Skip to main content

Advertisement

Log in

Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The metabolism of dietary tryptophan occurs locally in the gut primarily via host enzymes, with ~ 5% metabolized by gut microbes. Three major tryptophan metabolic pathways are serotonin (beyond the scope of this review), indole, kynurenine and related derivatives. We introduce the gut microbiome, dietary tryptophan and the potential interplay of host and bacterial enzymes in tryptophan metabolism. Examples of bacterial transformation to indole and its derivative indole-3 propionic acid demonstrate associations with human metabolic disease and gut permeability, although causality remains to be determined. This review will focus on less well-known data, suggestive of local generation and functional significance in the gut, where kynurenine is converted to kynurenic acid and xanthurenic acid via enzymatic action present in both host and bacteria. Our functional data demonstrate a limited effect on intestinal epithelial cell monolayer permeability and on healthy mouse ileum. Other data suggest a modulatory effect on the microbiome, potentially in pathophysiology. Supportive of this, we found that the expression of mRNA for three kynurenine pathway enzymes were increased in colon from high-fat-fed mice, suggesting that this host pathway is perturbed in metabolic disease. These data, along with that from bacterial genomic analysis and germ-free mice, confirms expression and functional machinery of enzymes in this pathway. Therefore, the host and microbiota may play a significant dual role in either the production or regulation of these kynurenine metabolites which, in turn, can influence both host and microbiome, especially in the context of obesity and intestinal permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3-HK:

3-Hydroxykynurenine

AADAT:

Aminoadipate aminotransferase

ACMSD:

Aminocarboxymuconate semialdehyde decarboxylase

AhR:

Aryl hydrocarbon receptor

DDC:

DOPA decarboxylase

FITC:

Fluorescein isothiocyanate

GF:

Germ-Free

HFD:

High fat diet

I3AA:

Indole-3-acetic acid

IDO:

Indoleamine 2,3-dioxygenase

IFN-γ:

Interferon g

IPA:

Indole-3 propionic acid

ISA:

Indoxyl-3-sulfuric acid

KA:

Kynurenic acid

KAT:

Kynurenine aminotransferase/cysteine conjugate beta-lyase (CCBL)

KMO:

Kynurenine 3-monooxygenase

KYN:

Kynurenine

kynA:

Tryptophan 2,3-dioxygenase (bacterial)

KYNU:

Kynureninase

NAD:

Nicotinamide

RFU:

Relative fluorescence units

T2DM:

Type 2 diabetes

tam1:

Tryptophan amino transferase 1 (bacterial)

TDO:

Tryptophan 2,3-dioxygenase

tnAa:

Tryptophanase (bacterial)

TNF-α:

Tumor necrosis factor-α

TPH1:

Tryptophan hydroxylase 1

TTX:

Tetrodotoxin

XA:

Xanthurenic acid

References

  • Abildgaard A, Elfving B, Hokland M et al (2018) The microbial metabolite indole-3-propionic acid improves glucose metabolism in rats, but does not affect behaviour. Arch Physiol Biochem 124:306–312

    CAS  PubMed  Google Scholar 

  • Agudelo LZ, Ferreira DMS, Cervenka I et al (2018) Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab 27:378–392 (e375)

    CAS  PubMed  Google Scholar 

  • Alexeev EE, Lanis JM, Kao DJ et al (2018) Microbiota-derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin-10 receptor. Am J Pathol 188:1183–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badawy AA (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. IJTR 10:1178646917691938

    PubMed  PubMed Central  Google Scholar 

  • Baj A, Moro E, Bistoletti M et al (2019) Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int J Mol Sci 20

  • Bansal T, Alaniz RC, Wood TK et al (2010) The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci USA 107:228–233

    CAS  PubMed  Google Scholar 

  • Bortolotti P, Hennart B, Thieffry C et al (2016) Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship. BMC Microbiol 16:137

    PubMed  PubMed Central  Google Scholar 

  • Brottveit M, Beitnes AC, Tollefsen S et al (2013) Mucosal cytokine response after short-term gluten challenge in celiac disease and non-celiac gluten sensitivity. Am J Gastroenterol 108:842–850

