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Abstract
Bridging the gap between preclinical models of neurological and psychiatric disorders with their human manifestations 
is necessary to understand their underlying mechanisms, identify biomarkers, and develop novel therapeutics. Cognitive 
and social impairments underlie multiple neuropsychiatric and neurological disorders and are often comorbid with sleep 
disturbances, which can exacerbate poor outcomes. Importantly, many symptoms are conserved between vertebrates and 
invertebrates, although they may have subtle differences. Therefore, it is essential to determine the molecular mechanisms 
underlying these behaviors across different species and their translatability to humans. Genome-wide association studies have 
indicated an association between glutamatergic gene variants and both the risk and frequency of psychiatric disorders such 
as schizophrenia, bipolar disorder, and autism spectrum disorder. For example, changes in glutamatergic neurotransmission, 
such as glutamate receptor subtype N-methyl-d-aspartate receptor (NMDAR) hypofunction, have been shown to contribute 
to the pathophysiology of schizophrenia. Furthermore, in neurological disorders, such as traumatic brain injury and Alzhei-
mer’s disease, hyperactivation of NMDARs leads to synaptic damage. In addition to glutamate binding, NMDARs require 
the binding of a co-agonist d-serine or glycine to the GluN1 subunit to open. d-serine, which is racemized from l-serine 
by the neuronal enzyme serine racemase (SRR), and both SRR and d-serine are enriched in cortico-limbic brain regions. 
d-serine is critical for complex behaviors, such as cognition and social behavior, where dysregulation of its synthesis and 
release has been implicated in many pathological conditions. In this review, we explore the role of d-serine in behaviors that 
are translationally relevant to multiple psychiatric and neurological disorders in different models across species.
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Abbreviation
SR  Serine racemase
DAAO  d-Amino acid oxidase

Introduction

Finding effective treatments for psychiatric and neurologi-
cal disorders depends partly on developing animal models 
with validated mechanisms that are translatable across spe-
cies. Cognitive and social deficits are core components of 
multiple neuropsychiatric and neurodegenerative condi-
tions (Stuchlik & Sumiyoshi 2014), while sleep disruption 
is commonly observed in many disorders, including anxi-
ety, depression, and schizophrenia. Furthermore, sleep is 
involved in many processes such as memory consolidation, 
emotional stability, and the maintenance of brain homeosta-
sis, where its dysregulation could have a bidirectional effect 
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on symptom progression and outcomes (Sun et al. 2022). 
These behaviors are conserved among vertebrates and inver-
tebrates (such as rodents and fruit flies, respectively), mak-
ing them valuable models for studying human pathophysiol-
ogy. Therefore, it is important to identify common factors 
underlying the molecular mechanisms of these behaviors.

Genome-wide association studies have implicated glu-
tatamertegic gene variants in both the risk and frequency of 
psychiatric disorders like schizophrenia, biopolar disorder, 
and autism spectrum disorder (ASD) (Singh et al. 2022; Tru-
betskoy et al. 2022). Furthermore, preclinical and clinical 
studies have shown that receptors important for glutamater-
gic neurotransmission, such as the glutamate receptor sub-
type N-methyl-d-aspartate receptors (NMDARs), contribute 
to the pathophysiology of neurodegenerative and neuropsy-
chiatric disorders (Singh et al. 2022; Wang & Reddy 2017). 
NMDARs are unique ligand-gated ion channels that require 
the binding of glutamate at the GluN2 subunit as well as a 
co-agonist, glycine or d-serine, at the GluN1 glycine modu-
latory site (Wolosker et al. 1999a, b). In corticolimbic areas 
that are critical for cognitive and social behaviors, such as 
the prefrontal cortex, nucleus accumbens, hippocampus, and 
amygdala, d-serine parallels the expression pattern of and 
is the preferred co-agonist of NMDARs (Dong et al. 2018; 
Hashimoto et al. 1993; Matsui et al. 1995; Mothet et al. 
2000; Schell et al. 1997, 1995; Shleper et al. 2005). d-serine 
is also expressed in the hypothalamus (Chieffi Baccari et al. 
2020), where the role of NMDARs, in addition to traditional 
monoaminergic pathways, has been increasingly appreciated 
in the regulation of sleep and wakefulness (Saper & Fuller 
2017). It is important to mention that glycine could also play 
a complementary role that should be further investigated 
(Meunier et al. 2016; Papouin et al. 2012; Stroebel et al. 
2021).

d-Serine is converted from l-serine by the neuronal 
enzyme serine racemase (SRR) (Wolosker et al. 1999a, b). 
During development, there is a spatiotemporal increase in 
SRR expression in corticolimbic regions, suggesting a role 
for D-serine in proper circuit formation (Folorunso et al. 
2021). Furthermore, changes in synaptic plasticity, such 
as NMDAR-dependent long-term potentiation (LTP), are 
critical for memory formation, particularly in the adult hip-
pocampus and amygdala of mice (Balu et al. 2013; Basu 
et al. 2009; Le Bail et al. 2015; Li et al. 2013; Papouin 
et al. 2012). We have shown that D-serine is postsynapti-
cally released to regulate synaptic NMDAR function at 
Schaffer collateral CA3-CA1 synapses (Wong et al. 2020), 
where genetic ablation of neuronal SRR leads to deficits 
in hippocampal LTP (Perez et  al. 2017). Recent large-
scale genome-wide association studies have identified a 
functional single nucleotide polymorphism in the SRR 
gene associated with schizophrenia (Pardinas et al. 2018; 
Schizophrenia Working Group of the Psychiatric Genomics 

2014), highlighting its relevance to psychiatric disorders. 
Additionally, lower levels of d-serine and SRR have been 
reported in the brains and serum of people with schizophre-
nia (Hashimoto et al. 2003). Under pathological conditions, 
such as Alzheimer’s disease (AD) and traumatic brain injury 
(TBI), we show that d-serine production is upregulated by 
reactive glial cells and may contribute to excitotoxicity and 
neurodegeneration (Balu et al. 2019; Folorunso et al. 2023; 
Perez et al. 2017; Tapanes et al. 2022). Together, these stud-
ies highlight a cell-specific role for d-serine in learning and 
memory, and demonstrate that dysregulation of d-serine can 
lead to alterations in behavior.

