Skip to main content
Log in

Serum branched amino acids and the risk of all-cause mortality: a meta-analysis and systematic review

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, the serum levels of branched-chain amino acids (BCAAs) have been considered as an indicator to evaluate health status and predict chronic diseases risk. This systematic review and meta-analysis aimed to assess the relationship between Serum BCAAs and the risk of all-cause mortality. We carried out a comprehensive and systematic search in various important databases, including PubMed, Scopus, and Web of Science databases to find the relevant studies published up to October 2022 with no language, design, or time limitation. We extracted the reported hazard ratio (HR) with 95% confidence interval (CI) and odds ratio (OR) with 95%CI in cohorts and case–control studies, respectively, and computed the log HR or OR and its standard error. Then, we used the random-effects model with inverse variance weighting method for the present meta-analysis, to calculate the pooled effect size. Ten observational studies, including nine cohort studies and one case–control study, were included in the present meta-analysis. The number of participants ranges from 53 to 26,711, with an age range of 18–99 years. During 6 months to 24 years of follow-up, 3599 deaths were ascertained. The pooled results indicated that there was no significant association between serum BCAAs (RR: 1.17; 95% CI 0.85–1.60), isoleucine (RR: 1.41; 95%CI 0.92–2.17), leucine (RR: 1.13; 95% CI 0.94–1.36), and valine (RR: 1.02; 95%CI 0.86–1.22) and all-cause mortality. Also, there was significant heterogeneity between studies for serum BCAAs (I2 = 74.1% and P-heterogeneity = 0.021), isoleucine (I2 = 89.4% and P-heterogeneity < 0.001), leucine (I2 = 87.8% and P-heterogeneity < 0.001), and valine (I2 = 86.6% and P-heterogeneity < 0.001). Our results suggested that the serum BCAAs and its components, including isoleucine, leucine, and valine, were not associated with the risk of all-cause mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data used and/ or analyzed in the present study are available from the corresponding author on reasonable request.

Abbreviations

BCAAs:

Branched-chain amino acids

CI:

Confidence intervals

CNS:

Central nervous system

ICU:

Intensive-care unit

CVD:

Cardiovascular disease

HR:

Hazard ratio

NAFLD:

Non-alcoholic fatty liver disease

NOS:

Newcastle–Ottawa Scales

OR:

Odds ratio

PRISMA:

Preferred Reporting Items for Systematic Review and Meta-analysis

RCTs:

Randomized-controlled trials

STROBE:

Strengthening the Reporting of Observational Studies in Epidemiology

T2D:

Type 2 diabetes

References

  • Anthony TG, Reiter AK, Anthony JC, Kimball SR, Jefferson LS (2001) Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats. Am J Physio-Endocrinol Metabolism 281(3):E430–E439

    Article  CAS  Google Scholar 

  • Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F (2017) High dietary intakes of branched-chain amino acids is associated with increased risk of insulin resistance in adults: branched-chain amino acids and insulin resistance. J Diabetes. https://doi.org/10.1111/1753-0407.12639

    Article  Google Scholar 

  • Azuma K, Xiang H, Tagami T, Kasajima R, Kato Y, Karakawa S, Kikuchi S, Imaizumi A, Matsuo N, Ishii H (2022) Clinical significance of plasma-free amino acids and tryptophan metabolites in patients with non-small cell lung cancer receiving PD-1 inhibitor: a pilot cohort study for developing a prognostic multivariate model. J Immunotherapy Cancer 10(5):e00443

    Article  Google Scholar 

  • Bifari F, Nisoli E (2017) Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol 174(11):1366–1377

    Article  CAS  PubMed  Google Scholar 

  • Cadoni G, Giraldi L, Chiarla C, Gervasoni J, Persichilli S, Primiano A, Settimi S, Galli J, Paludetti G, Arzani D, Boccia S, Giovannini I, Almadori G (2020b) Prognostic role of serum amino acids in head and neck cancer. Dis Markers 2020:2291759. https://doi.org/10.1155/2020/2291759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadoni G, Giraldi L, Chiarla C, Gervasoni J, Persichilli S, Primiano A, Settimi S, Galli J, Paludetti G, Arzani D (2020a) Prognostic role of serum amino acids in head and neck cancer. Disease Markers 2020a

  • Chen L, Chen Y, Wang X, Li H, Zhang H, Gong J, Shen S, Yin W, Hu H (2015) Efficacy and safety of oral branched-chain amino acid supplementation in patients undergoing interventions for hepatocellular carcinoma: a meta-analysis. Nutr J 14(1):1–11

    Article  Google Scholar 

  • Cochrane HJChfsroivVuMT, 2011. Cwc-ho.