    CAS  PubMed  Google Scholar 

  • Chappell CL, Darkoh C, Shimmin L et al (2016) Fecal indole as a biomarker of susceptibility to cryptosporidium infection. Infect Immun 84:2299–2306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chimerel C, Emery E, Summers DK et al (2014) Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep 9:1202–1208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen MHE, Fadnes DJ, Rost TH et al (2018) Inflammatory markers, the tryptophan-kynurenine pathway, and vitamin B status after bariatric surgery. PLoS ONE 13:e0192169

    PubMed  PubMed Central  Google Scholar 

  • Ciorba MA (2013) Indoleamine 2,3 dioxygenase in intestinal disease. Curr Opin Gastroenterol 29:146–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson MJ, Jeffery IB, Conde S et al (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–184

    CAS  PubMed  Google Scholar 

  • Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673

    CAS  PubMed  Google Scholar 

  • Cooper PR, Lamb R, Day ND et al (2009) TLR3 activation stimulates cytokine secretion without altering agonist-induced human small airway contraction or relaxation. Am J Physiol Lung Cell Mol Physiol 297:L530-537

    CAS  PubMed  Google Scholar 

  • Cussotto S, Delgado I, Anesi A et al (2020) Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol 11:557

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho LP, Bochet P, Rossier J (1996) The endogenous agonist quinolinic acid and the non endogenous homoquinolinic acid discriminate between NMDAR2 receptor subunits. Neurochem Int 28:445–452

    PubMed  Google Scholar 

  • de Mello VD, Paananen J, Lindstrom J et al (2017) Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 7:46337

    PubMed  PubMed Central  Google Scholar 

  • Dodd D, Spitzer MH, Van Treuren W et al (2017) A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551:648–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolecka J, Urbanik-Sypniewska T, Skrzydlo-Radomanska B et al (2011) Effect of kynurenic acid on the viability of probiotics in vitro. Pharmacol Rep 63:548–551

    CAS  PubMed  Google Scholar 

  • Dong F, Hao F, Murray IA et al (2020) Intestinal microbiota-derived tryptophan metabolites are predictive of Ah receptor activity. Gut Microb 12:1–24

    Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed  PubMed Central  Google Scholar 

  • Egerod KL, Petersen N, Timshel PN et al (2018) Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Molecular metabolism 12:62–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ejtahed HS, Angoorani P, Hasani-Ranjbar S et al (2018) Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb Pathog 116:13–21

    PubMed  Google Scholar 

  • Evenepoel P, Claus D, Geypens B et al (1999) Amount and fate of egg protein escaping assimilation in the small intestine of humans. Am J Physiol 277:G935-943

    CAS  PubMed  Google Scholar 

  • Favennec M, Hennart B, Verbanck M et al (2016) Post-bariatric surgery changes in quinolinic and xanthurenic acid concentrations are associated with glucose homeostasis. PLoS ONE 11:e0158051

    PubMed  PubMed Central  Google Scholar 

  • Fazio F, Lionetto L, Curto M et al (2015) Xanthurenic acid activates mglu2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia. Sci Rep 5:17799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frank DN, St Amand AL, Feldman RA et al (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104:13780–13785

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Xu K, Liu H et al (2018) Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 8:13

    PubMed  PubMed Central  Google Scholar 

  • Gheorghe CE, Martin JA, Manriquez FV et al (2019) Focus on the essentials: tryptophan metabolism and the microbiome-gut-brain axis. Curr Opin Pharmacol 48:137–145

    CAS  PubMed  Google Scholar 

  • Grifka-Walk HM, Jenkins BR, Kominsky DJ (2021) Amino acid trp: the far out impacts of host and commensal tryptophan metabolism. Front Immunol 12:e653208

    Google Scholar 

  • Group NHW, Peterson J, Garges S et al (2009) The NIH human microbiome project. Genome Res 19:2317–2323