Rodent models and invertebrate organisms are valu-
able for understanding how genes and neural circuits con-
trol behavior due to the large number of tools available 
for genetic manipulation. Drosophila melanogaster (fruit 
flies), are particularly important for studying the neurologi-
cal and genetic underpinnings of sleep, wakefulness, and 
cognitive tasks (Grover et al. 2022; Koh et al. 2008; Liu 
et al. 2008). Using olfactory and visual cues, fruit flies have 
been used to study associative learning through both delay 
and trace conditioning paradigms (Grover et al. 2022), as 
well as decision-making via feeding assays (Yu et al. 2021). 
Similar to humans and rodents, fruit flies follow a circa-
dian rhythm where they sleep on a 12 h light/dark cycle 
that is influenced by variables including feeding, stress, and 
social environments(Beckwith & French 2019; Hendricks 
et al. 2000; Nakagawa et al. 2022). Moreover, an age-related 
decline in associative memory has been observed in fruit 
flies, mirroring that observed in rodents and humans (Konig 
& Gerber 2022). Further similarities across organisms exist, 
as it has also been shown that flies exhibit social behav-
iors such as aggression and courtship (Bentzur et al. 2021; 
Soto-Yeber et al. 2018), as well as changes in motivation, 
experience, activity level, and sensory sensitivity after social 
isolation (Soto-Yeber et al. 2018).

Rodents are commonly used to study social behavior, 
where intricate circuitry between the prefrontal cortex and 
subcortical areas, including the amygdala, nucleus accum-
bens, ventral tegmental area, hypothalamus, and hippocam-
pus, is involved (Bicks et al. 2015). While rodents possess 
a less developed prefrontal cortex and a greater proportion 
of olfactory input (Wei et al. 2021), homology between 
the circuitry underlying human and rodent social behavior 
has been observed. For example, connections between the 
medial prefrontal cortex and amygdala are altered during 
social interactions and are significantly different in models 
of autism spectrum disorder (Kuga et al. 2022). Further-
more, while rodent models cannot recapitulate the entirety 
of human social behavior, some aspects, such as social inter-
action and withdrawal, have been well-characterized and 
widely validated for the study of neuropsychiatric disorders. 
For instance, asociality is a prominent negative symptom of 
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schizophrenia that is commonly studied in mice using the 
three-chamber interaction test (Ellenbroek & Cools 2000; 
O'Tuathaigh et al. 2014, 2009). Moreover, behaviors dur-
ing free dyadic social interactions (Kraeuter et al. 2019), 
as well as ultrasonic vocalizations (USVs), can be used to 
measure communicative behavior in various social contexts 
and neurodevelopmental disorders (Lefebvre et al. 2020; 
Premoli et al. 2021; Sangiamo et al. 2020; Scattoni et al. 
2009; Seffer et al. 2014). In addition, rodents are widely 
used to study cognition, where spatial memory assays and 
passive avoidance testing are well-validated measures of 
learning and memory. Moreover, the use of rodents in con-
textual fear learning assays allows an in-depth understanding 
of various factors (genetics, stress, drug effects, etc.) that 
contribute to cognitive and behavioral responses to stress 
and threat. In addition, their small size, ease of handling, 
and well-characterized sleep patterns enable the study of 
mechanisms underlying sleep and the effects of sleep dep-
rivation. Like humans, rodents experience non-rapid eye 
movement (NREM) and rapid eye movement (REM) sleep, 
and a sleep–wake cycle controlled by the interaction of sev-
eral brain regions and neurotransmitter systems (Aguilar 
et al. 2021). While rodents have shorter sleep periods than 
humans and spend different proportions of time in NREM 
versus REM sleep (Kawai et al. 2015), studies have shown 
that sleep deprivation impairs learning and memory and 
leads to changes in brain structure and function in rodents, 
which is similar to what is observed in humans (Colavito 
et al. 2013).

This review focuses on the role of d-serine in physiologi-
cally relevant behaviors across different species, including 
fruit flies, rodents, and humans, and highlights the impor-
tance of d-serine in sleep, cognition, and social interactions. 
However, further cross-species studies in various preclinical 
models and clinical settings are necessary to validate the role 
of d-serine in these behaviors.

d‑Serine and cognitive tasks

d-Serine has been shown to be important for attention, moti-
vation, learning, and memory behaviors across invertebrates 
to humans. Genetic mutations, d-serine administration, 
NMDAR antagonists, and stress models have been used to 
determine how d-serine alters cognitive performance.

Fruit flies

In genetically modified flies, olfactory-based behavioral 
assays, such as the shock-paired odor conditioning test, 
were used to determine the effect of d-serine on learning and 
memory. In this assay, adult flies were initially exposed to 
an odor paired with an electric shock (conditioned stimulus, 
CS) and to a second odor without an accompanying shock. 

After this initial training, wildtype (WT) flies learned to 
avoid the CS when given a choice in subsequent behavio-
ral assays. However, aged WT flies or young flies overex-
pressing drosophila pyruvate carboxylase (dPC), an enzyme 
that normally increases with age, display several types of 
memory impairments in the shock-paired odor condition-
ing test (Yamazaki et al. 2014) (Table 1). Both aging and 
dPC overexpression led to a decrease in the ratio of d- to 
l-serine, where the administration of d-serine through feed-
ing reversed learning and memory deficits.

Rodents

Many studies have employed genetically modified SRR mice 
to assess the role of d-serine levels in cognitive function. To 
assess episodic memory, WT and germline SRR knockout 
mice were evaluated in two sequence memory tasks for their 
ability to remember the order in which specific objects or 
odors were presented (DeVito et al. 2011). On both assays, 
SRR knockout mice expressed opposite order preference 
behavior from WT mice. This indicates that mice lacking 
d-serine are able to discriminate and remember the temporal 
order of events, but their memory expression is impaired. 
Interestingly, SRR knockout mice had reduced branching, 
length, and spine density in apical dendrites of the medial 
prefrontal cortex, suggesting a possible disruption in the 
hippocampal-medial prefrontal cortex circuitry that could 
bias mice lacking d-serine to more recent memory events. 
Conversely, no differences between SRR knockout and WT 
mice were found on object recognition and displacement 
tasks, which assess preference for a novel versus familiar 
object and relocated versus stationary object, respectively 
(DeVito et al. 2011). This finding implies that d-serine is 
involved in specific aspects of cognition, such as the rep-
resentation of event order, but not all aspects of learning 
and memory (DeVito et al. 2011). This finding was repli-
cated in an object recognition test in another study using 
germline SRR knockout mice; however, they showed that 
mutant mice spent more time investigating the two identi-
cal objects during the acquisition phase of the test (Mat-
veeva et al. 2019). This suggests that despite having intact 
long-term object recognition memory, d-serine may affect 
the learning process, as SRR knockout mice may require 
more time to establish a stable memory of these objects. 
In another model employing N-nitroso-N-ethyl urea (ENU) 
mutagenesis, in which point mutations were introduced into 
the genome, resulting  SRRY269* mutant mice that lack SRR 
activity also showed no deficit in object recognition (Labrie 
et al. 2009a, b). Similar to SRR knockout mice,  SRRY269* 
mutants did not show impaired performance in the novel 
object test (Labrie et al. 2009a, b). However,  SRRY269* mice 
had a significant deficit in the object displacement task that 
could be rescued by subcutaneous d-serine administration 
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Table 1  Effect of d-serine on cognition