  • Du X, Li Y, Wang Y, You H, Hui P, Zheng Y, Du J (2018a) Increased branched-chain amino acid levels are associated with long-term adverse cardiovascular events in patients with STEMI and acute heart failure. Life Sci 209:167–172. https://doi.org/10.1016/j.lfs.2018.08.011

    Article  CAS  PubMed  Google Scholar 

  • Du X, You H, Li Y, Wang Y, Hui P, Qiao B, Lu J, Zhang W, Zhou S, Zheng Y (2018b) Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI. Sci Rep 8(1):1–8

    Article  Google Scholar 

  • Du X, You H, Li Y, Wang Y, Hui P, Qiao B, Lu J, Zhang W, Zhou S, Zheng Y, Du J (2018c) Relationships between circulating branched chain amino acid concentrations and risk of adverse cardiovascular events in patients with STEMI treated with PCI. Sci Rep 8(1):15809. https://doi.org/10.1038/s41598-018-34245-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer JE, Funovics JM, Aguirre A, James JH, Keane JM, Wesdorp RI, Yoshimura N, Westman T (1975) The role of plasma amino acids in hepatic encephalopathy. Surgery 78(3):276–290

    CAS  PubMed  Google Scholar 

  • Fischer K, Kettunen J, Würtz P, Haller T, Havulinna AS, Kangas AJ, Soininen P, Esko T, Tammesoo M-L, Mägi R (2014) Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Med 11(2):e1001606

    Article  PubMed  PubMed Central  Google Scholar 

  • Floegel A, Kühn T, Sookthai D, Johnson T, Prehn C, Rolle-Kampczyk U, Otto W, Weikert C, Illig T, von Bergen M (2018) Serum metabolites and risk of myocardial infarction and ischemic stroke: a targeted metabolomic approach in two German prospective cohorts. Eur J Epidemiol 33(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Harada S, Takeuchi A, Kurihara A, Iida M, Fukai K, Kuwabara K, Kato S, Matsumoto M, Hirata A (2019) Association between dyslipidemia and plasma levels of branched-chain amino acids in the Japanese population without diabetes mellitus. J Clinical Lipidol 13(6):932–939

    Article  Google Scholar 

  • Gluud LL, Dam G, Borre M, Les I, Cordoba J, Marchesini G, Aagaard NK, Risum N, Vilstrup H (2013) Oral branched-chain amino acids have a beneficial effect on manifestations of hepatic encephalopathy in a systematic review with meta-analyses of randomized controlled trials. J Nutr 143(8):1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Greenland S (1987) Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 9:1–30. https://doi.org/10.1093/oxfordjournals.epirev.a036298

    Article  CAS  PubMed  Google Scholar 

  • Guasch-Ferré M, Hruby A, Toledo E, Clish CB, Martínez-González MA, Salas-Salvadó J, Hu FB (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39(5):833–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  • Holeček M (2018) Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab 15(1):33. https://doi.org/10.1186/s12986-018-0271-1

    Article  CAS  Google Scholar 

  • Layman DK (2003) The role of leucine in weight loss diets and glucose homeostasis. J Nutr 133(1):261S-267S

    Article  PubMed  Google Scholar 

  • Layman DK, Walker DA (2006) Potential importance of leucine in treatment of obesity and the metabolic syndrome. J Nutr 136(1):319S-323S

    Article  CAS  PubMed  Google Scholar 

  • Le Couteur DG, Ribeiro R, Senior A, Hsu B, Hirani V, Blyth FM, Waite LM, Simpson SJ, Naganathan V, Cumming RG (2020a) Branched chain amino acids, cardiometabolic risk factors and outcomes in older men: the concord health and ageing in men project. J Gerontology: Series A 75(10):1805–1810

    Google Scholar 

  • Le Couteur DG, Ribeiro R, Senior A, Hsu B, Hirani V, Blyth FM, Waite LM, Simpson SJ, Naganathan V, Cumming RG, Handelsman DJ (2020b) Branched chain amino acids, cardiometabolic risk factors and outcomes in older men: the concord health and ageing in men project. J Gerontol A Biol Sci Med Sci 75(10):1805–1810. https://doi.org/10.1093/gerona/glz192