    Google Scholar 

  • Han Q, Fang J, Li J (2001) Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase. Biochem J 360:617–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heischmann S, Gano LB, Quinn K et al (2018) Regulation of kynurenine metabolism by a ketogenic diet. J Lipid Res 59:958–966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu LJ, Li XF, Hu JQ et al (2017) A simple HPLC-MS/MS method for determination of tryptophan, kynurenine and kynurenic acid in human serum and its potential for monitoring antidepressant therapy. J Anal Toxicol 41:37–44

    CAS  PubMed  Google Scholar 

  • Huang J, Xiao N, Sun Y et al (2021) Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Appl Microbiol Biotechnol 105:287–299

    CAS  PubMed  Google Scholar 

  • Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to ah receptor activation. Drug Metab Dispos 43:1522–1535

    PubMed  PubMed Central  Google Scholar 

  • Huurre A, Kalliomaki M, Rautava S et al (2008) Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93:236–240

    PubMed  Google Scholar 

  • Islam J, Sato S, Watanabe K et al (2017) Dietary tryptophan alleviates dextran sodium sulfate-induced colitis through aryl hydrocarbon receptor in mice. J Nutr Biochem 42:43–50

    CAS  PubMed  Google Scholar 

  • Jennis M, Cavanaugh CR, Leo GC et al (2018) Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil 30:e13178

    Google Scholar 

  • Jones LA, Sun EW, Martin AM et al (2020) The ever-changing roles of serotonin. Int J Biochem Cell Biol 125:105776

    CAS  PubMed  Google Scholar 

  • Kaszaki J, Erces D, Varga G et al (2012) Kynurenines and intestinal neurotransmission: the role of N-methyl-d-aspartate receptors. J Neural Transm (vienna) 119:211–223

    CAS  Google Scholar 

  • Kaur H, Bose C, Mande SS (2019) Tryptophan metabolism by gut microbiome and gut-brain-axis: an in silico analysis. Front Neurosci 13:1365

    PubMed  PubMed Central  Google Scholar 

  • Kennedy PJ, Allen AP, O’Neill A et al (2015) Acute tryptophan depletion reduces kynurenine levels: implications for treatment of impaired visuospatial memory performance in irritable bowel syndrome. Psychopharmacology 232:1357–1371

    CAS  PubMed  Google Scholar 

  • Keszthelyi D, Troost FJ, Jonkers DM et al (2012) Does acute tryptophan depletion affect peripheral serotonin metabolism in the intestine? Am J Clin Nutr 95:603–608

    CAS  PubMed  Google Scholar 

  • Knudsen C, Neyrinck AM, Leyrolle Q et al (2021) Hepatoprotective effects of indole, a gut microbial metabolite, in leptin-deficient obese mice. J Nutr 151:1507–1516

    PubMed  PubMed Central  Google Scholar 

  • Koelman L, Pivovarova-Ramich O, Pfeiffer AFH et al (2019) Cytokines for evaluation of chronic inflammatory status in ageing research: reliability and phenotypic characterisation. Immun Ageing 16:11

    PubMed  PubMed Central  Google Scholar 

  • Konopelski P, Konop M, Gawrys-Kopczynska M et al (2019) Indole-3-propionic acid, a tryptophan-derived bacterial metabolite, reduces weight gain in rats. Nutrients 11:591

    CAS  PubMed Central  Google Scholar 

  • Kuc D, Zgrajka W, Parada-Turska J et al (2008) Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids 35:503–505

    CAS  PubMed  Google Scholar 

  • Kudo Y, Boyd CA (2000) Human placental indoleamine 2,3-dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochem Biophys Acta 1500:119–124

    CAS  PubMed  Google Scholar 

  • Lakhan SE, Kirchgessner A (2011) Anti-inflammatory effects of nicotine in obesity and ulcerative colitis. J Transl Med 9:129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larzabal A, Losada J, Mateos JM et al (1999) Distribution of the group II metabotropic glutamate receptors (mGluR2/3) in the enteric nervous system of the rat. Neurosci Lett 276:91–94

    CAS  PubMed  Google Scholar 

  • Laurans L, Venteclef N, Haddad Y et al (2018) Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med 24:1113–1120