Model Organism d-serine levels Cognition/behavioral outcome

WT
(aged)
(Yamazaki et al. 2014)

Drosophila ↓ Shock-paired odor
memory task (SOMT); decreased memory retention of 

negative stimulus in aged WT flies given T maze odor 
discrimination task, + D-serine (1 mM) rescued behavior

Overexpressing
pyruvate carboxylase (dPC +)
(Yamazaki et al. 2014)

Drosophila ↓ SOMT; decreased memory retention of negative stimu-
lus in dPC + flies given T maze odor discrimination 
task, + D-serine (1 mM) rescued behavior

WT
(Balu et al. 2018)

Mice ↑ amygdala D-serine is increased after fear conditioning, D-serine 
(300 mg/kg) administration facilitated acquisition and 
retention of exticition

Acute restraint stress
(Guercio et al. 2014)

Mice ↓
Prefrontal cortex

Object recognition task; novel object exploration decreased 
in stressed animals due to effect of acute stress on 
memory consolidation, + D-serine (1 g/kg, i.p.) rescued 
behavior

SRR ENU mutagenesis D-serine  (SrrY269*)
(Labrie, 2009)

Mice ↓ Spatial change session of the object discrimination task; 
increased time spent with displaced objects in WT mice, 
no difference in exploratory behavior of displaced objects 
versus stationary objects in mutant mice, + D-serine 
(600 mg/kg) rescued behavior

SRR ENU mutagenesis D-serine
(Labrie et al. 2009a, b)

Mice ↓ Morris Water Maze (MWM); decreased time spent in tar-
get area during swim test + D-serine (600 mg/kg) rescued 
behavior

Novel object recognition test no significant difference in 
object exploration time

SRR KO
(DeVito et al. 2011)

Mice ↓ Order task: exhibited an opposite pattern of preference for 
the order of events in distinct experiences in object or 
odor tests

SRR KO
(DeVito et al. 2011)

Mice ↓ Object displacement task; spend more time exploring a 
recently experienced object than a previous object which 
was opposite to WT

SRR KO (DeVito et al. 2011; Matveeva et al. 2019) Mice ↓ Novel object recognition test no significant difference in 
object exploration time

SRR KO
(Basu et al. 2016)

Mice Not shown Decreased freezing associated with impaired contextual 
fear memory

SRR KO
(Inoue et al. 2018)

Mice Not shown No change in freezing showing impairment in fear extinc-
tion; Reduction in freezing showing decreased fear 
memory retrieval

CX3CR1
creErt2:SRRfl/fl

GFAPcreErt2:SRR fl/fl

TMEM119:SRR fl/fl

CX3CR1
creErt2:Slc1a4fl/fl

GFAPcreErt2:Slc1a4 fl/fl

(Perez et al. 2017; Tapanes et al. 2022)

Mice ↓ (in glia) Prevents impairments in contextual fear conditioning after 
CCI

WT
(Aged; 18–20, 22–24 mo.)
(Nava-Gomez et al. 2022b)

Rat Not shown Reversal learning task; decreased cognitive flexibil-
ity + D-serine (300 mg/kg) rescued behavior

ICV injection of Aβ
(Nikseresht et al. 2021)

Rat Not shown Passive avoidance task; decreased avoidance post-con-
ditioned foot shock-paired stimulus + (2/5 μmol /4 μl 
D-cycloserine) rescued behavior

NMDAR antagonist: MK- 801
(Nagy et al. 2021)

Rat Not shown Passive Avoidance task; decreased avoidance post-condi-
tioned foot shock-paired stimulus + D-serine (640 mg/
kg) or DAAO inhibitor (CPD30; 0.1 mg/kg, prevents 
D-serine degradation) rescued behavior

WT (adult)
(Bai et al. 2014)

Rat Not shown Inhibitory Avoidance Task; latency to enter dark/shock-
paired compartment + D-serine (800 mg/kg) enhanced 
extinction learning
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(600 mg/kg) (Labrie et al. 2009a, b). It is important to 
note that it is difficult to determine whether this mutagenic 
approach is specific to SRR, as other genes are likely to be 
affected. Furthermore, the  SRRY269* mutant study used male 
and female data compared to SRR knockout studies that used 
only males, which may contribute to some of the differences 
observed between groups in the object displacement test. An 
impairment was also observed in the Morris water maze, a 
spatial learning task where the latency to locate a hidden 
underwater platform was measured; this deficit was similarly 
rescued via exogenous d-serine administration (Labrie et al. 
2009a, b). Unlike object recognition, the object displace-
ment task evaluates spatial memory (Denninger et al. 2018). 
This may explain why similar deficits were observed on this 
assay as the Morris water maze and implies that d-serine 
plays a critical role in spatial learning and memory, which 
relies predominantly on the hippocampus. In another study 
employing germline SRR knockout mice, a similar deficit 
was observed in males but not females on the Morris water 
maze (Basu et al. 2009). As female rodents have been shown 
to engage the striatum in spatial learning tasks (Yagi and 
Galea 2019), this further suggests a preferential role of 
d-serine in hippocampal-dependent learning and memory. 
Furthermore, d-serine has been implicated in other hip-
pocampal-dependent learning and memory assays, as SRR 
knockout mice showed decreased contextual fear memory 
on a trace conditioning assay (Basu et al. 2016). Supporting 
these findings, we have shown that neuronal SRR is required 
for hippocampal long-term potentiation (LTP), a process that 
underlies learning and memory (Perez et al. 2017). However, 
in a controlled cortical impact (CCI) mouse model of TBI, 
astrocyte and microglia cells upregulate d-serine production 
and release, contributing to cognitive impairments after TBI. 
Blocking the synthesis of glial d-serine rescued hippocam-
pal synapses, LTP, and contextual fear memory after CCI 
(Perez et al. 2017; Tapanes et al. 2022). Furthermore, phar-
macological blockade or genetic ablation of glial d-serine 
transporters Slc1a4 and Slc7a10 similarly protected against 

CCI-induced learning and memory impairments, illustrating 
the importance of studying cell-specific effects of d-serine 
on cognition (Tapanes et al. 2022).