    Article  PubMed  Google Scholar 

  • Li T, Zhang Z, Kolwicz SC Jr, Abell L, Roe ND, Kim M, Zhou B, Cao Y, Ritterhoff J, Gu H (2017) Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab 25(2):374–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu KA, Lashinger LM, Rasmussen AJ, Hursting SD (2014) Leucine supplementation differentially enhances pancreatic cancer growth in lean and overweight mice. Cancer and Metabolism 2(1):1–12

    Article  Google Scholar 

  • Liu S, Li L, Lou P, Zhao M, Wang Y, Tang M, Gong M, Liao G, Yuan Y, Li L (2021) Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus. Free Radical Biol Med 175:141–154

    Article  CAS  Google Scholar 

  • Lynch CJ, Adams SH (2014) Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 10(12):723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, Engström G, Östling G, Clish C, Wang TJ, Gerszten RE (2013) A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J 34(26):1982–1989

    Article  CAS  PubMed  Google Scholar 

  • Mann G, Mora S, Madu G, Adegoke OAJ (2021) Branched-chain amino acids: catabolism in skeletal muscle and implications for muscle and whole-body metabolism. Front Physiol. https://doi.org/10.3389/Phys.2021.702826

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 8(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Mirmiran P, Teymoori F, Asghari G, Azizi F (2019) Dietary intakes of branched chain amino acids and the incidence of hypertension: a population-based prospective cohort study. Arch Iran Med 22:182–188

    PubMed  Google Scholar 

  • Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews 4 (1):1. doi:https://doi.org/10.1186/2046-4053-4-1

  • Mokhtari E, Ahmadirad H, Teymoori F, Mohammadebrahim A, Bahrololomi SS, Mirmiran P (2022) The association between dietary amino acids and the risk of nonalcoholic fatty liver disease among Tehranian adults: a case-control study. BMC Nutrition 8(1):155. https://doi.org/10.1186/s40795-022-00656-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagata C, Nakamura K, Wada K, Tsuji M, Tamai Y, Kawachi T (2013) Branched-chain amino acid intake and the risk of diabetes in a Japanese community: the Takayama study. Am J Epidemiol 178(8):1226–1232

    Article  PubMed  Google Scholar 

  • Newgard CB (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 15(5):606–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osté MC, Flores-Guerrero JL, Gruppen EG, Kieneker LM, Connelly MA, Otvos JD, Dullaart RP, Bakker SJ (2020) High plasma branched-chain amino acids are associated with higher risk of post-transplant diabetes mellitus in renal transplant recipients. J Clin Med 9(2):511

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin LQ, Xun P, Bujnowski D, Daviglus ML, Van Horn L, Stamler J, He K (2011) Higher branched-chain amino acid intake is associated with a lower prevalence of being overweight or obese in middle-aged East Asian and Western adults. J Nutr 141(2):249–254

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Li L, Coyaud E, Luna A, Sander C, Raught B, Asara JM, Brown M, Muthuswamy SK (2019) LLGL2 rescues nutrient stress by promoting leucine uptake in ER+ breast cancer. Nature 569(7755):275–279

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Obin MS, Zhao L (2013) The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34(1):39–58

    Article  CAS  PubMed  Google Scholar 

  • Song D, O’Regan MH, Phillis JW (1998) Mechanisms of amino acid release from the isolated anoxic/reperfused rat heart. Eur J Pharmacol 351(3):313–322

    Article  CAS  PubMed  Google Scholar 

  • Tabesh M, Teymoori F, Ahmadirad H, Mirmiran P, Rahideh ST (2022) Dietary branched chain amino acids relationship with cancer and mortality: A systematic review and meta-analysis.

  • Tai E, Tan M, Stevens R, Low Y, Muehlbauer M, Goh D, Ilkayeva O, Wenner B, Bain J, Lee J (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53(4):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobias DK, Mora S, Verma S, Lawler PR (2018) Altered branched-chain amino acid metabolism: Towards a unifying cardiometabolic hypothesis. Curr Opin Cardiol 33(5):558

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias DK, Hazra A, Lawler PR, Chandler PD, Chasman DI, Buring JE, Lee I-M, Cheng S, Manson JE, Mora S (2020a) Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Tobias DK, Hazra A, Lawler PR, Chandler PD, Chasman DI, Buring JE, Lee IM, Cheng S, Manson JE, Mora S (2020b) Circulating branched-chain amino acids and long-term risk of obesity-related cancers in women. Sci Rep 10(1):16534. https://doi.org/10.1038/s41598-020-73499-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tynkkynen J, Chouraki V, van der Lee SJ, Hernesniemi J, Yang Q, Li S, Beiser A, Larson MG, Sääksjärvi K, Shipley MJ, Singh-Manoux A, Gerszten RE, Wang TJ, Havulinna AS, Würtz P, Fischer K, Demirkan A, Ikram MA, Amin N, Lehtimäki T, Kähönen M, Perola M, Metspalu A, Kangas AJ, Soininen P, Ala-Korpela M, Vasan RS, Kivimäki M, van Duijn CM, Seshadri S, Salomaa V (2018) Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: A prospective study in eight cohorts. Alzheimers Dement 14(6):723–733. https://doi.org/10.1016/j.jalz.2018.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Valerio A, D’Antona G, Nisoli E (2011) Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging (albany NY) 3(5):464