    CAS  PubMed  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    CAS  PubMed  Google Scholar 

  • Lee DM, Ecton KE, Trikha SRJ et al (2020) Microbial metabolite indole-3-propionic acid supplementation does not protect mice from the cardiometabolic consequences of a Western diet. Am J Physiol Gastrointest Liver Physiol 319:G51–G62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang Y, Yang S et al (2021a) The beneficial effects of edible kynurenic acid from marine horseshoe crab (Tachypleus tridentatus) on obesity, hyperlipidemia, and gut microbiota in high-fat diet-fed mice. Oxid Med Cell Longev 2021:8874503

    PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang B, Hu Y et al (2021b) New insights into gut-bacteria-derived indole and its derivatives in intestinal and liver diseases. Front Pharmacol GI Hepatol 12:769501

    Google Scholar 

  • Liang H, Dai Z, Liu N et al (2018) Dietary l-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol 9:1736

    PubMed  PubMed Central  Google Scholar 

  • Liang J, Kou S, Chen C et al (2021) Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol 21:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu MT, Rothstein JD, Gershon MD et al (1997) Glutamatergic enteric neurons. J Neurosci 17:4764–4784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma N, He T, Johnston LJ et al (2020) Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut microbes 11:1203–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison DC, Alfonso-Nunez M, Swaih AM et al (2020) A novel role for kynurenine 3-monooxygenase in mitochondrial dynamics. PLoS Genet 16:e1009129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcobal A, Kashyap PC, Nelson TA et al (2013) A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J 7:1933–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng D, Sommella E, Salviati E et al (2020) Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 88:209–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moloney GM, O’Leary OF, Salvo-Romero E et al (2017) Microbial regulation of hippocampal miRNA expression: implications for transcription of kynurenine pathway enzymes. Behav Brain Res 334:50–54

    CAS  PubMed  Google Scholar 

  • Moroni F, Pellegrini-Giampietro DE, Alesiani M et al (1989) Glycine and kynurenate modulate the glutamate receptors in the myenteric plexus and in cortical membranes. Eur J Pharmacol 163:123–126

    CAS  PubMed  Google Scholar 

  • Natividad JM, Agus A, Planchais J et al (2018) Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28:737–749 (e734)

    CAS  PubMed  Google Scholar 

  • Neunlist M, Toumi F, Oreschkova T et al (2003) Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol 285:G1028-1036

    CAS  PubMed  Google Scholar 

  • Obata Y, Castano A, Boeing S et al (2020) Neuronal programming by microbiota regulates intestinal physiology. Nature 578:284–289

    CAS  PubMed  Google Scholar 

  • Ohland CL, Pankiv E, Baker G et al (2016) Western diet-induced anxiolytic effects in mice are associated with alterations in tryptophan metabolism. Nutr Neurosci 19:337–345

    CAS  PubMed  Google Scholar 

  • Oxenkrug GF (2010) Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann N Y Acad Sci 1199:1–14

    CAS  PubMed  Google Scholar 

  • Oxenkrug GF (2015) Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol Neurobiol 52:805–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Page AJ, Young RL, Martin CM et al (2005) Metabotropic glutamate receptors inhibit mechanosensitivity in vagal sensory neurons. Gastroenterology 128:402–410

    CAS  PubMed  Google Scholar 

  • Pasolli E, Asnicar F, Manara S et al (2019) Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176:649–662 (e620)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng XP, Ding W, Ma JM et al (2020) Effect of Escherichia coli infection on metabolism of dietary protein in intestine. Curr Protein Pept Sci 21:772–776

    CAS  PubMed  Google Scholar 

  • Pocivavsek A, Notarangelo FM, Wu H-Q et al (2016) Astrocytes as pharmacological targets in the treatment of schizophrenia: focus on kynurenic acid. In: Handbook of behavioral neuroscience, pp 423–443

  • Postal BG, Ghezzal S, Aguanno D et al (2020) AhR activation defends gut barrier integrity against damage occurring in obesity. Mol Metab 39:101007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley EM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol (n Y) 9:560–569