Administration of d-serine in models of aging, stress, and 
NMDAR antagonist treatment rescued memory impairments 
in various learning tasks, including the Morris water maze 
(Table 1). In a reversal learning attention test measuring 
cognitive flexibility performance, d-serine supplementa-
tion via drinking water (300 mg/kg/day) normalizes the 
decline in cognitive flexibility observed in middle-aged 
(18–20 months) and aged (22–24 months) rats (Nava-Gomez 
et al. 2022a). Furthermore, d-serine prevents acute stress-
induced impairments in memory consolidation in adult mice 
in the object recognition test (Guercio et al. 2014). In an AD 
mouse model using Aβ1–42 injection, D-serine administra-
tion rescued impairments in spatial memory on the Morris 
water maze and improved associative memory deficits on the 
passive avoidance learning task, which measures the latency 
to enter a compartment that had previously been paired 
with a negative stimulus (i.e., foot-shock) (Nikseresht et al. 
2021). This mechanism is likely through d-serine activity 
at NMDARs, as administration of the NMDAR antagonist 
MK-801 induced memory impairments in rats on the passive 
avoidance task that were reversed by d-serine (640 mg/kg) 
(Nagy et al. 2021).

In an inhibitory avoidance task, which uses a foot shock as 
a negative stimulus, intraperitoneal administration of d-serine 
(800 mg/kg) an hour prior to extinction training accelerated 
fear memory extinction (Bai et al. 2014), while d-serine (2.7 g/
kg,) administered ten minutes prior to retrieval training res-
cued deficits in extinction recall memory in SRR knockout 
mice (Inoue et al. 2018) (Table 1). Extinction of contextual 
fear memory was also facilitated in mice harboring the hypo-
functional Dao1(G181R) mutation, in which the activity of 
DAAO, the enzyme that degrades d-serine, was inhibited, 
leading to higher d-serine levels (Labrie et al. 2009a, b). More-
over, trace fear conditioning impairments in SRR knockout 
mice are restored by systemic treatment with d-serine (300 mg/

WT wild-type, SRR KO serine racemase knockout, RLT reversal learning task, PAT passive avoidance task, ORT object recognition task, –OMT 
shock-paired odor memory task, DAAO d-Amino Acid Oxidase

Table 1  (continued)

Model Organism d-serine levels Cognition/behavioral outcome

Humans with Schizophrenia
(Hons et al. 2021)

Humans ↓
Serum

Participants scoring lower on Rey–Osterrieth Complex 
Figure (learning and memory), Trail Making (atten-
tion, processing speed, visual-motor coordination), and 
Wisconsin Card Sorting (problem solving and reasoning) 
tests showed a lower average serum level of D-serine and 
D-serine/total serum ratio

Humans with Post traumatic stress disorder (PTSD)
(Inslicht et al. 2022)

Humans Not shown  + D-cycloserine (50 mg) group demonstrated decreased 
Skin Conductance Response (Extinction learning) and 
a trend towards decreased Skin Conductance Response 
extinction retention



1506 D. Arizanovska et al.

1 3

kg), while SRR and d-serine are dynamically regulated by fear 
conditioning and extinction in the mouse amygdala (Balu et al. 
2013, 2018; Heresco-Levy et al. 2009; Walker et al. 2002; 
Wolosker & Balu 2020) (Table 1). Together, these studies 
highlight a critical role for SRR and d-serine in various aspects 
of cognition, where decreased levels of d-serine lead to impair-
ments in hippocampal-dependent learning and memory.

Humans

Studies have shown the benefits of d-serine administration 
on cognition in humans; however, these studies become 
more complicated as they are add-on treatments to antipsy-
chotics. Lower serum levels of d-serine and d-serine/total 
serine ratio were correlated to poor performance on execu-
tive function tasks, such as the Rey–Osterrieth Complex Fig-
ure, Trail Making, and Wisconsin Card Sorting tests (Hons 
et al. 2021). Moreover, Hons and colleagues summarized 
studies that showed the addition of d-serine (30–120 mg/
kg) to ongoing antipsychotic or cognitive retraining (CRT) 
treatment in people with schizophrenia improved cognitive 
functions on various tasks (i.e. Wisconsin Card Sort Test 
(WCST), Measurement and Treatment Research to Improve 
Cognition in Schizophrenia (MATRICS) domains, Hopkins 
Verbal Learning Test-Revised (HVLT-R), WAIS-III Logi-
cal Memory, Tower of London (TOL) executive functioning 
task, and continuous performance test) (Hons et al. 2021) 
(Table 1). Conversely, in a 16-week trial of d-serine (2 g/
day) as an add-on treatment to antipsychotics, there was no 
significant improvement in the MATRICS cognitive score 
(Weiser et al. 2012). In controlled trials, systemic adminis-
tration of d-cycloserine, a partial agonist of the NMDAR 
GMS, which can increase extracellular levels of brain 
d-serine, reduced symptoms of acrophobia (fear of heights) 
(Ressler et al. 2004) and d-serine treatment reduced symp-
toms in people with post-traumatic stress disorder (PTSD) 
(Heresco-Levy et al. 2009). Furthermore, individuals with 
PTSD showed significantly enhanced fear extinction after 
taking d-cycloserine, as measured by skin conductance 
response, with a trend towards increased extinction reten-
tion. (Inslicht et al. 2022) (Table 1). It is important to note, 
however, that many of these clinical studies had small sam-
ple sizes and included subjects primarily with schizophrenia, 
PTSD, or dementia; more large-scale studies that include 
other disorders with cognitive decline are needed to fully 
understand the role of d-serine in cognition.

d‑Serine and social behaviors

d-serine plays a crucial role in social functioning, where 
its dysregulation has been implicated in neuropsychiatric 
conditions such as depression and schizophrenia (reviewed 

in Cho et al. 2016; de Bartolomeis et al. 2022; MacKay et al. 
2019; Pei et al. 2021).

