temporin-B-loaded chitosan (medium molecu-
lar weight, Mw108 kDa (Mw/Mn2.4), deacetylation degree 
∼92%) NPs was studied in SPB pH 7.4 for 15 days with the 
maximum cumulative release of about 18. %. After the first 
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equilibration time (lag time), the system displayed a progres-
sive linear release.

The antimicrobial-resistant pattern for K. pneumoniae 
isolates showed that most of the isolates were XDR (60%) 
and 40% were MDR. These results are comparable to a study 
by Al-Baz et al. who reported that most of the isolates were 
XDR (60.6%) and 30.3% were MDR (Lam et al. 2021). A 
study in Minya, Egypt by Hassuna et al. reported an alarm-
ing occurrence of XDR K. pneumoniae with an incidence of 
83.3% (Hassuna et al. 2020). Different figures were shown in 
a study done by Aamir et al. who reported that 47.2% were 
MDR and 36.1% were XDR (Aamir et al. 2021). Many fac-
tors may contribute to the spread of MDR and XDR isolates 
such as limited adherence to infection control protocols and 
unnecessary use of antimicrobials.

Based on our findings, rCec-B showed antibacterial 
activity against K. pneumoniae with MIC values between 
50 – 6.5 μg/mL. The MICs in this study were compara-
ble to those reported for other cationic peptides Ocampo-
Ibáñez et al. reported that cecropin D-derived showed 
bactericidal effect with MIC values between 32 and > 256 
μg/mL (Ocampo-Ibáñez et al. 2020); However, slightly 
higher in comparison with those reported for the Cecropin-
A–melittin hybrid peptide (Geitani et al. 2019).

In our study, the free capsule showed a mild cytotoxic 
effect on MDR K. pneumoniae at the highest concentra-
tion. The results of the present study were in line with the 
study performed by Hassan et al., 2021, where the anti-
microbial activity of different concentrations of chitosan 
nanoparticles against five isolates of MDR K. pneumoniae 
showed no antibacterial activity of all chitosan nanopar-
ticles concentrations against the bacteria (Hassan et al. 
2021). Another study also showed a disparity with our 
data, where Zhang et al. (Zhang et al. 2020) showed that 
diluted chitosan-loaded essential oil has increased antibac-
terial activity against tested K. pneumoniae after overnight 
incubation (Zhang et al. 2020).

Our results revealed that the MIC of chitosan–rCec-
B NPs was higher than the free rCec-B as represented. 
This was in line with the study of Herdiana et al. where 
the antibacterial activities of Wasp chitosan-based NPs 
(WCSNPs) against positive K. pneumoniae, E coli, and P. 
aeruginosa were investigated (Herdiana et al. 2022). The 
results indicated that the percentage of growth inhibition 
of the synthesized nanomaterials can credibly help fight 
the growth of ESBL- and carbapenem-resistant K. pneu-
moniae, E. coli, and P. aeruginosa upon increasing con-
centration. In this study, the distribution of efflux-resist-
ant genes was significantly high in the studied isolates 
(100%). Moreover, a substantial expression of the AcrAB 
gene; responsible for the multidrug efflux pump system, 
and the tolC gene; encoding the transport channel protein, 
was identified. This finding aligns with the observations 

made by Wasfi et al. Surprisingly, OmpK35 porins were 
identified in all isolates, and this presence was elucidated 
by the existence of point mutations or disruption the pro-
tein coding sequence,  (Wasfi et al. 2016). On the other 
hand, Ompk35 also plays a role in K. pneumoniae vir-
ulence and infection. Statistical analysis also showed a 
significant strong positive correlation between antibiotic-
resistance patterns and the presence of resistance genes. 
Thereby, these genes may be implicated in the resistance 
of K. pneumoniae to antibiotics. The expression level of 
four genes was downregulated after treatment with encap-
sulated rCec-B. In line with our results, it was shown that 
AgNPs could suppress antimicrobial resistance through 
the activation of the efflux pump system in K. pneumoniae 
(Dolatabadi et al. 2021). Another recent study investigat-
ing the underlying antimicrobial mechanism of lysozyme-
coated AgNPs against AMR K. pneumoniae (MGH78578, 
ATCC® 700,721) using transcriptomics analysis identified 
oxidative stress and a triclosan-like antibacterial mecha-
nism (Alotaibi et al. 2022).

Conclusion

In conclusion, the results of this study demonstrated the activ-
ity of CAMP-Cec-B with MDR K. pneumoniae. This peptide 
exhibited antibacterial activity against MDR strains of K pneu-
moniae with down-regulation of porin and efflux pump encod-
ing genes. In this context, rCec-B emerges as a prospective 
alternative pharmaceutical agent to traditional antibiotics for 
managing multidrug-resistant bacteria linked to severe infec-
tious diseases.
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