    Google Scholar 

  • Roager HM, Licht TR (2018) Microbial tryptophan catabolites in health and disease. Nat Commun 9:3294

    PubMed  PubMed Central  Google Scholar 

  • Roth W, Zadeh K, Vekariya R et al (2021) Tryptophan metabolism and gut-brain homeostasis. Int J Mol Sci 22:2973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothhammer V, Borucki DM, Tjon EC et al (2018) Microglial control of astrocytes in response to microbial metabolites. Nature 557:724–728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sainio EL, Pulkki K, Young SN (1996) L-Tryptophan: biochemical, nutritional and pharmacological aspects. Amino Acids 10:21–47

    CAS  PubMed  Google Scholar 

  • Scott SA, Fu J, Chang PV (2020) Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci USA 117:19376–19387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stone TW (2016) Tryptophan and kynurenines: continuing to court controversy. Clin Sci (lond) 130:1335–1337

    CAS  Google Scholar 

  • Strasser B, Berger K, Fuchs D (2015) Effects of a caloric restriction weight loss diet on tryptophan metabolism and inflammatory biomarkers in overweight adults. Eur J Nutr 54:101–107

    CAS  PubMed  Google Scholar 

  • Tomaszewska E, Muszynski S, Kuc D et al (2019) Chronic dietary supplementation with kynurenic acid, a neuroactive metabolite of tryptophan, decreased body weight without negative influence on densitometry and mandibular bone biomechanical endurance in young rats. PLoS ONE 14:e0226205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toth F, Cseh EK, Vecsei L (2021) Natural molecules and neuroprotection: kynurenic acid, pantethine and alpha-lipoic acid. Int J Mol Sci 22:403

    CAS  PubMed Central  Google Scholar 

  • Tuomainen M, Lindstrom J, Lehtonen M et al (2018) Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes 8:35

    PubMed  PubMed Central  Google Scholar 

  • Tuomi K, Logomarsino JV (2016) Bacterial lipopolysaccharide, lipopolysaccharide-binding protein, and other inflammatory markers in obesity and after bariatric surgery. Metab Syndr Relat Disord 14:279–288

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L et al (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turski MP, Turska M, Zgrajka W et al (2009) Presence of kynurenic acid in food and honeybee products. Amino Acids 36:75–80

    CAS  PubMed  Google Scholar 

  • Turski WA, Malaczewska J, Marciniak S et al (2014) On the toxicity of kynurenic acid in vivo and in vitro. Pharmacol Rep 66:1127–1133

    CAS  PubMed  Google Scholar 

  • Valente-Silva P, Cervenka I, Ferreira DMS et al (2021) Effects of tryptophan supplementation and exercise on the fate of kynurenine metabolites in mice and humans. Metabolites 11:508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valladares R, Bojilova L, Potts AH et al (2013) Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J 27:1711–1720

    CAS  PubMed  Google Scholar 

  • Vance KM, Rogers RC, Hermann GE (2015) NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract. Brain Res 1595:84–91

    CAS  PubMed  Google Scholar 

  • Van der Leek AP, Yanishevsky Y, Kozyrskyj AL (2017) The kynurenine pathway as a novel link between allergy and the gut microbiome. Front Immunol 8:1374

    PubMed  PubMed Central  Google Scholar 

  • Varga G, Erces D, Fazekas B et al (2010) N-Methyl-d-aspartate receptor antagonism decreases motility and inflammatory activation in the early phase of acute experimental colitis in the rat. Neurogastroenterol Motil 22:217–225 (e268)

    CAS  PubMed  Google Scholar 

  • Venkatesh M, Mukherjee S, Wang H et al (2014) Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41:296–310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voreades N, Kozil A, Weir TL (2014) Diet and the development of the human intestinal microbiome. Front Microbiol 5:494

    PubMed  PubMed Central  Google Scholar 

  • Voss U, Sand E, Olde B et al (2013) Enteric neuropathy can be induced by high fat diet in vivo and palmitic acid exposure in vitro. PLoS ONE 8:e81413