Rodents

Rodent models of depression and schizophrenia commonly 
rely on the three-chamber sociability test to assess moti-
vation for social interactions (Nadler et al. 2004). In this 
paradigm, animals are allowed to freely explore an arena 
with three compartments. The first phase of the test meas-
ures sociability, in which one chamber contains a rodent 
and the other a novel object. Time spent in each chamber is 
recorded, where rodents with higher sociability will spend 
more time with the other animal than an object. In the sec-
ond phase of the test, the object is replaced with a novel 
animal, and time spent in the chamber with the original (now 
familiar) versus novel animal is evaluated to assess prefer-
ence for social novelty (Crawley 2004; Kaidanovich-Beilin 
et al. 2011; Nadler et al. 2004). Using this assay, Matveeva 
and colleagues found that while there were no differences 
in the sociability phase of the test, germline SRR knock-
out mice spent more time investigating the familiar versus 
novel mouse as opposed to WT mice, implicating reduced 
d-serine in impaired preference for social novelty (Matveeva 
et al. 2019). A recent study by Aguilar and colleagues found 
similar results, as both WT and SRR knockout mice pre-
ferred exploring a novel mouse versus a novel object (Agui-
lar et al. 2021). However, in the social novelty phase, WT 
mice spent a significantly greater proportion of time, as well 
as had more entries, into the chamber with the novel mouse 
than with the familiar mouse. Interestingly, EEG recordings 
revealed that SRR knockout mice had reduced low gamma 
power in the frontal cortex at the onset of investigating the 
novel mouse, as well as enhanced background gamma during 
the task. As people with schizophrenia have impaired frontal 
cortex gamma power, likely due to GABAergic interneuron 
dysfunction and cortical disinhibition, this study demon-
strates a link between d-serine, social behavior, and schizo-
phrenia-like phenotypes (Aguilar et al. 2021).

Rather than genetic knockout, Labrie and colleagues 
employed ENU mutagenesis to introduce spontaneous 
point mutations into the Srr genome (Labrie et al. 2009a, 
b) (Table 2). They observed an approximately 50% reduc-
tion of Srr mRNA, resulting in significant protein loss and 
no d-serine production within the whole brain. Contrary to 
SRR knockout mice,  SRRY269* mice expressed deficits in the 
sociability but not social novelty phase of the three-chamber 
interaction test, as they spent more time exploring the object 
rather than the novel animal. This discrepancy could be due 
to the use of different models of SRR mutagenesis, where 
ENU mutagenesis has greater off-target effects than direct 
genetic knockout. Even so, these studies collectively high-
light the important role of SRR and d-serine synthesis in 



1507Cross species review of the physiological role of d‑serine in translationally relevant…

1 3

social interactions. In further support of this, the administra-
tion of d-serine was sufficient to restore social behavior in 
 SRRY269* mice (Labrie et al. 2009a, b) (Table 2). Only one 
study found no effect of SRR knockout on the three-chamber 
interaction test (DeVito et al. 2011); however, this may be 
due to the use of a littermate as the stimulus mouse, thus 
masking any potential deficits in sociability that would be 
present with a stranger mouse, as used in the other studies.

In addition to direct SRR manipulation, d-serine levels 
are also controlled by amino acid transporters. Wang and 
colleagues used chronic social defeat stress (CSDS) to evalu-
ate whether alanine-serine-cysteine transporter 2 (ASCT2/
Slc1a5) is involved in depressive-like behavior (Wang et al. 
2017). Ten days following CSDS, social interaction was 
evaluated by placing mice in an open field arena with a 
cage containing an aggressor mouse in the center, and time 
spent in a surrounding “interaction zone” was recorded; it 

was found that stressed mice spent less time in the inter-
action zone than control mice. High-performance liquid 
chromatography (HPLC) showed decreased d-serine in the 
hippocampus of CSDS mice, while bilateral injection of 
d-serine into the hippocampus rescued social interaction. 
In addition, ASCT2 acetylation was enhanced after CSDS, 
corresponding to increases in mRNA and protein expression 
primarily in the CA1 and CA3 regions of the hippocam-
pus. Reducing ASCT2 expression via bilateral injection 
of shRNA into the hippocampus increased d-serine levels 
and restored social interaction. This suggests that, while 
ASCT2 can perform bidirectional transport of D-serine, it 
likely negatively regulates d-serine levels in the hippocam-
pus after CSDS via enhanced uptake, thus contributing to 
social impairments in this model. Future studies exploring 
the role of other amino acid transporters with more abun-
dant expression in the forebrain, such as Slc1a4 and Slc7a10 

Table 2  Effect of d-serine on social behavior

Model: genetic/treatment Organism d-serine levels Social behavior

SRR KO
(DeVito et al. 2011)

Mice ↓ Three chamber sociability test; no changes in sociabil-
ity or preference for social novelty

SRR KO
(Matveeva et al. 2019)

Mice ↓ Three chamber sociability test; no difference in socia-
bility deficit in social novelty preference

SRR KO
(Aguilar et al. 2021)

Mice ↓ Three chamber sociability test; no difference in socia-
bility deficit in social novelty preference

EEG recordings; decreased low gamma power in fron-
tal cortex during onset of social investigation

SRR ENU mutagenesis:  SrrY269*

(Labrie et al. 2009a, b)
Mice ↓

In whole brain, hip-
pocampus frontal 
cortex

Three chamber sociability test; deficit in sociability no 
change in preference for social novelty

 + D-serine rescued sociability

WT
(control and CSDS), bilateral hippocampal D-serine 

or ASCT2 shRNA injection
(Wang et al. 2017)

Mice ↓
HP

Social interaction test; decreased time spent in social 
interaction zone

 + D-serine or ASCT2 knockdown rescued behavior

Grin1D481N mutant Grin1D481N and DaaoG181R double 
mutant

(Labrie et al. 2010)

Mice N/A in Grin1D481N,
↑ double mutant WB

Three chamber sociability test; deficits in sociability 
and preference for social novelty

Double mutation rescued behavior
Grin1 hypomorph,
(A. N. Hanks et al. 2013a, b)

Mice Not shown Three chamber sociability test; deficit in sociability
 + D-serine had no effect on sociability

Balb/c, IP D-serine injection
(Jacome et al. 2011)

Mice Not shown Three chamber sociability test; deficit in sociability
 + D-serine (560 m/kg IP) rescued sociability

PolyI:C injection, IP D-serine injection
(Nagai et al. 2012)

Mice Not shown Social interaction with intruder decreased
 + D-serine (1.0 g/kg IP) rescued behavior

NLG3 knockin
(Cao et al. 2022)

Mice Not shown Three chamber sociability test; deficit in social novelty 
preference

 + D-cycloserine (IP or prefrontal cortex infusion) 
rescued behavior

Valproic acid-exposure (Wu et al. 2018) Rats Not shown Three chamber sociability test; deficit in
 + D-cycloserine (20 mg/kg IP or bilateral amygdal 

infusion) rescued behavior
Shank2 mutants
(Won et al. 2012)

Mice Not shown Three chamber sociability test;deficit in sociability
 + D-cycloserine rescued behavior

Humans with social anxiety disorder
(J. A. J. Smits et al. 2020a, b)

Humans Not shown D-cycloserine during exposure therapy improved 
social anxiety symptoms
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(Tapanes et al. 2022), will be critical in further elucidating 
the effect of D-serine release on social behavior.