    Article  CAS  PubMed  Google Scholar 

  • Vanweert F, Schrauwen P, Phielix E (2022) Role of branched-chain amino acid metabolism in the pathogenesis of obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes 12(1):1–13

    Article  Google Scholar 

  • von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2008) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61(4):344–349. https://doi.org/10.1016/j.jclinepi.2007.11.008

    Article  Google Scholar 

  • Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhang F, Xia Y, Zhao S, Yan W, Wang H, Lee Y, Li C, Zhang L, Lian K (2016) Defective branched-chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Phys-Heart Circulatory Physio 311(5):H1160–H1169

    Article  Google Scholar 

  • Wang C-H, Cheng M-L, Liu M-H (2018a) Simplified plasma essential amino acid-based profiling provides metabolic information and prognostic value additive to traditional risk factors in heart failure. Amino Acids 50(12):1739–1748

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yang R, Wang M, Ji F, Li H, Tang Y, Chen W, Dong J (2018b) Identification of serum metabolites associated with obesity and traditional risk factors for metabolic disease in Chinese adults. Nutr Metab Cardiovasc Dis 28(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Wang M-Y, Wang C-H, Chen W-S, Chu C-M, Wu H-P, Liu M-H, Lin Y-T, Kao K-C, Liang C-Y, Chen W-H, Wang H-J, Lee S-C (2022b) U-Shape relationship between plasma leucine level and mortality in the intensive care unit. Dis Markers 2022:7389258. https://doi.org/10.1155/2022/7389258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M-Y, Wang C-H, Chen W-S, Chu C-M, Wu H-P, Liu M-H, Lin Y-T, Kao K-C, Liang C-Y, Chen W-H (2022a) U-Shape Relationship between Plasma Leucine Level and Mortality in the Intensive Care Unit. Disease markers 2022a

  • Watford M (2007) Lowered concentrations of branched-chain amino acids result in impaired growth and neurological problems: insights from a branched-chain α-keto acid dehydrogenase complex kinase-deficient mouse model. Nutr Rev 65(4):167–172

    Article  PubMed  Google Scholar 

  • Wells G SB, O′ Connell D, Peterson J, Welch V, Losos M, , quality eaTN-OSNfat, 2012. onsim-a.

  • Welsh P, Rankin N, Li Q, Mark PB, Würtz P, Ala-Korpela M, Marre M, Poulter N, Hamet P, Chalmers J (2018) Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: results from the ADVANCE trial. Diabetologia 61(7):1581–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T, Ghorbani A, Artati A, Wang Q, Tiainen M (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131(9):774–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Smith E, Melander O, Ottosson F (2022) The association between plasma metabolites and future risk of all-cause mortality. J Intern Med 292(5):804–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express our appreciation to the Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran for their valuable cooperation.

Funding

This study was supported by the Research Institute of Endocrine Sciences, Shahid Beheshti University Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

FT and HA contributed to the study concept and design. FT, HA, and HF developed the overall research plan and study oversight. FT, SJ, and HA conducted the research. EM and HA independently screened all records based on their titles and abstracts. FT and MM performed the data extraction, data analyses, and interpretation of data. MKJ, FT, HF, SJ, MB, EM, and TS drafted the manuscript. All authors provided intellectual comments and performed the critical revision of the manuscript. PM supervised the study. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Sanaz Jamshidi or Parvin Mirmiran.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the Ethics Committee of the Research Institute for Endocrine Sciences at the Shahid Beheshti University of Medical Sciences.

Consent for publication

Not applicable.

Additional information

Handling editor: S. Broeer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 170 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teymoori, F., Ahmadirad, H., Jahromi, M.K. et al. Serum branched amino acids and the risk of all-cause mortality: a meta-analysis and systematic review. Amino Acids 55, 1475–1486 (2023). https://doi.org/10.1007/s00726-023-03329-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03329-7

Keywords

Navigation