    PubMed  PubMed Central  Google Scholar 

  • Vujkovic-Cvijin I, Dunham RM, Iwai S et al (2013) Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci Transl Med 5:193ra191

    Google Scholar 

  • Walczak K, Dabrowski W, Langner E et al (2011) Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand J Gastroenterol 46:903–912

    CAS  PubMed  Google Scholar 

  • Walker WA, Meng D (2020) Breast milk and microbiota in the premature gut: a method of preventing necrotizing enterocolitis. Nestle Nutr Inst Workshop Ser 94:103–112

    PubMed  Google Scholar 

  • Wang J, Simonavicius N, Wu X et al (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biologic Chem 281:22021–22028

    CAS  Google Scholar 

  • Whitfield-Cargile CM, Cohen ND, Chapkin RS et al (2016) The microbiota-derived metabolite indole decreases mucosal inflammation and injury in a murine model of NSAID enteropathy. Gut Microb 7:246–261

    CAS  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams BB, Van Benschoten AH, Cimermancic P et al (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    CAS  PubMed  Google Scholar 

  • Wu CS, Muthyala SDV, Klemashevich C et al (2021) Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging (albany NY) 13:6330–6345

    CAS  Google Scholar 

  • Xiao HW, Cui M, Li Y et al (2020) Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-CoA-binding protein. Microbiome 8:69

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sauve AA (2016) NAD(+) metabolism: bioenergetics, signaling and manipulation for therapy. Biochem Biophys Acta 1864:1787–1800

    CAS  PubMed  Google Scholar 

  • Yang J, Chawla R, Rhee KY et al (2020) Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc Natl Acad Sci USA 117:6114–6120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz C, Gokmen V (2018) Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chem 243:420–427

    CAS  PubMed  Google Scholar 

  • Yusufu I, Ding K, Smith K et al (2021) A tryptophan-deficient diet induces gut microbiota dysbiosis and increases systemic inflammation in aged mice. Int J Mol Sci 22:5005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zelante T, Iannitti RG, Cunha C et al (2013) Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–385

    CAS  PubMed  Google Scholar 

  • Zelante T, Choera T, Beauvais A et al (2021) Aspergillus fumigatus tryptophan metabolic route differently affects host immunity. Cell Rep 34:108673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Shi Y, Chen C et al (2021) A narrative review of the roles of indoleamine 2,3-dioxygenase and tryptophan-2,3-dioxygenase in liver diseases. Ann Transl Med 9:174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Fu B, Dong M et al (2021) Effects of long-term antibiotic treatment on mice urinary aromatic amino acid profiles. Biosci Rep 41:BSR20203498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Toth F, Polyak H et al (2021) Immune influencers in action: metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines 9:734. https://doi.org/10.3390/biomedicines9070734, https://www.mdpi.com/journal/biomedicines

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank John Mabus and Dr. Matthew Jennis (CVM, Janssen R&D, PA, USA) for their excellent analysis of metabolite effects in vitro, and Dr. James Lenhard (CVM, Janssen R&D, PA, USA) for discussions on the gut microbiome and protein metabolism. We thank Dr Harriët Schellekens (Department of Anatomy and Neuroscience, University College Cork, Ireland) for the high-fat-fed mice colons used for mRNA expression. The research was supported in part by a Science Foundation Ireland (SFI) Industry Fellowship Award (15/IFB/3578) to N. Hyland for C. Cavanaugh to conduct the experiments at APC Microbiome Ireland, a research center funded by SFI (12/RC/2273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela J. Hornby.

Ethics declarations

Conflict of interest

None of the authors have a conflict of interest; CC and PH are fulltime employees of Janssen R&D, LLC.

Research involving animals

All experiments were performed in accordance with European guidelines following approval by University College Cork Animal Ethics Experimentation.

Informed consent

N/A, no human subjects participated in the original research reported here.

Additional information

Handling editor: F. Blachier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyland, N.P., Cavanaugh, C.R. & Hornby, P.J. Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids 54, 57–70 (2022). https://doi.org/10.1007/s00726-022-03123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-022-03123-x

Keywords

Navigation