Many studies have suggested that NMDAR neurotrans-
mission influences social behavior (reviewed in (Zoicas and 
Kornhuber 2019)), where d-serine plays an important modu-
latory role. Grin1D481N mutant mice, which have reduced 
NMDAR activity, exhibit schizophrenia-like symptoms, 
including impairments in both phases of the three-chamber 
social interaction test. However, this deficit was rescued 
in mice with a double DaaoG181R and Grin1D481N muta-
tion, indicating that enhanced d-serine can rescue NMDAR 
hypofunction (Labrie et al. 2010). It is important to note 
that in this model, Grin1D481N mutant mice had a fivefold 
reduction in affinity at the GMS; however, in another model 
of NMDAR dysfunction, Grin1 hypomorph mice, which 
have a 90–95% reduction of NR1 subunit expression (Mohn 
et al. 1999), exhibited sociability deficits that could not be 
rescued by d-serine due to loss of the GMS binding site 
(Hanks et al. 2013a, b). In addition, the Balb/c mouse strain 
has enhanced sensitivity to the NMDAR antagonist MK-801 
relative to various strains (C57BL/6, AKR, DBA/2, Swiss-
Webster (Billingslea et al. 2003; Burket et al. 2013; Deutsch 
et al. 1998, 1997)) and decreased sociability that can be res-
cued by acute injection of d-serine (Jacome et al. 2011). 
d-cycloserine, a d-serine analog, has been shown to ame-
liorate social behavior in various ASD models by restoring 
NMDAR signalling pathways (Won et al. 2012; Wu et al. 
2018). Recently, it was found that systematic administration 
or direction infusion of d-cycloserine into the prefrontal cor-
tex rescued preference for social novelty in adult neuroligin 
3 R451C knockin mice, a model of ASD. Notably, intra-
peritoneal injection of d-cycloserine for two weeks during 
adolescence (P31-45), a period when the onset of NMDAR 
hypofunction is observed, similarly restored social nov-
elty preference in adult mice (Cao et al. 2022), implicating 
d-cycloserine as a long-term treatment for social behavior. 
Furthermore, maternal infection during prenatal develop-
ment is associated with the development of schizophrenia 
later in adulthood (Nagai et al. 2012). Polyriboinosinic-pol-
yribocytidilic acid (polyI:C), a synthetic analog of double-
stranded mRNA, was used to investigate the effects of d-ser-
ine and NMDARs on schizophrenia-like behavior following 
prenatal immune challenge (Nagai et al. 2012). At 10 weeks 
of age, male mice were individually housed for two days, 
then assessed for social interaction when an intruder mouse 
was introduced into their home cage. PolyI:C-treated mice 
had significantly less interaction time than saline-treated 
mice, which was restored by a single injection of d-serine 
30 min prior to behavioral testing. d-serine administration 
had no significant effect on control mice, and l-serine had 
no effect on either polyI:C or saline-treated mice. Pretreat-
ment with MK-801 prior to d-serine administration reduced 
the effect of d-serine on social interaction time, suggesting 

that prenatal polyI:C treatment interferes with the develop-
ment of NMDAR-dependent signaling pathways. Together, 
these studies illustrate the critical role of d-serine in rodent 
social behavior, where decreased levels of d-serine lead to 
deficits in social interactions, likely through the hypoactivity 
of downstream NMDARs.

Humans

d-Serine levels in the CSF of people with major depres-
sive disorder (MDD) are negatively correlated with disease 
severity (Ishiwata et al. 2018), and both d-serine serum 
and CSF levels are reduced in people with schizophrenia 
(Bendikov et al. 2007; Hashimoto et al. 2005, 2003; Ohnuma 
et al. 2008). Furthermore, postmortem studies of people with 
schizophrenia have identified an increase in DAAO (Madeira 
et al. 2008) as well as a reduction in SRR (Labrie et al. 
2009a, b) in brain tissue. Several clinical trials have investi-
gated the effect of d-serine administration, either alone or in 
combination with antipsychotics, in schizophrenia (D'Souza 
et al. 2013; Ermilov et al. 2013; Heresco-Levy et al. 2015, 
2005; Kantrowitz et al. 2016, 2018, 2010; Lane et al. 2005, 
2010; Tsai et al. 1998, 1999; Weiser et al. 2012), recently 
reviewed in de Bartolomeis et al. (2022). While a break-
down of changes in specific measures is not provided, some 
studies have reported improvements in the negative symp-
toms of schizophrenia when d-serine was added to typical 
antipsychotic treatment (Ermilov et al. 2013; Heresco-Levy 
et al. 2005; Kantrowitz et al. 2010; Tsai et al. 1998), which 
include assessments of social withdrawal and avoidance. In 
individuals at high risk for schizophrenia, oral administra-
tion of d-serine alone significantly improved negative symp-
toms (Kantrowitz et al. 2015). Interestingly, the addition of 
d-serine to clozapine, a partial NMDAR agonist (Tsai et al. 
1999), or atypical antipsychotics (Lane et al. 2010) did not 
improve negative symptoms, suggesting that the effective-
ness of d-serine depends on the mechanism of action of co-
administered therapies. Furthermore, as negative affective 
symptoms in schizophrenia are highly comorbid with MDD, 
clinical findings have prompted the investigation of the role 
of d-serine in anti-depressive effects (MacKay et al. 2019). 
In addition, clinical trials have established a positive role 
for d-cycloserine in the treatment of MDD (Henter et al. 
2021) and social anxiety disorders (Smits et al. 2020a, b), 
suggesting the need for further studies on the therapeutic 
potential of d-serine.

d‑Serine and sleep

d-serine was shown to be important for sleep regulation via 
mutations that affect d-serine levels and administration of 
NMDAR antagonists in fruit flies and rodents. Sleep in fruit 
flies is described by the duration, intensity, latency to sleep, 
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recovery after sleep deprivation, and arousal level (Dai 
et al. 2019). The Drosophila Activity Monitoring System 
(DAMS) measures sleep by using infrared beams to detect 
and quantify fly movement over time; if the beam is not bro-
ken for five or more minutes, fly activity is counted as sleep 
(Beckwith and French 2019; Nakagawa et al. 2022). This 
method allows for the quantification of the frequency and 
duration of sleep bouts, or how often a fly sleeps and wakes 
up. In rodents, patterns of coordinated changes in electroen-
cephalogram (EEG) and electromyogram (EMG) readings 
can be used to measure sleep (Naylor et al. 2011), as EEG 
signals reflect the electrical activity of the brain and pro-
vide information about the level of neuronal activity. High-
frequency EEG activity (> 12 Hz) is typically associated 
with wakefulness, while low-frequency activity (< 5 Hz) is 
often seen during sleep. On the other hand, EMG measures 
the electrical activity of muscles, where a low EMG sig-
nal may indicate sleep while a high amplitude EMG signal 
may indicate active movement (Naylor et al. 2011). EEG 
and EMG recordings can also be used to distinguish non-
rapid eye movement (NREM) from rapid eye movement 
(REM) sleep. NREM sleep is characterized by a decrease 
in body temperature, heart rate, respiration, and EEG and 
EMG activity. In contrast, REM sleep is characterized by an 
increase in body temperature, heart rate, and respiration, and 

EEG and EMG activity (Mondino et al. 2021). In humans, 
self-report can be used in addition to electrophysiological 
data. For example, sleep diaries can be used to establish 
baseline sleep patterns (Dutcher et al. 2021), and question-
naires can be used to account for details including the dura-
tion, latency, efficiency, and disturbances of sleep as well as 
the use of sleeping medication and daytime dysfunction to 
assess overall sleep quality (Buysse et al. 1989).

Fruit flies D-serine has been implicated in sleep regulation 
using transgenic models, where SRR knockout flies were 
found to have significantly reduced nighttime sleep duration, 
increased latency to sleep, and elevated arousal rates that can 
be rescued by exogenous d-serine administration (Dai et al. 
2019) (Table 3). Mutating serine hydroxymethyltransferase, 
an enzyme involved in the synthesis of l-serine, resulted in 
reduced sleep duration that could be reversed through either 
l-serine or d-serine supplementation (Dai et al. 2019). Con-
versely, sleep duration was increased in daao hypomorphic 
mutant flies, which have reduced catabolism of d-serine, 
supporting the role of d-serine in promoting sleep (Naka-
gawa et al. 2022). d-Serine administration through feeding 
increased sleep duration in a dose-dependent manner in WT 
flies (Nakagawa et  al. 2022). Interestingly, astrocyte-like 
glia cells and not neurons showed an increase in sleep-wake 

Table 3  Effect of d-serine on sleep activity

SHMT Serine hydroxymethyltransferase, DAAO -dko d-amino acid oxidase double knock-out

Model: Genetic/treatment Organism d-serine Sleep

SRR KO
(Dai et al. 2019)

Drosophila ↓ Reduction in sleep duration during the dark phase
No change in sleep duration during the light phase
Administration of  d-serine (2.9 g/L) rescued phenotype

SRR knockdown
(Astrocyte-like glial cells)
(Nakagawa et al. 2022)

Drosophila ↓ No change in sleep duration
Increase in sleep–wake bouts

SHMT mutant
(Dai et al. 2019)

Drosophila ↓ Reduction in sleep duration in both the dark and light phase
Administration of either l/d-serine (2.9 g/L) rescued deficits

DAAO -dko
(Dai et al. 2019)

Drosophila ↑ Increase in sleep duration in both the dark and light phase

Daao1 mutants
(Nakagawa et al. 2022)

Drosophila ↑ Increase in sleep duration

WT
D-serine administration (≥ 50 mM)
(Nakagawa et al. 2022)

Drosophila ↑ Increase in sleep duration

SRR KO
(Aguilar et al. 2021)

Mice ↓ No change in either non-REM/REM Sleep
No change in wake state in both number and duration

WT
(Papouin et al. 2017)

Mice Hippocampus
Wake
dark (active) phase ↑
light (sleep) phase, ↓

Changes in  d-serine during the dark and light phase

Social Anxiety Disorder
(Dutcher et al. 2021)

Humans ↑ d-Cycloserine (50 mg) did augment the effect of exposure therapy on 
sleep quality

Control
(Alizadeh Asfestani et al. 2018)

Humans Not shown d-Cycloserine (175 mg) increased the effect of sleep on memory 
retention
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bouts but no change in sleep duration   (Nakagawa et  al. 
2022). However, d-serine failed to restore reduced sleep 
duration in nmdar1 hypermorphic mutants (Nakagawa et al. 
2022) and nmdr1 knockout flies (Dai et al. 2019), suggest-
ing that d-serine regulates and promotes sleep in flies via 
NDMAR signaling. 

Interestingly, a recent study has shown that changes in 
nighttime sleep duration in srr mutants can be rescued by 
the reintroduction of SRR specifically into intestinal epithe-
lial cells (Dai et al. 2019). This result shows that intestinal 
d-serine signaling is important in the homeostatic regulation 
of sleep, suggesting a novel role of the intestine in sleep 
regulation (Dai et al. 2019).

Rodents Similar to flies, d-serine reduces the sedative 
response induced by alcohol in rodents (Lockridge et  al. 
2012), and one study suggests that d-serine levels oscillate 
during wakefulness and sleep (Papouin et al. 2017). Extra-
cellular recordings of NMDAR-mediated field excitatory 
post-synaptic potentials from the hippocampus of mice sac-
rificed at different times during the day show that NMDARs 
are saturated with d-serine at the end of the dark (active) 
phase, which rapidly declines to non-saturating levels in 
the light (sleep) phase, and progressively builds up again 
throughout the dark phase (Papouin et al. 2017) (Table 3). 
However, in another study employing SRR knockout mice, 
there were no significant changes in the percentage of time 
in each sleep/wake vigilance state, the average bout length, 
or the average bout frequency in SRR knockout relative to 
WT mice (Aguilar et al. 2021) (Table 3). Further, charac-
teristics of sleep spindles (i.e., spindle density, amplitude, 
median and mean duration, median frequency), which are 
EEG presentations of non-REM sleep, were also unchanged 
in SRR ablated mice (Aguilar et al. 2021) (Table 3). How-
ever, this could be due to the fact that studies were performed 
on mice that were single-housed while tethered to an EEG 
recording, which might affect natural sleeping patterns. To 
address this possibility, it will be important to conduct more 
studies on the effect of d-serine using wireless telemetry 
transmitters that enable continuous measurements of EEG, 
EMG, locomotor activity, and subcutaneous temperature in 
freely moving rodents (Missig et  al. 2018). Furthermore, 
future studies employing conditional SRR knockout mice 
will be critical, as germline knockout mice could have com-
pensatory mechanisms during development that mask the 
role of d-serine in adult sleep patterns.

Humans In a study of 51 healthy participants, a 175  mg 
dosage of d-cycloserine increased the effect of sleep on 
memory retention. Specifically, it was found that the learn-
ing of new words was better after sleep than wakefulness 
(Alizadeh Asfestani et  al. 2018), suggesting that d-cyclo-
serine can improve the ability of sleep to aid in the reten-

tion of new information (Table 3). In individuals with social 
anxiety disorder (SAD), d-cycloserine (50 mg) did augment 
the effect of exposure therapy on sleep quality. It is worth 
noting that the study did not examine the direct impact of 
d-cycloserine on sleep and that the sleep (quality and time) 
data was self-reported. (Dutcher et al. 2021) (Table 3).

Conclusion

Model systems are an essential tool in the development of 
new pharmacotherapeutics targeting sociability and cogni-
tion, despite challenges in translating higher-order cognitive 
processes. While no disease model can fully reflect human 
behavior, it can effectively reproduce underlying molecular 
and cellular pathologies. This review summarizes findings 
on the effect of d-serine on cognition, social interaction, 
and sleep in different species (Fig. 1). Administration of 
d-serine has shown promising results in rescuing learning 
and memory impairments induced by SRR knockout and 
environmental factors in flies and rodents. In humans, d-ser-
ine supplementation to antipsychotic treatments for schizo-
phrenia enhanced cognitive flexibility. Furthermore, d-serine 
or d-cycloserine enhanced fear extinction in both mice and 
humans with PTSD. In mice, there was a time-dependent 
role of d-serine in learning and memory, as shown by the 
different effects in immediate, delayed or post-retrieval 
extinction (Inoue et al. 2018); it will, therefore, be important 
to consider the timing of d-serine administration in future 
clinical trials.

Although there were some variations in the detection of 
deficits in sociability (Labrie et al. 2009a, b) versus prefer-
ence for social novelty (Aguilar et al. 2021; Matveeva et al. 
2019), the effects of d-serine on social behavior were gen-
erally consistent across rodent studies. Notably, systemic 
administration of d-serine was sufficient to rescue social 
impairments across various models, including SRR ENU 
mutagenesis (Labrie et al. 2009a, b), CSDS (Wang et al. 
2017), Balb/c strain mice (Jacome et al. 2011), and PolyI:C 
injection (Nagai et al. 2012), implicating d-serine as a pos-
sible therapeutic for social withdrawal and avoidance. In 
humans, little to no clinical trials have directly assessed the 
effect of d-serine on social behavior. However, preliminary 
studies show that d-cycloserine is able to ameliorate symp-
toms of social anxiety, suggesting further exploration of the 
role of d-serine on social behavior is warranted. While d-ser-
ine was found to regulate sleep in flies, further research is 
needed in rodents using wireless telemetry transmitters that 
enabled continuous measurements of EEG, EMG, locomotor 
activity, and subcutaneous temperature to compare to human 
data (Missig et al. 2018). Also, more in vivo studies that 
measure absolute d-serine levels during sleep and wakeful-
ness will be vital. In humans, studies showing the beneficial 
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effect of d-cycloserine on sleep-induced memory retention 
indicate that it may directly play a role in sleep, given that 
REM sleep is essential for memory consolidation.

A common limitation across many studies is that 
NMDAR function is not evaluated to determine whether 
the effect of d-serine on behavior is directly linked to 
NMDAR signalling. However, various studies have shown 
that SRR knockout mice have a reduction in NMDAR cur-
rents and NMDAR-induced excitatory postsynaptic poten-
tials (EPSPs) in the hippocampus and dentate gyrus (Balu 
et al. 2013, 2016; Basu et al. 2009; Benneyworth et al. 
2012; Dallerac et al. 2021; Perez et al. 2017). Further-
more, postsynaptic deletion of SRR regulates NMDAR-
dependent synaptic plasticity (Wong et  al. 2020), and 
neuronal-specific SRR knockout reduced LTP in the 
naïve hippocampus whereas astrocytic SRR knockout 
prevents TBI-induced deficits in hippocampal LTP (Perez 
et al. 2017). These findings demonstrate a critical role for 
d-serine in NMDAR function, suggesting that d-serine’s 
effect on behavior is likely through downstream signalling. 
This possibility is supported by the fact that the amelio-
rating effect of d-serine on social interaction in PolyI:C 
treated mice was antagonized by pretreatment with an 
NMDAR antagonist, MK-801 (Nagai et al. 2012). Fur-
thermore, reducing catabolism of d-serine in DaaoG181R 
and Grin1D481N double mutants rescued social behavior 
relative to Grin1D481N mutants. Studies employing various 

models of ASD have demonstrated a direct link between 
the effect of d-cycloserine administration on social behav-
ior and NMDAR signalling, suggesting a similar mecha-
nism for d-serine (Cao et al. 2022; Won et al. 2012; Wu 
et al. 2018). Moreover, in sleep studies, d-serine increased 
sleep duration in WT flies but did not rescue reduced sleep 
in nmdar1 knockout flies (Dai et al. 2019) and NR1 hypo-
morphic mutant flies (Nakagawa et al. 2022). Together, 
these findings demonstrate a relationship between d-ser-
ine, behavior, and NMDAR activity that warrants further 
investigation to exclude the role of NMDAR-independent 
mechanisms.

Overall, these studies highlight the potential of d-serine 
as a therapeutic target for improving sociability, cognition, 
and sleep in various contexts. Further studies employing 
conditional, cell-specific knockout models to explore the 
downstream effects of d-serine on NMDAR signalling 
pathways will be critical to better understand the mech-
anisms underlying the effects of d-serine and to further 
establish its clinical applications.
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